|
1
|
Cheng H, Zheng Z and Cheng T: New
paradigms on hematopoietic stem cell differentiation. Protein Cell.
11:34–44. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Haas S, Trumpp A and Milsom MD: Causes and
consequences of hematopoietic stem cell heterogeneity. Cell Stem
Cell. 22:627–638. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Sperling AS, Gibson CJ and Ebert BL: The
genetics of myelodysplastic syndrome: From clonal haematopoiesis to
secondary leukaemia. Nat Rev Cancer. 17:5–19. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Aguilera A and García-Muse T: Causes of
genome instability. Annu Rev Genet. 47:1–32. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Ali A, Han K and Liang P: Role of
transposable elements in gene regulation in the human genome. Life
(Basel). 11:1182021.PubMed/NCBI
|
|
6
|
Liu Y, Dou M, Song X, Dong Y, Liu S, Liu
H, Tao J, Li W, Yin X and Xu W: The emerging role of the piRNA/piwi
complex in cancer. Mol Cancer. 18:1232019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Garcia-Manero G, Chien KS and
Montalban-Bravo G: Myelodysplastic syndromes: 2021 Update on
diagnosis, risk stratification and management. Am J Hematol.
95:1399–1420. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Feld J, Belasen A and Navada SC:
Myelodysplastic syndromes: A review of therapeutic progress over
the past 10 years. Expert Rev Anticancer Ther. 20:465–482. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Bewersdorf JP, Carraway H and Prebet T:
Emerging treatment options for patients with high-risk
myelodysplastic syndrome. Ther Adv Hematol.
11:20406207209550062020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Zeidan AM, Stahl M, Deveaux M, Giri S,
Huntington S, Podoltsev N, Wang R, Ma X, Davidoff AJ and Gore SD:
Counseling patients with higher-risk MDS regarding survival with
azacitidine therapy: Are we using realistic estimates? Blood Cancer
J. 8:552018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Santini V: How I treat MDS after
hypomethylating agent failure. Blood. 133:521–529. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ferrando AA and López-Otín C: Clonal
evolution in leukemia. Nat Med. 23:1135–1145. Oct 6–2017.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Chen J, Kao YR, Sun D, Todorova TI,
Reynolds D, Narayanagari SR, Montagna C, Will B, Verma A and Steidl
U: Myelodysplastic syndrome progression to acute myeloid leukemia
at the stem cell level. Nat Med. 25:103–110. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hosono N: Genetic abnormalities and
pathophysiology of MDS. Int J Clin Oncol. 24:885–892. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Shallis RM, Ahmad R and Zeidan AM: The
genetic and molecular pathogenesis of myelodysplastic syndromes.
Eur J Haematol. 101:260–271. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bejar R, Stevenson K, Abdel-Wahab O,
Galili N, Nilsson B, Garcia-Manero G, Kantarjian H, Raza A, Levine
RL, Neuberg D and Ebert BL: Clinical effect of point mutations in
myelodysplastic syndromes. N Engl J Med. 364:2496–2506. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Papaemmanuil E, Gerstung M, Malcovati L,
Tauro S, Gundem G, Van Loo P, Yoon CJ, Ellis P, Wedge DC,
Pellagatti A, et al: Clinical and biological implications of driver
mutations in myelodysplastic syndromes. Blood. 122:3616–3627, 3699.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Haferlach T, Nagata Y, Grossmann V, Okuno
Y, Bacher U, Nagae G, Schnittger S, Sanada M, Kon A, Alpermann T,
et al: Landscape of genetic lesions in 944 patients with
myelodysplastic syndromes. Leukemia. 28:241–247. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Spaulding TP, Stockton SS and Savona MR:
The evolving role of next generation sequencing in myelodysplastic
syndromes. Br J Haematol. 188:224–239. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Klein SJ and O'Neill RJ: Transposable
elements: Genome innovation, chromosome diversity, and centromere
conflict. Chromosom Res. 26:5–23. 2018. View Article : Google Scholar
|
|
21
|
McClintock B: The origin and behavior of
mutable loci in maize. Proc Natl Acad Sci USA. 36:344–355. 1950.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kojima KK: Structural and sequence
diversity of eukaryotic transposable elements. Genes Genet Syst.
94:233–252. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Barabas O: Snapshots of a genetic
cut-and-paste. Nature. 575:447–448. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Muñoz-López M and García-Pérez J: DNA
transposons: Nature and applications in genomics. Curr Genomics.
11:115–128. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wicker T, Sabot F, Hua-Van A, Bennetzen
JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O,
et al: A unified classification system for eukaryotic transposable
elements. Nat Rev Genet. 8:973–982. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Grandi N and Tramontano E: Human
endogenous retroviruses are ancient acquired elements still shaping
innate immune responses. Front Immunol. 9:20392018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Johnson WE: Origins and evolutionary
consequences of ancient endogenous retroviruses. Nat Rev Microbiol.
17:355–370. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Han JS: Non-long terminal repeat (non-LTR)
retrotransposons: Mechanisms, recent developments, and unanswered
questions. Mob DNA. 1:152010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Dewannieux M and Heidmann T: LINEs, SINEs
and processed pseudogenes: Parasitic strategies for genome
modeling. Cytogenet Genome Res. 110:35–48. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Mita P, Wudzinska A, Sun X, Andrade J,
Nayak S, Kahler DJ, Badri S, LaCava J, Ueberheide B, Yun CY, et al:
LINE-1 protein localization and functional dynamics during the cell
cycle. Elife. 7:e300582018. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Martin SL: The ORF1 protein encoded by
LINE-1: Structure and function during L1 retrotransposition. J
Biomed Biotechnol. 2006:456212006. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ardeljan D, Wang X, Oghbaie M, Taylor MS,
Husband D, Deshpande V, Steranka JP, Gorbounov M, Yang WR, Sie B,
et al: LINE-1 ORF2p expression is nearly imperceptible in human
cancers. Mob DNA. 11:12019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Brouha B, Schustak J, Badge RM,
Lutz-Prigge S, Farley AH, Morant JV and Kazazian HH Jr: Hot L1s
account for the bulk of retrotransposition in the human population.
Proc Natl Acad Sci USA. 100:5280–5285. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Del Re B and Giorgi G: Long INterspersed
element-1 mobility as a sensor of environmental stresses. Environ
Mol Mutagen. 61:465–493. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Okada N, Hamada M, Ogiwara I and Ohshima
K: SINEs and LINEs share common 3′ sequences: A review. Gene.
205:229–243. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Carnevali D, Conti A, Pellegrini M and
Dieci G: Whole-genome expression analysis of mammalian-wide
interspersed repeat elements in human cell lines. DNA Res.
24:59–69. 2017.PubMed/NCBI
|
|
37
|
Cordaux R, Hedges DJ, Herke SW and Batzer
MA: Estimating the retrotransposition rate of human Alu elements.
Gene. 373:134–137. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Piégu B, Bire S, Arensburger P and Bigot
Y: A survey of transposable element classification systems-a call
for a fundamental update to meet the challenge of their diversity
and complexity. Mol Phylogenet Evol. 86:90–109. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Bourque G, Burns KH, Gehring M, Gorbunova
V, Seluanov A, Hammell M, Imbeault M, Izsvák Z, Levin HL, Macfarlan
TS, et al: Ten things you should know about transposable elements.
Genome Biol. 19:1992018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Campos-Sánchez R, Cremona MA, Pini A,
Chiaromonte F and Makova KD: Integration and fixation preferences
of human and mouse endogenous retroviruses uncovered with
functional data analysis. PLoS Comput Biol. 12:e10049562016.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Hancks DC and Kazazian HH Jr: Roles for
retrotransposon insertions in human disease. Mob DNA. 7:92016.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Huang CR, Burns KH and Boeke JD: Active
transposition in genomes. Annu Rev Genet. 46:651–675. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Jiang N, Bao Z, Zhang X, Eddy SR and
Wessler SR: Pack-MULE transposable elements mediate gene evolution
in plants. Nature. 431:569–573. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Cowley M and Oakey RJ: Transposable
elements re-wire and fine-tune the transcriptome. PLoS Genet.
9:e10032342013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Clayton EA, Rishishwar L, Huang TC, Gulati
S, Ban D, McDonald JF and Jordan IK: An atlas of transposable
element-derived alternative splicing in cancer. Philos Trans R Soc
Lond B Biol Sci. 375:201903422020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Cosby RL, Chang NC and Feschotte C:
Host-transposon interactions: Conflict, cooperation, and cooption.
Genes Dev. 33:1098–1116. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Riordan JD and Dupuy AJ: Domesticated
transposable element gene products in human cancer. Mob Genet
Elements. 3:e266932013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Sinzelle L, Izsvák Z and Ivics Z:
Molecular domestication of transposable elements: From detrimental
parasites to useful host genes. Cell Mol Life Sci. 66:1073–1093.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Friedli M and Trono D: The developmental
control of transposable elements and the evolution of higher
species. Annu Rev Cell Dev Biol. 31:429–451. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Yang P, Wang Y and Macfarlan TS: The role
of KRAB-ZFPs in transposable element repression and mammalian
evolution. Trends Genet. 33:871–881. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Imbeault M, Helleboid PY and Trono D: KRAB
zinc-finger proteins contribute to the evolution of gene regulatory
networks. Nature. 543:550–554. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Deniz Ö, Frost JM and Branco MR:
Regulation of transposable elements by DNA modifications. Nat Rev
Genet. 20:417–431. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Virciglio C, Abel Y and Rederstorff M:
Regulatory non-coding RNAs: An overview. Methods Mol Biol.
2300:3–9. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Marzec M: New insights into the function
of mammalian Argonaute2. PLoS Genet. 16:e10090582020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ozata DM, Gainetdinov I, Zoch A, O'Carroll
D and Zamore PD: Piwi-interacting RNAs: Small RNAs with big
functions. Nat Rev Genet. 20:89–108. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Tian Y, Simanshu DK, Ma JB and Patel DJ:
Structural basis for piRNA 2′-O-methylated 3′-end recognition by
Piwi PAZ (Piwi/Argonaute/Zwille) domains. Proc Natl Acad Sci USA.
108:903–910. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Mei Y, Wang Y, Kumari P, Shetty AC, Clark
D, Gable T, MacKerell AD, Ma MZ, Weber DJ, Yang AJ, et al: A
piRNA-like small RNA interacts with and modulates p-ERM proteins in
human somatic cells. Nat Commun. 6:73162015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wang J, Zhang P, Lu Y, Li Y, Zheng Y, Kan
Y, Chen R and He S: PiRBase: A comprehensive database of piRNA
sequences. Nucleic Acids Res. 47:D175–D180. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Yamanaka S, Siomi MC and Siomi H: PiRNA
clusters and open chromatin structure. Mob DNA. 5:222014.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sato K and Siomi H: Piwi proteins and
their slicer activity in piRNA biogenesis and transposon silencing.
Enzymes. 32:137–162. 2012. View Article : Google Scholar
|
|
61
|
Czech B and Hannon GJ: One loop to rule
them all: The ping-pong cycle and piRNA-guided silencing. Trends
Biochem Sci. 41:324–337. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Han YN, Li Y, Xia SQ, Zhang YY, Zheng JH
and Li W: Piwi proteins and Piwi-interacting RNA: Emerging roles in
cancer. Cell Physiol Biochem. 44:1–20. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Grimson A, Srivastava M, Fahey B,
Woodcroft BJ, Chiang HR, King N, Degnan BM, Rokhsar DS and Bartel
DP: Early origins and evolution of microRNAs and Piwi-interacting
RNAs in animals. Nature. 455:1193–1197. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Beyret E, Liu N and Lin H: piRNA
biogenesis during adult spermatogenesis in mice is independent of
the ping-pong mechanism. Cell Res. 22:1429–1439. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Czech B, Munafò M, Ciabrelli F, Eastwood
EL, Fabry MH, Kneuss E and Hannon GJ: piRNA-guided genome defense:
From biogenesis to silencing. Annu Rev Genet. 52:131–157. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Balmeh N, Mahmoudi S and
Karabedianhajiabadi A: piRNAs and Piwi proteins: From biogenesis to
their role in cancer. Gene Rep. 22:1010132021. View Article : Google Scholar
|
|
67
|
Peng JC, Valouev A, Liu N and Lin H: Piwi
maintains germline stem cells and oogenesis in Drosophila
through negative regulation of polycomb group proteins. Nat Genet.
48:283–291. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Sadoughi F, Mirhashemi SM and Asemi Z:
Epigenetic roles of Piwi proteins and piRNAs in colorectal cancer.
Cancer Cell Int. 21:3282021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Tóth KF, Pezic D, Stuwe E and Webster A:
The pirna pathway guards the germline genome against transposable
elements. Adv Exp Med Biol. 886:51–77. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Iwasaki YW, Murano K, Ishizu H, Shibuya A,
Iyoda Y, Siomi MC, Siomi H and Saito K: Piwi modulates chromatin
accessibility by regulating multiple factors including histone H1
to repress transposons. Mol Cell. 63:408–419. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Faulkner GJ, Kimura Y, Daub CO, Wani S,
Plessy C, Irvine KM, Schroder K, Cloonan N, Steptoe AL, Lassmann T,
et al: The regulated retrotransposon transcriptome of mammalian
cells. Nat Genet. 41:563–571. 2009. View
Article : Google Scholar : PubMed/NCBI
|
|
72
|
Marinov GK, Wang J, Handler D, Wold BJ,
Weng Z, Hannon GJ, Aravin AA, Zamore PD, Brennecke J and Toth KF:
Pitfalls of mapping high-throughput sequencing data to repetitive
sequences: Piwi's genomic targets still not identified. Dev Cell.
32:765–771. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Amarasinghe SL, Su S, Dong X, Zappia L,
Ritchie ME and Gouil Q: Opportunities and challenges in long-read
sequencing data analysis. Genome Biol. 21:302020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Goerner-Potvin P and Bourque G:
Computational tools to unmask transposable elements. Nat Rev Genet.
19:688–704. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Tarailo-Graovac M and Chen N: Using
RepeatMasker to identify repetitive elements in genomic sequences.
Curr Protoc Bioinforma Chapter 4. Unit 4.10. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Bao W, Kojima KK and Kohany O: Repbase
update, a database of repetitive elements in eukaryotic genomes.
Mob DNA. 6:112015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Wheeler TJ, Clements J, Eddy SR, Hubley R,
Jones TA, Jurka J, Smit AF and Finn RD: Dfam: A database of
repetitive DNA based on profile hidden Markov models. Nucleic Acids
Res. 41:D70–D82. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Flynn JM, Hubley R, Goubert C, Rosen J,
Clark AG, Feschotte C and Smit AF: RepeatModeler2 for automated
genomic discovery of transposable element families. Proc Natl Acad
Sci USA. 117:9451–9457. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Novák P, Neumann P and Macas J:
Graph-based clustering and characterization of repetitive sequences
in next-generation sequencing data. BMC Bioinformatics. 11:3782010.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Jin Y, Tam OH, Paniagua E and Hammell M:
TEtranscripts: A package for including transposable elements in
differential expression analysis of RNA-seq datasets.
Bioinformatics. 31:3593–3599. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ye J, Xu M, Tian X, Cai S and Zeng S:
Research advances in the detection of miRNA. J Pharm Anal.
9:217–226. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Ray R and Pandey P: piRNA analysis
framework from small RNA-Seq data by a novel cluster prediction
tool-PILFER. Genomics. 110:355–365. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Munafó DB and Robb GB: Optimization of
enzymatic reaction conditions for generating representative pools
of cDNA from small RNA. RNA. 16:2537–2552. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Leshkowitz D, Horn-Saban S, Parmet Y and
Feldmesser E: Differences in microRNA detection levels are
technology and sequence dependent. RNA. 19:527–538. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Dard-Dascot C, Naquin D, d'Aubenton-Carafa
Y, Alix K, Thermes C and van Dijk E: Systematic comparison of small
RNA library preparation protocols for next-generation sequencing.
BMC Genomics. 19:1182018. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Fuchs RT, Sun Z, Zhuang F and Robb GB:
Bias in ligation-based small RNA sequencing library construction is
determined by adaptor and RNA structure. PLoS One. 10:e01260492015.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Song Y, Liu KJ and Wang TH: Elimination of
ligation dependent artifacts in T4 RNA ligase to achieve high
efficiency and low bias microRNA capture. PLoS One. 9:e946192014.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Han BW, Wang W, Zamore PD and Weng Z:
piPipes: A set of pipelines for piRNA and transposon analysis via
small RNA-seq, RNA-seq, degradome- and CAGE-seq, ChIP-seq and
genomic DNA sequencing. Bioinformatics. 31:593–595. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Li J, Kho AT, Chase RP, Pantano L, Farnam
L, Amr SS and Tantisira KG: COMPSRA: A COMprehensive platform for
small RNA-Seq data analysis. Sci Rep. 10:45522020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Yu Y, Xiao J and Hann SS: The emerging
roles of PIWI-interacting RNA in human cancers. Cancer Manag Res.
11:5895–5909. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Lanciano S and Cristofari G: Measuring and
interpreting transposable element expression. Nat Rev Genet.
21:721–736. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Lee Y, Wang Q, Shuryak I, Brenner DJ and
Turner HC: Development of a high-throughput γ-H2AX assay based on
imaging flow cytometry. Radiat Oncol. 14:1502019. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Langie SA, Azqueta A and Collins AR: The
comet assay: Past, present, and future. Front Genet. 6:2662015.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zuo L, Wang Z, Tan Y, Chen X and Luo X:
piRNAs and their functions in the brain. Int J Hum Genet. 16:53–60.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
da Costa AH, dos Santos RAC and Cerri R:
Investigating deep feedforward neural networks for classification
of transposon-derived piRNAs. Complex Intell Syst. 1–11. 2021.
|
|
96
|
Giassa IC and Alexiou P: Bioinformatics
and machine learning approaches to understand the regulation of
mobile genetic elements. Biology (Basel). 10:8962021.PubMed/NCBI
|
|
97
|
Stuart JM, Segal E, Koller D and Kim SK: A
gene-coexpression network for global discovery of conserved genetic
modules. Science. 302:249–255. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Zhao Y, Wang J, Chen J, Zhang X, Guo M and
Yu G: A literature review of gene function prediction by modeling
gene ontology. Front Genet. 11:4002020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Liu Y, Zhang J, Li A, Liu Z, He Z, Yuan X
and Tuo S: Prediction of cancer-associated piRNA-mRNA and
piRNA-lncRNA interactions by integrated analysis of expression and
sequence data. Tsinghua Sci Technol. 23:115–125. 2018. View Article : Google Scholar
|
|
100
|
Lerat E, Fablet M, Modolo L, Lopez-Maestre
H and Vieira C: TEtools facilitates big data expression analysis of
transposable elements and reveals an antagonism between their
activity and that of piRNA genes. Nucleic Acids Res.
45:e172017.PubMed/NCBI
|
|
101
|
Moyano M and Stefani G: PiRNA involvement
in genome stability and human cancer. J Hematol Oncol. 8:382015.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Anwar SL, Wulaningsih W and Lehmann U:
Transposable elements in human cancer: Causes and consequences of
deregulation. Int J Mol Sci. 18:9742017. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Teugels E, De Brakeleer S, Goelen G,
Lissens W, Sermijn E and De Grève J: De novo Alu element insertions
targeted to a sequence common to the BRCA1 and BRCA2 genes. Hum
Mutat. 26:2842005. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Rodríguez-Martín C, Cidre F,
Fernández-Teijeiro A, Gómez-Mariano G, de la Vega L, Ramos P,
Zaballos Á, Monzón S and Alonso J: Familial retinoblastoma due to
intronic LINE-1 insertion causes aberrant and noncanonical mRNA
splicing of the RB1 gene. J Hum Genet. 61:463–466. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Lamprecht B, Walter K, Kreher S, Kumar R,
Hummel M, Lenze D, Köchert K, Bouhlel MA, Richter J, Soler E, et
al: Derepression of an endogenous long terminal repeat activates
the CSF1R proto-oncogene in human lymphoma. Nat Med. 16:571–579.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Lock FE, Babaian A, Zhang Y, Gagnier L,
Kuah S, Weberling A, Karimi MM and Mager DL: A novel isoform of
IL-33 revealed by screening for transposable element promoted genes
in human colorectal cancer. PLoS One. 12:e01806592017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Wolff EM, Byun HM, Han HF, Sharma S,
Nichols PW, Siegmund KD, Yang AS, Jones PA and Liang G:
Hypomethylation of a LINE-1 promoter activates an alternate
transcript of the MET oncogene in bladders with cancer. PLoS Genet.
6:e10009172010. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Hedges DJ and Deininger PL: Inviting
instability: Transposable elements, double-strand breaks, and the
maintenance of genome integrity. Mutat Res. 616:46–59. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Babaian A and Mager DL: Endogenous
retroviral promoter exaptation in human cancer. Mob DNA. 7:242016.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Scarfò I, Pellegrino E, Mereu E, Kwee I,
Agnelli L, Bergaggio E, Garaffo G, Vitale N, Caputo M, Machiorlatti
R, et al: Identification of a new subclass of ALK-negative ALCL
expressing aberrant levels of ERBB4 transcripts. Blood.
127:221–232. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Chiappinelli KB, Strissel PL, Desrichard
A, Li H, Henke C, Akman B, Hein A, Rote NS, Cope LM, Snyder A, et
al: Inhibiting DNA methylation causes an interferon response in
cancer via dsRNA including endogenous retroviruses. Cell.
162:974–986. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Roulois D, Loo Yau H, Singhania R, Wang Y,
Danesh A, Shen SY, Han H, Liang G, Jones PA, Pugh TJ, et al:
DNA-demethylating agents target colorectal cancer cells by inducing
viral mimicry by endogenous transcripts. Cell. 162:961–973. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Colombo AR, Zubair A, Thiagarajan D,
Nuzhdin S, Triche TJ and Ramsingh G: Suppression of transposable
elements in leukemic stem cells. Sci Rep. 7:70292017. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Ross RJ, Weiner MM and Lin H: Piwi
proteins and Piwi-interacting RNAs in the soma. Nature.
505:353–359. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Cheng Y, Wang Q, Jiang W, Bian Y, Zhou Y,
Gou A, Zhang W, Fu K and Shi W: Emerging roles of piRNAs in cancer:
Challenges and prospects. Aging (Albany NY). 11:9932–9946. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Martinez VD, Vucic EA, Thu KL, Hubaux R,
Enfield KS, Pikor LA, Becker-Santos DD, Brown CJ, Lam S and Lam WL:
Unique somatic and malignant expression patterns implicate
Piwi-interacting RNAs in cancer-type specific biology. Sci Rep.
5:104232015. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Ng KW, Anderson C, Marshall EA, Minatel
BC, Enfield KS, Saprunoff HL, Lam WL and Martinez VD:
Piwi-interacting RNAs in cancer: Emerging functions and clinical
utility. Mol Cancer. 15:52016. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Cheng J, Deng H, Xiao B, Zhou H, Zhou F,
Shen Z and Guo J: piR-823, a novel non-coding small RNA,
demonstrates in vitro and in vivo tumor suppressive activity in
human gastric cancer cells. Cancer Lett. 315:12–17. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Ding X, Li Y, Lü J, Zhao Q, Guo Y, Lu Z,
Ma W, Liu P, Pestell RG, Liang C and Yu Z: piRNA-823 is involved in
cancer stem cell regulation through altering DNA methylation in
association with luminal breast cancer. Front Cell Dev Biol.
9:6410522021. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Iliev R, Fedorko M, MacHackova T,
Mlcochova H, Svoboda M, Pacik D, Dolezel J, Stanik M and Slaby O:
Expression levels of Piwi-interacting RNA, piR-823, are deregulated
in tumor tissue, blood serum and urine of patients with renal cell
carcinoma. Anticancer Res. 36:6419–6423. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Hempfling AL, Lim SL, Adelson DL, Evans J,
O'Connor AE, Qu ZP, Kliesch S, Weidner W, O'Bryan MK and Bergmann
M: Expression patterns of HENMT1 and Piwil1 in human testis:
Implications for transposon expression. Reproduction. 154:363–374.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Gao CL, Sun R, Li DH and Gong F: Piwi-like
protein 1 upregulation promotes gastric cancer invasion and
metastasis. Onco Targets Ther. 11:8783–8789. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Shi S, Yang ZZ, Liu S, Yang F and Lin H:
Piwil1 promotes gastric cancer via a piRNA-independent mechanism.
Proc Natl Acad Sci USA. 117:22390–22401. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Hu W, Sun X, Ye T, Feng S, Ruan Q, Xi M,
Zhou X, Li M, Ye Z, Cheng X and Xie W: Piwil2 may serve as a
prognostic predictor in cancers: A systematic review and
meta-analysis. J BUON. 25:2721–2730. 2020.PubMed/NCBI
|
|
125
|
Qu A, Wang W, Yang Y, Zhang X, Dong Y,
Zheng G, Wu Q, Zou M, Du L, Wang Y and Wang C: A serum piRNA
signature as promising non-invasive diagnostic and prognostic
biomarkers for colorectal cancer. Cancer Manag Res. 11:3703–3720.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Cui L, Lou Y, Zhang X, Zhou H, Deng H,
Song H, Yu X, Xiao B, Wang W and Guo J: Detection of circulating
tumor cells in peripheral blood from patients with gastric cancer
using piRNAs as markers. Clin Biochem. 44:1050–1057. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Colombo AR, Triche T Jr and Ramsingh G:
Transposable element expression in acute myeloid leukemia
transcriptome and prognosis. Sci Rep. 8:164492018. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Corces MR, Buenrostro JD, Wu B, Greenside
PG, Chan SM, Koenig JL, Snyder MP, Pritchard JK, Kundaje A,
Greenleaf WJ, et al: Lineage-specific and single-cell chromatin
accessibility charts human hematopoiesis and leukemia evolution.
Nat Genet. 48:1193–1203. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Wang H, Wen J, Chang CC and Zhou X:
Discovering transcription and splicing networks in myelodysplastic
syndromes. PLoS One. 8:e791182013. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Leonova KI, Brodsky L, Lipchick B, Pal M,
Novototskaya L, Chenchik AA, Sen GC, Komarova EA and Gudkov AV: p53
cooperates with DNA methylation and a suicidal interferon response
to maintain epigenetic silencing of repeats and noncoding RNAs.
Proc Natl Acad Sci USA. 110:E89–E98. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Bolouri H, Farrar JE, Triche T Jr, Ries
RE, Lim EL, Alonzo TA, Ma Y, Moore R, Mungall AJ, Marra MA, et al:
The molecular landscape of pediatric acute myeloid leukemia reveals
recurrent structural alterations and age-specific mutational
interactions. Nat Med. 24:103–112. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Li S, Garrett-Bakelman FE, Chung SS,
Sanders MA, Hricik T, Rapaport F, Patel J, Dillon R, Vijay P, Brown
AL, et al: Distinct evolution and dynamics of epigenetic and
genetic heterogeneity in acute myeloid leukemia. Nat Med.
22:792–799. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Zeng Y, Cao Y, Halevy RS, Nguyen P, Liu D,
Zhang X, Ahituv N and Han JJ: Characterization of functional
transposable element enhancers in acute myeloid leukemia. Sci China
Life Sci. 63:675–687. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Deniz Ö, Ahmed M, Todd CD, Rio-Machin A,
Dawson MA and Branco MR: Endogenous retroviruses are a source of
enhancers with oncogenic potential in acute myeloid leukaemia. Nat
Commun. 11:35062020. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Gao Y, Yu XF and Chen T: Human endogenous
retroviruses in cancer: Expression, regulation and function. Oncol
Lett. 21:1212021. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Rossi F, Noren H, Jove R, Beljanski V and
Grinnemo KH: Differences and similarities between cancer and
somatic stem cells: Therapeutic implications. Stem Cell Res Ther.
11:4892020. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Sharma AK, Nelson MC, Brandt JE, Wessman
M, Mahmud N, Weller KP and Hoffman R: Human CD34(+) stem cells
express the hiwi gene, a human homologue of the Drosophila gene
piwi. Blood. 97:426–434. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Nolde MJ, Cheng EC, Guo S and Lin H: Piwi
genes are dispensable for normal hematopoiesis in mice. PLoS One.
8:e719502013. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Yan H, Wu QL, Sun CY, Ai LS, Deng J, Zhang
L, Chen L, Chu ZB, Tang B, Wang K, et al: piRNA-823 contributes to
tumorigenesis by regulating de novo DNA methylation and
angiogenesis in multiple myeloma. Leukemia. 29:196–206. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Li B, Hong J, Hong M, Wang Y, Yu T, Zang S
and Wu Q: piRNA-823 delivered by multiple myeloma-derived
extracellular vesicles promoted tumorigenesis through re-educating
endothelial cells in the tumor environment. Oncogene. 38:5227–5238.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Ai L, Mu S, Sun C, Fan F, Yan H, Qin Y,
Cui G, Wang Y, Guo T, Mei H, et al: Myeloid-derived suppressor
cells endow stem-like qualities to multiple myeloma cells by
inducing piRNA-823 expression and DNMT3B activation. Mol Cancer.
18:882019. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Cordeiro A, Navarro A, Gaya A, Díaz-Beyá
M, Gonzalez-Farré B, Castellano JJ, Fuster D, Martínez C, Martínez
A and Monzó M: PiwiRNA-651 as marker of treatment response and
survival in classical Hodgkin lymphoma. Oncotarget. 7:46002–46013.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Bamezai S, Mulaw MM, Zhou F, Rohde C,
Muller-Tidow C, Dohner K, Dohner H, Buske MF, Buske C and Rawat
VPS: Knockdown of the Piwi-like protein 4 (PIWIL4) delays leukemic
growth and is associated with gross changes in the global histone
methylation marks in human MLL-rearranged AML. Blood. 122:5972013.
View Article : Google Scholar
|
|
144
|
Wang Y, Jiang Y, Ma N, Sang B, Hu X, Cong
X and Liu Z: Overexpression of Hiwi inhibits the growth and
migration of chronic myeloid leukemia cells. Cell Biochem Biophys.
73:117–124. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Veryaskina YA, Titov SE, Kovynev IB,
Fedorova SS, Pospelova TI and Zhimulev IF: MicroRNAs in the
myelodysplastic syndrome. Acta Naturae. 13:4–15. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Kuang X, Chi J and Wang L: Deregulated
microRNA expression and its pathogenetic implications for
myelodysplastic syndromes. Hematology. 21:593–602. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Beck D, Ayers S, Wen J, Brandl MB, Pham
TD, Webb P, Chang CC and Zhou X: Integrative analysis of next
generation sequencing for small non-coding RNAs and transcriptional
regulation in myelodysplastic syndromes. BMC Med Genomics.
4:192011. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Hrustincova A, Krejcik Z, Kundrat D,
Szikszai K, Belickova M, Pecherkova P, Klema J, Vesela J, Hruba M,
Cermak J, et al: Circulating small noncoding RNAs have specific
expression patterns in plasma and extracellular vesicles in
myelodysplastic syndromes and are predictive of patient outcome.
Cells. 9:7942020. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Arber DA, Orazi A, Hasserjian R, Thiele J,
Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M and Vardiman JW:
The 2016 revision to the World Health Organization classification
of myeloid neoplasms and acute leukemia. Blood. 127:2391–2405.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Itou D, Shiromoto Y, Yukiho SY, Ishii C,
Nishimura T, Ogonuki N, Ogura A, Hasuwa H, Fujihara Y,
Kuramochi-Miyagawa S and Nakano T: Induction of DNA methylation by
artificial piRNA production in male germ cells. Curr Biol.
25:901–906. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Toden S, Zumwalt TJ and Goel A: Non-coding
RNAs and potential therapeutic targeting in cancer. Biochim Biophys
Acta Rev Cancer. 1875:1884912021. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Setten RL, Rossi JJ and Han SP: The
current state and future directions of RNAi-based therapeutics. Nat
Rev Drug Discov. 18:421–446. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Levy A, Sela N and Ast G: TranspoGene and
microTranspoGene: Transposed elements influence on the
transcriptome of seven vertebrates and invertebrates. Nucleic Acids
Res. 36:D47–D52. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Kim DS, Kim TH, Huh JW, Kim IC, Kim SW,
Park HS and Kim HS: Line fusion genes: A database of LINE
expression in human genes. BMC Genomics. 7:1392006. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Navarro FC and Galante PA: RCPedia: A
database of retrocopied genes. Bioinformatics. 29:1235–1237. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Lappalainen I, Lopez J, Skipper L,
Hefferon T, Spalding JD, Garner J, Chen C, Maguire M, Corbett M,
Zhou G, et al: DbVar and DGVa: Public archives for genomic
structural variation. Nucleic Acids Res. 41:D936–D941. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Wang J, Song L, Grover D, Azrak S, Batzer
MA and Liang P: dbRIP: A highly integrated database of
retrotransposon insertion polymorphisms in humans. Hum Mutat.
27:323–329. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Mir AA, Philippe C and Cristofari G:
euL1db: The European database of L1HS retrotransposon insertions in
humans. Nucleic Acids Res. 43:D43–D47. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Piuco R and Galante PAF: piRNAdb: A
piwi-interacting RNA database. bioRxiv: 2021.09.21.461238. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Sai Lakshmi S and Agrawal S: piRNABank: A
web resource on classified and clustered Piwi-interacting RNAs.
Nucleic Acids Res. 36:D173–D177. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
161
|
Sarkar A, Maji RK, Saha S and Ghosh Z:
PiRNAQuest: Searching the piRNAome for silencers. BMC Genomics.
15:5552014. View Article : Google Scholar : PubMed/NCBI
|
|
162
|
Rosenkranz D: piRNA cluster database: A
web resource for piRNA producing loci. Nucleic Acids Res.
44:D223–D230. 2016. View Article : Google Scholar : PubMed/NCBI
|