Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
September-2021 Volume 59 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2021 Volume 59 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Novel insights into the impact of the SUMOylation pathway in hematological malignancies (Review)

  • Authors:
    • Ling Wang
    • Jinjun Qian
    • Ye Yang
    • Chunyan Gu
  • View Affiliations / Copyright

    Affiliations: Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210022, P.R. China, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 73
    |
    Published online on: August 6, 2021
       https://doi.org/10.3892/ijo.2021.5253
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The small ubiquitin‑like modifier (SUMO) system serves an important role in the regulation of protein stability and function. SUMOylation sustains the homeostatic equilibrium of protein function in normal tissues and numerous types of tumor. Accumulating evidence has revealed that SUMO enzymes participate in carcinogenesis via a series of complex cellular or extracellular processes. The present review outlines the physiological characteristics of the SUMOylation pathway and provides examples of SUMOylation participation in different cancer types, including in hematological malignancies (leukemia, lymphoma and myeloma). It has been indicated that the SUMO pathway may influence chromosomal instability, cell cycle progression, apoptosis and chemical drug resistance. The present review also discussed the possible relationship between SUMOylation and carcinogenic mechanisms, and evaluated their potential as biomarkers and therapeutic targets in the diagnosis and treatment of hematological malignancies. Developing and investigating inhibitors of SUMO conjugation in the future may offer promising potential as novel therapeutic strategies.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Deribe YL, Pawson T and Dikic I: Post-translational modifications in signal integration. Nat Struct Mol Biol. 17:666–672. 2010. View Article : Google Scholar

2 

Flotho A and Melchior F: Sumoylation: A regulatory protein modification in health and disease. Ann Rev Biochem. 82:357–385. 2013. View Article : Google Scholar

3 

Bergink S and Jentsch S: Principles of ubiquitin and SUMO modifications in DNA repair. Nature. 458:461–467. 2009. View Article : Google Scholar

4 

Iribarren PA, Di Marzio LA, Berazategui MA, De Gaudenzi JG and Alvarez VE: SUMO polymeric chains are involved in nuclear foci formation and chromatin organization in Trypanosoma brucei procyclic forms. PLoS One. 13:e01935282018. View Article : Google Scholar

5 

Hendriks I, Lyon D, Young C, Jensen L, Vertegaal A and Nielsen M: Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation. Nat Struct Mol Biol. 24:325–336. 2017. View Article : Google Scholar

6 

Hendriks I and Vertegaal A: A comprehensive compilation of SUMO proteomics. Nat Rev Mol Cell Biol. 17:581–595. 2016. View Article : Google Scholar

7 

Beltrao P, Bork P, Krogan N and van Noort V: Evolution and functional cross-talk of protein post-translational modifications. Mol Syst Biol. 9:7142013. View Article : Google Scholar

8 

Zhao X: SUMO-mediated regulation of nuclear functions and signaling processes. Mol Cell. 71:409–418. 2018. View Article : Google Scholar

9 

Enserink JM: Sumo and the cellular stress response. Cell Div. 10:42015. View Article : Google Scholar

10 

Minguez P, Parca L, Diella F, Mende DR, Kumar R, Helmer-Citterich M, Gavin AC, van Noort V and Bork P: Deciphering a global network of functionally associated post-translational modifications. Mol Syst Biol. 8:5992012. View Article : Google Scholar

11 

Han ZJ, Feng YH, Gu BH, Li YM and Chen H: The post-translational modification, SUMOylation, and cancer (Review). Int J Oncol. 52:1081–1094. 2018.

12 

Mattoscio D and Chiocca S: SUMO pathway components as possible cancer biomarkers. Future Oncol. 11:1599–1610. 2015. View Article : Google Scholar

13 

Xie M, Yu J, Ge S, Huang J and Fan X: SUMOylation homeostasis in tumorigenesis. Cancer Lett. 469:301–309. 2020. View Article : Google Scholar

14 

Neuse CJ, Lomas OC, Schliemann C, Shen YJ, Manier S, Bustoros M and Ghobrial IM: Genome instability in multiple myeloma. Leukemia. 34:2887–2897. 2020. View Article : Google Scholar

15 

Rajkumar SV and Kumar S: Multiple myeloma current treatment algorithms. Blood Cancer J. 10:942020. View Article : Google Scholar

16 

Sha Z and Goldberg AL: Multiple myeloma cells are exceptionally sensitive to heat shock, which overwhelms their proteostasis network and induces apoptosis. Proc Natl Acad Sci USA. 117:21588–21597. 2020. View Article : Google Scholar

17 

Zhao Q, Ma Y, Li Z, Zhang K, Zheng M and Zhang S: The function of SUMOylation and its role in the development of cancer cells under stress conditions: A systematic review. Stem Cells Int. 2020:88357142020. View Article : Google Scholar

18 

Li YY, Wang H, Yang XX, Geng HY, Gong G, Kim HJ, Zhou YH and Wu JJ: Small Ubiquitin-Like Modifier 4 (SUMO4) Gene M55V polymorphism and type 2 diabetes mellitus: A Meta-analysis including 6,823 subjects. Front Endocrinol. 8:3032017. View Article : Google Scholar

19 

Bohren KM, Nadkarni V, Song JH, Gabbay KH and Owerbach D: A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J Biol Chem. 279:27233–27238. 2004. View Article : Google Scholar

20 

Liang YC, Lee CC, Yao YL, Lai CC, Schmitz ML and Yang WM: SUMO5, a Novel Poly-SUMO isoform, regulates PML nuclear bodies. Sci Rep. 6:265092016. View Article : Google Scholar

21 

Gong L, Li B, Millas S and Yeh ET: Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex. FEBS Lett. 448:185–189. 1999. View Article : Google Scholar

22 

Desterro JM, Rodriguez MS, Kemp GD and Hay RT: Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J Biol Chem. 274:10618–10624. 1999. View Article : Google Scholar

23 

Müller S, Hoege C, Pyrowolakis G and Jentsch S: SUMO, ubiquitin's mysterious cousin. Nat Rev Mol Cell Biol. 2:202–210. 2001. View Article : Google Scholar

24 

Johnson ES: Protein modification by SUMO. Ann Rev Biochem. 73:355–382. 2004. View Article : Google Scholar

25 

Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, Naismith JH and Hay RT: Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem. 276:35368–35374. 2001. View Article : Google Scholar

26 

Sriramachandran AM, Meyer-Teschendorf K, Pabst S, Ulrich HD, Gehring NH, Hofmann K, Praefcke GJ and Dohmen RJ: Arkadia/RNF111 is a SUMO-targeted ubiquitin ligase with preference for substrates marked with SUMO1-capped SUMO2/3 chain. Nat Commun. 10:36782019. View Article : Google Scholar

27 

Drag M and Salvesen GS: DeSUMOylating enzymes-SENPs. IUBMB Life. 60:734–742. 2008. View Article : Google Scholar

28 

Hecker CM, Rabiller M, Haglund K, Bayer P and Dikic I: Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem. 281:16117–16127. 2006. View Article : Google Scholar

29 

Chen Y, Sun XX, Sears RC and Dai MS: Writing and erasing MYC ubiquitination and SUMOylation. Genes Dis. 6:359–371. 2019. View Article : Google Scholar

30 

Fan L, Bi T, Wang L and Xiao W: DNA-damage tolerance through PCNA ubiquitination and sumoylation. Biochem J. 477:2655–2677. 2020. View Article : Google Scholar

31 

Sriramachandran AM and Dohmen RJ: SUMO-targeted ubiquitin ligases. Biochim Biophys Acta. 1843:75–85. 2014. View Article : Google Scholar

32 

Johnson ES, Schwienhorst I, Dohmen RJ and Blobel G: The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J. 16:5509–5519. 1997. View Article : Google Scholar

33 

Lois LM and Lima CD: Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J. 24:439–451. 2005. View Article : Google Scholar

34 

Cappadocia L, Pichler A and Lima CD: Structural basis for catalytic activation by the human ZNF451 SUMO E3 ligase. Nat Struct Mol Biol. 22:968–975. 2015. View Article : Google Scholar

35 

Eisenhardt N, Chaugule VK, Koidl S, Droescher M, Dogan E, Rettich J, Sutinen P, Imanishi SY, Hofmann K, Palvimo JJ and Pichler A: A new vertebrate SUMO enzyme family reveals insights into SUMO-chain assembly. Nat Struct Mol Biol. 22:959–967. 2015. View Article : Google Scholar

36 

Werner A, Flotho A and Melchior F: The RanBP2/RanGAP1*SUMO1/Ubc9 complex is a multisubunit SUMO E3 ligase. Mol Cell. 46:287–298. 2012. View Article : Google Scholar

37 

Drabikowski K: Ubiquitin and SUMO Modifications in Caenorhabditis elegans stress response. Curr Issues Mol Biol. 35:145–158. 2020. View Article : Google Scholar

38 

Lu W, Wang Q, Xu C, Yuan H, Fan Q, Chen B, Cai R, Wu D and Xu M: SUMOylation is essential for Sirt2 tumor-suppressor function in neuroblastoma. Neoplasia. 23:129–139. 2021. View Article : Google Scholar

39 

Chanda A, Sarkar A and Bonni S: The SUMO System and TGFβ signaling interplay in regulation of epithelial-mesenchymal transition: Implications for cancer progression. Cancers (Basel). 10:2642018. View Article : Google Scholar

40 

Wu G, Xu Y, Ruan N, Li J, Lv Q, Zhang Q, Chen Y, Wang Q, Xia Q and Li Q: Genetic alteration and clinical significance of SUMOylation regulators in multiple cancer types. J Cancer. 11:6823–6833. 2020. View Article : Google Scholar

41 

Boulanger M, Paolillo R, Piechaczyk M and Bossis G: The SUMO pathway in Hematomalignancies and their response to therapies. Int J Mol Sci. 20:38952019. View Article : Google Scholar

42 

Küppers R: Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer. 5:251–262. 2005. View Article : Google Scholar

43 

Driscoll JJ, Pelluru D, Lefkimmiatis K, Fulciniti M, Prabhala RH, Greipp PR, Barlogie B, Tai YT, Anderson KC, Shaughnessy JD Jr, et al: The sumoylation pathway is dysregulated in multiple myeloma and is associated with adverse patient outcome. Blood. 115:2827–2834. 2010. View Article : Google Scholar

44 

Chen YC, Hsu WL, Ma YL, Tai DJ and Lee EH: CREB SUMOylation by the E3 ligase PIAS1 enhances spatial memory. J Neurosci. 34:9574–9589. 2014. View Article : Google Scholar

45 

Hoellein A, Fallahi M, Schoeffmann S, Steidle S, Schaub FX, Rudelius M, Laitinen I, Nilsson L, Goga A, Peschel C, et al: Myc-induced SUMOylation is a therapeutic vulnerability for B-cell lymphoma. Blood. 124:2081–2090. 2014. View Article : Google Scholar

46 

Jiang B, Fan X, Zhang D, Liu H and Fan C: Identifying UBA2 as a proliferation and cell cycle regulator in lung cancer A549 cells. J Cell Biochem. 120:12752–12761. 2019. View Article : Google Scholar

47 

Licciardello MP, Müllner MK, Dürnberger G, Kerzendorfer C, Boidol B, Trefzer C, Sdelci S, Berg T, Penz T, Schuster M, et al: NOTCH1 activation in breast cancer confers sensitivity to inhibition of SUMOylation. Oncogene. 34:3780–3790. 2015. View Article : Google Scholar

48 

Yan S, Li A and Liu Y: CacyBP/SIP inhibits the migration and invasion behaviors of glioblastoma cells through activating Siah1 mediated ubiquitination and degradation of cytoplasmic p27. Cell Biol Int. 42:216–226. 2018. View Article : Google Scholar

49 

Imamura Y, Wang PL, Masuno K and Sogawa N: Salivary protein histatin 3 regulates cell proliferation by enhancing p27(Kip1) and heat shock cognate protein 70 ubiquitination. Biochem Biophys Res Commun. 470:269–274. 2016. View Article : Google Scholar

50 

Wang L, Bai G and Chen F: Human bone marrow mesenchymal stem cells suppress the proliferation of hepatic stellate cells by inhibiting the ubiquitination of p27. Biochem Cell Biol. 95:628–633. 2017. View Article : Google Scholar

51 

Huang X, Tao Y, Gao J, Zhou X, Tang S, Deng C, Lai Z, Lin X, Wang Q and Li T: UBC9 coordinates inflammation affecting development of bladder cancer. Sci Rep. 10:206702020. View Article : Google Scholar

52 

He W, Verhees GF, Bhagwat N, Yang Y, Kulkarni DS, Lombardo Z, Lahiri S, Roy P, Zhuo J, Dang B, et al: SUMO fosters assembly and functionality of the MutSγ complex to facilitate meiotic crossing over. Dev Cell. 56:2073–2088.e3. 2021. View Article : Google Scholar

53 

Kaul S, Blackford JA Jr, Cho S and Simons SS Jr: Ubc9 is a novel modulator of the induction properties of glucocorticoid receptors. J Biol Chem. 277:12541–12549. 2002. View Article : Google Scholar

54 

Chakrabarti SR, Sood R, Ganguly S, Bohlander S, Shen Z and Nucifora G: Modulation of TEL transcription activity by interaction with the ubiquitin-conjugating enzyme UBC9. Proc Natl Acad Sci USA. 96:7467–7472. 1999. View Article : Google Scholar

55 

Zhu S, Sachdeva M, Wu F, Lu Z and Mo YY: Ubc9 promotes breast cell invasion and metastasis in a sumoylation-independent manner. Oncogene. 29:1763–1772. 2010. View Article : Google Scholar

56 

Li C, McManus FP, Plutoni C, Pascariu CM, Nelson T, Alberici Delsin LE, Emery G and Thibault P: Quantitative SUMO proteomics identifies PIAS1 substrates involved in cell migration and motility. Nat Commun. 11:8342020. View Article : Google Scholar

57 

Liu B, Tahk S, Yee KM, Fan G and Shuai K: The ligase PIAS1 restricts natural regulatory T cell differentiation by epigenetic repression. Science. 330:521–525. 2010. View Article : Google Scholar

58 

Kotaja N, Vihinen M, Palvimo JJ and Jänne OA: Androgen receptor-interacting protein 3 and other PIAS proteins cooperate with glucocorticoid receptor-interacting protein 1 in steroid receptor-dependent signaling. J Biol Chem. 277:17781–17788. 2002. View Article : Google Scholar

59 

Galanty Y, Belotserkovskaya R, Coates J, Polo S, Miller KM and Jackson SP: Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature. 462:935–939. 2009. View Article : Google Scholar

60 

Hoefer J, Schäfer G, Klocker H, Erb HH, Mills IG, Hengst L, Puhr M and Culig Z: PIAS1 is increased in human prostate cancer and enhances proliferation through inhibition of p21. Am J Pathol. 180:2097–2107. 2012. View Article : Google Scholar

61 

Rabellino A, Melegari M, Tompkins VS, Chen W, Van Ness BG, Teruya-Feldstein J, Conacci-Sorrell M, Janz S and Scaglioni PP: PIAS1 promotes Lymphomagenesis through MYC upregulation. Cell Rep. 15:2266–2278. 2016. View Article : Google Scholar

62 

Kadaré G, Toutant M, Formstecher E, Corvol JC, Carnaud M, Boutterin MC and Girault JA: PIAS1-mediated sumoylation of focal adhesion kinase activates its autophosphorylation. J Biol Chem. 278:47434–47440. 2003. View Article : Google Scholar

63 

Rabellino A, Carter B, Konstantinidou G, Wu SY, Rimessi A, Byers LA, Heymach JV, Girard L, Chiang CM, Teruya-Feldstein J and Scaglioni PP: The SUMO E3-ligase PIAS1 regulates the tumor suppressor PML and its oncogenic counterpart PML-RARA. Cancer Res. 72:2275–2284. 2012. View Article : Google Scholar

64 

Schmidt D and Müller S: Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc Natl Acad Sci USA. 99:2872–2877. 2002. View Article : Google Scholar

65 

Moreno-Oñate M, Herrero-Ruiz AM, García-Dominguez M, Cortés-Ledesma F and Ruiz JF: RanBP2-mediated SUMOylation promotes human DNA polymerase lambda nuclear localization and DNA repair. J Mol Biol. 432:3965–3979. 2020. View Article : Google Scholar

66 

Wang H, Luo Q, Kang J, Wei Q, Yang Y, Yang D, Liu X, Liu T and Yi P: YTHDF1 aggravates the progression of cervical cancer through m6A-mediated up-regulation of RANBP2. Front Oncol. 11:6503832021. View Article : Google Scholar

67 

Gilistro E, de Turris V, Damizia M, Verrico A, Moroni S, De Santis R, Rosa A and Lavia P: Importin-β and CRM1 control a RANBP2 spatiotemporal switch essential for mitotic kinetochore function. J Cell Sci. 130:2564–2578. 2017.

68 

Maarifi G, Fernandez J, Portilho DM, Boulay A, Dutrieux J, Oddos S, Butler-Browne G, Nisole S and Arhel NJ: RanBP2 regulates the anti-retroviral activity of TRIM5α by SUMOylation at a predicted phosphorylated SUMOylation motif. Commun Biol. 1:1932018. View Article : Google Scholar

69 

Kunz K, Piller T and Müller S: SUMO-specific proteases and isopeptidases of the SENP family at a glance. J Cell Sci. 131:jcs2119042018. View Article : Google Scholar

70 

Chauhan KM, Chen Y, Chen Y, Liu AT, Sun XX and Dai MS: The SUMO-specific protease SENP1 deSUMOylates p53 and regulates its activity. J Cell Biochem. 122:189–197. 2021. View Article : Google Scholar

71 

Bawa-Khalfe T, Yang FM, Ritho J, Lin HK, Cheng J and Yeh ET: SENP1 regulates PTEN stability to dictate prostate cancer development. Oncotarget. 8:17651–17664. 2017. View Article : Google Scholar

72 

Song MS, Salmena L, Carracedo A, Egia A, Lo-Coco F, Teruya-Feldstein J and Pandolfi PP: The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature. 455:813–817. 2008. View Article : Google Scholar

73 

Sun XX, Chen Y, Su Y, Wang X, Chauhan KM, Liang J, Daniel CJ, Sears RC and Dai MS: SUMO protease SENP1 deSUMOylates and stabilizes c-Myc. Proc Natl Acad Sci USA. 115:10983–10988. 2018. View Article : Google Scholar

74 

Huang X, Zuo Y, Wang X, Wu X, Tan H, Fan Q, Dong B, Xue W, Chen GQ and Cheng J: SUMO-specific protease 1 is critical for myeloid-derived suppressor cell development and function. Cancer Res. 79:3891–3902. 2019. View Article : Google Scholar

75 

Kanapathipillai M: Treating p53 mutant aggregation-associated cancer. Cancers (Basel). 10:1542018. View Article : Google Scholar

76 

Carter S, Bischof O, Dejean A and Vousden KH: C-terminal modifications regulate MDM2 dissociation and nuclear export of p53. Nat Cell Biol. 9:428–435. 2007. View Article : Google Scholar

77 

Wu SY and Chiang CM: Crosstalk between sumoylation and acetylation regulates p53-dependent chromatin transcription and DNA binding. EMBO J. 28:1246–1259. 2009. View Article : Google Scholar

78 

Ding B, Sun Y and Huang J: Overexpression of SKI oncoprotein leads to p53 degradation through regulation of MDM2 protein sumoylation. J Biol Chem. 287:14621–14630. 2012. View Article : Google Scholar

79 

Deng C, Lipstein MR, Scotto L, Jirau Serrano XO, Mangone MA, Li S, Vendome J, Hao Y, Xu X, Deng SX, et al: Silencing c-Myc translation as a therapeutic strategy through targeting PI3Kδ and CK1ε in hematological malignancies. Blood. 129:88–99. 2017. View Article : Google Scholar

80 

Amente S, Lavadera ML, Palo GD and Majello B: SUMOactivating SAE1 transcription is positively regulated by Myc. Am J Cancer Res. 2:330–334. 2012.

81 

Kessler JD, Kahle KT, Sun T, Meerbrey KL, Schlabach MR, Schmitt EM, Skinner SO, Xu Q, Li MZ, Hartman ZC, et al: A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science. 335:348–353. 2012. View Article : Google Scholar

82 

Wang WH, Yuan T, Qian MJ, Yan FJ, Yang L, He JQ, Yang B, Lu JJ and Zhu H: Post-translational modification of KRAS: Potential targets for cancer therapy. Acta Pharmacol Sin. 42:1201–1211. 2021. View Article : Google Scholar

83 

Uprety D and Adjei AA: KRAS: From undruggable to a druggable Cancer Target. Cancer Treat Rev. 89:1020702020. View Article : Google Scholar

84 

Moutty MC, Sakin V and Melchior F: Importin α/β mediates nuclear import of individual SUMO E1 subunits and of the holo-enzyme. Mol Biol Cell. 22:652–660. 2011. View Article : Google Scholar

85 

Choi BH, Philips MR, Chen Y, Lu L and Dai W: K-Ras Lys-42 is crucial for its signaling, cell migration, and invasion. J Biol Chem. 293:17574–17581. 2018. View Article : Google Scholar

86 

Boddy MN, Howe K, Etkin LD, Solomon E and Freemont PS: PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia. Oncogene. 13:971–982. 1996.

87 

de Thé H, Pandolfi PP and Chen Z: Acute promyelocytic leukemia: A paradigm for oncoprotein-targeted cure. Cancer Cell. 32:552–560. 2017. View Article : Google Scholar

88 

Rao Y, Li R and Zhang D: A drug from poison: How the therapeutic effect of arsenic trioxide on acute promyelocytic leukemia was discovered. Sci China Life Sci. 56:495–502. 2013. View Article : Google Scholar

89 

Zhu J, Zhou J, Peres L, Riaucoux F, Honoré N, Kogan S and de Thé H: A sumoylation site in PML/RARA is essential for leukemic transformation. Cancer Cell. 7:143–153. 2005. View Article : Google Scholar

90 

Stubbe M, Mai J, Paulus C, Stubbe HC, Berscheminski J, Karimi M, Hofmann S, Weber E, Hadian K, Hay R, et al: Viral DNA binding protein SUMOylation promotes PML nuclear body localization next to viral replication centers. mBio. 11:e00049–20. 2020. View Article : Google Scholar

91 

El-Asmi F, El-Mchichi B, Maroui MA, Dianoux L and Chelbi-Alix MK: TGF-β induces PML SUMOylation, degradation and PML nuclear body disruption. Cytokine. 120:264–272. 2019. View Article : Google Scholar

92 

Sahin U, Ferhi O, Jeanne M, Benhenda S, Berthier C, Jollivet F, Niwa-Kawakita M, Faklaris O, Setterblad N, de Thé H and Lallemand-Breitenbach V: Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. J Cell Biol. 204:931–945. 2014. View Article : Google Scholar

93 

Li Y, Ma X, Wu W, Chen Z and Meng G: PML nuclear body biogenesis, carcinogenesis, and targeted therapy. Trends Cancer. 6:889–906. 2020. View Article : Google Scholar

94 

Ben-Porath I and Weinberg RA: The signals and pathways activating cellular senescence. Int J Biochem Cell Biol. 37:961–976. 2005. View Article : Google Scholar

95 

Morris EJ and Dyson NJ: Retinoblastoma protein partners. Adv Cancer Res. 82:1–54. 2001. View Article : Google Scholar

96 

Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, Kleijer WJ, DiMaio D and Hwang ES: Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell. 5:187–195. 2006. View Article : Google Scholar

97 

Trimarchi JM and Lees JA: Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol. 3:11–20. 2002. View Article : Google Scholar

98 

Bischof O, Schwamborn K, Martin N, Werner A, Sustmann C, Grosschedl R and Dejean A: The E3 SUMO ligase PIASy is a regulator of cellular senescence and apoptosis. Mol Cell. 22:783–794. 2006. View Article : Google Scholar

99 

Yu B, Swatkoski S, Holly A, Lee LC, Giroux V, Lee CS, Hsu D, Smith JL, Yuen G, Yue J, et al: Oncogenesis driven by the Ras/Raf pathway requires the SUMO E2 ligase Ubc9. Proc Natl Acad Sci USA. 112:E1724–E1733. 2015. View Article : Google Scholar

100 

Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF, Wong KK and Elledge SJ: A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell. 137:835–848. 2009. View Article : Google Scholar

101 

Gallipoli P and Huntly BJP: Novel epigenetic therapies in hematological malignancies: Current status and beyond. Semin Cancer Biol. 51:198–210. 2018. View Article : Google Scholar

102 

Bryder D, Rossi DJ and Weissman IL: Hematopoietic stem cells: The paradigmatic tissue-specific stem cell. Am J Pathol. 169:338–346. 2006. View Article : Google Scholar

103 

Tempé D, Piechaczyk M and Bossis G: SUMO under stress. Biochem Soc Trans. 36:874–878. 2008. View Article : Google Scholar

104 

Rajkumar SV: Multiple myeloma. Curr Probl Cancer. 33:7–64. 2009. View Article : Google Scholar

105 

Röllig C, Knop S and Bornhäuser M: Multiple myeloma. Lancet. 385:2197–2208. 2015. View Article : Google Scholar

106 

Susanibar Adaniya SP, Cohen AD and Garfall AL: Chimeric antigen receptor T cell immunotherapy for multiple myeloma: A review of current data and potential clinical applications. Am J Hematol. 94(Suppl 1): S28–S33. 2019. View Article : Google Scholar

107 

Atrash S, Bano K, Harrison B and Abdallah AO: CAR-T treatment for hematological malignancies. J Investig Med. 68:956–964. 2020. View Article : Google Scholar

108 

Gagelmann N, Riecken K, Wolschke C, Berger C, Ayuk FA, Fehse B and Kröger N: Development of CAR-T cell therapies for multiple myeloma. Leukemia. 34:2317–2332. 2020. View Article : Google Scholar

109 

Feng D and Sun J: Overview of anti-BCMA CAR-T immunotherapy for multiple myeloma and relapsed/refractory multiple myeloma. Scand J Immunol. 92:e129102020. View Article : Google Scholar

110 

Minnie SA and Hill GR: Immunotherapy of multiple myeloma. J Clin Invest. 130:1565–1575. 2020. View Article : Google Scholar

111 

Xu J, Sun HY, Xiao FJ, Wang H, Yang Y, Wang L, Gao CJ, Guo ZK, Wu CT and Wang LS: SENP1 inhibition induces apoptosis and growth arrest of multiple myeloma cells through modulation of NF-κB signaling. Biochem Biophys Res Commun. 460:409–415. 2015. View Article : Google Scholar

112 

Xie H, Gu Y, Wang W, Wang X, Ye X, Xin C, Lu M, Reddy BA and Shu P: Silencing of SENP2 in multiple myeloma induces bortezomib resistance by activating NF-κB through the modulation of IκBα sumoylation. Sci Rep. 10:7662020. View Article : Google Scholar

113 

Tanaka K and Hirota T: Chromosomal instability: A common feature and a therapeutic target of cancer. Biochim Biophys Acta. 1866:64–75. 2016.

114 

McGranahan N, Burrell RA, Endesfelder D, Novelli MR and Swanton C: Cancer chromosomal instability: Therapeutic and diagnostic challenges. EMBO Rep. 13:528–538. 2012. View Article : Google Scholar

115 

Giam M and Rancati G: Aneuploidy and chromosomal instability in cancer: A jackpot to chaos. Cell Div. 10:32015. View Article : Google Scholar

116 

Dantuma NP and van Attikum H: Spatiotemporal regulation of posttranslational modifications in the DNA damage response. EMBO J. 35:6–23. 2016. View Article : Google Scholar

117 

Galanty Y, Belotserkovskaya R, Coates J and Jackson SP: RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. Genes Dev. 26:1179–1195. 2012. View Article : Google Scholar

118 

Biggins S, Bhalla N, Chang A, Smith DL and Murray AW: Genes involved in sister chromatid separation and segregation in the budding yeast Saccharomyces cerevisiae. Genetics. 159:453–470. 2001. View Article : Google Scholar

119 

Ohta S, Bukowski-Wills JC, Sanchez-Pulido L, Alves Fde L, Wood L, Chen ZA, Platani M, Fischer L, Hudson DF, Ponting CP, et al: The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell. 142:810–821. 2010. View Article : Google Scholar

120 

Thomas GE, Renjith MR and Manna TK: Kinetochore-microtubule interactions in chromosome segregation: Lessons from yeast and mammalian cells. Biochem J. 474:3559–3577. 2017. View Article : Google Scholar

121 

Verdaasdonk JS and Bloom K: Centromeres: Unique chromatin structures that drive chromosome segregation. Nat Rev Mol Cell Biol. 12:320–332. 2011. View Article : Google Scholar

122 

Eifler K, Cuijpers SAG, Willemstein E, Raaijmakers JA, El Atmioui D, Ovaa H, Medema RH and Vertegaal AC: SUMO targets the APC/C to regulate transition from metaphase to anaphase. Nat Commun. 9:11192018. View Article : Google Scholar

123 

Azuma Y, Arnaoutov A, Anan T and Dasso M: PIASy mediates SUMO-2 conjugation of Topoisomerase-II on mitotic chromosomes. EMBO J. 24:2172–2182. 2005. View Article : Google Scholar

124 

Dawlaty MM, Malureanu L, Jeganathan KB, Kao E, Sustmann C, Tahk S, Shuai K, Grosschedl R and van Deursen JM: Resolution of sister centromeres requires RanBP2-mediated SUMOylation of topoisomerase IIalpha. Cell. 133:103–115. 2008. View Article : Google Scholar

125 

Joseph J, Liu ST, Jablonski SA, Yen TJ and Dasso M: The RanGAP1-RanBP2 complex is essential for microtubule-kinetochore interactions in vivo. Curr Biol. 14:611–617. 2004. View Article : Google Scholar

126 

Maison C, Romeo K, Bailly D, Dubarry M, Quivy JP and Almouzni G: The SUMO protease SENP7 is a critical component to ensure HP1 enrichment at pericentric heterochromatin. Nat Struct Mol Biol. 19:458–460. 2012. View Article : Google Scholar

127 

Eifler K and Vertegaal ACO: SUMOylation-mediated regulation of cell cycle progression and cancer. Trends Biochem Sci. 40:779–793. 2015. View Article : Google Scholar

128 

Schimmel J, Eifler K, Sigurðsson JO, Cuijpers SA, Hendriks IA, Verlaan-de Vries M, Kelstrup CD, Francavilla C, Medema RH, Olsen JV and Vertegaal AC: Uncovering SUMOylation dynamics during cell-cycle progression reveals FoxM1 as a key mitotic SUMO target protein. Mol Cell. 53:1053–1066. 2014. View Article : Google Scholar

129 

Neyret-Kahn H, Benhamed M, Ye T, Le Gras S, Cossec JC, Lapaquette P, Bischof O, Ouspenskaia M, Dasso M, Seeler J, et al: Sumoylation at chromatin governs coordinated repression of a transcriptional program essential for cell growth and proliferation. Genome Res. 23:1563–1579. 2013. View Article : Google Scholar

130 

Nacerddine K, Lehembre F, Bhaumik M, Artus J, Cohen-Tannoudji M, Babinet C, Pandolfi PP and Dejean A: The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell. 9:769–779. 2005. View Article : Google Scholar

131 

Bellail AC, Olson JJ and Hao C: SUMO1 modification stabilizes CDK6 protein and drives the cell cycle and glioblastoma progression. Nat Commun. 5:42342014. View Article : Google Scholar

132 

Guo Z, Kanjanapangka J, Liu N, Liu S, Liu C, Wu Z, Wang Y, Loh T, Kowolik C, Jamsen J, et al: Sequential posttranslational modifications program FEN1 degradation during cell-cycle progression. Mol Cell. 47:444–456. 2012. View Article : Google Scholar

133 

Cheng J, Wang D, Wang Z and Yeh ET: SENP1 enhances androgen receptor-dependent transcription through desumoylation of histone deacetylase 1. Mol Cell Biol. 24:6021–6028. 2004. View Article : Google Scholar

134 

Childs BG, Baker DJ, Kirkland JL, Campisi J and van Deursen JM: Senescence and apoptosis: Dueling or complementary cell fates? EMBO Rep. 15:1139–1153. 2014. View Article : Google Scholar

135 

Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh DF, Bolden JE, Zhao Z, Thapar V, Joyce JA, Krizhanovsky V and Lowe SW: Non-cell-autonomous tumor suppression by p53. Cell. 153:449–460. 2013. View Article : Google Scholar

136 

Ivanschitz L, Takahashi Y, Jollivet F, Ayrault O, Le Bras M and de Thé H: PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence. Proc Natl Acad Sci USA. 112:14278–14283. 2015. View Article : Google Scholar

137 

Yates KE, Korbel GA, Shtutman M, Roninson IB and DiMaio D: Repression of the SUMO-specific protease Senp1 induces p53-dependent premature senescence in normal human fibroblasts. Aging Cell. 7:609–621. 2008. View Article : Google Scholar

138 

Lowe SW and Lin AW: Apoptosis in cancer. Carcinogenesis. 21:485–495. 2000. View Article : Google Scholar

139 

Kaufmann SH and Hengartner MO: Programmed cell death: Alive and well in the new millennium. Trends Cell Biol. 11:526–534. 2001. View Article : Google Scholar

140 

Zapata JM, Pawlowski K, Haas E, Ware CF, Godzik A and Reed JC: A diverse family of proteins containing tumor necrosis factor receptor-associated factor domains. J Biol Chem. 276:24242–24252. 2001. View Article : Google Scholar

141 

Hockenbery D, Nuñez G, Milliman C, Schreiber RD and Korsmeyer SJ: Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 348:334–336. 1990. View Article : Google Scholar

142 

Zamaraev AV, Kopeina GS, Prokhorova EA, Zhivotovsky B and Lavrik IN: Post-translational modification of Caspases: The other side of apoptosis regulation. Trends Cell Biol. 27:322–339. 2017. View Article : Google Scholar

143 

Park JH, Lee SW, Yang SW, Yoo HM, Park JM, Seong MW, Ka SH, Oh KH, Jeon YJ and Chung CH: Modification of DBC1 by SUMO2/3 is crucial for p53-mediated apoptosis in response to DNA damage. Nat Commun. 5:54832014. View Article : Google Scholar

144 

Xia W, Tian H, Cai X, Kong H, Fu W, Xing W, Wang Y, Zou M, Hu Y and Xu D: Inhibition of SUMO-specific protease 1 induces apoptosis of astroglioma cells by regulating NF-κB/Akt pathways. Gene. 595:175–179. 2016. View Article : Google Scholar

145 

Jiang Z, Fan Q, Zhang Z, Zou Y, Cai R, Wang Q, Zuo Y and Cheng J: SENP1 deficiency promotes ER stress-induced apoptosis by increasing XBP1 SUMOylation. Cell Cycle. 11:1118–1122. 2012. View Article : Google Scholar

146 

He X, Riceberg J, Pulukuri SM, Grossman S, Shinde V, Shah P, Brownell JE, Dick L, Newcomb J and Bence N: Characterization of the loss of SUMO pathway function on cancer cells and tumor proliferation. PLoS One. 10. pp. e01238822015, View Article : Google Scholar

147 

Zhang M, Jiang D, Xie X, He Y, Lv M and Jiang X: miR-129-3p inhibits NHEJ pathway by targeting SAE1 and represses gastric cancer progression. Int J Clin Exp Pathol. 12:1539–1547. 2019.

148 

Kalamarz ME, Paddibhatla I, Nadar C and Govind S: Sumoylation is tumor-suppressive and confers proliferative quiescence to hematopoietic progenitors in Drosophila melanogaster larvae. Biol Open. 1:161–172. 2012. View Article : Google Scholar

149 

Li S, Wang J, Hu G, Aman S, Li B, Li Y, Xia K, Yang Y, Ahmad B, Wang M and Wu H: SUMOylation of MCL1 protein enhances its stability by regulating the ubiquitin-proteasome pathway. Cell Signal. 73:1096862020. View Article : Google Scholar

150 

Chang CC, Naik MT, Huang YS, Jeng JC, Liao PH, Kuo HY, Ho CC, Hsieh YL, Lin CH, Huang NJ, et al: Structural and functional roles of Daxx SIM phosphorylation in SUMO paralog-selective binding and apoptosis modulation. Mol Cell. 42:62–74. 2011. View Article : Google Scholar

151 

Santiago A, Godsey AC, Hossain J, Zhao LY and Liao D: Identification of two independent SUMO-interacting motifs in Daxx: Evolutionary conservation from Drosophila to humans and their biochemical functions. Cell Cycle. 8:76–87. 2009. View Article : Google Scholar

152 

Wasiak S, Zunino R and McBride HM: Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol. 177:439–450. 2007. View Article : Google Scholar

153 

Li P, Jing H, Wang Y, Yuan L, Xiao H and Zheng Q: SUMO modification in apoptosis. J Mol Histol. 52:1–10. 2021. View Article : Google Scholar

154 

Menon MB and Dhamija S: Beclin 1 Phosphorylation-at the center of autophagy regulation. Front Cell Dev Biol. 6:1372018. View Article : Google Scholar

155 

Sun J, Tai S, Tang L, Yang H, Chen M, Xiao Y, Li X, Zhu Z and Zhou S: Acetylation modification during autophagy and vascular aging. Front Physiol. 12:5982672021. View Article : Google Scholar

156 

Son SM, Park SJ, Fernandez-Estevez M and Rubinsztein DC: Autophagy regulation by acetylation-implications for neurodegenerative diseases. Exp Mol Med. 53:30–41. 2021. View Article : Google Scholar

157 

Wang R and Wang G: Protein modification and autophagy activation. Adv Exp Med Biol. 1206:237–259. 2019. View Article : Google Scholar

158 

Hu B, Zhang Y, Deng T, Gu J, Liu J, Yang H, Xu Y, Yan Y, Yang F, Zhang H, et al: PDPK1 regulates autophagosome biogenesis by binding to PIK3C3. Autophagy. Sep 10–2020.Epub ahead of print. View Article : Google Scholar

159 

Liu K, Guo C, Lao Y, Yang J, Chen F, Zhao Y, Yang Y, Yang J and Yi J: A fine-tuning mechanism underlying self-control for autophagy: DeSUMOylation of BECN1 by SENP3. Autophagy. 16:975–990. 2020. View Article : Google Scholar

160 

Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar

161 

Morrison CD, Parvani JG and Schiemann WP: The relevance of the TGF-β Paradox to EMT-MET programs. Cancer Lett. 341:30–40. 2013. View Article : Google Scholar

162 

Lin X, Wang Y, Jiang Y, Xu M, Pang Q, Sun J, Yu Y, Shen Z, Lei R and Xu J: Sumoylation enhances the activity of the TGF-β/SMAD and HIF-1 signaling pathways in keloids. Life Sci. 255:1178592020. View Article : Google Scholar

163 

Xu R, Yu S, Zhu D, Huang X, Xu Y, Lao Y, Tian Y, Zhang J, Tang Z, Zhang Z, et al: hCINAP regulates the DNA-damage response and mediates the resistance of acute myelocytic leukemia cells to therapy. Nat Commun. 10:38122019. View Article : Google Scholar

164 

Bossis G, Sarry JE, Kifagi C, Ristic M, Saland E, Vergez F, Salem T, Boutzen H, Baik H, Brockly F, et al: The ROS/SUMO axis contributes to the response of acute myeloid leukemia cells to chemotherapeutic drugs. Cell Rep. 7:1815–1823. 2014. View Article : Google Scholar

165 

Golub TR, Barker GF, Bohlander SK, Hiebert SW, Ward DC, Bray-Ward P, Morgan E, Raimondi SC, Rowley JD and Gilliland DG: Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 92:4917–4921. 1995. View Article : Google Scholar

166 

Chakrabarti SR, Sood R, Nandi S and Nucifora G: Posttranslational modification of TEL and TEL/AML1 by SUMO-1 and cell-cycle-dependent assembly into nuclear bodies. Proc Natl Acad Sci USA. 97:13281–13285. 2000. View Article : Google Scholar

167 

Hanson CA, Wood LD and Hiebert SW: Cellular stress triggers TEL nuclear export via two genetically separable pathways. J Cell Biochem. 104:488–498. 2008. View Article : Google Scholar

168 

de Thé H, Lavau C, Marchio A, Chomienne C, Degos L and Dejean A: The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell. 66:675–684. 1991. View Article : Google Scholar

169 

Jeanne M, Lallemand-Breitenbach V, Ferhi O, Koken M, Le Bras M, Duffort S, Peres L, Berthier C, Soilihi H, Raught B and de Thé H: PML/RARA oxidation and arsenic binding initiate the antileukemia response of As2O3. Cancer Cell. 18:88–98. 2010. View Article : Google Scholar

170 

Ablain J, Rice K, Soilihi H, de Reynies A, Minucci S and de Thé H: Activation of a promyelocytic leukemia-tumor protein 53 axis underlies acute promyelocytic leukemia cure. Nat Med. 20:167–174. 2014. View Article : Google Scholar

171 

Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG, Palvimo JJ and Hay RT: RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol. 10:538–546. 2008. View Article : Google Scholar

172 

Brackett CM and Blagg BS: Current status of SUMOylation inhibitors. Curr Med Chem. 28:3892–3912. 2021. View Article : Google Scholar

173 

Yang Y, Xia Z, Wang X, Zhao X, Sheng Z, Ye Y, He G, Zhou L, Zhu H, Xu N and Liang S: Small-molecule inhibitors targeting protein SUMOylation as novel anticancer compounds. Mol Pharmacol. 94:885–894. 2018. View Article : Google Scholar

174 

Fukuda I, Ito A, Uramoto M, Saitoh H, Kawasaki H, Osada H and Yoshida M: Kerriamycin B inhibits protein SUMOylation. J Antibiot (Tokyo). 62:221–224. 2009. View Article : Google Scholar

175 

Fukuda I, Ito A, Hirai G, Nishimura S, Kawasaki H, Saitoh H, Kimura K, Sodeoka M and Yoshida M: Ginkgolic acid inhibits protein SUMOylation by blocking formation of the E1-SUMO intermediate. Chem Biol. 16:133–140. 2009. View Article : Google Scholar

176 

Hirohama M, Kumar A, Fukuda I, Matsuoka S, Igarashi Y, Saitoh H, Takagi M, Shin-ya K, Honda K, Kondoh Y, et al: Spectomycin B1 as a novel SUMOylation inhibitor that directly binds to SUMO E2. ACS Chem Biol. 8:2635–2642. 2013. View Article : Google Scholar

177 

Kayser S, Schlenk RF and Platzbecker U: Management of patients with acute promyelocytic leukemia. Leukemia. 32:1277–1294. 2018. View Article : Google Scholar

178 

He X, Riceberg J, Soucy T, Koenig E, Minissale J, Gallery M, Bernard H, Yang X, Liao H, Rabino C, et al: Probing the roles of SUMOylation in cancer cell biology by using a selective SAE inhibitor. Nat Chem Biol. 13:1164–1171. 2017. View Article : Google Scholar

179 

Langston SP, Grossman S, England D, Afroze R, Bence N, Bowman D, Bump N, Chau R, Chuang BC, Claiborne C, et al: Discovery of TAK-981, a first-in-class inhibitor of SUMO-activating enzyme for the treatment of cancer. J Med Chem. 64:2501–2520. 2021. View Article : Google Scholar

180 

Lv Z, Yuan L, Atkison JH, Williams KM, Vega R, Sessions EH, Divlianska DB, Davies C, Chen Y and Olsen SK: Molecular mechanism of a covalent allosteric inhibitor of SUMO E1 activating enzyme. Nat Commun. 9:51452018. View Article : Google Scholar

181 

Li YJ, Du L, Wang J, Vega R, Lee TD, Miao Y, Aldana-Masangkay G, Samuels ER, Li B, Ouyang SX, et al: Allosteric inhibition of ubiquitin-like modifications by a class of inhibitor of SUMO-activating enzyme. Cell Chem Biol. 26:278–288.e6. 2019. View Article : Google Scholar

182 

Takemoto M, Kawamura Y, Hirohama M, Yamaguchi Y, Handa H, Saitoh H, Nakao Y, Kawada M, Khalid K, Koshino H, et al: Inhibition of protein SUMOylation by davidiin, an ellagitannin from Davidia involucrata. J Antibiot (Tokyo). 67:335–338. 2014. View Article : Google Scholar

183 

Suzawa M, Miranda DA, Ramos KA, Ang KK, Faivre EJ, Wilson CG, Caboni L, Arkin MR, Kim YS, Fletterick RJ, et al: A gene-expression screen identifies a non-toxic sumoylation inhibitor that mimics SUMO-less human LRH-1 in liver. Elife. 4:e090032015. View Article : Google Scholar

184 

Lu X, Olsen SK, Capili AD, Cisar JS, Lima CD and Tan DS: Designed semisynthetic protein inhibitors of Ub/Ubl E1 activating enzymes. J Am Chem Soc. 132:1748–1749. 2010. View Article : Google Scholar

185 

Berger AJ, Friedlander S, Ghasemi O, Grossman S and Huszar D: Abstract 3079: Pharmacodynamic evaluation of the novel SUMOylation inhibitor TAK-981 in a mouse tumor model. In: Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. pp. 792019

186 

Kumar A, Ito A, Hirohama M, Yoshida M and Zhang KY: Identification of sumoylation activating enzyme 1 inhibitors by structure-based virtual screening. J Chem Inf Model. 53:809–820. 2013. View Article : Google Scholar

187 

Biederstädt A, Hassan Z, Schneeweis C, Schick M, Schneider L, Muckenhuber A, Hong Y, Siegers G, Nilsson L, Wirth M, et al: SUMO pathway inhibition targets an aggressive pancreatic cancer subtype. Gut. 69:1472–1482. 2020. View Article : Google Scholar

188 

Kumar A, Ito A, Hirohama M, Yoshida M and Zhang KY: Identification of new SUMO activating enzyme 1 inhibitors using virtual screening and scaffold hopping. Bioorg Med Chem Lett. 26:1218–1223. 2016. View Article : Google Scholar

189 

Brandt M, Szewczuk LM, Zhang H, Hong X, McCormick PM, Lewis TS, Graham TI, Hung ST, Harper-Jones AD, Kerrigan JJ, et al: Development of a high-throughput screen to detect inhibitors of TRPS1 sumoylation. Assay Drug Dev Technol. 11:308–325. 2013. View Article : Google Scholar

190 

Zlotkowski K, Hewitt WM, Sinniah RS, Tropea JE, Needle D, Lountos GT, Barchi JJ Jr, Waugh DS and Schneekloth JS Jr: A Small-molecule microarray approach for the identification of E2 enzyme inhibitors in ubiquitin-like conjugation pathways. SLAS Discov. 22:760–766. 2017.

191 

Wiechmann S, Gärtner A, Kniss A, Stengl A, Behrends C, Rogov VV, Rodriguez MS, Dötsch V, Müller S and Ernst A: Site-specific inhibition of the small ubiquitin-like modifier (SUMO)-conjugating enzyme Ubc9 selectively impairs SUMO chain formation. J Biol Chem. 292:15340–15351. 2017. View Article : Google Scholar

192 

Kim YS, Nagy K, Keyser S and Schneekloth JS Jr: An electrophoretic mobility shift assay identifies a mechanistically unique inhibitor of protein sumoylation. Chem Biol. 20:604–613. 2013. View Article : Google Scholar

193 

Ambaye N, Chen CH, Khanna S, Li YJ and Chen Y: Streptonigrin inhibits SENP1 and reduces the protein level of hypoxia-inducible factor 1α (HIF1α) in cells. Biochemistry. 57:1807–1813. 2018. View Article : Google Scholar

194 

Chen Y, Wen D, Huang Z, Huang M, Luo Y, Liu B, Lu H, Wu Y, Peng Y and Zhang J: 2-(4-Chlorophenyl)-2-oxoethyl 4-benzamidobenzoate derivatives, a novel class of SENP1 inhibitors: Virtual screening, synthesis and biological evaluation. Bioorg Med Chem Lett. 22:6867–6870. 2012. View Article : Google Scholar

195 

Qiao Z, Wang W, Wang L, Wen D, Zhao Y, Wang Q, Meng Q, Chen G, Wu Y and Zhou H: Design, synthesis, and biological evaluation of benzodiazepine-based SUMO-specific protease 1 inhibitors. Bioorg Med Chem Lett. 21:6389–6392. 2011. View Article : Google Scholar

196 

Uno M, Koma Y, Ban HS and Nakamura H: Discovery of 1-[4-(N-benzylamino)phenyl]-3-phenylurea derivatives as non-peptidic selective SUMO-sentrin specific protease (SENP)1 inhibitors. Bioorg Med Chem Lett. 22:5169–5173. 2012. View Article : Google Scholar

197 

Xie W, Wang Z, Zhang J, Wang L, Zhao Y and Zhou H: Development and evaluation of a highly reliable assay for SUMO-specific protease inhibitors. Bioorg Med Chem Lett. 26:2124–2128. 2016. View Article : Google Scholar

198 

Lindenmann U, Brand M, Gall F, Frasson D, Hunziker L, Kroslakova I, Sievers M and Riedl R: Discovery of a class of potent and selective Non-competitive Sentrin-Specific protease 1 inhibitors. ChemMedChem. 15:675–679. 2020. View Article : Google Scholar

199 

Zhao Y, Wang Z, Zhang J and Zhou H: Identification of SENP1 inhibitors through in silico screening and rational drug design. Eur J Med Chem. 122:178–184. 2016. View Article : Google Scholar

200 

Wu J, Lei H, Zhang J, Chen X, Tang C, Wang W, Xu H, Xiao W, Gu W and Wu Y: Momordin Ic, a new natural SENP1 inhibitor, inhibits prostate cancer cell proliferation. Oncotarget. 7:58995–59005. 2016. View Article : Google Scholar

201 

Huang W, He T, Chai C, Yang Y, Zheng Y, Zhou P, Qiao X, Zhang B, Liu Z, Wang J, et al: Triptolide inhibits the proliferation of prostate cancer cells and down-regulates SUMO-specific protease 1 expression. PLoS One. 7:e376932012. View Article : Google Scholar

202 

Bernstock JD, Ye D, Smith JA, Lee YJ, Gessler FA, Yasgar A, Kouznetsova J, Jadhav A, Wang Z, Pluchino S, et al: Quantitative high-throughput screening identifies cytoprotective molecules that enhance SUMO conjugation via the inhibition of SUMO-specific protease (SENP)2. FASEB J. 32:1677–1691. 2018. View Article : Google Scholar

203 

Kumar A, Ito A, Takemoto M, Yoshida M and Zhang KY: Identification of 1,2,5-oxadiazoles as a new class of SENP2 inhibitors using structure based virtual screening. J Chem Inf Model. 54:870–880. 2014. View Article : Google Scholar

204 

Boggio R, Colombo R, Hay RT, Draetta GF and Chiocca S: A mechanism for inhibiting the SUMO pathway. Mol Cell. 16:549–561. 2004. View Article : Google Scholar

205 

Liang Z, Chan HYE, Lee MM and Chan MK: A SUMO1-derived peptide targeting SUMO-interacting motif inhibits α-Synuclein aggregation. Cell Chem Biol. 28:180–190.e6. 2021. View Article : Google Scholar

206 

Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM and Deshaies RJ: Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc Natl Acad Sci USA. 98:8554–8559. 2001. View Article : Google Scholar

207 

Jakobs A, Koehnke J, Himstedt F, Funk M, Korn B, Gaestel M and Niedenthal R: Ubc9 fusion-directed SUMOylation (UFDS): A method to analyze function of protein SUMOylation. Nat Methods. 4:245–250. 2007. View Article : Google Scholar

208 

Chen X, Zaro JL and Shen WC: Fusion protein linkers: Property, design and functionality. Adv Drug Deliv Rev. 65:1357–1369. 2013. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang L, Qian J, Yang Y and Gu C: Novel insights into the impact of the SUMOylation pathway in hematological malignancies (Review). Int J Oncol 59: 73, 2021.
APA
Wang, L., Qian, J., Yang, Y., & Gu, C. (2021). Novel insights into the impact of the SUMOylation pathway in hematological malignancies (Review). International Journal of Oncology, 59, 73. https://doi.org/10.3892/ijo.2021.5253
MLA
Wang, L., Qian, J., Yang, Y., Gu, C."Novel insights into the impact of the SUMOylation pathway in hematological malignancies (Review)". International Journal of Oncology 59.3 (2021): 73.
Chicago
Wang, L., Qian, J., Yang, Y., Gu, C."Novel insights into the impact of the SUMOylation pathway in hematological malignancies (Review)". International Journal of Oncology 59, no. 3 (2021): 73. https://doi.org/10.3892/ijo.2021.5253
Copy and paste a formatted citation
x
Spandidos Publications style
Wang L, Qian J, Yang Y and Gu C: Novel insights into the impact of the SUMOylation pathway in hematological malignancies (Review). Int J Oncol 59: 73, 2021.
APA
Wang, L., Qian, J., Yang, Y., & Gu, C. (2021). Novel insights into the impact of the SUMOylation pathway in hematological malignancies (Review). International Journal of Oncology, 59, 73. https://doi.org/10.3892/ijo.2021.5253
MLA
Wang, L., Qian, J., Yang, Y., Gu, C."Novel insights into the impact of the SUMOylation pathway in hematological malignancies (Review)". International Journal of Oncology 59.3 (2021): 73.
Chicago
Wang, L., Qian, J., Yang, Y., Gu, C."Novel insights into the impact of the SUMOylation pathway in hematological malignancies (Review)". International Journal of Oncology 59, no. 3 (2021): 73. https://doi.org/10.3892/ijo.2021.5253
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team