Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
December-2021 Volume 59 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2021 Volume 59 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Transposable elements and Piwi‑interacting RNAs in hemato‑oncology with a focus on myelodysplastic syndrome (Review)

  • Authors:
    • Michaela Dostalova Merkerova
    • Zdenek Krejcik
  • View Affiliations / Copyright

    Affiliations: Institute of Hematology and Blood Transfusion, 128 20 Prague, Czech Republic
  • Article Number: 105
    |
    Published online on: November 11, 2021
       https://doi.org/10.3892/ijo.2021.5285
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Our current understanding of hematopoietic stem cell differentiation and the abnormalities that lead to leukemogenesis originates from the accumulation of knowledge regarding protein‑coding genes. However, the possible impact of transposable element (TE) mobilization and the expression of P‑element‑induced WImpy testis‑interacting RNAs (piRNAs) on leukemogenesis has been beyond the scope of scientific interest to date. The expression profiles of these molecules and their importance for human health have only been characterized recently due to the rapid progress of high‑throughput sequencing technology development. In the present review, current knowledge on the expression profile and function of TEs and piRNAs was summarized, with specific focus on their reported involvement in leukemogenesis and pathogenesis of myelodysplastic syndrome.
View Figures

Figure 1

Figure 2

View References

1 

Cheng H, Zheng Z and Cheng T: New paradigms on hematopoietic stem cell differentiation. Protein Cell. 11:34–44. 2020. View Article : Google Scholar : PubMed/NCBI

2 

Haas S, Trumpp A and Milsom MD: Causes and consequences of hematopoietic stem cell heterogeneity. Cell Stem Cell. 22:627–638. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Sperling AS, Gibson CJ and Ebert BL: The genetics of myelodysplastic syndrome: From clonal haematopoiesis to secondary leukaemia. Nat Rev Cancer. 17:5–19. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Aguilera A and García-Muse T: Causes of genome instability. Annu Rev Genet. 47:1–32. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Ali A, Han K and Liang P: Role of transposable elements in gene regulation in the human genome. Life (Basel). 11:1182021.PubMed/NCBI

6 

Liu Y, Dou M, Song X, Dong Y, Liu S, Liu H, Tao J, Li W, Yin X and Xu W: The emerging role of the piRNA/piwi complex in cancer. Mol Cancer. 18:1232019. View Article : Google Scholar : PubMed/NCBI

7 

Garcia-Manero G, Chien KS and Montalban-Bravo G: Myelodysplastic syndromes: 2021 Update on diagnosis, risk stratification and management. Am J Hematol. 95:1399–1420. 2020. View Article : Google Scholar : PubMed/NCBI

8 

Feld J, Belasen A and Navada SC: Myelodysplastic syndromes: A review of therapeutic progress over the past 10 years. Expert Rev Anticancer Ther. 20:465–482. 2020. View Article : Google Scholar : PubMed/NCBI

9 

Bewersdorf JP, Carraway H and Prebet T: Emerging treatment options for patients with high-risk myelodysplastic syndrome. Ther Adv Hematol. 11:20406207209550062020. View Article : Google Scholar : PubMed/NCBI

10 

Zeidan AM, Stahl M, Deveaux M, Giri S, Huntington S, Podoltsev N, Wang R, Ma X, Davidoff AJ and Gore SD: Counseling patients with higher-risk MDS regarding survival with azacitidine therapy: Are we using realistic estimates? Blood Cancer J. 8:552018. View Article : Google Scholar : PubMed/NCBI

11 

Santini V: How I treat MDS after hypomethylating agent failure. Blood. 133:521–529. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Ferrando AA and López-Otín C: Clonal evolution in leukemia. Nat Med. 23:1135–1145. Oct 6–2017. View Article : Google Scholar : PubMed/NCBI

13 

Chen J, Kao YR, Sun D, Todorova TI, Reynolds D, Narayanagari SR, Montagna C, Will B, Verma A and Steidl U: Myelodysplastic syndrome progression to acute myeloid leukemia at the stem cell level. Nat Med. 25:103–110. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Hosono N: Genetic abnormalities and pathophysiology of MDS. Int J Clin Oncol. 24:885–892. 2019. View Article : Google Scholar : PubMed/NCBI

15 

Shallis RM, Ahmad R and Zeidan AM: The genetic and molecular pathogenesis of myelodysplastic syndromes. Eur J Haematol. 101:260–271. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G, Kantarjian H, Raza A, Levine RL, Neuberg D and Ebert BL: Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 364:2496–2506. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, Yoon CJ, Ellis P, Wedge DC, Pellagatti A, et al: Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 122:3616–3627, 3699. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, Schnittger S, Sanada M, Kon A, Alpermann T, et al: Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 28:241–247. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Spaulding TP, Stockton SS and Savona MR: The evolving role of next generation sequencing in myelodysplastic syndromes. Br J Haematol. 188:224–239. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Klein SJ and O'Neill RJ: Transposable elements: Genome innovation, chromosome diversity, and centromere conflict. Chromosom Res. 26:5–23. 2018. View Article : Google Scholar

21 

McClintock B: The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA. 36:344–355. 1950. View Article : Google Scholar : PubMed/NCBI

22 

Kojima KK: Structural and sequence diversity of eukaryotic transposable elements. Genes Genet Syst. 94:233–252. 2020. View Article : Google Scholar : PubMed/NCBI

23 

Barabas O: Snapshots of a genetic cut-and-paste. Nature. 575:447–448. 2019. View Article : Google Scholar : PubMed/NCBI

24 

Muñoz-López M and García-Pérez J: DNA transposons: Nature and applications in genomics. Curr Genomics. 11:115–128. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, et al: A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 8:973–982. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Grandi N and Tramontano E: Human endogenous retroviruses are ancient acquired elements still shaping innate immune responses. Front Immunol. 9:20392018. View Article : Google Scholar : PubMed/NCBI

27 

Johnson WE: Origins and evolutionary consequences of ancient endogenous retroviruses. Nat Rev Microbiol. 17:355–370. 2019. View Article : Google Scholar : PubMed/NCBI

28 

Han JS: Non-long terminal repeat (non-LTR) retrotransposons: Mechanisms, recent developments, and unanswered questions. Mob DNA. 1:152010. View Article : Google Scholar : PubMed/NCBI

29 

Dewannieux M and Heidmann T: LINEs, SINEs and processed pseudogenes: Parasitic strategies for genome modeling. Cytogenet Genome Res. 110:35–48. 2005. View Article : Google Scholar : PubMed/NCBI

30 

Mita P, Wudzinska A, Sun X, Andrade J, Nayak S, Kahler DJ, Badri S, LaCava J, Ueberheide B, Yun CY, et al: LINE-1 protein localization and functional dynamics during the cell cycle. Elife. 7:e300582018. View Article : Google Scholar : PubMed/NCBI

31 

Martin SL: The ORF1 protein encoded by LINE-1: Structure and function during L1 retrotransposition. J Biomed Biotechnol. 2006:456212006. View Article : Google Scholar : PubMed/NCBI

32 

Ardeljan D, Wang X, Oghbaie M, Taylor MS, Husband D, Deshpande V, Steranka JP, Gorbounov M, Yang WR, Sie B, et al: LINE-1 ORF2p expression is nearly imperceptible in human cancers. Mob DNA. 11:12019. View Article : Google Scholar : PubMed/NCBI

33 

Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Morant JV and Kazazian HH Jr: Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci USA. 100:5280–5285. 2003. View Article : Google Scholar : PubMed/NCBI

34 

Del Re B and Giorgi G: Long INterspersed element-1 mobility as a sensor of environmental stresses. Environ Mol Mutagen. 61:465–493. 2020. View Article : Google Scholar : PubMed/NCBI

35 

Okada N, Hamada M, Ogiwara I and Ohshima K: SINEs and LINEs share common 3′ sequences: A review. Gene. 205:229–243. 1997. View Article : Google Scholar : PubMed/NCBI

36 

Carnevali D, Conti A, Pellegrini M and Dieci G: Whole-genome expression analysis of mammalian-wide interspersed repeat elements in human cell lines. DNA Res. 24:59–69. 2017.PubMed/NCBI

37 

Cordaux R, Hedges DJ, Herke SW and Batzer MA: Estimating the retrotransposition rate of human Alu elements. Gene. 373:134–137. 2006. View Article : Google Scholar : PubMed/NCBI

38 

Piégu B, Bire S, Arensburger P and Bigot Y: A survey of transposable element classification systems-a call for a fundamental update to meet the challenge of their diversity and complexity. Mol Phylogenet Evol. 86:90–109. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, Imbeault M, Izsvák Z, Levin HL, Macfarlan TS, et al: Ten things you should know about transposable elements. Genome Biol. 19:1992018. View Article : Google Scholar : PubMed/NCBI

40 

Campos-Sánchez R, Cremona MA, Pini A, Chiaromonte F and Makova KD: Integration and fixation preferences of human and mouse endogenous retroviruses uncovered with functional data analysis. PLoS Comput Biol. 12:e10049562016. View Article : Google Scholar : PubMed/NCBI

41 

Hancks DC and Kazazian HH Jr: Roles for retrotransposon insertions in human disease. Mob DNA. 7:92016. View Article : Google Scholar : PubMed/NCBI

42 

Huang CR, Burns KH and Boeke JD: Active transposition in genomes. Annu Rev Genet. 46:651–675. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Jiang N, Bao Z, Zhang X, Eddy SR and Wessler SR: Pack-MULE transposable elements mediate gene evolution in plants. Nature. 431:569–573. 2004. View Article : Google Scholar : PubMed/NCBI

44 

Cowley M and Oakey RJ: Transposable elements re-wire and fine-tune the transcriptome. PLoS Genet. 9:e10032342013. View Article : Google Scholar : PubMed/NCBI

45 

Clayton EA, Rishishwar L, Huang TC, Gulati S, Ban D, McDonald JF and Jordan IK: An atlas of transposable element-derived alternative splicing in cancer. Philos Trans R Soc Lond B Biol Sci. 375:201903422020. View Article : Google Scholar : PubMed/NCBI

46 

Cosby RL, Chang NC and Feschotte C: Host-transposon interactions: Conflict, cooperation, and cooption. Genes Dev. 33:1098–1116. 2019. View Article : Google Scholar : PubMed/NCBI

47 

Riordan JD and Dupuy AJ: Domesticated transposable element gene products in human cancer. Mob Genet Elements. 3:e266932013. View Article : Google Scholar : PubMed/NCBI

48 

Sinzelle L, Izsvák Z and Ivics Z: Molecular domestication of transposable elements: From detrimental parasites to useful host genes. Cell Mol Life Sci. 66:1073–1093. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Friedli M and Trono D: The developmental control of transposable elements and the evolution of higher species. Annu Rev Cell Dev Biol. 31:429–451. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Yang P, Wang Y and Macfarlan TS: The role of KRAB-ZFPs in transposable element repression and mammalian evolution. Trends Genet. 33:871–881. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Imbeault M, Helleboid PY and Trono D: KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature. 543:550–554. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Deniz Ö, Frost JM and Branco MR: Regulation of transposable elements by DNA modifications. Nat Rev Genet. 20:417–431. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Virciglio C, Abel Y and Rederstorff M: Regulatory non-coding RNAs: An overview. Methods Mol Biol. 2300:3–9. 2021. View Article : Google Scholar : PubMed/NCBI

54 

Marzec M: New insights into the function of mammalian Argonaute2. PLoS Genet. 16:e10090582020. View Article : Google Scholar : PubMed/NCBI

55 

Ozata DM, Gainetdinov I, Zoch A, O'Carroll D and Zamore PD: Piwi-interacting RNAs: Small RNAs with big functions. Nat Rev Genet. 20:89–108. 2019. View Article : Google Scholar : PubMed/NCBI

56 

Tian Y, Simanshu DK, Ma JB and Patel DJ: Structural basis for piRNA 2′-O-methylated 3′-end recognition by Piwi PAZ (Piwi/Argonaute/Zwille) domains. Proc Natl Acad Sci USA. 108:903–910. 2011. View Article : Google Scholar : PubMed/NCBI

57 

Mei Y, Wang Y, Kumari P, Shetty AC, Clark D, Gable T, MacKerell AD, Ma MZ, Weber DJ, Yang AJ, et al: A piRNA-like small RNA interacts with and modulates p-ERM proteins in human somatic cells. Nat Commun. 6:73162015. View Article : Google Scholar : PubMed/NCBI

58 

Wang J, Zhang P, Lu Y, Li Y, Zheng Y, Kan Y, Chen R and He S: PiRBase: A comprehensive database of piRNA sequences. Nucleic Acids Res. 47:D175–D180. 2019. View Article : Google Scholar : PubMed/NCBI

59 

Yamanaka S, Siomi MC and Siomi H: PiRNA clusters and open chromatin structure. Mob DNA. 5:222014. View Article : Google Scholar : PubMed/NCBI

60 

Sato K and Siomi H: Piwi proteins and their slicer activity in piRNA biogenesis and transposon silencing. Enzymes. 32:137–162. 2012. View Article : Google Scholar

61 

Czech B and Hannon GJ: One loop to rule them all: The ping-pong cycle and piRNA-guided silencing. Trends Biochem Sci. 41:324–337. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Han YN, Li Y, Xia SQ, Zhang YY, Zheng JH and Li W: Piwi proteins and Piwi-interacting RNA: Emerging roles in cancer. Cell Physiol Biochem. 44:1–20. 2017. View Article : Google Scholar : PubMed/NCBI

63 

Grimson A, Srivastava M, Fahey B, Woodcroft BJ, Chiang HR, King N, Degnan BM, Rokhsar DS and Bartel DP: Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature. 455:1193–1197. 2008. View Article : Google Scholar : PubMed/NCBI

64 

Beyret E, Liu N and Lin H: piRNA biogenesis during adult spermatogenesis in mice is independent of the ping-pong mechanism. Cell Res. 22:1429–1439. 2012. View Article : Google Scholar : PubMed/NCBI

65 

Czech B, Munafò M, Ciabrelli F, Eastwood EL, Fabry MH, Kneuss E and Hannon GJ: piRNA-guided genome defense: From biogenesis to silencing. Annu Rev Genet. 52:131–157. 2018. View Article : Google Scholar : PubMed/NCBI

66 

Balmeh N, Mahmoudi S and Karabedianhajiabadi A: piRNAs and Piwi proteins: From biogenesis to their role in cancer. Gene Rep. 22:1010132021. View Article : Google Scholar

67 

Peng JC, Valouev A, Liu N and Lin H: Piwi maintains germline stem cells and oogenesis in Drosophila through negative regulation of polycomb group proteins. Nat Genet. 48:283–291. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Sadoughi F, Mirhashemi SM and Asemi Z: Epigenetic roles of Piwi proteins and piRNAs in colorectal cancer. Cancer Cell Int. 21:3282021. View Article : Google Scholar : PubMed/NCBI

69 

Tóth KF, Pezic D, Stuwe E and Webster A: The pirna pathway guards the germline genome against transposable elements. Adv Exp Med Biol. 886:51–77. 2016. View Article : Google Scholar : PubMed/NCBI

70 

Iwasaki YW, Murano K, Ishizu H, Shibuya A, Iyoda Y, Siomi MC, Siomi H and Saito K: Piwi modulates chromatin accessibility by regulating multiple factors including histone H1 to repress transposons. Mol Cell. 63:408–419. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Faulkner GJ, Kimura Y, Daub CO, Wani S, Plessy C, Irvine KM, Schroder K, Cloonan N, Steptoe AL, Lassmann T, et al: The regulated retrotransposon transcriptome of mammalian cells. Nat Genet. 41:563–571. 2009. View Article : Google Scholar : PubMed/NCBI

72 

Marinov GK, Wang J, Handler D, Wold BJ, Weng Z, Hannon GJ, Aravin AA, Zamore PD, Brennecke J and Toth KF: Pitfalls of mapping high-throughput sequencing data to repetitive sequences: Piwi's genomic targets still not identified. Dev Cell. 32:765–771. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME and Gouil Q: Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 21:302020. View Article : Google Scholar : PubMed/NCBI

74 

Goerner-Potvin P and Bourque G: Computational tools to unmask transposable elements. Nat Rev Genet. 19:688–704. 2018. View Article : Google Scholar : PubMed/NCBI

75 

Tarailo-Graovac M and Chen N: Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinforma Chapter 4. Unit 4.10. 2009. View Article : Google Scholar : PubMed/NCBI

76 

Bao W, Kojima KK and Kohany O: Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 6:112015. View Article : Google Scholar : PubMed/NCBI

77 

Wheeler TJ, Clements J, Eddy SR, Hubley R, Jones TA, Jurka J, Smit AF and Finn RD: Dfam: A database of repetitive DNA based on profile hidden Markov models. Nucleic Acids Res. 41:D70–D82. 2013. View Article : Google Scholar : PubMed/NCBI

78 

Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C and Smit AF: RepeatModeler2 for automated genomic discovery of transposable element families. Proc Natl Acad Sci USA. 117:9451–9457. 2020. View Article : Google Scholar : PubMed/NCBI

79 

Novák P, Neumann P and Macas J: Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics. 11:3782010. View Article : Google Scholar : PubMed/NCBI

80 

Jin Y, Tam OH, Paniagua E and Hammell M: TEtranscripts: A package for including transposable elements in differential expression analysis of RNA-seq datasets. Bioinformatics. 31:3593–3599. 2015. View Article : Google Scholar : PubMed/NCBI

81 

Ye J, Xu M, Tian X, Cai S and Zeng S: Research advances in the detection of miRNA. J Pharm Anal. 9:217–226. 2019. View Article : Google Scholar : PubMed/NCBI

82 

Ray R and Pandey P: piRNA analysis framework from small RNA-Seq data by a novel cluster prediction tool-PILFER. Genomics. 110:355–365. 2018. View Article : Google Scholar : PubMed/NCBI

83 

Munafó DB and Robb GB: Optimization of enzymatic reaction conditions for generating representative pools of cDNA from small RNA. RNA. 16:2537–2552. 2010. View Article : Google Scholar : PubMed/NCBI

84 

Leshkowitz D, Horn-Saban S, Parmet Y and Feldmesser E: Differences in microRNA detection levels are technology and sequence dependent. RNA. 19:527–538. 2013. View Article : Google Scholar : PubMed/NCBI

85 

Dard-Dascot C, Naquin D, d'Aubenton-Carafa Y, Alix K, Thermes C and van Dijk E: Systematic comparison of small RNA library preparation protocols for next-generation sequencing. BMC Genomics. 19:1182018. View Article : Google Scholar : PubMed/NCBI

86 

Fuchs RT, Sun Z, Zhuang F and Robb GB: Bias in ligation-based small RNA sequencing library construction is determined by adaptor and RNA structure. PLoS One. 10:e01260492015. View Article : Google Scholar : PubMed/NCBI

87 

Song Y, Liu KJ and Wang TH: Elimination of ligation dependent artifacts in T4 RNA ligase to achieve high efficiency and low bias microRNA capture. PLoS One. 9:e946192014. View Article : Google Scholar : PubMed/NCBI

88 

Han BW, Wang W, Zamore PD and Weng Z: piPipes: A set of pipelines for piRNA and transposon analysis via small RNA-seq, RNA-seq, degradome- and CAGE-seq, ChIP-seq and genomic DNA sequencing. Bioinformatics. 31:593–595. 2015. View Article : Google Scholar : PubMed/NCBI

89 

Li J, Kho AT, Chase RP, Pantano L, Farnam L, Amr SS and Tantisira KG: COMPSRA: A COMprehensive platform for small RNA-Seq data analysis. Sci Rep. 10:45522020. View Article : Google Scholar : PubMed/NCBI

90 

Yu Y, Xiao J and Hann SS: The emerging roles of PIWI-interacting RNA in human cancers. Cancer Manag Res. 11:5895–5909. 2019. View Article : Google Scholar : PubMed/NCBI

91 

Lanciano S and Cristofari G: Measuring and interpreting transposable element expression. Nat Rev Genet. 21:721–736. 2020. View Article : Google Scholar : PubMed/NCBI

92 

Lee Y, Wang Q, Shuryak I, Brenner DJ and Turner HC: Development of a high-throughput γ-H2AX assay based on imaging flow cytometry. Radiat Oncol. 14:1502019. View Article : Google Scholar : PubMed/NCBI

93 

Langie SA, Azqueta A and Collins AR: The comet assay: Past, present, and future. Front Genet. 6:2662015. View Article : Google Scholar : PubMed/NCBI

94 

Zuo L, Wang Z, Tan Y, Chen X and Luo X: piRNAs and their functions in the brain. Int J Hum Genet. 16:53–60. 2016. View Article : Google Scholar : PubMed/NCBI

95 

da Costa AH, dos Santos RAC and Cerri R: Investigating deep feedforward neural networks for classification of transposon-derived piRNAs. Complex Intell Syst. 1–11. 2021.

96 

Giassa IC and Alexiou P: Bioinformatics and machine learning approaches to understand the regulation of mobile genetic elements. Biology (Basel). 10:8962021.PubMed/NCBI

97 

Stuart JM, Segal E, Koller D and Kim SK: A gene-coexpression network for global discovery of conserved genetic modules. Science. 302:249–255. 2003. View Article : Google Scholar : PubMed/NCBI

98 

Zhao Y, Wang J, Chen J, Zhang X, Guo M and Yu G: A literature review of gene function prediction by modeling gene ontology. Front Genet. 11:4002020. View Article : Google Scholar : PubMed/NCBI

99 

Liu Y, Zhang J, Li A, Liu Z, He Z, Yuan X and Tuo S: Prediction of cancer-associated piRNA-mRNA and piRNA-lncRNA interactions by integrated analysis of expression and sequence data. Tsinghua Sci Technol. 23:115–125. 2018. View Article : Google Scholar

100 

Lerat E, Fablet M, Modolo L, Lopez-Maestre H and Vieira C: TEtools facilitates big data expression analysis of transposable elements and reveals an antagonism between their activity and that of piRNA genes. Nucleic Acids Res. 45:e172017.PubMed/NCBI

101 

Moyano M and Stefani G: PiRNA involvement in genome stability and human cancer. J Hematol Oncol. 8:382015. View Article : Google Scholar : PubMed/NCBI

102 

Anwar SL, Wulaningsih W and Lehmann U: Transposable elements in human cancer: Causes and consequences of deregulation. Int J Mol Sci. 18:9742017. View Article : Google Scholar : PubMed/NCBI

103 

Teugels E, De Brakeleer S, Goelen G, Lissens W, Sermijn E and De Grève J: De novo Alu element insertions targeted to a sequence common to the BRCA1 and BRCA2 genes. Hum Mutat. 26:2842005. View Article : Google Scholar : PubMed/NCBI

104 

Rodríguez-Martín C, Cidre F, Fernández-Teijeiro A, Gómez-Mariano G, de la Vega L, Ramos P, Zaballos Á, Monzón S and Alonso J: Familial retinoblastoma due to intronic LINE-1 insertion causes aberrant and noncanonical mRNA splicing of the RB1 gene. J Hum Genet. 61:463–466. 2016. View Article : Google Scholar : PubMed/NCBI

105 

Lamprecht B, Walter K, Kreher S, Kumar R, Hummel M, Lenze D, Köchert K, Bouhlel MA, Richter J, Soler E, et al: Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat Med. 16:571–579. 2010. View Article : Google Scholar : PubMed/NCBI

106 

Lock FE, Babaian A, Zhang Y, Gagnier L, Kuah S, Weberling A, Karimi MM and Mager DL: A novel isoform of IL-33 revealed by screening for transposable element promoted genes in human colorectal cancer. PLoS One. 12:e01806592017. View Article : Google Scholar : PubMed/NCBI

107 

Wolff EM, Byun HM, Han HF, Sharma S, Nichols PW, Siegmund KD, Yang AS, Jones PA and Liang G: Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet. 6:e10009172010. View Article : Google Scholar : PubMed/NCBI

108 

Hedges DJ and Deininger PL: Inviting instability: Transposable elements, double-strand breaks, and the maintenance of genome integrity. Mutat Res. 616:46–59. 2007. View Article : Google Scholar : PubMed/NCBI

109 

Babaian A and Mager DL: Endogenous retroviral promoter exaptation in human cancer. Mob DNA. 7:242016. View Article : Google Scholar : PubMed/NCBI

110 

Scarfò I, Pellegrino E, Mereu E, Kwee I, Agnelli L, Bergaggio E, Garaffo G, Vitale N, Caputo M, Machiorlatti R, et al: Identification of a new subclass of ALK-negative ALCL expressing aberrant levels of ERBB4 transcripts. Blood. 127:221–232. 2016. View Article : Google Scholar : PubMed/NCBI

111 

Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, Hein A, Rote NS, Cope LM, Snyder A, et al: Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell. 162:974–986. 2015. View Article : Google Scholar : PubMed/NCBI

112 

Roulois D, Loo Yau H, Singhania R, Wang Y, Danesh A, Shen SY, Han H, Liang G, Jones PA, Pugh TJ, et al: DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell. 162:961–973. 2015. View Article : Google Scholar : PubMed/NCBI

113 

Colombo AR, Zubair A, Thiagarajan D, Nuzhdin S, Triche TJ and Ramsingh G: Suppression of transposable elements in leukemic stem cells. Sci Rep. 7:70292017. View Article : Google Scholar : PubMed/NCBI

114 

Ross RJ, Weiner MM and Lin H: Piwi proteins and Piwi-interacting RNAs in the soma. Nature. 505:353–359. 2014. View Article : Google Scholar : PubMed/NCBI

115 

Cheng Y, Wang Q, Jiang W, Bian Y, Zhou Y, Gou A, Zhang W, Fu K and Shi W: Emerging roles of piRNAs in cancer: Challenges and prospects. Aging (Albany NY). 11:9932–9946. 2019. View Article : Google Scholar : PubMed/NCBI

116 

Martinez VD, Vucic EA, Thu KL, Hubaux R, Enfield KS, Pikor LA, Becker-Santos DD, Brown CJ, Lam S and Lam WL: Unique somatic and malignant expression patterns implicate Piwi-interacting RNAs in cancer-type specific biology. Sci Rep. 5:104232015. View Article : Google Scholar : PubMed/NCBI

117 

Ng KW, Anderson C, Marshall EA, Minatel BC, Enfield KS, Saprunoff HL, Lam WL and Martinez VD: Piwi-interacting RNAs in cancer: Emerging functions and clinical utility. Mol Cancer. 15:52016. View Article : Google Scholar : PubMed/NCBI

118 

Cheng J, Deng H, Xiao B, Zhou H, Zhou F, Shen Z and Guo J: piR-823, a novel non-coding small RNA, demonstrates in vitro and in vivo tumor suppressive activity in human gastric cancer cells. Cancer Lett. 315:12–17. 2012. View Article : Google Scholar : PubMed/NCBI

119 

Ding X, Li Y, Lü J, Zhao Q, Guo Y, Lu Z, Ma W, Liu P, Pestell RG, Liang C and Yu Z: piRNA-823 is involved in cancer stem cell regulation through altering DNA methylation in association with luminal breast cancer. Front Cell Dev Biol. 9:6410522021. View Article : Google Scholar : PubMed/NCBI

120 

Iliev R, Fedorko M, MacHackova T, Mlcochova H, Svoboda M, Pacik D, Dolezel J, Stanik M and Slaby O: Expression levels of Piwi-interacting RNA, piR-823, are deregulated in tumor tissue, blood serum and urine of patients with renal cell carcinoma. Anticancer Res. 36:6419–6423. 2016. View Article : Google Scholar : PubMed/NCBI

121 

Hempfling AL, Lim SL, Adelson DL, Evans J, O'Connor AE, Qu ZP, Kliesch S, Weidner W, O'Bryan MK and Bergmann M: Expression patterns of HENMT1 and Piwil1 in human testis: Implications for transposon expression. Reproduction. 154:363–374. 2017. View Article : Google Scholar : PubMed/NCBI

122 

Gao CL, Sun R, Li DH and Gong F: Piwi-like protein 1 upregulation promotes gastric cancer invasion and metastasis. Onco Targets Ther. 11:8783–8789. 2018. View Article : Google Scholar : PubMed/NCBI

123 

Shi S, Yang ZZ, Liu S, Yang F and Lin H: Piwil1 promotes gastric cancer via a piRNA-independent mechanism. Proc Natl Acad Sci USA. 117:22390–22401. 2020. View Article : Google Scholar : PubMed/NCBI

124 

Hu W, Sun X, Ye T, Feng S, Ruan Q, Xi M, Zhou X, Li M, Ye Z, Cheng X and Xie W: Piwil2 may serve as a prognostic predictor in cancers: A systematic review and meta-analysis. J BUON. 25:2721–2730. 2020.PubMed/NCBI

125 

Qu A, Wang W, Yang Y, Zhang X, Dong Y, Zheng G, Wu Q, Zou M, Du L, Wang Y and Wang C: A serum piRNA signature as promising non-invasive diagnostic and prognostic biomarkers for colorectal cancer. Cancer Manag Res. 11:3703–3720. 2019. View Article : Google Scholar : PubMed/NCBI

126 

Cui L, Lou Y, Zhang X, Zhou H, Deng H, Song H, Yu X, Xiao B, Wang W and Guo J: Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using piRNAs as markers. Clin Biochem. 44:1050–1057. 2011. View Article : Google Scholar : PubMed/NCBI

127 

Colombo AR, Triche T Jr and Ramsingh G: Transposable element expression in acute myeloid leukemia transcriptome and prognosis. Sci Rep. 8:164492018. View Article : Google Scholar : PubMed/NCBI

128 

Corces MR, Buenrostro JD, Wu B, Greenside PG, Chan SM, Koenig JL, Snyder MP, Pritchard JK, Kundaje A, Greenleaf WJ, et al: Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat Genet. 48:1193–1203. 2016. View Article : Google Scholar : PubMed/NCBI

129 

Wang H, Wen J, Chang CC and Zhou X: Discovering transcription and splicing networks in myelodysplastic syndromes. PLoS One. 8:e791182013. View Article : Google Scholar : PubMed/NCBI

130 

Leonova KI, Brodsky L, Lipchick B, Pal M, Novototskaya L, Chenchik AA, Sen GC, Komarova EA and Gudkov AV: p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs. Proc Natl Acad Sci USA. 110:E89–E98. 2013. View Article : Google Scholar : PubMed/NCBI

131 

Bolouri H, Farrar JE, Triche T Jr, Ries RE, Lim EL, Alonzo TA, Ma Y, Moore R, Mungall AJ, Marra MA, et al: The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat Med. 24:103–112. 2018. View Article : Google Scholar : PubMed/NCBI

132 

Li S, Garrett-Bakelman FE, Chung SS, Sanders MA, Hricik T, Rapaport F, Patel J, Dillon R, Vijay P, Brown AL, et al: Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat Med. 22:792–799. 2016. View Article : Google Scholar : PubMed/NCBI

133 

Zeng Y, Cao Y, Halevy RS, Nguyen P, Liu D, Zhang X, Ahituv N and Han JJ: Characterization of functional transposable element enhancers in acute myeloid leukemia. Sci China Life Sci. 63:675–687. 2020. View Article : Google Scholar : PubMed/NCBI

134 

Deniz Ö, Ahmed M, Todd CD, Rio-Machin A, Dawson MA and Branco MR: Endogenous retroviruses are a source of enhancers with oncogenic potential in acute myeloid leukaemia. Nat Commun. 11:35062020. View Article : Google Scholar : PubMed/NCBI

135 

Gao Y, Yu XF and Chen T: Human endogenous retroviruses in cancer: Expression, regulation and function. Oncol Lett. 21:1212021. View Article : Google Scholar : PubMed/NCBI

136 

Rossi F, Noren H, Jove R, Beljanski V and Grinnemo KH: Differences and similarities between cancer and somatic stem cells: Therapeutic implications. Stem Cell Res Ther. 11:4892020. View Article : Google Scholar : PubMed/NCBI

137 

Sharma AK, Nelson MC, Brandt JE, Wessman M, Mahmud N, Weller KP and Hoffman R: Human CD34(+) stem cells express the hiwi gene, a human homologue of the Drosophila gene piwi. Blood. 97:426–434. 2001. View Article : Google Scholar : PubMed/NCBI

138 

Nolde MJ, Cheng EC, Guo S and Lin H: Piwi genes are dispensable for normal hematopoiesis in mice. PLoS One. 8:e719502013. View Article : Google Scholar : PubMed/NCBI

139 

Yan H, Wu QL, Sun CY, Ai LS, Deng J, Zhang L, Chen L, Chu ZB, Tang B, Wang K, et al: piRNA-823 contributes to tumorigenesis by regulating de novo DNA methylation and angiogenesis in multiple myeloma. Leukemia. 29:196–206. 2015. View Article : Google Scholar : PubMed/NCBI

140 

Li B, Hong J, Hong M, Wang Y, Yu T, Zang S and Wu Q: piRNA-823 delivered by multiple myeloma-derived extracellular vesicles promoted tumorigenesis through re-educating endothelial cells in the tumor environment. Oncogene. 38:5227–5238. 2019. View Article : Google Scholar : PubMed/NCBI

141 

Ai L, Mu S, Sun C, Fan F, Yan H, Qin Y, Cui G, Wang Y, Guo T, Mei H, et al: Myeloid-derived suppressor cells endow stem-like qualities to multiple myeloma cells by inducing piRNA-823 expression and DNMT3B activation. Mol Cancer. 18:882019. View Article : Google Scholar : PubMed/NCBI

142 

Cordeiro A, Navarro A, Gaya A, Díaz-Beyá M, Gonzalez-Farré B, Castellano JJ, Fuster D, Martínez C, Martínez A and Monzó M: PiwiRNA-651 as marker of treatment response and survival in classical Hodgkin lymphoma. Oncotarget. 7:46002–46013. 2016. View Article : Google Scholar : PubMed/NCBI

143 

Bamezai S, Mulaw MM, Zhou F, Rohde C, Muller-Tidow C, Dohner K, Dohner H, Buske MF, Buske C and Rawat VPS: Knockdown of the Piwi-like protein 4 (PIWIL4) delays leukemic growth and is associated with gross changes in the global histone methylation marks in human MLL-rearranged AML. Blood. 122:5972013. View Article : Google Scholar

144 

Wang Y, Jiang Y, Ma N, Sang B, Hu X, Cong X and Liu Z: Overexpression of Hiwi inhibits the growth and migration of chronic myeloid leukemia cells. Cell Biochem Biophys. 73:117–124. 2015. View Article : Google Scholar : PubMed/NCBI

145 

Veryaskina YA, Titov SE, Kovynev IB, Fedorova SS, Pospelova TI and Zhimulev IF: MicroRNAs in the myelodysplastic syndrome. Acta Naturae. 13:4–15. 2021. View Article : Google Scholar : PubMed/NCBI

146 

Kuang X, Chi J and Wang L: Deregulated microRNA expression and its pathogenetic implications for myelodysplastic syndromes. Hematology. 21:593–602. 2016. View Article : Google Scholar : PubMed/NCBI

147 

Beck D, Ayers S, Wen J, Brandl MB, Pham TD, Webb P, Chang CC and Zhou X: Integrative analysis of next generation sequencing for small non-coding RNAs and transcriptional regulation in myelodysplastic syndromes. BMC Med Genomics. 4:192011. View Article : Google Scholar : PubMed/NCBI

148 

Hrustincova A, Krejcik Z, Kundrat D, Szikszai K, Belickova M, Pecherkova P, Klema J, Vesela J, Hruba M, Cermak J, et al: Circulating small noncoding RNAs have specific expression patterns in plasma and extracellular vesicles in myelodysplastic syndromes and are predictive of patient outcome. Cells. 9:7942020. View Article : Google Scholar : PubMed/NCBI

149 

Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M and Vardiman JW: The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 127:2391–2405. 2016. View Article : Google Scholar : PubMed/NCBI

150 

Itou D, Shiromoto Y, Yukiho SY, Ishii C, Nishimura T, Ogonuki N, Ogura A, Hasuwa H, Fujihara Y, Kuramochi-Miyagawa S and Nakano T: Induction of DNA methylation by artificial piRNA production in male germ cells. Curr Biol. 25:901–906. 2015. View Article : Google Scholar : PubMed/NCBI

151 

Toden S, Zumwalt TJ and Goel A: Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer. 1875:1884912021. View Article : Google Scholar : PubMed/NCBI

152 

Setten RL, Rossi JJ and Han SP: The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov. 18:421–446. 2019. View Article : Google Scholar : PubMed/NCBI

153 

Levy A, Sela N and Ast G: TranspoGene and microTranspoGene: Transposed elements influence on the transcriptome of seven vertebrates and invertebrates. Nucleic Acids Res. 36:D47–D52. 2008. View Article : Google Scholar : PubMed/NCBI

154 

Kim DS, Kim TH, Huh JW, Kim IC, Kim SW, Park HS and Kim HS: Line fusion genes: A database of LINE expression in human genes. BMC Genomics. 7:1392006. View Article : Google Scholar : PubMed/NCBI

155 

Navarro FC and Galante PA: RCPedia: A database of retrocopied genes. Bioinformatics. 29:1235–1237. 2013. View Article : Google Scholar : PubMed/NCBI

156 

Lappalainen I, Lopez J, Skipper L, Hefferon T, Spalding JD, Garner J, Chen C, Maguire M, Corbett M, Zhou G, et al: DbVar and DGVa: Public archives for genomic structural variation. Nucleic Acids Res. 41:D936–D941. 2013. View Article : Google Scholar : PubMed/NCBI

157 

Wang J, Song L, Grover D, Azrak S, Batzer MA and Liang P: dbRIP: A highly integrated database of retrotransposon insertion polymorphisms in humans. Hum Mutat. 27:323–329. 2006. View Article : Google Scholar : PubMed/NCBI

158 

Mir AA, Philippe C and Cristofari G: euL1db: The European database of L1HS retrotransposon insertions in humans. Nucleic Acids Res. 43:D43–D47. 2015. View Article : Google Scholar : PubMed/NCBI

159 

Piuco R and Galante PAF: piRNAdb: A piwi-interacting RNA database. bioRxiv: 2021.09.21.461238. 2021. View Article : Google Scholar : PubMed/NCBI

160 

Sai Lakshmi S and Agrawal S: piRNABank: A web resource on classified and clustered Piwi-interacting RNAs. Nucleic Acids Res. 36:D173–D177. 2008. View Article : Google Scholar : PubMed/NCBI

161 

Sarkar A, Maji RK, Saha S and Ghosh Z: PiRNAQuest: Searching the piRNAome for silencers. BMC Genomics. 15:5552014. View Article : Google Scholar : PubMed/NCBI

162 

Rosenkranz D: piRNA cluster database: A web resource for piRNA producing loci. Nucleic Acids Res. 44:D223–D230. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Dostalova Merkerova M and Krejcik Z: Transposable elements and Piwi‑interacting RNAs in hemato‑oncology with a focus on myelodysplastic syndrome (Review). Int J Oncol 59: 105, 2021.
APA
Dostalova Merkerova, M., & Krejcik, Z. (2021). Transposable elements and Piwi‑interacting RNAs in hemato‑oncology with a focus on myelodysplastic syndrome (Review). International Journal of Oncology, 59, 105. https://doi.org/10.3892/ijo.2021.5285
MLA
Dostalova Merkerova, M., Krejcik, Z."Transposable elements and Piwi‑interacting RNAs in hemato‑oncology with a focus on myelodysplastic syndrome (Review)". International Journal of Oncology 59.6 (2021): 105.
Chicago
Dostalova Merkerova, M., Krejcik, Z."Transposable elements and Piwi‑interacting RNAs in hemato‑oncology with a focus on myelodysplastic syndrome (Review)". International Journal of Oncology 59, no. 6 (2021): 105. https://doi.org/10.3892/ijo.2021.5285
Copy and paste a formatted citation
x
Spandidos Publications style
Dostalova Merkerova M and Krejcik Z: Transposable elements and Piwi‑interacting RNAs in hemato‑oncology with a focus on myelodysplastic syndrome (Review). Int J Oncol 59: 105, 2021.
APA
Dostalova Merkerova, M., & Krejcik, Z. (2021). Transposable elements and Piwi‑interacting RNAs in hemato‑oncology with a focus on myelodysplastic syndrome (Review). International Journal of Oncology, 59, 105. https://doi.org/10.3892/ijo.2021.5285
MLA
Dostalova Merkerova, M., Krejcik, Z."Transposable elements and Piwi‑interacting RNAs in hemato‑oncology with a focus on myelodysplastic syndrome (Review)". International Journal of Oncology 59.6 (2021): 105.
Chicago
Dostalova Merkerova, M., Krejcik, Z."Transposable elements and Piwi‑interacting RNAs in hemato‑oncology with a focus on myelodysplastic syndrome (Review)". International Journal of Oncology 59, no. 6 (2021): 105. https://doi.org/10.3892/ijo.2021.5285
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team