Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
December-2021 Volume 59 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2021 Volume 59 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Increased expression of PSME2 is associated with clear cell renal cell carcinoma invasion by regulating BNIP3‑mediated autophagy

  • Authors:
    • Xiaoyun Wang
    • Fengbo Wu
    • Yutong Deng
    • Jinlong Chai
    • Yuehua Zhang
    • Gu He
    • Xiang Li
  • View Affiliations / Copyright

    Affiliations: State Key Laboratory of Biotherapy and Department of Pharmacy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P.R. China, Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 106
    |
    Published online on: November 15, 2021
       https://doi.org/10.3892/ijo.2021.5286
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Previous studies have showed that proteasome activator complex subunit 2 (PSME2) may play a role in some types of cancer. However, the involvement of PSME2 in clear cell renal cell carcinoma (ccRCC) remains unknown. The aim of the present study was to assess the poorly understood function of PSME2 expression in renal carcinoma. Using bioinformatics analysis, PSME2 mRNA expression profiles were investigated, along with its potential prognostic value and its functional enrichment. Signaling pathways and putative hub genes associated with PSME2 in ccRCC were identified. Based on the bioinformatics analysis results, immunohistochemistry of human ccRCC samples and renal carcinoma cell lines (CAKI‑1 and 786‑O) transfected with short interfering RNA targeting PSME2 were analyzed using western blot analysis, reverse transcription‑quantitative PCR, immunofluorescence, and Cell Counting Kit‑8, Transwell and transmission electron microscope assays. The results showed that when PSME2 expression was knocked down, the invasive abilities of the tumor cell lines were reduced, while autophagy was enhanced. The present study demonstrated that PSME2 was associated with the invasion ability of ccRCC cell lines by inhibiting BNIP3‑mediated autophagy. In summary, PSME2 could be used as a prognostic factor and a promising therapeutic target in ccRCC.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Ahn K, Erlander M, Leturcq D, Peterson PA, Früh K and Yang Y: In vivo characterization of the proteasome regulator PA28. J Biol Chem. 271:18237–18242. 1996. View Article : Google Scholar : PubMed/NCBI

2 

Coux O, Tanaka K and Goldberg AL: Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem. 65:801–847. 1996. View Article : Google Scholar

3 

Ma CP, Willy PJ, Slaughter CA and DeMartino GN: PA28, an activator of the 20 S proteasome, is inactivated by proteolytic modification at its carboxyl terminus. J Biol Chem. 268:22514–22519. 1993. View Article : Google Scholar

4 

Kuroda K and Liu H: The proteasome inhibitor, bortezomib, induces prostate cancer cell death by suppressing the expression of prostate-specific membrane antigen, as well as androgen receptor. Int J Oncol. 54:1357–1366. 2019.PubMed/NCBI

5 

Rechsteiner M and Hill CP: Mobilizing the proteolytic machine: Cell biological roles of proteasome activators and inhibitors. Trends Cell Biol. 15:27–33. 2005. View Article : Google Scholar : PubMed/NCBI

6 

Song X, von Kampen J, Slaughter CA and DeMartino GN: Relative functions of the alpha and beta subunits of the proteasome activator, PA28. J Biol Chem. 272:27994–28000. 1997. View Article : Google Scholar : PubMed/NCBI

7 

Wang YF, Yu M, te Pas MFW, Yerle M, Liu B, Fan B, Xiong TA and Li K: Sequence characterization, polymorphism and chromosomal localizations of the porcine PSME1 and PSME2 genes. Anim Genet. 35:361–366. 2004. View Article : Google Scholar : PubMed/NCBI

8 

McCusker D, Wilson M and Trowsdale J: Organization of the genes encoding the human proteasome activators PA28alpha and beta. Immunogenetics. 49:438–445. 1999. View Article : Google Scholar : PubMed/NCBI

9 

Zaiss DMW and Kloetzel PM: A second gene encoding the mouse proteasome activator PA28beta subunit is part of a LINE1 element and is driven by a LINE1 promoter. J Mol Biol. 287:829–835. 1999. View Article : Google Scholar : PubMed/NCBI

10 

Kuehn L and Dahlmann B: Structural and functional properties of proteasome activator PA28. Mol Biol Rep. 24:89–93. 1997. View Article : Google Scholar : PubMed/NCBI

11 

Demartino GN and Gillette TG: Proteasomes: Machines for all reasons. Cell. 129:659–662. 2007. View Article : Google Scholar : PubMed/NCBI

12 

Lee J, An S, Jung JH, Kim K, Kim JY, An IS and Bae S: MUL1 E3 ligase regulates the antitumor effects of metformin in chemoresistant ovarian cancer cells via AKT degradation. Int J Oncol. 54:1833–1842. 2019.PubMed/NCBI

13 

Kandil E, Kohda K, Ishibashi T, Tanaka K and Kasahara M: PA28 subunits of the mouse proteasome: Primary structures and chromosomal localization of the genes. Immunogenetics. 46:337–344. 1997. View Article : Google Scholar : PubMed/NCBI

14 

Wang Q, Pan F, Li S, Huang R, Wang X, Wang S, Liao X, Li D and Zhang L: The prognostic value of the proteasome activator subunit gene family in skin cutaneous melanoma. J Cancer. 10:2205–2219. 2019. View Article : Google Scholar : PubMed/NCBI

15 

Feng J, Xiao T, Lu SS, Hung XP, Yi H, He QY, Huang W, Tang YY and Xiao ZQ: ANXA1 derived peptides suppress gastric and colon cancer cell growth by targeting EphA2 degradation. Int J Oncol. 57:1203–1213. 2020.PubMed/NCBI

16 

Wójcik C, Tanaka K, Paweletz N, Naab U and Wilk S: Proteasome activator (PA28) subunits, alpha, beta and gamma (Ki antigen) in NT2 neuronal precursor cells and HeLa S3 cells. Eur J Cell Biol. 77:151–160. 1998. View Article : Google Scholar : PubMed/NCBI

17 

Khor B, Bredemeyer AL, Huang CY, Turnbull IR, Evans R, Maggi LB Jr, White JM, Walker LM, Carnes K, Hess RA, et al: Proteasome activator PA200 is required for normal spermatogenesis. Mol Cell Biol. 26:2999–3007. 2006. View Article : Google Scholar : PubMed/NCBI

18 

Noda C, Tanahashi N, Shimbara N, Hendil KB and Tanaka K: Tissue distribution of constitutive proteasomes, immunoproteasomes, and PA28 in rats. Biochem Biophys Res Commun. 277:348–354. 2000. View Article : Google Scholar : PubMed/NCBI

19 

Huang L, Haratake K, Miyahara H and Chiba T: Proteasome activators, PA28 gamma and PA200, play indispensable roles in male fertility. Sci Rep. 6:92016.

20 

Kaymaz Y, Oduor CI, Yu H, Otieno JA, Ong'echa JM, Moormann AM and Bailey JA: Comprehensive Transcriptome and Mutational Profiling of Endemic Burkitt Lymphoma Reveals EBV Type-Specific Differences. Mol Cancer Res. 15:563–576. 2017. View Article : Google Scholar :

21 

Tanahashi N, Yokota K, Ahn JY, Chung CH, Fujiwara T, Takahashi E, DeMartino GN, Slaughter CA, Toyonaga T, Yamamura K, et al: Molecular properties of the proteasome activator PA28 family proteins and gamma-interferon regulation. Genes Cells. 2:195–211. 1997. View Article : Google Scholar : PubMed/NCBI

22 

Minor MM, Hollinger FB, McNees AL, Jung SY, Jain A, Hyser JM, Bissig KD and Slagle BL: Hepatitis B Virus HBx Protein Mediates the Degradation of Host Restriction Factors through the Cullin 4 DDB1 E3 Ubiquitin Ligase Complex. Cells. 9:92020. View Article : Google Scholar

23 

Li J, Powell SR and Wang X: Enhancement of proteasome function by PA28α overexpression protects against oxidative stress. FASEB J. 25:883–893. 2011. View Article : Google Scholar :

24 

Grune T, Catalgol B, Licht A, Ermak G, Pickering AM, Ngo JK and Davies KJ: HSP70 mediates dissociation and reassociation of the 26S proteasome during adaptation to oxidative stress. Free Radic Biol Med. 51:1355–1364. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Adelöf J, Andersson M, Porritt M, Petersen A, Zetterberg M, Wiseman J and Hernebring M: PA28αβ overexpression enhances learning and memory of female mice without inducing 20S proteasome activity. BMC Neurosci. 19:702018. View Article : Google Scholar

26 

Miyagi T, Tatsumi T, Takehara T, Kanto T, Kuzushita N, Sugimoto Y, Jinushi M, Kasahara A, Sasaki Y, Hori M, et al: Impaired expression of proteasome subunits and human leukocyte antigens class I in human colon cancer cells. J Gastroenterol Hepatol. 18:32–40. 2003. View Article : Google Scholar

27 

Cerruti F, Martano M, Petterino C, Bollo E, Morello E, Bruno R, Buracco P and Cascio P: Enhanced expression of interferon-gamma-induced antigen-processing machinery components in a spontaneously occurring cancer. Neoplasia. 9:960–969. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Ebert MPA, Krüger S, Fogeron ML, Lamer S, Chen J, Pross M, Schulz HU, Lage H, Heim S, Roessner A, et al: Overexpression of cathepsin B in gastric cancer identified by proteome analysis. Proteomics. 5:1693–1704. 2005. View Article : Google Scholar

29 

Perroud B, Lee J, Valkova N, Dhirapong A, Lin PY, Fiehn O, Kültz D and Weiss RH: Pathway analysis of kidney cancer using proteomics and metabolic profiling. Mol Cancer. 5:642006. View Article : Google Scholar : PubMed/NCBI

30 

Milioli HH, Santos Sousa K, Kaviski R, Dos Santos Oliveira NC, De Andrade Urban C, De Lima RS, Cavalli IJ and De Souza Fonseca Ribeiro EM: Comparative proteomics of primary breast carcinomas and lymph node metastases outlining markers of tumor invasion. Cancer Genomics Proteomics. 12:89–101. 2015.

31 

Huang Q, Huang Q, Chen W, Wang L, Lin W, Lin J and Lin X: Identification of transgelin as a potential novel biomarker for gastric adenocarcinoma based on proteomics technology. J Cancer Res Clin Oncol. 134:1219–1227. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Huang Q, Huang Q, Lin W, Lin J and Lin X: Potential roles for PA28beta in gastric adenocarcinoma development and diagnosis. J Cancer Res Clin Oncol. 136:1275–1282. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Zheng D-L, Huang Q-L, Zhou F, Huang Q-J, Lin J-Y and Lin X: PA28β regulates cell invasion of gastric cancer via modulating the expression of chloride intracellular channel 1. J Cell Biochem. 113:1537–1546. 2012.

34 

Kim JE, Koo KH, Kim YH, Sohn J and Park YG: Identification of potential lung cancer biomarkers using an in vitro carcinogenesis model. Exp Mol Med. 40:709–720. 2008. View Article : Google Scholar

35 

Chen JY, Xu L, Fang WM, Han JY, Wang K and Zhu KS: Identification of PA28β as a potential novel biomarker in human esophageal squamous cell carcinoma. Tumour Biol. 39:10104283177197802017.

36 

Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A and Chinnaiyan AM: ONCOMINE: A cancer microarray database and integrated data-mining platform. Neoplasia. 6:1–6. 2004. View Article : Google Scholar : PubMed/NCBI

37 

Langfelder P and Horvath S: WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics. 9:5592008. View Article : Google Scholar : PubMed/NCBI

38 

Langfelder P and Horvath S: Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol. 1:542007. View Article : Google Scholar : PubMed/NCBI

39 

Huang W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar

40 

Huang W, Sherman BT and Lempicki RA: Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37:1–13. 2009. View Article : Google Scholar :

41 

Azhar RA, de Castro Abreu AL, Broxham E, Sherrod A, Ma Y, Cai J, Gill TS, Desai M and Gill IS: Histological analysis of the kidney tumor-parenchyma interface. J Urol. 193:415–422. 2015. View Article : Google Scholar

42 

Moch H, Artibani W, Delahunt B, Ficarra V, Knuechel R, Montorsi F, Patard JJ, Stief CG, Sulser T and Wild PJ: Reassessing the current UICC/AJCC TNM staging for renal cell carcinoma. Eur Urol. 56:636–643. 2009. View Article : Google Scholar : PubMed/NCBI

43 

Margulis V, McDonald M, Tamboli P, Swanson DA and Wood CG: Predictors of oncological outcome after resection of locally recurrent renal cell carcinoma. J Urol. 181:2044–2051. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Kuang P, Deng H, Liu H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X and Zhao L: Sodium fluoride induces splenocyte autophagy via the mammalian targets of rapamycin (mTOR) signaling pathway in growing mice. Aging (Albany NY). 10:1649–1665. 2018. View Article : Google Scholar

45 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar

46 

Jones J, Otu H, Spentzos D, Kolia S, Inan M, Beecken WD, Fellbaum C, Gu X, Joseph M, Pantuck AJ, et al: Gene signatures of progression and metastasis in renal cell cancer. Clin Cancer Res. 11:5730–5739. 2005. View Article : Google Scholar : PubMed/NCBI

47 

Yusenko MV, Kuiper RP, Boethe T, Ljungberg B, van Kessel AG and Kovacs G: High-resolution DNA copy number and gene expression analyses distinguish chromophobe renal cell carcinomas and renal oncocytomas. BMC Cancer. 9:1522009. View Article : Google Scholar : PubMed/NCBI

48 

Yusenko MV, Zubakov D and Kovacs G: Gene expression profiling of chromophobe renal cell carcinomas and renal oncocytomas by Affymetrix GeneChip using pooled and individual tumours. Int J Biol Sci. 5:517–527. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Zhu WK, Xu WH, Wang J, Huang YQ, Abudurexiti M, Qu YY, Zhu YP, Zhang HL and Ye DW: Decreased SPTLC1 expression predicts worse outcomes in ccRCC patients. J Cell Biochem. 121:1552–1562. 2020. View Article : Google Scholar

50 

Hu J, Chen Z, Bao L, Zhou L, Hou Y, Liu L, Xiong M, Zhang Y, Wang B, Tao Z, et al: Single-Cell Transcriptome Analysis Reveals Intratumoral Heterogeneity in ccRCC, which Results in Different Clinical Outcomes. Mol Ther. 28:1658–1672. 2020. View Article : Google Scholar : PubMed/NCBI

51 

Reustle A, Di Marco M, Meyerhoff C, Nelde A, Walz JS, Winter S, Kandabarau S, Büttner F, Haag M, Backert L, et al: Integrative -omics and HLA-ligandomics analysis to identify novel drug targets for ccRCC immunotherapy. Genome Med. 12:322020. View Article : Google Scholar :

52 

Wan B, Liu B, Huang Y and Lv C: Identification of genes of prognostic value in the ccRCC microenvironment from TCGA database. Mol Genet Genomic Med. 8:e11592020. View Article : Google Scholar :

53 

Dikic I and Elazar Z: Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 19:349–364. 2018. View Article : Google Scholar

54 

Tanida I, Ueno T and Kominami E: LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol. 36:2503–2518. 2004. View Article : Google Scholar : PubMed/NCBI

55 

Tanida I, Ueno T and Kominami E: LC3 and Autophagy. Methods Mol Biol. 445:77–88. 2008. View Article : Google Scholar

56 

Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y and Yoshimori T: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19:5720–5728. 2000. View Article : Google Scholar : PubMed/NCBI

57 

Li L, Tan J, Miao Y, Lei P and Zhang Q: ROS and Autophagy: Interactions and Molecular Regulatory Mechanisms. Cell Mol Neurobiol. 35:615–621. 2015. View Article : Google Scholar

58 

Zhang J, Zhang C, Jiang X, Li L, Zhang D, Tang D, Yan T, Zhang Q, Yuan H, Jia J, et al: Involvement of autophagy in hypoxia-BNIP3 signaling to promote epidermal keratinocyte migration. Cell Death Dis. 10:2342019. View Article : Google Scholar : PubMed/NCBI

59 

Christian F, Krause E, Houslay MD and Baillie GS: PKA phosphorylation of p62/SQSTM1 regulates PB1 domain interaction partner binding. Biochim Biophys Acta. 1843:2765–2774. 2014. View Article : Google Scholar

60 

Katsuragi Y, Ichimura Y and Komatsu M: p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J. 282:4672–4678. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Wooten MW, Geetha T, Seibenhener ML, Babu JR, Diaz-Meco MT and Moscat J: The p62 scaffold regulates nerve growth factor-induced NF-kappaB activation by influencing TRAF6 polyubiquitination. J Biol Chem. 280:35625–35629. 2005. View Article : Google Scholar : PubMed/NCBI

62 

Lamark T, Perander M, Outzen H, Kristiansen K, Øvervatn A, Michaelsen E, Bjørkøy G and Johansen T: Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J Biol Chem. 278:34568–34581. 2003. View Article : Google Scholar : PubMed/NCBI

63 

Lin X, Li S, Zhao Y, Ma X, Zhang K, He X and Wang Z: Interaction domains of p62: A bridge between p62 and selective autophagy. DNA Cell Biol. 32:220–227. 2013. View Article : Google Scholar

64 

Islam MA, Sooro MA and Zhang P: Autophagic Regulation of p62 is Critical for Cancer Therapy. Int J Mol Sci. 19:152018. View Article : Google Scholar

65 

Johansen T and Lamark T: Selective autophagy mediated by autophagic adapter proteins. Autophagy. 7:279–296. 2011. View Article : Google Scholar

66 

Zhang Y, Mun SR, Linares JF, Towers CG, Thorburn A, Diaz-Meco MT, Kwon YT and Kutateladze TG: Mechanistic insight into the regulation of SQSTM1/p62. Autophagy. 15:735–737. 2019. View Article : Google Scholar : PubMed/NCBI

67 

Kays JK, Koniaris LG, Cooper CA, Pili R, Jiang G, Liu Y and Zimmers TA: The Combination of Low Skeletal Muscle Mass and High Tumor Interleukin-6 Associates with Decreased Survival in Clear Cell Renal Cell Carcinoma. Cancers (Basel). 12:122020. View Article : Google Scholar

68 

Liu T, Xia Q, Zhang H, Wang Z, Yang W, Gu X, Hou T, Chen Y, Pei X, Zhu G, et al: CCL5-dependent mast cell infiltration into the tumor microenvironment in clear cell renal cell carcinoma patients. Aging (Albany NY). 12:21809–21836. 2020. View Article : Google Scholar

69 

Xu WH, Shi SN, Xu Y, Wang J, Wang HK, Cao DL, Shi GH, Qu YY, Zhang HL and Ye DW: Prognostic implications of Aquaporin 9 expression in clear cell renal cell carcinoma. J Transl Med. 17:3632019. View Article : Google Scholar : PubMed/NCBI

70 

Mikami S, Mizuno R, Kosaka T, Saya H, Oya M and Okada Y: Expression of TNF-α and CD44 is implicated in poor prognosis, cancer cell invasion, metastasis and resistance to the sunitinib treatment in clear cell renal cell carcinomas. Int J Cancer. 136:1504–1514. 2015. View Article : Google Scholar

71 

Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V and Nuseir N: Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature. 329:630–632. 1987. View Article : Google Scholar : PubMed/NCBI

72 

Michalaki V, Syrigos K, Charles P and Waxman J: Serum levels of IL-6 and TNF-alpha correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer. 90:2312–2316. 2004. View Article : Google Scholar

73 

Balkwill F: Tumour necrosis factor and cancer. Nat Rev Cancer. 9:361–371. 2009. View Article : Google Scholar

74 

Liu W, Liu Y, Fu Q, Zhou L, Chang Y, Xu L, Zhang W and Xu J: Elevated expression of IFN-inducible CXCR3 ligands predicts poor prognosis in patients with non-metastatic clear-cell renal cell carcinoma. Oncotarget. 7:13976–13983. 2016. View Article : Google Scholar

75 

Choueiri TK, Atkins MB, Rose TL, Alter RS, Ju Y, Niland K, Wang Y, Arbeit R, Parasuraman S, Gan L, et al: A phase 1b trial of the CXCR4 inhibitor mavorixafor and nivolumab in advanced renal cell carcinoma patients with no prior response to nivolumab monotherapy. Invest New Drugs. 39:1019–1027. 2021. View Article : Google Scholar : PubMed/NCBI

76 

Jiang P, Yueguo W, Huiming H, Hongxiang Y, Mei W and Ju S: B-Lymphocyte stimulator: A new biomarker for multiple myeloma. Eur J Haematol. 82:267–276. 2009. View Article : Google Scholar : PubMed/NCBI

77 

Nardelli B, Moore PA, Li Y and Hilbert DM: B lymphocyte stimulator (BLyS): A therapeutic trichotomy for the treatment of B lymphocyte diseases. Leuk Lymphoma. 43:1367–1373. 2002. View Article : Google Scholar : PubMed/NCBI

78 

Shivakumar L and Ansell S: Targeting B-lymphocyte stimulator/B-cell activating factor and a proliferation-inducing ligand in hematologic malignancies. Clin Lymphoma Myeloma. 7:106–108. 2006. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang X, Wu F, Deng Y, Chai J, Zhang Y, He G and Li X: Increased expression of PSME2 is associated with clear cell renal cell carcinoma invasion by regulating BNIP3‑mediated autophagy. Int J Oncol 59: 106, 2021.
APA
Wang, X., Wu, F., Deng, Y., Chai, J., Zhang, Y., He, G., & Li, X. (2021). Increased expression of PSME2 is associated with clear cell renal cell carcinoma invasion by regulating BNIP3‑mediated autophagy. International Journal of Oncology, 59, 106. https://doi.org/10.3892/ijo.2021.5286
MLA
Wang, X., Wu, F., Deng, Y., Chai, J., Zhang, Y., He, G., Li, X."Increased expression of PSME2 is associated with clear cell renal cell carcinoma invasion by regulating BNIP3‑mediated autophagy". International Journal of Oncology 59.6 (2021): 106.
Chicago
Wang, X., Wu, F., Deng, Y., Chai, J., Zhang, Y., He, G., Li, X."Increased expression of PSME2 is associated with clear cell renal cell carcinoma invasion by regulating BNIP3‑mediated autophagy". International Journal of Oncology 59, no. 6 (2021): 106. https://doi.org/10.3892/ijo.2021.5286
Copy and paste a formatted citation
x
Spandidos Publications style
Wang X, Wu F, Deng Y, Chai J, Zhang Y, He G and Li X: Increased expression of PSME2 is associated with clear cell renal cell carcinoma invasion by regulating BNIP3‑mediated autophagy. Int J Oncol 59: 106, 2021.
APA
Wang, X., Wu, F., Deng, Y., Chai, J., Zhang, Y., He, G., & Li, X. (2021). Increased expression of PSME2 is associated with clear cell renal cell carcinoma invasion by regulating BNIP3‑mediated autophagy. International Journal of Oncology, 59, 106. https://doi.org/10.3892/ijo.2021.5286
MLA
Wang, X., Wu, F., Deng, Y., Chai, J., Zhang, Y., He, G., Li, X."Increased expression of PSME2 is associated with clear cell renal cell carcinoma invasion by regulating BNIP3‑mediated autophagy". International Journal of Oncology 59.6 (2021): 106.
Chicago
Wang, X., Wu, F., Deng, Y., Chai, J., Zhang, Y., He, G., Li, X."Increased expression of PSME2 is associated with clear cell renal cell carcinoma invasion by regulating BNIP3‑mediated autophagy". International Journal of Oncology 59, no. 6 (2021): 106. https://doi.org/10.3892/ijo.2021.5286
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team