|
1
|
Doble A: The pharmacology and mechanism of
action of riluzole. Neurology. 47(6 Suppl 4): S233–S241. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Urbani A and Belluzzi O: Riluzole inhibits
the persistent sodium current in mammalian CNS neurons. Eur J
Neurosci. 12:3567–3574. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zona C, Siniscalchi A, Mercuri NB and
Bernardi G: Riluzole interacts with voltage-activated sodium and
potassium currents in cultured rat cortical neurons. Neuroscience.
85:931–938. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Cheah BC, Vucic S, Krishnan AV and Kiernan
MC: Riluzole, neuroprotection and amyotrophic lateral sclerosis.
Curr Med Chem. 17:1942–1999. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Willard SS and Koochekpour S: Glutamate
signaling in benign and malignant disorders: Current status, future
perspectives, and therapeutic implications. Int J Biol Sci.
9:728–742. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Yu LJ, Wall BA, Wangari-Talbot J and Chen
S: Metabotropic glutamate receptors in cancer. Neuropharmacology.
115:193–202. 2017. View Article : Google Scholar
|
|
7
|
Khan AJ, LaCava S, Mehta M, Schiff D,
Thandoni A, Jhawar S, Danish S, Haffty BG and Chen S: The glutamate
release inhibitor riluzole increases DNA damage and enhances
cytotoxicity in human glioma cells, in vitro and in vivo.
Oncotarget. 10:2824–2834. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Dolfi SC, Medina DJ, Kareddula A, Paratala
B, Rose A, Dhami J, Chen S, Ganesan S, Mackay G, Vazquez A and
Hirshfield KM: Riluzole exerts distinct antitumor effects from a
metabotropic glutamate receptor 1-specific inhibitor on breast
cancer cells. Oncotarget. 8:44639–44653. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Prickett TD and Samuels Y: Molecular
pathways: Dysregulated glutamatergic signaling pathways in cancer.
Clin Cancer Res. 18:4240–4246. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Skerry TM and Genever PG: Glutamate
signalling in non-neuronal tissues. Trends Pharmacol Sci.
22:174–181. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hinoi E, Takarada T, Ueshima T,
Tsuchihashi Y and Yoneda Y: Glutamate signaling in peripheral
tissues. Eur J Biochem. 271:1–13. 2004. View Article : Google Scholar
|
|
12
|
Cowan RW, Seidlitz EP and Singh G:
Glutamate signaling in healthy and diseased bone. Front Endocrinol
(Lausanne). 3:892012. View Article : Google Scholar
|
|
13
|
Hollmann M and Heinemann S: Cloned
glutamate receptors. Annu Rev Neurosci. 17:31–108. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Reiner A and Levitz J: Glutamatergic
signaling in the central nervous system: Ionotropic and
metabotropic receptors in concert. Neuron. 98:1080–1098. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Lin W, Wang C, Liu G, Bi C, Wang X, Zhou Q
and Jin H: SLC7A11/xCT in cancer: Biological functions and
therapeutic implications. Am J Cancer Res. 10:3106–3126.
2020.PubMed/NCBI
|
|
16
|
Muir A, Danai LV, Gui DY, Waingarten CY,
Lewis CA and Vander Heiden MG: Environmental cystine drives
glutamine anaplerosis and sensitizes cancer cells to glutaminase
inhibition. Elife. 6. pp. e277132017, View Article : Google Scholar
|
|
17
|
Sharma MK, Seidlitz EP and Singh G: Cancer
cells release glutamate via the cystine/glutamate antiporter.
Biochem Biophys Res Commun. 391:91–95. 2010. View Article : Google Scholar
|
|
18
|
Ye ZC, Rothstein JD and Sontheimer H:
Compromised glutamate transport in human glioma cells:
Reduction-mislocalization of sodium-dependent glutamate
transporters and enhanced activity of cystine-glutamate exchange. J
Neurosci. 19:10767–10777. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ye ZC and Sontheimer H: Glioma cells
release excitotoxic concentrations of glutamate. Cancer Res.
59:4383–4391. 1999.PubMed/NCBI
|
|
20
|
Savaskan NE, Heckel A, Hahnen E, Engelhorn
T, Doerfler A, Ganslandt O, Nimsky C, Buchfelder M and Eyüpoglu IY:
Small interfering RNA-mediated xCT silencing in gliomas inhibits
neurodegeneration and alleviates brain edema. Nat Med. 14:629–632.
2008. View
Article : Google Scholar : PubMed/NCBI
|
|
21
|
Shin SS, Jeong BS, Wall BA, Li J, Shan NL,
Wen Y, Goydos JS and Chen S: Participation of xCT in melanoma cell
proliferation in vitro and tumorigenesis in vivo. Oncogenesis.
7:862018. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Wangpaichitr M, Wu C, Li YY, Nguyen DJM,
Kandemir H, Shah S, Chen S, Feun LG, Prince JS, Kuo MT and Savaraj
N: Exploiting ROS and metabolic differences to kill cisplatin
resistant lung cancer. Oncotarget. 8:49275–49292. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Martin GS: Cell signaling and cancer.
Cancer Cell. 4:167–174. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Hemmings BA and Restuccia DF: PI3K-PKB/Akt
pathway. Cold Spring Harb Perspect Biol. 4:a0111892012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Nicholson KM and Anderson NG: The protein
kinase B/Akt signalling pathway in human malignancy. Cell Signal.
14:381–395. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Schmelzle T and Hall MN: TOR, a central
controller of cell growth. Cell. 103:253–262. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Sanchez-Vega F, Mina M, Armenia J, Chatila
WK, Luna A, La KC, Dimitriadoy S, Liu DL, Kantheti HS, Saghafinia
S, et al: Oncogenic signaling pathways in the cancer genome atlas.
Cell. 173:321–337.e10. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Namkoong J, Shin SS, Lee HJ, Marin YE,
Wall BA, Goydos JS and Chen S: Metabotropic glutamate receptor 1
and glutamate signaling in human melanoma. Cancer Res.
67:2298–2305. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Choi KY, Chang K, Pickel JM, Badger JD II
and Roche KW: Expression of the metabotropic glutamate receptor 5
(mGluR5) induces melanoma in transgenic mice. Proc Natl Acad Sci
USA. 108:15219–15224. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Prickett TD, Wei X, Cardenas-Navia I, Teer
JK, Lin JC, Walia V, Gartner J, Jiang J, Cherukuri PF, Molinolo A,
et al: Exon capture analysis of G protein-coupled receptors
identifies activating mutations in GRM3 in melanoma. Nat Genet.
43:1119–1126. 2011. View
Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yip D, Le MN, Chan JL, Lee JH, Mehnert JA,
Yudd A, Kempf J, Shih WJ, Chen S and Goydos JS: A phase 0 trial of
riluzole in patients with resectable stage III and IV melanoma.
Clin Cancer Res. 15:3896–3902. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Rosenberg SA, Niglio SA, Salehomoum N,
Chan JL, Jeong BS, Wen Y, Li J, Fukui J, Chen S, Shin SS and Goydos
JS: Targeting glutamatergic signaling and the PI3 kinase pathway to
halt melanoma progression. Transl Oncol. 8:1–9. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sperling S, Aung T, Martin S, Rohde V and
Ninkovic M: Riluzole: A potential therapeutic intervention in human
brain tumor stem-like cells. Oncotarget. 8:96697–96709. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Rajendran G, Shanmuganandam K, Bendre A,
Muzumdar D, Goel A and Shiras A: Epigenetic regulation of DNA
methyltransferases: DNMT1 and DNMT3B in gliomas. J Neurooncol.
104:483–494. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Liao S, Ruiz Y, Gulzar H, Yelskaya Z, Ait
Taouit L, Houssou M, Jaikaran T, Schvarts Y, Kozlitina K, Basu-Roy
U, et al: Osteosarcoma cell proliferation and survival requires
mGluR5 receptor activity and is blocked by Riluzole. PLoS One.
12:e01712562017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Nusse R and Clevers H: Wnt/β-catenin
signaling, disease, and emerging therapeutic modalities. Cell.
169:985–999. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Kageshita T, Hamby CV, Ishihara T,
Matsumoto K, Saida T and Ono T: Loss of beta-catenin expression
associated with disease progression in malignant melanoma. Br J
Dermatol. 145:210–216. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Biechele TL, Camp ND, Fass DM, Kulikauskas
RM, Robin NC, White BD, Taraska CM, Moore EC, Muster J, Karmacharya
R, et al: Chemical-genetic screen identifies riluzole as an
enhancer of Wnt/β-catenin signaling in melanoma. Chem Biol.
17:1177–1182. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Duchen MR: Mitochondria and calcium: From
cell signalling to cell death. J Physiol. 529(Pt 1): 57–68. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Beltran-Parrazal L and Charles A: Riluzole
inhibits spontaneous Ca2+ signaling in neuroendocrine
cells by activation of K+ channels and inhibition of Na+
channels. Br J Pharmacol. 140:881–888. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Hemendinger RA, Armstrong EJ III, Radio N
and Brooks BR: Neurotoxic injury pathways in differentiated mouse
motor neuron-neuroblastoma hybrid (NSC-34D) cells in vitro-limited
effect of riluzole on thapsigargin, but not staurosporine, hydrogen
peroxide and homocysteine neurotoxicity. Toxicol Appl Pharmacol.
258:208–215. 2012. View Article : Google Scholar
|
|
42
|
Kamal T, Green TN, Morel-Kopp MC, Ward CM,
McGregor AL, McGlashan SR, Bohlander SK, Browett PJ, Teague L,
During MJ, et al: Inhibition of glutamate regulated calcium entry
into leukemic megakaryoblasts reduces cell proliferation and
supports differentiation. Cell Signal. 27:1860–1872. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Jan CR, Lu YC, Jiann BP, Chang HT and
Huang JK: Effect of riluzole on cytosolic Ca2+ increase
in human osteosarcoma cells. Pharmacology. 66:120–127. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wadosky KM, Shourideh M, Goodrich DW and
Koochekpour S: Riluzole induces AR degradation via endoplasmic
reticulum stress pathway in androgen-dependent and
castration-resistant prostate cancer cells. Prostate. 79:140–150.
2019. View Article : Google Scholar
|
|
45
|
Liou GY and Storz P: Reactive oxygen
species in cancer. Free Radic Res. 44:479–496. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Pelicano H, Carney D and Huang P: ROS
stress in cancer cells and therapeutic implications. Drug Resist
Updat. 7:97–110. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Chakravarthi S, Jessop CE and Bulleid NJ:
The role of glutathione in disulphide bond formation and
endoplasmic-reticulum-generated oxidative stress. EMBO Rep.
7:271–275. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Janáky R, Ogita K, Pasqualotto BA, Bains
JS, Oja SS, Yoneda Y and Shaw CA: Glutathione and signal
transduction in the mammalian CNS. J Neurochem. 73:889–902. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Cao SS and Kaufman RJ: Endoplasmic
reticulum stress and oxidative stress in cell fate decision and
human disease. Antioxid Redox Signal. 21:396–413. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Hayes JD, Dinkova-Kostova AT and Tew KD:
Oxidative stress in cancer. Cancer Cell. 38:167–197. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kennedy L, Sandhu JK, Harper ME and
Cuperlovic-Culf M: Role of glutathione in cancer: From mechanisms
to therapies. Biomolecules. 10:14292020. View Article : Google Scholar :
|
|
52
|
Seol HS, Lee SE, Song JS, Lee HY, Park S,
Kim I, Singh SR, Chang S and Jang SJ: Glutamate release inhibitor,
Riluzole, inhibited proliferation of human hepatocellular carcinoma
cells by elevated ROS production. Cancer Lett. 382:157–165. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wall BA, Wangari-Talbot J, Shin SS, Schiff
D, Sierra J, Yu LJ, Khan A, Haffty B, Goydos JS and Chen S:
Disruption of GRM1-mediated signalling using riluzole results in
DNA damage in melanoma cells. Pigment Cell Melanoma Res.
27:263–274. 2014. View Article : Google Scholar :
|
|
54
|
Cerchio R Jr, Marinaro C, Foo TK, Xia B
and Chen S: Nonhomologous end-joining repair is likely involved in
the repair of double-stranded DNA breaks induced by riluzole in
melanoma cells. Melanoma Res. 30:303–308. 2020. View Article : Google Scholar
|
|
55
|
Raghubir M, Azeem SM, Hasnat R, Rahman CN,
Wong L, Yan S, Huang YQ, Zhagui R, Blyufer A, Tariq I, et al:
Riluzole-induced apoptosis in osteosarcoma is mediated through
Yes-associated protein upon phosphorylation by c-Abl Kinase. Sci
Rep. 11:209742021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Jo OD, Martin J, Bernath A, Masri J,
Lichtenstein A and Gera J: Heterogeneous nuclear ribonucleoprotein
A1 regulates cyclin D1 and c-myc internal ribosome entry site
function through Akt signaling. J Biol Chem. 283:23274–23287. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Benavides-Serrato A, Saunders JT, Holmes
B, Nishimura RN, Lichtenstein A and Gera J: Repurposing potential
of Riluzole as an ITAF Inhibitor in mTOR therapy resistant
glioblastoma. Int J Mol Sci. 21:3442020. View Article : Google Scholar :
|
|
58
|
Basu AK: DNA Damage, mutagenesis and
cancer. Int J Mol Sci. 19:9702018. View Article : Google Scholar :
|
|
59
|
O'Connor MJ: Targeting the DNA damage
response in cancer. Mol Cell. 60:547–560. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Srinivas US, Tan BWQ, Vellayappan BA and
Jeyasekharan AD: ROS and the DNA damage response in cancer. Redox
Biol. 25:1010842019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Mehnert JM, Silk AW, Lee JH, Dudek L,
Jeong BS, Li J, Schenkel JM, Sadimin E, Kane M, Lin H, et al: A
phase II trial of riluzole, an antagonist of metabotropic glutamate
receptor 1 (GRM1) signaling, in patients with advanced melanoma.
Pigment Cell Melanoma Res. 31:534–540. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wall BA, Yu LJ, Khan A, Haffty B, Goydos
JS and Chen S: Riluzole is a radio-sensitizing agent in an in vivo
model of brain metastasis derived from GRM1 expressing human
melanoma cells. Pigment Cell Melanoma Res. 28:105–109. 2015.
View Article : Google Scholar
|
|
63
|
Lemieszek M, Stepulak A, Sawa-Wejksza K,
Czerwonka A, Ikonomidou C and Rzeski W: Riluzole inhibits
proliferation, migration and cell cycle progression and induces
apoptosis in tumor cells of various origins. Anticancer Agents Med
Chem. 18:565–572. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Sun L, Wu C, Ming J, Nie X, Guo E, Zhang W
and Hu G: Riluzole enhances the response of human nasopharyngeal
carcinoma cells to ionizing radiation via ATM/P53 signalling
pathway. J Cancer. 11:3089–3098. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Yun CW and Lee SH: The roles of autophagy
in cancer. Int J Mol Sci. 19:34662018. View Article : Google Scholar :
|
|
66
|
Linder B and Kögel D: Autophagy in cancer
cell death. Biology (Basel). 8:822019.
|
|
67
|
Sun R, He X, Jiang X and Tao H: The new
role of riluzole in the treatment of pancreatic cancer through the
apoptosis and autophagy pathways. J Cell Biochem. Nov 11–2019.Epub
ahead of print.
|
|
68
|
Carneiro BA and El-Deiry WS: Targeting
apoptosis in cancer therapy. Nat Rev Clin Oncol. 17:395–417. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Le MN, Chan JL, Rosenberg SA, Nabatian AS,
Merrigan KT, Cohen-Solal KA and Goydos JS: The glutamate release
inhibitor Riluzole decreases migration, invasion, and proliferation
of melanoma cells. J Invest Dermatol. 130:2240–2249. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Khan AJ, Wall B, Ahlawat S, Green C,
Schiff D, Mehnert JM, Goydos JS, Chen S and Haffty BG: Riluzole
enhances ionizing radiation-induced cytotoxicity in human melanoma
cells that ectopically express metabotropic glutamate receptor 1 in
vitro and in vivo. Clin Cancer Res. 17:1807–1814. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Akamatsu K, Shibata MA, Ito Y, Sohma Y,
Azuma H and Otsuki Y: Riluzole induces apoptotic cell death in
human prostate cancer cells via endoplasmic reticulum stress.
Anticancer Res. 29:2195–2204. 2009.PubMed/NCBI
|
|
72
|
Raghubir M, Rahman CN, Fang J, Matsui H
and Mahajan SS: Osteosarcoma growth suppression by riluzole
delivery via iron oxide nanocage in nude mice. Oncol Rep.
43:169–176. 2020.
|
|
73
|
Rampersaud S, Fang J, Wei Z, Fabijanic K,
Silver S, Jaikaran T, Ruiz Y, Houssou M, Yin Z, Zheng S, et al: The
effect of cage shape on nanoparticle-based drug carriers:
Anticancer drug release and efficacy via receptor blockade using
dextran-coated iron oxide nanocages. Nano Lett. 16:7357–7363. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Bayat Mokhtari R, Homayouni TS, Baluch N,
Morgatskaya E, Kumar S, Das B and Yeger H: Combination therapy in
combating cancer. Oncotarget. 8:38022–38043. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Pucci C, Martinelli C and Ciofani G:
Innovative approaches for cancer treatment: Current perspectives
and new challenges. Ecancermedicalscience. 13:9612019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Falzone L, Salomone S and Libra M:
Evolution of cancer pharmacological treatments at the turn of the
Third Millennium. Front Pharmacol. 9:13002018. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Fortunato A: The role of hERG1 ion
channels in epithelial-mesenchymal transition and the capacity of
riluzole to reduce cisplatin resistance in colorectal cancer cells.
Cell Oncol (Dordr). 40:367–378. 2017. View Article : Google Scholar
|
|
78
|
Lee HJ, Wall BA, Wangari-Talbot J, Shin
SS, Rosenberg S, Chan JL, Namkoong J, Goydos JS and Chen S:
Glutamatergic pathway targeting in melanoma: single-agent and
combinatorial therapies. Clin Cancer Res. 17:7080–7092. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Speyer CL, Bukhsh MA, Jafry WS, Sexton RE,
Bandyopadhyay S and Gorski DH: Riluzole synergizes with paclitaxel
to inhibit cell growth and induce apoptosis in triple-negative
breast cancer. Breast Cancer Res Treat. 166:407–419. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Lacomblez L, Bensimon G, Leigh PN, Guillet
P and Meininger V: Dose-ranging study of riluzole in amyotrophic
lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study
Group II. Lancet. 347:1425–1431. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Groeneveld GJ, Van Kan HJ, Kalmijn S,
Veldink JH, Guchelaar HJ, Wokke JH and Van den Berg LH: Riluzole
serum concentrations in patients with ALS: Associations with side
effects and symptoms. Neurology. 61:1141–1143. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Groeneveld GJ, van Kan HJ, Lie-A-Huen L,
Guchelaar HJ and van den Berg LH: An association study of riluzole
serum concentration and survival and disease progression in
patients with ALS. Clin Pharmacol Ther. 83:718–722. 2008.
View Article : Google Scholar
|
|
83
|
Le Liboux A, Cachia JP, Kirkesseli S,
Gautier JY, Guimart C, Montay G, Peeters PA, Groen E, Jonkman JH
and Wemer J: A comparison of the pharmacokinetics and tolerability
of riluzole after repeat dose administration in healthy elderly and
young volunteers. J Clin Pharmacol. 39:480–486. 1999.PubMed/NCBI
|
|
84
|
Bellingham MC: A review of the neural
mechanisms of action and clinical efficiency of riluzole in
treating amyotrophic lateral sclerosis: What have we learned in the
last decade? CNS Neurosci Ther. 17:4–31. 2011. View Article : Google Scholar
|
|
85
|
Wokke J: Riluzole. Lancet. 348:795–799.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Miller RG, Mitchell JD, Lyon M and Moore
DH: Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron
disease (MND). Amyotroph Lateral Scler Other Motor Neuron Disord.
4:191–206. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Grant P, Song JY and Swedo SE: Review of
the use of the glutamate antagonist riluzole in psychiatric
disorders and a description of recent use in childhood
obsessive-compulsive disorder. J Child Adolesc Psychopharmacol.
20:309–315. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Sorenson EJ: An acute, life-threatening,
hypersensitivity reaction to riluzole. Neurology. 67:2260–2261.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Inoue-Shibui A, Kato M, Suzuki N,
Kobayashi J, Takai Y, Izumi R, Kawauchi Y, Kuroda H, Warita H and
Aoki M: Interstitial pneumonia and other adverse events in
riluzole-administered amyotrophic lateral sclerosis patients: A
retrospective observational study. BMC Neurol. 19:722019.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Lacomblez L, Bensimon G, Leigh PN, Debove
C, Bejuit R and Truffinet P: Long-term safety of riluzole in
amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor
Neuron Disord. 3:23–29. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Speyer CL, Nassar MA, Hachem AH, Bukhsh
MA, Jafry WS, Khansa RM and Gorski DH: Riluzole mediates anti-tumor
properties in breast cancer cells independent of metabotropic
glutamate receptor-1. Breast Cancer Res Treat. 157:217–228. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Poupon L, Lamoine S, Pereira V, Barriere
DA, Lolignier S, Giraudet F, Aissouni Y, Meleine M, Prival L,
Richard D, et al: Targeting the TREK-1 potassium channel via
riluzole to eliminate the neuropathic and depressive-like effects
of oxaliplatin. Neuropharmacology. 140:43–61. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Yamada T, Tsuji S, Nakamura S, Egashira Y,
Shimazawa M, Nakayama N, Yano H, Iwama T and Hara H: Riluzole
enhances the antitumor effects of temozolomide via suppression of
MGMT expression in glioblastoma. J Neurosurg. 134:701–710. 2020.
View Article : Google Scholar : PubMed/NCBI
|