Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
November-2021 Volume 59 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2021 Volume 59 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Human‑made electromagnetic fields: Ion forced‑oscillation and voltage‑gated ion channel dysfunction, oxidative stress and DNA damage (Review)

  • Authors:
    • Dimitris J. Panagopoulos
    • Andreas Karabarbounis
    • Igor Yakymenko
    • George P. Chrousos
  • View Affiliations / Copyright

    Affiliations: Laboratory of Health Physics, Radiobiology and Cytogenetics, Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Center for Scientific Research ‘Demokritos’, 15310 Athens, Greece, Department of Physics, Section of Nuclear and Particle Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece, Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Science of Ukraine, 03022 Kyiv, Ukraine, Choremeion Research Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
    Copyright: © Panagopoulos et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 92
    |
    Published online on: October 6, 2021
       https://doi.org/10.3892/ijo.2021.5272
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Exposure of animals/biological samples to human‑made electromagnetic fields (EMFs), especially in the extremely low frequency (ELF) band, and the microwave/radio frequency (RF) band which is always combined with ELF, may lead to DNA damage. DNA damage is connected with cell death, infertility and other pathologies, including cancer. ELF exposure from high‑voltage power lines and complex RF exposure from wireless communication antennas/devices are linked to increased cancer risk. Almost all human‑made RF EMFs include ELF components in the form of modulation, pulsing and random variability. Thus, in addition to polarization and coherence, the existence of ELFs is a common feature of almost all human‑made EMFs. The present study reviews the DNA damage and related effects induced by human‑made EMFs. The ion forced‑oscillation mechanism for irregular gating of voltage‑gated ion channels on cell membranes by polarized/coherent EMFs is extensively described. Dysfunction of ion channels disrupts intracellular ionic concentrations, which determine the cell's electrochemical balance and homeostasis. The present study shows how this can result in DNA damage through reactive oxygen species/free radical overproduction. Thus, a complete picture is provided of how human‑made EMF exposure may indeed lead to DNA damage and related pathologies, including cancer. Moreover, it is suggested that the non‑thermal biological effects attributed to RF EMFs are actually due to their ELF components.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

Figure 25

Figure 26

Figure 27

View References

1 

Goodman EM, Greenebaum B and Marron MT: Effects of electromagnetic fields on molecules and cells. Int Rev Cytol. 158:279–338. 1995. View Article : Google Scholar : PubMed/NCBI

2 

Santini MT, Ferrante A, Rainaldi G, Indovina P and Indovina PL: Extremely low frequency (ELF) magnetic fields and apoptosis: A review. Int J Radiat Biol. 81:1–11. 2005. View Article : Google Scholar : PubMed/NCBI

3 

Phillips JL, Singh NP and Lai H: Electromagnetic fields and DNA damage. Pathophysiology. 16:79–88. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Panagopoulos DJ: Comparing DNA damage induced by mobile telephony and other types of man-made electromagnetic fields. Mutat Res Rev Mutat Res. 781:53–62. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Delgado JMR: Biological effects of extremely low frequency electromagnetic fields. J Bioelectricity. 4:75–92. 1985. View Article : Google Scholar

6 

Garaj-Vrhovac V, Horvat D and Koren Z: The effect of microwave radiation on the cell genome. Mutat Res. 243:87–93. 1990. View Article : Google Scholar : PubMed/NCBI

7 

Garaj-Vrhovac V, Horvat D and Koren Z: The relationship between colony-forming ability, chromosome aberrations and incidence of micronuclei in V79 Chinese hamster cells exposed to microwave radiation. Mutat Res. 263:143–149. 1991. View Article : Google Scholar : PubMed/NCBI

8 

Garaj-Vrhovac V, Fucić A and Horvat D: The correlation between the frequency of micronuclei and specific chromosome aberrations in human lymphocytes exposed to microwave radiation in vitro. Mutat Res. 281:181–186. 1992. View Article : Google Scholar : PubMed/NCBI

9 

Ma TH and Chu KC: Effect of the extremely low frequency (ELF) electromagnetic field (EMF) on developing embryos of the fruit fly (Drosophila melanogaster L.). Mutat Res. 303:35–39. 1993. View Article : Google Scholar : PubMed/NCBI

10 

Sarkar S, Ali S and Behari J: Effect of low power microwave on the mouse genome: A direct DNA analysis. Mutat Res. 320:141–147. 1994. View Article : Google Scholar : PubMed/NCBI

11 

Lai H and Singh NP: Acute low-intensity microwave exposure increases DNA single-strand breaks in rat brain cells. Bioelectromagnetics. 16:207–210. 1995. View Article : Google Scholar : PubMed/NCBI

12 

Lai H and Singh NP: Single- and double-strand DNA breaks in rat brain cells after acute exposure to radiofrequency electro-magnetic radiation. Int J Radiat Biol. 69:513–521. 1996. View Article : Google Scholar : PubMed/NCBI

13 

Lai H and Singh NP: Acute exposure to a 60 Hz magnetic field increases DNA strand breaks in rat brain cells. Bioelectromagnetics. 18:156–165. 1997. View Article : Google Scholar : PubMed/NCBI

14 

Svedenstål BM, Johanson KJ and Mild KH: DNA damage induced in brain cells of CBA mice exposed to magnetic fields. In Vivo. 13:551–552. 1999.

15 

Koana T, Okada MO, Takashima Y, Ikehata M and Miyakoshi J: Involvement of eddy currents in the mutagenicity of ELF magnetic fields. Mutat Res. 476:55–62. 2001. View Article : Google Scholar : PubMed/NCBI

16 

Ivancsits S, Diem E, Pilger A, Rüdiger HW and Jahn O: Induction of DNA strand breaks by intermittent exposure to extremely-low-frequency electromagnetic fields in human diploid fibroblasts. Mutat Res. 519:1–13. 2002. View Article : Google Scholar : PubMed/NCBI

17 

Ivancsits S, Diem E, Jahn O and Rüdiger HW: Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose-dependent way. Int Arch Occup Environ Health. 76:431–436. 2003. View Article : Google Scholar : PubMed/NCBI

18 

Winker R, Ivancsits S, Pilger A, Adlkofer F and Rüdiger HW: Chromosomal damage in human diploid fibroblasts by intermittent exposure to extremely low-frequency electromagnetic fields. Mutat Res. 585:43–49. 2005. View Article : Google Scholar : PubMed/NCBI

19 

Diem E, Schwarz C, Adlkofer F, Jahn O and Rüdiger H: Non-thermal DNA breakage by mobile-phone radiation (1800 MHz) in human fibroblasts and in transformed GFSH-R17 rat granulosa cells in vitro. Mutat Res. 583:178–183. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Mausset-Bonnefont AL, Hirbec H, Bonnefont X, Privat A, Vignon J and de Sèze R: Acute exposure to GSM 900-MHz electromagnetic fields induces glial reactivity and biochemical modifications in the rat brain. Neurobiol Dis. 17:445–454. 2004. View Article : Google Scholar : PubMed/NCBI

21 

Ji S, Oh E, Sul D, Choi JW, Park H and Lee E: DNA damage of lymphocytes in volunteers after 4 h use of mobile phone. J Prev Med Public Health. 37:373–380. 2004.PubMed/NCBI

22 

Hong R, Zhang Y, Liu Y and Weng EQ: Effects of extremely low frequency electromagnetic fields on DNA of testicular cells and sperm chromatin structure in mice. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 23:414–417. 2005.In Chinese.

23 

Belyaev IY, Hillert L, Protopopova M, Tamm C, Malmgren LO, Persson BR, Selivanova G and Harms-Ringdahl M: 915 MHz microwaves and 50 Hz magnetic field affect chromatin conformation and 53BP1 foci in human lymphocytes from hypersensitive and healthy persons. Bioelectromagnetics. 26:173–184. 2005. View Article : Google Scholar : PubMed/NCBI

24 

Markovà E, Hillert L, Malmgren L, Persson BR and Belyaev IY: Microwaves from GSM mobile telephones affect 53BP1 and gamma-H2AX foci in human lymphocytes from hypersensitive and healthy persons. Environ Health Perspect. 113:1172–1177. 2005. View Article : Google Scholar : PubMed/NCBI

25 

Aitken RJ, Bennetts LE, Sawyer D, Wiklendt AM and King BV: Impact of radio frequency electromagnetic radiation on DNA integrity in the male germline. Int J Androl. 28:171–179. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Nikolova T, Czyz J, Rolletschek A, Blyszczuk P, Fuchs J, Jovtchev G, Schuderer J, Kuster N and Wobus AM: Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cell-derived neural progenitor cells. FASEB J. 19:1686–1688. 2005. View Article : Google Scholar : PubMed/NCBI

27 

Zhang DY, Xu ZP, Chiang H, Lu DQ and Zeng QL: Effects of GSM 1800 MHz radiofrequency electromagnetic fields on DNA damage in Chinese hamster lung cells. Zhonghua Yu Fang Yi Xue Za Zhi. 40:149–152. 2006.In Chinese. PubMed/NCBI

28 

Lixia S, Yao K, Kaijun W, Deqiang L, Huajun H, Xiangwei G, Baohong W, Wei Z, Jianling L and Wei W: Effects of 1.8 GHz radiofrequency field on DNA damage and expression of heat shock protein 70 in human lens epithelial cells. Mutat Res. 602:135–142. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Ferreira AR, Knakievicz T, Pasquali MA, Gelain DP, Dal-Pizzol F, Fernández CE, de Salles AA, Ferreira HB and Moreira JC: Ultra high frequency-electromagnetic field irradiation during pregnancy leads to an increase in erythrocytes micronuclei incidence in rat offspring. Life Sci. 80:43–50. 2006. View Article : Google Scholar : PubMed/NCBI

30 

Panagopoulos DJ, Chavdoula ED, Nezis IP and Margaritis LH: Cell death induced by GSM 900-MHz and DCS 1800-MHz mobile telephony radiation. Mutat Res. 626:69–78. 2007. View Article : Google Scholar

31 

Yan JG, Agresti M, Bruce T, Yan YH, Granlund A and Matloub HS: Effects of cellular phone emissions on sperm motility in rats. Fertil Steril. 88:957–964. 2007. View Article : Google Scholar : PubMed/NCBI

32 

Yao K, Wu W, Wang K, Ni S, Ye P, Yu Y, Ye J and Sun L: Electromagnetic noise inhibits radiofrequency radiation-induced DNA damage and reactive oxygen species increase in human lens epithelial cells. Mol Vis. 14:964–969. 2008.PubMed/NCBI

33 

Yadav AS and Sharma MK: Increased frequency of micronucleated exfoliated cells among humans exposed in vivo to mobile telephone radiations. Mutat Res. 650:175–180. 2008. View Article : Google Scholar : PubMed/NCBI

34 

Sokolovic D, Djindjic B, Nikolic J, Bjelakovic G, Pavlovic D, Kocic G, Krstic D, Cvetkovic T and Pavlovic V: Melatonin reduces oxidative stress induced by chronic exposure of microwave radiation from mobile phones in rat brain. J Radiat Res. 49:579–586. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Lee KS, Choi JS, Hong SY, Son TH and Yu K: Mobile phone electromagnetic radiation activates MAPK signaling and regulates viability in Drosophila. Bioelectromagnetics. 29:371–379. 2008. View Article : Google Scholar : PubMed/NCBI

36 

De Iuliis GN, Newey RJ, King BV and Aitken RJ: Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One. 4:e64462009. View Article : Google Scholar : PubMed/NCBI

37 

Agarwal A, Desai NR, Makker K, Varghese A, Mouradi R, Sabanegh E and Sharma R: Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: An in vitro pilot study. Fertil Steril. 92:1318–1325. 2009. View Article : Google Scholar

38 

Mailankot M, Kunnath AP, Jayalekshmi H, Koduru B and Valsalan R: Radio frequency electromagnetic radiation (RF-EMR) from GSM (0.9/1.8 GHz) mobile phones induces oxidative stress and reduces sperm motility in rats. Clinics (Sao Paulo). 64:561–565. 2009. View Article : Google Scholar

39 

Luukkonen J, Hakulinen P, Mäki-Paakkanen J, Juutilainen J and Naarala J: Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation. Mutat Res. 662:54–58. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Panagopoulos DJ, Chavdoula ED and Margaritis LH: Bioeffects of mobile telephony radiation in relation to its intensity or distance from the antenna. Int J Radiat Biol. 86:345–357. 2010. View Article : Google Scholar : PubMed/NCBI

41 

Chavdoula ED, Panagopoulos DJ and Margaritis LH: Comparison of biological effects between continuous and intermittent exposure to GSM-900-MHz mobile phone radiation. Detection of apoptotic cell death features Mutat Res. 700:51–61. 2010.

42 

Guler G, Tomruk A, Ozgur E and Seyhan N: The effect of radio-frequency radiation on DNA and lipid damage in non-pregnant and pregnant rabbits and their newborns. Gen Physiol Biophys. 29:59–66. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Tomruk A, Guler G and Dincel AS: The influence of 1800 MHz GSM-like signals on hepatic oxidative DNA and lipid damage in nonpregnant, pregnant, and newly born rabbits. Cell Biochem Biophys. 56:39–47. 2010. View Article : Google Scholar

44 

Franzellitti S, Valbonesi P, Ciancaglini N, Biondi C, Contin A, Bersani F and Fabbri E: Transient DNA damage induced by high-frequency electromagnetic fields (GSM 1.8 GHz) in the human trophoblast HTR-8/SVneo cell line evaluated with the alkaline comet assay. Mutat Res. 683:35–42. 2010. View Article : Google Scholar

45 

Campisi A, Gulino M, Acquaviva R, Bellia P, Raciti G, Grasso R, Musumeci F, Vanella A and Triglia A: Reactive oxygen species levels and DNA fragmentation on astrocytes in primary culture after acute exposure to low intensity microwave electromagnetic field. Neurosci Lett. 473:52–55. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Panagopoulos DJ: Effect of microwave exposure on the ovarian development of Drosophila melanogaster. Cell Biochem Biophys. 63:121–132. 2012. View Article : Google Scholar : PubMed/NCBI

47 

Panagopoulos DJ, Karabarbounis A and Lioliousis C: ELF alternating magnetic field decreases reproduction by DNA damage induction. Cell Biochem Biophys. 67:703–716. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Liu C, Gao P, Xu SC, Wang Y, Chen CH, He MD, Yu ZP, Zhang L and Zhou Z: Mobile phone radiation induces mode-dependent DNA damage in a mouse spermatocyte-derived cell line: A protective role of melatonin. Int J Radiat Biol. 89:993–1001. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Pesnya DS and Romanovsky AV: Comparison of cytotoxic and genotoxic effects of plutonium-239 alpha particles and mobile phone GSM 900 radiation in the Allium cepa test. Mutat Res. 750:27–33. 2013. View Article : Google Scholar

50 

Mihai CT, Rotinberg P, Brinza F and Vochita G: Extremely low-frequency electromagnetic fields cause DNA strand breaks in normal cells. J Environ Health Sci Eng. 12:152014. View Article : Google Scholar : PubMed/NCBI

51 

Daroit NB, Visioli F, Magnusson AS, Vieira GR and Rados PV: Cell phone radiation effects on cytogenetic abnormalities of oral mucosal cells. Braz Oral Res. 29:1–8. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Banerjee S, Singh NN, Sreedhar G and Mukherjee S: Analysis of the genotoxic effects of mobile phone radiation using buccal micronucleus assay: A comparative evaluation. J Clin Diagn Res. 10:ZC82–ZC85. 2016.PubMed/NCBI

53 

D'Silva MH, Swer RT, Anbalagan J and Rajesh B: Effect of radiofrequency radiation emitted from 2G and 3G cell phone on developing liver of chick embryo-a comparative study. J Clin Diagn Res. 11:AC05–AC09. 2017.

54 

Panagopoulos DJ: Chromosome damage in human cells induced by UMTS mobile telephony radiation. Gen Physiol Biophys. 38:445–454. 2019. View Article : Google Scholar : PubMed/NCBI

55 

Panagopoulos DJ: Comparing chromosome damage induced by mobile telephony radiation and a high caffeine dose: Effect of combination and exposure duration. Gen Physiol Biophys. 39:531–544. 2020. View Article : Google Scholar : PubMed/NCBI

56 

Magras IN and Xenos TD: RF radiation-induced changes in the prenatal development of mice. Bioelectromagnetics. 18:455–461. 1997. View Article : Google Scholar : PubMed/NCBI

57 

Panagopoulos DJ, Karabarbounis A and Margaritis LH: Effect of GSM 900-MHz mobile phone radiation on the reproductive capacity of Drosophila melanogaster. Electromagn Biol Med. 23:29–43. 2004. View Article : Google Scholar

58 

Panagopoulos DJ, Chavdoula ED, Karabarbounis A and Margaritis LH: Comparison of bioactivity between GSM 900 MHz and DCS 1800 MHz mobile telephony radiation. Electromagn Biol Med. 26:33–44. 2007. View Article : Google Scholar : PubMed/NCBI

59 

Wdowiak A, Wdowiak L and Wiktor H: Evaluation of the effect of using mobile phones on male fertility. Ann Agric Environ Med. 14:169–172. 2007.PubMed/NCBI

60 

Agarwal A, Deepinder F, Sharma RK, Ranga G and Li J: Effect of cell phone usage on semen analysis in men attending infertility clinic: An observational study. Fertil Steril. 89:124–128. 2008. View Article : Google Scholar

61 

Batellier F, Couty I, Picard D and Brillard JP: Effects of exposing chicken eggs to a cell phone in 'call' position over the entire incubation period. Theriogenology. 69:737–745. 2008. View Article : Google Scholar : PubMed/NCBI

62 

Gul A, Celebi H and Uğraş S: The effects of microwave emitted by cellular phones on ovarian follicles in rats. Arch Gynecol Obstet. 280:729–733. 2009. View Article : Google Scholar : PubMed/NCBI

63 

Sharma VP and Kumar NR: Changes in honey bee behaviour and biology under the influence of cell phone radiations. Curr Sci. 98:1376–1378. 2010.

64 

La Vignera S, Condorelli RA, Vicardi E, D'Agata R and Calogero AE: Effects of the exposure to mobile phones on male reproduction: A review of the literature. J Androl. 33:350–356. 2012. View Article : Google Scholar

65 

Balmori A: Possible effects of electromagnetic fields from phone masts on a population of white stork (Ciconia ciconia). Electromagn Biol Med. 24:109–119. 2005. View Article : Google Scholar

66 

Balmori A and Hallberg O: The urban decline of the house sparrow (Passer domesticus): A possible link with electromagnetic radiation. Electromagn Biol Med. 26:141–151. 2007. View Article : Google Scholar : PubMed/NCBI

67 

Everaert J and Bauwens D: A possible effect of electromagnetic radiation from mobile phone base stations on the number of breeding house sparrows (Passer domesticus). Electromagn Biol Med. 26:63–72. 2007. View Article : Google Scholar : PubMed/NCBI

68 

Bacandritsos N, Granato A, Budge G, Papanastasiou I, Roinioti E, Caldon M, Falcaro C, Gallina A and Mutinelli F: Sudden deaths and colony population decline in Greek honey bee colonies. J Invertebr Pathol. 105:335–340. 2010. View Article : Google Scholar : PubMed/NCBI

69 

Cucurachi S, Tamis WL, Vijver MG, Peijnenburg WJ, Bolte JF and de Snoo GR: A review of the ecological effects of radio-frequency electromagnetic fields (RF-EMF). Environ Int. 51:116–140. 2013. View Article : Google Scholar

70 

Balmori A: The incidence of electromagnetic pollution on the amphibian decline: Is this an important piece of the puzzle? Toxicol Environ Chem. 88:287–299. 2006. View Article : Google Scholar

71 

Balmori A: Mobile phone mast effects on common frog (Rana temporaria) tadpoles: The city turned into a laboratory. Electromagn Biol Med. 29:31–35. 2010. View Article : Google Scholar : PubMed/NCBI

72 

Wertheimer N and Leeper E: Electrical wiring configurations and childhood cancer. Am J Epidemiol. 109:273–284. 1979. View Article : Google Scholar : PubMed/NCBI

73 

Savitz DA, Wachtel H, Barnes F, John EM and Tvrdik JG: Case-control study of childhood cancer and exposure to 60-Hz magnetic fields. Am J Epidemiol. 128:21–38. 1988. View Article : Google Scholar : PubMed/NCBI

74 

Coleman MP, Bell CM, Taylor HL and Primic-Zakelj M: Leukaemia and residence near electricity transmission equipment: A case-control study. Br J Cancer. 60:793–798. 1989. View Article : Google Scholar : PubMed/NCBI

75 

Feychting M and Ahlbom A: Magnetic fields and cancer in children residing near Swedish high-voltage power lines. Am J Epidemiol. 138:467–481. 1993. View Article : Google Scholar : PubMed/NCBI

76 

Feychting M and Ahlbom A: Magnetic fields, leukemia, and central nervous system tumors in Swedish adults residing near high-voltage power lines. Epidemiology. 5:501–509. 1994.PubMed/NCBI

77 

Feychting M and Ahlbom A: Childhood leukemia and residential exposure to weak extremely low frequency magnetic fields. Environ Health Perspect. 103(Suppl 2): S59–S62. 1995.

78 

Coghill RW, Steward J and Philips A: Extra low frequency electric and magnetic fields in the bed place of children diagnosed with leukaemia: A case-control study. Eur J Cancer Prev. 5:153–158. 1996. View Article : Google Scholar : PubMed/NCBI

79 

Ahlbom A, Day N, Feychting M, Roman E, Skinner J, Dockerty J, Linet M, McBride M, Michaelis J, Olsen JH, et al: A pooled analysis of magnetic fields and childhood leukaemia. Br J Cancer. 83:692–698. 2000. View Article : Google Scholar : PubMed/NCBI

80 

Greenland S, Sheppard AR, Kaune WT, Poole C and Kelsh MA: A pooled analysis of magnetic fields, wire codes, and childhood leukemia. Childhood leukemia-EMF study group Epidemiology. 11:624–634. 2000.

81 

Draper G, Vincent T, Kroll ME and Swanson J: Childhood cancer in relation to distance from high voltage power lines in England and Wales: A case-control study. BMJ. 330:12902005. View Article : Google Scholar : PubMed/NCBI

82 

Kheifets L, Ahlbom A, Crespi CM, Draper G, Hagihara J, Lowenthal RM, Mezei G, Oksuzyan S, Schüz J, Swanson J, et al: Pooled analysis of recent studies on magnetic fields and childhood leukaemia. Br J Cancer. 103:1128–1135. 2010. View Article : Google Scholar : PubMed/NCBI

83 

Hallberg O and Johansson O: Melanoma incidence and frequency modulation (FM) broadcasting. Arch Environ Health. 57:32–40. 2002. View Article : Google Scholar : PubMed/NCBI

84 

Gulati S, Yadav A, Kumar N, Kanupriya, Aggarwal NK, Kumar R and Gupta R: Effect of GSTM1 and GSTT1 polymorphisms on genetic damage in humans populations exposed to radiation from mobile towers. Arch Environ Contam Toxicol. 70:615–625. 2016. View Article : Google Scholar

85 

Zothansiama, Zosangzuali M, Lalramdinpuii M and Jagetia GC: Impact of radiofrequency radiation on DNA damage and anti-oxidants in peripheral blood lymphocytes of humans residing in the vicinity of mobile phone base stations. Electromagn Biol Med. 36:295–305. 2017. View Article : Google Scholar

86 

Hardell L, Carlberg M, Söderqvist F, Mild KH and Morgan LL: Long-term use of cellular phones and brain tumours: Increased risk associated with use for > or =10 years. Occup Environ Med. 64:626–632. 2007. View Article : Google Scholar : PubMed/NCBI

87 

Hardell L, Carlberg M and Hansson Mild K: Epidemiological evidence for an association between use of wireless phones and tumor diseases. Pathophysiology. 16:113–122. 2009. View Article : Google Scholar : PubMed/NCBI

88 

Khurana VG, Teo C, Kundi M, Hardell L and Carlberg M: Cell phones and brain tumors: A review including the long-term epidemiologic data. Surg Neurol. 72:205–214. 2009. View Article : Google Scholar : PubMed/NCBI

89 

Hardell L and Carlberg M: Mobile phones, cordless phones and the risk for brain tumours. Int J Oncol. 35:5–17. 2009. View Article : Google Scholar : PubMed/NCBI

90 

Hardell L, Carlberg M, Söderqvist F and Mild KH: Pooled analysis of case-control studies on acoustic neuroma diagnosed 1997-2003 and 2007-2009 and use of mobile and cordless phones. Int J Oncol. 43:1036–1044. 2013. View Article : Google Scholar : PubMed/NCBI

91 

Hardell L, Carlberg M, Söderqvist F and Mild KH: Case-control study of the association between malignant brain tumours diagnosed between 2007 and 2009 and mobile and cordless phone use. Int J Oncol. 43:1833–1845. 2013. View Article : Google Scholar : PubMed/NCBI

92 

Hardell L, Carlberg M and Hansson Mild K: Use of mobile phones and cordless phones is associated with increased risk for glioma and acoustic neuroma. Pathophysiology. 20:85–110. 2013. View Article : Google Scholar

93 

Wang Y and Guo X: Meta-analysis of association between mobile phone use and glioma risk. J Cancer Res Ther. 12(Suppl): C298–C300. 2016. View Article : Google Scholar

94 

Carlberg M and Hardell L: Evaluation of mobile phone and cordless phone use and glioma risk using the bradford hill viewpoints from 1965 on association or causation. Biomed Res Int. 2017:92184862017. View Article : Google Scholar : PubMed/NCBI

95 

Hardell L: Effects of mobile phones on children's and adolescents' health: A commentary. Child Dev. 89:137–140. 2018. View Article : Google Scholar

96 

Momoli F, Siemiatycki J, McBride ML, Parent MÉ, Richardson L, Bedard D, Platt R, Vrijheid M, Cardis E and Krewski D: Probabilistic multiple-bias modelling applied to the Canadian data from the INTERPHONE study of mobile phone use and risk of glioma, meningioma, acoustic neuroma, and parotid gland tumors. Am J Epidemiol. 186:885–893. 2017. View Article : Google Scholar : PubMed/NCBI

97 

Miller AB, Morgan LL, Udasin I and Davis DL: Cancer epidemiology update following the 2011 IARC evaluation of radiofrequency electromagnetic fields (Monograph 102). Environ Res. 167:673–683. 2018. View Article : Google Scholar : PubMed/NCBI

98 

Miller AB, Sears ME, Morgan LL, Davis DL, Hardell L, Oremus M and Soskolne CL: Risks to health and well-being from radio-frequency radiation emitted by cell phones and other wireless devices. Front Public Health. 7:2232019. View Article : Google Scholar : PubMed/NCBI

99 

Santini R, Santini P, Danze JM, Le Ruz P and Seigne M: Study of the health of people living in the vicinity of mobile phone base stations: I. Influences of distance and sex Pathol Biol. 50:369–373. 2002. View Article : Google Scholar

100 

Navarro A, Garcia JS, Portoles M and Gómez-Perretta G: The microwave syndrome: A preliminary study in Spain. Electromagn Biol Med. 22:161–169. 2003. View Article : Google Scholar

101 

Salama OE and Abou El Naga RM: Cellular phones: Are they detrimental? J Egypt Public Health Assoc. 79:197–223. 2004.

102 

Hutter HP, Moshammer H, Wallner P and Kundi M: Subjective symptoms, sleeping problems, and cognitive performance in subjects living near mobile phone base stations. Occup Environ Med. 63:307–313. 2006. View Article : Google Scholar : PubMed/NCBI

103 

Abdel-Rassoul G, El-Fateh OA, Salem MA, Michael A, Farahat F, El-Batanouny M and Salem E: Neurobehavioral effects among inhabitants around mobile phone base stations. Neurotoxicology. 28:434–440. 2007. View Article : Google Scholar

104 

Blettner M, Schlehofer B, Breckenkamp J, Kowall B, Schmiedel S, Reis U, Potthoff P, Schüz J and Berg-Beckhoff G: Mobile phone base stations and adverse health effects: Phase 1 of a population-based, cross-sectional study in Germany. Occup Environ Med. 66:118–123. 2009. View Article : Google Scholar

105 

Viel JF, Clerc S, Barrera C, Rymzhanova R, Moissonnier M, Hours M and Cardis E: Residential exposure to radiofrequency fields from mobile phone base stations, and broadcast transmitters: A population-based survey with personal meter. Occup Environ Med. 66:550–556. 2009. View Article : Google Scholar : PubMed/NCBI

106 

Kundi M and Hutter HP: Mobile phone base stations-effects on wellbeing and health. Pathophysiology. 16:123–135. 2009. View Article : Google Scholar : PubMed/NCBI

107 

Shahbazi-Gahrouei D, Karbalae M, Moradi HA and Baradaran-Ghahfarokhi M: Health effects of living near mobile phone base transceiver station (BTS) antennae: A report from Isfahan, Iran. Electromagn Biol Med. 33:206–210. 2014. View Article : Google Scholar

108 

Irigaray P, Caccamo D and Belpomme D: Oxidative stress in electrohypersensitivity self-reporting patients: Results of a prospective in vivo investigation with comprehensive molecular analysis. Int J Mol Med. 42:1885–1898. 2018.PubMed/NCBI

109 

Yakymenko I, Tsybulin O, Sidorik E, Henshel D, Kyrylenko O and Kyrylenko S: Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn Biol Med. 35:186–202. 2016. View Article : Google Scholar

110 

Tillmann T, Ernst H, Streckert J, Zhou Y, Taugner F, Hansen V and Dasenbrock C: Indication of cocarcinogenic potential of chronic UMTS-modulated radiofrequency exposure in an ethylnitrosourea mouse model. Int J Radiat Biol. 86:529–541. 2010. View Article : Google Scholar : PubMed/NCBI

111 

Lerchl A, Klose M, Grote K, Wilhelm AF, Spathmann O, Fiedler T, Streckert J, Hansen V and Clemens M: Tumor promotion by exposure to radiofrequency electromagnetic fields below exposure limits for humans. Biochem Biophys Res Commun. 459:585–590. 2015. View Article : Google Scholar : PubMed/NCBI

112 

National Toxicology Program: Toxicology and carcinogenesis studies in Sprague Dawley (Hsd:Sprague Dawley SD) rats exposed to whole-body radio frequency radiation at a frequency (900 MHz) and modulations (GSM and CDMA) used by cell phones. Natl Toxicol Program Tech Rep Ser: NTP-TR-595. 2018.

113 

Smith-Roe SL, Wyde ME, Stout MD, Winters JW, Hobbs CA, Shepard KG, Green AS, Kissling GE, Shockley KR, Tice RR, et al: Evaluation of the genotoxicity of cell phone radiofrequency radiation in male and female rats and mice following subchronic exposure. Environ Mol Mutagen. 61:276–290. 2020. View Article : Google Scholar :

114 

Falcioni L, Bua L, Tibaldi E, Lauriola M, De Angelis L, Gnudi F, Mandrioli D, Manservigi M, Manservisi F, Manzoli I, et al: Report of final results regarding brain and heart tumors in Sprague-Dawley rats exposed from prenatal life until natural death to mobile phone radiofrequency field representative of a 1.8 GHz GSM base station environmental emission. Environ Res. 165:496–503. 2018. View Article : Google Scholar : PubMed/NCBI

115 

International Commission on Non-Ionizing Radiation Protection: Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health Phys. 99:818–836. 2010. View Article : Google Scholar : PubMed/NCBI

116 

International Commission on Non-Ionizing Radiation Protection: Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz). Health Phys. 118:483–524. 2020. View Article : Google Scholar : PubMed/NCBI

117 

IARC: Non-ionizing radiation, part 1: Static and extremely low-frequency (ELF) electric and magnetic fields. 80. World Health Organization. IARC Press; Lyon: 2002

118 

IARC: Non-Ionizing Radiation, Part 2: Radiofrequency Electromagnetic Fields. 102. IARC Press; Lyon: 2013

119 

Baan R, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Islami F and Galichet L: Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol. 12:624–626. 2011. View Article : Google Scholar : PubMed/NCBI

120 

Verschaeve L: Misleading scientific papers on health effects from wireless communication devices. Microwave Effects on DNA and Proteins. Geddes CD: Springer; Cham: pp. 159–233. 2017, View Article : Google Scholar

121 

Panagopoulos DJ, Johansson O and Carlo GL: Real versus simulated mobile phone exposures in experimental studies. Biomed Res Int. 2015:6070532015. View Article : Google Scholar : PubMed/NCBI

122 

Panagopoulos DJ: Mobile telephony radiation effects on insect ovarian cells. The necessity for real exposures bioactivity assessment The key role of polarization, and the 'ion forced-oscillation mechanism'. Microwave Effects on DNA and Proteins. Geddes CD: Springer; Cham: pp. 1–48. 2017

123 

Manna D and Ghosh R: Effect of radiofrequency radiation in cultured mammalian cells: A review. Electromagn Biol Med. 35:265–301. 2016. View Article : Google Scholar : PubMed/NCBI

124 

Leach V, Weller S and Redmayne M: A novel database of bio-effects from non-ionizing radiation. Rev Environ Health. 33:273–280. 2018. View Article : Google Scholar : PubMed/NCBI

125 

Karipidis K, Mate R, Urban D, Tinker R and Wood A: 5G mobile networks and health-a state-of-the-science review of the research into low-level RF fields above 6 GHz. J Expo Sci Environ Epidemiol. 31:585–605. 2021. View Article : Google Scholar : PubMed/NCBI

126 

Hardell L and Nyberg R: Appeals that matter or not on a moratorium on the deployment of the fifth generation, 5G, for microwave radiation. Mol Clin Oncol. 12:247–257. 2020.PubMed/NCBI

127 

Hardell L and Carlberg M: Health risks from radiofrequency radiation, including 5G, should be assessed by experts with no conflicts of interest. Oncol Lett. 20:152020.PubMed/NCBI

128 

Metaxas AC: Microwave heating. Power Eng. 5:237–247. 1991. View Article : Google Scholar

129 

Panagopoulos DJ: Comments on Pall's 'Millimeter (MM) wave and microwave frequency radiation produce deeply penetrating effects: The biology and the physics'. Rev Environ Health. Jul 12–2021, https://doi.org/10.1515/reveh-2021-0090. View Article : Google Scholar

130 

Ames BN: Endogenous DNA damage as related to cancer and aging. Mutat Res. 214:41–46. 1989. View Article : Google Scholar : PubMed/NCBI

131 

Lieber MR: Pathological and physiological double-strand breaks: Roles in cancer, aging, and the immune system. Am J Pathol. 153:1323–1332. 1998. View Article : Google Scholar : PubMed/NCBI

132 

Helleday T, Loc J, van Gentd DC and Engelward BP: DNA double-strand break repair: From mechanistic understanding to cancer treatment. DNA Repair (Amst). 6:923–935. 2007. View Article : Google Scholar

133 

Lahtz C and Pfeifer GP: Epigenetic changes of DNA repair genes in cancer. J Mol Cell Biol. 3:51–58. 2011. View Article : Google Scholar : PubMed/NCBI

134 

Yao Y and Dai W: Genomic instability and cancer. J Carcinog Mutagen. 5:10001652014.PubMed/NCBI

135 

Bernstein C, Prasad AR, Nfonsam V and Bernstein H: DNA damage, DNA repair and cancer. New Research Directions in DNA Repair. Clarc C: InTech; Rijeka: pp. 413–465. 2013

136 

Basu AK: DNA damage, mutagenesis and cancer. Int J Mol Sci. 19:9702018. View Article : Google Scholar :

137 

von Zglinicki T, Saretzki G, Ladhoff J, d'Adda di Fagagna F and Jackson SP: Human cell senescence as a DNA damage response. Mech Ageing Dev. 126:111–117. 2005. View Article : Google Scholar

138 

Shah DJ, Sachs RK and Wilson DJ: Radiation-induced cancer: A modern view. Br J Radiol. 85:e1166–e1173. 2012. View Article : Google Scholar : PubMed/NCBI

139 

Rodgers K and McVey M: Error-prone repair of DNA double-strand breaks. J Cell Physiol. 231:15–24. 2016. View Article : Google Scholar

140 

Nadler DL and Zurbenko IG: Estimating cancer latency times using a weibull model. Adv Epidemiol. 2014:7467692014. View Article : Google Scholar

141 

Francis G: Ionization Phenomena in Gases. Butterworths Scientific Publications; London: 1960

142 

Gomer R: Field Emission and Field Ionization. Harvard University Press; Cambridge: 1961

143 

Panagopoulos DJ, Johansson O and Carlo GL: Polarization: A key difference between man-made and natural electromagnetic fields, in regard to biological activity. Sci Rep. 5:149142015. View Article : Google Scholar : PubMed/NCBI

144 

Panagopoulos DJ, Messini N, Karabarbounis A, Filippetis AL and Margaritis LH: A mechanism for action of oscillating electric fields on cells. Biochem Biophys Res Commun. 272:634–640. 2000. View Article : Google Scholar : PubMed/NCBI

145 

Panagopoulos DJ, Karabarbounis A and Margaritis LH: Mechanism for action of electromagnetic fields on cells. Biochem Biophys Res Commun. 298:95–102. 2002. View Article : Google Scholar : PubMed/NCBI

146 

Panagopoulos DJ, Balmori A and Chrousos GP: On the biophysical mechanism of sensing upcoming earthquakes by animals. Sci Total Environ. 717:1369892020. View Article : Google Scholar : PubMed/NCBI

147 

Alberts B, Johnson A, Lewis J, Raff M, Roberts K and Walter P: Molecular Biology of the Cell. Garland Publishing, Inc; New York: 1994

148 

Stryer L: Biochemistry. 4th edition. Freeman WH: Freeman and Company; New York, NY: 1995

149 

Halgamuge MN and Abeyrathne CD: Behavior of charged particles in a biological cell exposed to AC-DC electromagnetic fields. Environ Eng Sci. 28:1–10. 2001. View Article : Google Scholar

150 

Panagopoulos DJ and Karabarbounis A: Comments on study of charged particle's behavior in a biological cell exposed to AC-DC electromagnetic fields, and on comparison between two models of interaction between electric and magnetic fields and proteins in cell membranes. Environ Eng Sci. 28:749–751. 2011. View Article : Google Scholar

151 

Bawin SM, Kaczmarek LK and Adey WR: Effects of modulated VHF fields, on the central nervous system. Ann N Y Acad Sci. 247:74–81. 1975. View Article : Google Scholar : PubMed/NCBI

152 

Bawin SM, Adey WR and Sabbot IM: Ionic factors in release of 45Ca2+ from chicken cerebral tissue by electromagnetic fields. Proc Natl Acad Sci USA. 75:6314–6318. 1978. View Article : Google Scholar

153 

Blackman CF, Benane SG, Elder JA, House DE, Lampe JA and Faulk JM: Induction of calcium-ion efflux from brain tissue by radiofrequency radiation: Effect of sample number and modulation frequency on the power density window. Bioelectromagnetics. 1:35–43. 1980. View Article : Google Scholar

154 

Frei M, Jauchem J and Heinmets F: Physiological effects of 2.8 GHz radio-frequency radiation: A comparison of pulsed and continuous-wave radiation. J Microw Power Electromagn Energy. 23:85–93. 1988. View Article : Google Scholar : PubMed/NCBI

155 

Bolshakov MA and Alekseev SI: Bursting responses of Lymnea neurons to microwave radiation. Bioelectromagnetics. 13:119–129. 1992. View Article : Google Scholar : PubMed/NCBI

156 

Penafiel LM, Litovitz T, Krause D, Desta A and Mullins JM: Role of modulation on the effect of microwaves on ornithine decarboxylase activity in L929 cells. Bioelectromagnetics. 18:132–141. 1997. View Article : Google Scholar : PubMed/NCBI

157 

Huber R, Treyer V, Borbély AA, Schuderer J, Gottselig JM, Landolt HP, Werth E, Berthold T, Kuster N, Buck A and Achermann P: Electromagnetic fields, such as those from mobile phones, alter regional cerebral blood flow and sleep and waking EEG. J Sleep Res. 11:289–295. 2002. View Article : Google Scholar : PubMed/NCBI

158 

Höytö A, Luukkonen J, Juutilainen J and Naarala J: Proliferation, oxidative stress and cell death in cells exposed to 872 MHz radio-frequency radiation and oxidants. Radiat Res. 170:235–243. 2008. View Article : Google Scholar

159 

Mohammed HS, Fahmy HM, Radwan NM and Elsayed AA: Non-thermal continuous and modulated electromagnetic radiation fields effects on sleep EEG of rats. J Adv Res. 4:181–187. 2013. View Article : Google Scholar : PubMed/NCBI

160 

Noda M, Ikeda T, Kayano T, Suzuki H, Takeshima H, Kurasaki M, Takahashi H and Numa S: Existence of distinct sodium channel messenger RNAs in rat brain. Nature. 320:188–192. 1986. View Article : Google Scholar : PubMed/NCBI

161 

Liman ER, Hess P, Weaver F and Koren G: Voltage-sensing residues in the S4 region of a mammalian K+ channel. Nature. 353:752–756. 1991. View Article : Google Scholar : PubMed/NCBI

162 

Tombola F, Pathak MM and Isacoff EY: How does voltage open an ion channel? Annu Rev Cell Dev Biol. 22:23–52. 2006. View Article : Google Scholar : PubMed/NCBI

163 

Schmidt WF and Thomas CG: More precise model of α-helix and transmembrane α-helical peptide backbone structure. J Biophy Chem. 3:295–303. 2012. View Article : Google Scholar

164 

Miller C: An overview of the potassium channel family. Genome Biol. 1:REVIEWS00042000. View Article : Google Scholar

165 

Zhang XC, Yang H, Liu Z and Sun F: Thermodynamics of voltage-gated ion channels. Biophys Rep. 4:300–319. 2018. View Article : Google Scholar :

166 

DeCoursey TE: Interactions between NADPH oxidase and voltage-gated proton channels: Why electron transport depends on proton transport. FEBS Lett. 555:57–61. 2003. View Article : Google Scholar : PubMed/NCBI

167 

Seredenina T, Demaurex N and Krause KH: Voltage-gated proton channels as novel drug targets: From NADPH oxidase regulation to sperm biology. Antioxid Redox Sign. 23:490–513. 2015. View Article : Google Scholar

168 

Panagopoulos DJ, Johansson O and Carlo GL: Evaluation of specific absorption rate as a dosimetric quantity for electromagnetic fields bioeffects. PLoS One. 8:e626632013. View Article : Google Scholar : PubMed/NCBI

169 

Creasey WA and Goldberg RB: A new twist on an old mechanism for EMF bioeffects? EMF Health Rep. 9:1–11. 2001.

170 

Belyaev IY: Non-thermal biological effects of microwaves. Microw Rev. 11:13–29. 2005.

171 

Zhou R, Xiong Y, Xing G, Sun L and Ma J: ZiFi: Wireless LAN discovery via ZigBee interference signatures. MobiCom'10. In: September 20-24; Chicago, Illinois, USA. 2010 Proceedings of the 16th Annual International Conference on Mobile Computing and Networking; View Article : Google Scholar

172 

Piacentini R, Ripoli C, Mezzogori D, Azzena GB and Grassi C: Extremely low-frequency electromagnetic fields promote in vitro neurogenesis via upregulation of Ca(v)1-channel activity. J Cell Physiol. 215:129–139. 2008. View Article : Google Scholar

173 

Cecchetto C, Maschietto M, Boccaccio P and Vassanelli S: Electromagnetic field affects the voltage-dependent potassium channel Kv1.3. Electromagn Biol Med. 39:316–322. 2020. View Article : Google Scholar : PubMed/NCBI

174 

Zheng Y, Xia P, Dong L, Tian L and Xiong C: Effects of modulation on sodium and potassium channel currents by extremely low frequency electromagnetic fields stimulation on hippocampal CA1 pyramidal cells. Electromagn Biol Med. 40:274–285. 2021. View Article : Google Scholar : PubMed/NCBI

175 

Batcioglu K, Uyumlu AB, Satilmis B, Yildirim B, Yucel N, Demirtas H, Onkal R, Guzel RM and Djamgoz MB: Oxidative stress in the in vivo DMBA rat model of breast cancer: Suppression by a voltage-gated sodium channel inhibitor (RS100642). Basic Clin Pharmacol Toxicol. 111:137–141. 2012.PubMed/NCBI

176 

Ramírez A, Vázquez-Sánchez AY, Carrión-Robalino N and Camacho J: Ion channels and oxidative stress as a potential link for the diagnosis or treatment of liver diseases. Oxid Med Cell Longev. 2016:39287142016. View Article : Google Scholar : PubMed/NCBI

177 

O'Hare Doig RL, Chiha W, Giacci MK, Yates NJ, Bartlett CA, Smith NM, Hodgetts SI, Harvey AR and Fitzgerald M: Specific ion channels contribute to key elements of pathology during secondary degeneration following neurotrauma. BMC Neurosci. 18:622017. View Article : Google Scholar : PubMed/NCBI

178 

Akbarali HI: Oxidative stress and ion channels. Systems Biology of Free Radicals and Antioxidants. Lahers I: Springer; Berlin, Heidelberg: pp. 355–373. 2014, View Article : Google Scholar

179 

Kourie JI: Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol. 275:C1–C24. 1998. View Article : Google Scholar : PubMed/NCBI

180 

Lushchak VI: Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact. 224:164–175. 2014. View Article : Google Scholar : PubMed/NCBI

181 

Pacher P, Beckman JS and Liaudet L: Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 87:315–424. 2007. View Article : Google Scholar : PubMed/NCBI

182 

Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M and Telser J: Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 39:44–84. 2007. View Article : Google Scholar

183 

Halliwell B: Biochemistry of oxidative stress. Biochem Soc Trans. 35:1147–1150. 2007. View Article : Google Scholar : PubMed/NCBI

184 

Balasubramanian B, Pogozelski WK and Tullius TD: DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc Natl Acad Sci USA. 95:9738–9743. 1998. View Article : Google Scholar : PubMed/NCBI

185 

Cadet J, Delatour T, Douki T, Gasparutto D, Pouget JP, Ravanat JL and Sauvaigo S: Hydroxyl radicals and DNA base damage. Mutat Res. 1424:9–21. 1999. View Article : Google Scholar

186 

Cadet J and Wagner JR: DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb Perspect Biol. 5:a0125592013. View Article : Google Scholar : PubMed/NCBI

187 

Tsunoda M, Sakaue T, Naito S, Sunami T, Abe N, Ueno Y, Matsuda A and Takénaka A: Insights into the structures of DNA damaged by hydroxyl radical: Crystal structures of DNA duplexes containing 5-formyluracil. J Nucleic Acids. 2010:1072892010. View Article : Google Scholar : PubMed/NCBI

188 

Cooke MS, Evans MD, Dizdaroglu M and Lunec J: Oxidative DNA damage: Mechanisms, mutation, and disease. FASEB J. 17:1195–1214. 2003. View Article : Google Scholar : PubMed/NCBI

189 

Barzilai A and Yamamoto K: DNA damage responses to oxidative stress. DNA Repair (Amst). 3:1109–1115. 2004. View Article : Google Scholar

190 

Pall ML: Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J Cell Mol Med. 17:958–965. 2013. View Article : Google Scholar : PubMed/NCBI

191 

Liburdy RP: Calcium signaling in lymphocytes and ELF fields. Evidence for an electric field metric and a site of interaction involving the calcium ion channel. FEBS Lett. 301:53–59. 1992. View Article : Google Scholar : PubMed/NCBI

192 

Walleczek J: Electromagnetic field effects on cells of the immune system: The role of calcium signaling. FASEB J. 6:3177–3185. 1992. View Article : Google Scholar : PubMed/NCBI

193 

Brookes PS, Yoon Y, Robotham JL, Anders MW and Sheu SS: Calcium, ATP, and ROS: A mitochondrial love-hate triangle. Am J Physiol Cell Physiol. 287:C817–C833. 2004. View Article : Google Scholar : PubMed/NCBI

194 

Lang F, Föller M, Lang KS, Lang PA, Ritter M, Gulbins E, Vereninov A and Huber SM: Ion channels in cell proliferation and apoptotic cell death. J Membr Biol. 205:147–157. 2005. View Article : Google Scholar : PubMed/NCBI

195 

Görlach A, Bertram K, Hudecova S and Krizanova O: Calcium and ROS: A mutual interplay. Redox Biol. 6:260–271. 2015. View Article : Google Scholar : PubMed/NCBI

196 

Lombardi AA, Gibb AA, Arif E, Kolmetzky DW, Tomar D, Luongo TS, Jadiya P, Murray EK, Lorkiewicz PK, Hajnóczky G, et al: Mitochondrial calcium exchange links metabolism with the epigenome to control cellular differentiation. Nat Commun. 10:45092019. View Article : Google Scholar : PubMed/NCBI

197 

Lowe SW and Lin AW: Apoptosis in cancer. Carcinogenesis. 21:485–495. 2000. View Article : Google Scholar : PubMed/NCBI

198 

Ikwegbue PC, Masamba P, Oyinloye BE and Kappo AP: Roles of heat shock proteins in apoptosis, oxidative stress, human inflammatory diseases, and cancer. Pharmaceuticals (Basel). 11:22017. View Article : Google Scholar

199 

Becchetti A: Ion channels and transporters in cancer. 1. Ion channels and cell proliferation in cancer. Am J Physiol Cell Physiol. 301:C255–C265. 2011. View Article : Google Scholar : PubMed/NCBI

200 

Gaasch JA, Geldenhuys WJ, Lockman PR, Allen DD and Van der Schyf CJ: Voltage-gated calcium channels provide an alternate route for iron uptake in neuronal cell cultures. Neurochem Res. 32:1686–1693. 2007. View Article : Google Scholar : PubMed/NCBI

201 

Chattipakorn N, Kumfu S, Fucharoen S and Chattipakorn S: Calcium channels and iron uptake into the heart. World J Cardiol. 3:215–218. 2011. View Article : Google Scholar : PubMed/NCBI

202 

Salsbury G, Cambridge EL, McIntyre Z, Arends MJ, Karp NA, Isherwood C, Shannon C, Hooks Y; Sanger Mouse Genetics Project; Ramirez-Solis R, et al: Disruption of the potassium channel regulatory subunit KCNE2 causes iron-deficient anemia. Exp Hematol. 42:1053–1058.e1. 2014. View Article : Google Scholar

203 

Gamaley I, Augsten K and Berg H: Electrostimulation of macrophage NADPH oxidase by modulated high-frequency electromagnetic fields. Bioelectrochem Bioenerg. 38:415–418. 1995. View Article : Google Scholar

204 

Panday A, Sahoo MK, Osorio D and Batra S: NADPH oxidases: An overview from structure to innate immunity-associated pathologies. Cell Mol Immunol. 12:5–23. 2015. View Article : Google Scholar :

205 

Henderson LM: NADPH oxidase subunit gp91phox: A proton pathway. Protoplasma. 217:37–42. 2001. View Article : Google Scholar : PubMed/NCBI

206 

Musset B, Cherny VV, Morgan D and DeCoursey TE: The intimate and mysterious relationship between proton channels and NADPH oxidase. FEBS Lett. 583:7–12. 2009. View Article : Google Scholar :

207 

DeCoursey T, Morgan D and Cherny V: The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels. Nature. 422:531–534. 2003. View Article : Google Scholar : PubMed/NCBI

208 

Friedman J, Kraus S, Hauptman Y, Schiff Y and Seger R: Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem J. 405:559–568. 2007. View Article : Google Scholar : PubMed/NCBI

209 

Pratt RD, Brickman CR, Cottrill CL, Shapiro JI and Liu J: The Na/K-ATPase signaling: from specific ligands to general reactive oxygen species. Int J Mol Sci. 19:26002018. View Article : Google Scholar :

210 

Nitahara JA, Cheng W, Liu Y, Li B, Leri A, Li P, Mogul D, Gambert SR, Kajstura J and Anversa P: Intracellular calcium, DNase activity and myocyte apoptosis in aging Fischer 344 rats. J Mol Cell Cardiol. 30:519–535. 1998. View Article : Google Scholar : PubMed/NCBI

211 

Fenton HJH: Oxidation of tartaric acid in presence of iron. J Chem Soc Trans. 65:899–911. 1894. View Article : Google Scholar

212 

Bawin SM and Adey WR: Sensitivity of calcium binding in cerebral tissue to weak environmental electric fields oscillating at low frequency. Proc Natl Acad Sci USA. 73:1999–2003. 1976. View Article : Google Scholar : PubMed/NCBI

213 

Jackson JD: Classical Electrodynamics. 2nd edition. John Wiley & Sons, Inc; New York, NY: 1975

214 

Barr R, Llanwyn Jones D and Rodger CJ: ELF and VLF radio waves. J Atmos Sol-Terr Phys. 62:1689–1718. 2000. View Article : Google Scholar

215 

McLeod KJ, Lee RC and Ehrlich HP: Frequency dependence of electric field modulation of fibroblast protein synthesis. Science. 236:1465–1469. 1987. View Article : Google Scholar : PubMed/NCBI

216 

Cleary SF, Liu LM, Graham R and Diegelmann RF: Modulation of tendon fibroplasia by exogenous electric currents. Bioelectromagnetics. 9:183–194. 1988. View Article : Google Scholar : PubMed/NCBI

217 

Lee RC, Canaday DJ and Doong H: A review of the biophysical basis for the clinical application of electric fields in soft-tissue repair. J Burn Care Rehabil. 14:319–335. 1993. View Article : Google Scholar : PubMed/NCBI

218 

Sandipan C and Baron C: Basic mechanisms of voltage sensing. Handbook of Ion Channels. Zheng J and Trudeau MC: CRC Press; London: pp. 25–39. 2015

219 

Groome JR and Bayless-Edwards L: Roles for countercharge in the voltage sensor domain of ion channels. Front Pharmacol. 11:1602020. View Article : Google Scholar : PubMed/NCBI

220 

Shi YP, Thouta S and Claydon TW: Modulation of hERG K+ channel deactivation by voltage sensor relaxation. Front Pharmacol. 11:1392020. View Article : Google Scholar

221 

Villalba-Galea CA and Chiem AT: Hysteretic behavior in voltage-gated channels. Front Pharmacol. 11:5795962020. View Article : Google Scholar : PubMed/NCBI

222 

Panagopoulos DJ and Margaritis LH: The identification of an intensity 'window' on the bioeffects of mobile telephony radiation. Int J Radiat Biol. 86:358–366. 2010. View Article : Google Scholar : PubMed/NCBI

223 

Panagopoulos DJ and Balmori A: On the biophysical mechanism of sensing atmospheric discharges by living organisms. Sci Total Environ. 599-600:2026–2034. 2017. View Article : Google Scholar : PubMed/NCBI

224 

Liboff AR: Cyclotron resonance in membrane transport. Interactions between Electromagnetic Fields and Cells. Chiabrera A, Nicolini C and Schwan HP: Plenum Press; London: pp. 281–296. 1985

225 

Bianco B, Chiabrera A, Morro A and Parodi M: Effects of magnetic exposure on ions in electric fields. Ferroelectrics. 86:159–168. 1988. View Article : Google Scholar

226 

Balcavage WX, Alvager T, Swez J, Goff CW, Fox MT, Abdullyava S and King MW: A mechanism for action of extremely low frequency electromagnetic fields on biological systems. Biochem Biophys Res Commun. 222:374–378. 1996. View Article : Google Scholar : PubMed/NCBI

227 

Zhadin MN: Combined action of static and alternating magnetic fields on ion motion in a macromolecule: Theoretical aspects. Bioelectromagnetics. 19:279–292. 1998. View Article : Google Scholar : PubMed/NCBI

228 

Liboff AR: Ion cyclotron resonance in biological systems: Experimental evidence. Biological Effects of Electromagnetic Fields. Stavroulakis P: Springer; Berlin: pp. 76–113. 2003

229 

Lednev VV: Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics. 12:71–75. 1991. View Article : Google Scholar : PubMed/NCBI

230 

Kirschvink JL: Magnetite biomineralization and geomagnetic sensitivity in higher animals: An update and recommendations for future study. Bioelectromagnetics. 10:239–259. 1989. View Article : Google Scholar : PubMed/NCBI

231 

Brocklehurst B and McLauchlan KA: Free radical mechanism for the effects of environmental electromagnetic fields on biological systems. Int J Radiat Biol. 69:3–24. 1996. View Article : Google Scholar : PubMed/NCBI

232 

Sheppard AR, Swicord ML and Balzano Q: Quantitative evaluations of mechanisms of radiofrequency interactions with biological molecules and processes. Health Phys. 93:365–396. 2008. View Article : Google Scholar

233 

Hall EJ and Giaccia AJ: Radiobiology for the Radiologist. 6th edition. Lippincott Williams & Wilkins; Philadelphia, PA: 2006

234 

Coggle JE: Biological Effects of Radiation. Taylor & Francis; 1983

235 

Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI

236 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

237 

Blank M and Goodman R: Electromagnetic fields stress living cells. Pathophysiology. 16:71–78. 2009. View Article : Google Scholar : PubMed/NCBI

238 

Blank M and Goodman R: DNA is a fractal antenna in electromagnetic fields. Int J Radiat Biol. 87:409–415. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Panagopoulos DJ, Karabarbounis A, Yakymenko I and Chrousos GP: Human‑made electromagnetic fields: Ion forced‑oscillation and voltage‑gated ion channel dysfunction, oxidative stress and DNA damage (Review). Int J Oncol 59: 92, 2021.
APA
Panagopoulos, D.J., Karabarbounis, A., Yakymenko, I., & Chrousos, G.P. (2021). Human‑made electromagnetic fields: Ion forced‑oscillation and voltage‑gated ion channel dysfunction, oxidative stress and DNA damage (Review). International Journal of Oncology, 59, 92. https://doi.org/10.3892/ijo.2021.5272
MLA
Panagopoulos, D. J., Karabarbounis, A., Yakymenko, I., Chrousos, G. P."Human‑made electromagnetic fields: Ion forced‑oscillation and voltage‑gated ion channel dysfunction, oxidative stress and DNA damage (Review)". International Journal of Oncology 59.5 (2021): 92.
Chicago
Panagopoulos, D. J., Karabarbounis, A., Yakymenko, I., Chrousos, G. P."Human‑made electromagnetic fields: Ion forced‑oscillation and voltage‑gated ion channel dysfunction, oxidative stress and DNA damage (Review)". International Journal of Oncology 59, no. 5 (2021): 92. https://doi.org/10.3892/ijo.2021.5272
Copy and paste a formatted citation
x
Spandidos Publications style
Panagopoulos DJ, Karabarbounis A, Yakymenko I and Chrousos GP: Human‑made electromagnetic fields: Ion forced‑oscillation and voltage‑gated ion channel dysfunction, oxidative stress and DNA damage (Review). Int J Oncol 59: 92, 2021.
APA
Panagopoulos, D.J., Karabarbounis, A., Yakymenko, I., & Chrousos, G.P. (2021). Human‑made electromagnetic fields: Ion forced‑oscillation and voltage‑gated ion channel dysfunction, oxidative stress and DNA damage (Review). International Journal of Oncology, 59, 92. https://doi.org/10.3892/ijo.2021.5272
MLA
Panagopoulos, D. J., Karabarbounis, A., Yakymenko, I., Chrousos, G. P."Human‑made electromagnetic fields: Ion forced‑oscillation and voltage‑gated ion channel dysfunction, oxidative stress and DNA damage (Review)". International Journal of Oncology 59.5 (2021): 92.
Chicago
Panagopoulos, D. J., Karabarbounis, A., Yakymenko, I., Chrousos, G. P."Human‑made electromagnetic fields: Ion forced‑oscillation and voltage‑gated ion channel dysfunction, oxidative stress and DNA damage (Review)". International Journal of Oncology 59, no. 5 (2021): 92. https://doi.org/10.3892/ijo.2021.5272
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team