Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
December-2021 Volume 59 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2021 Volume 59 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Epigenetic modifications in acute myeloid leukemia: The emerging role of circular RNAs (Review)

  • Authors:
    • Mohammed Awal Issah
    • Dansen Wu
    • Feng Zhang
    • Weili Zheng
    • Yanquan Liu
    • Haiying Fu
    • Huarong Zhou
    • Rong Chen
    • Jianzhen Shen
  • View Affiliations / Copyright

    Affiliations: Fujian Institute of Hematology, Fujian Medical Center of Hematology, Clinical Research Center for Hematological Malignancies of Fujian Province, Fuzhou, Fujian 350001, P.R. China, Medical Intensive Care Unit, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
    Copyright: © Issah et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 107
    |
    Published online on: November 17, 2021
       https://doi.org/10.3892/ijo.2021.5287
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Canonical epigenetic modifications, which include histone modification, chromatin remodeling and DNA methylation, play key roles in numerous cellular processes. Epigenetics underlies how cells that posses DNA with similar sequences develop into different cell types with different functions in an organism. Earlier epigenetic research has primarily been focused at the chromatin level. However, the number of studies on epigenetic modifications of RNA, such as N1‑methyladenosine, 2'‑O‑ribosemethylation, inosine, 5‑methylcytidine, N6‑methyladenosine (m6A) and pseudouridine, has seen an increase. Circular RNAs (circRNAs), a type of RNA species that lacks a 5' cap or 3' poly(A) tail, are abundantly expressed in acute myeloid leukemia (AML) and may regulate disease progression. circRNAs possess various functions, including microRNA sponging, gene transcription regulation and RNA‑binding protein interaction. Furthermore, circRNAs are m6A methylated in other types of cancer, such as colorectal and hypopharyngeal squamous cell cancers. Therefore, the critical roles of circRNA epigenetic modifications, particularly m6A, and their possible involvement in AML are discussed in the present review. Epigenetic modification of circRNAs may become a diagnostic and therapeutic target for AML in the future.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Chen LL and Yang L: Regulation of circRNA biogenesis. RNA Biol. 12:381–388. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Dong Y, He D, Peng Z, Peng W, Shi W, Wang J, Li B, Zhang C and Duan C: Circular RNAs in cancer: An emerging key player. J Hematol Oncol. 10:22017. View Article : Google Scholar

4 

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak S, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Dupont C, Armant DR and Brenner CA: Epigenetics: Definition, mechanisms and clinical perspective. Semin Reprod Med. 27:351–357. 2009. View Article : Google Scholar :

7 

Bolisetty MT and Graveley BR: Circuitous route to transcription regulation. Mol Cell. 51:705–706. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Suzuki H and Tsukahara T: A view of pre-mRNA splicing from RNase R resistant RNAs. Int J Mol Sci. 15:9331–9342. 2014. View Article : Google Scholar :

9 

Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013. View Article : Google Scholar

10 

Gruner H, Cortés-López M, Cooper DA, Bauer M and Miura P: CircRNA accumulation in the aging mouse brain. Sci Rep. 6:389072016. View Article : Google Scholar : PubMed/NCBI

11 

Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar

12 

Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and Kadener S: CircRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 56:55–66. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P and Wu M: CircRNA: Functions and properties of a novel potential biomarker for cancer. Mol Cancer. 16:942017. View Article : Google Scholar

15 

Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27:626–641. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Zhou C, Molinie B, Daneshvar K, Pondick JV, Wang J, Van Wittenberghe N, Xing Y, Giallourakis CC and Mullen AC: Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep. 20:2262–2276. 2017. View Article : Google Scholar

17 

Gapp K, Woldemichael BT, Bohacek J and Mansuy IM: Epigenetic regulation in neurodevelopment and neurodegenerative diseases. Neuroscience. 264:99–111. 2014. View Article : Google Scholar

18 

Trowbridge JJ, Snow JW, Kim J and Orkin SH: DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell. 5:442–449. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Harman MF and Martín MG: Epigenetic mechanisms related to cognitive decline during aging. J Neurosci Res. 98:234–246. 2020. View Article : Google Scholar

20 

Feinberg AP and Tycko B: The history of cancer epigenetics. Nat Rev Cancer. 4:143–153. 2004. View Article : Google Scholar : PubMed/NCBI

21 

Jones PA: Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet. 13:484–492. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Hájková H, Marková J, Haškovec C, Šárová I, Fuchs O, Kostečka A, Cetkovský P, Michalová K and Schwarz J: Decreased DNA methylation in acute myeloid leukemia patients with DNMT3A mutations and prognostic implications of DNA methylation. Leuk Res. 36:1128–1133. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Bröske AM, Vockentanz L, Kharazi S, Huska MR, Mancini E, Scheller M, Kuhl C, Enns A, Prinz M, Jaenisch R, et al: DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet. 41:1207–1215. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Bock C, Beerman I, Lien WH, Smith ZD, Gu H, Boyle P, Gnirke A, Fuchs E, Rossi DJ and Meissner A: DNA methylation dynamics during in vivo differentiation of blood and skin stem cells. Mol Cell. 47:633–647. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Hodges E, Molaro A, Dos Santos CO, Thekkat P, Song Q, Uren PJ, Park J, Butler J, Rafii S, McCombie WR, et al: Directional DNA methylation changes and complex intermediate states accompany lineage specificity in the adult hematopoietic compartment. Mol Cell. 44:17–28. 2011. View Article : Google Scholar

26 

Hogart A, Lichtenberg J, Ajay SS, Anderson S; NIH Intramural Sequencing Center; Margulies EH and Bodine DM: Genome-wide DNA methylation profiles in hematopoietic stem and progenitor cells reveal overrepresentation of ETS transcription factor binding sites. Genome Res. 22:1407–1418. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Tadokoro Y, Ema H, Okano M, Li E and Nakauchi H: De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells. J Exp Med. 204:715–722. 2007. View Article : Google Scholar :

28 

Jiang Y, Dunbar A, Gondek LP, Mohan S, Rataul M, O'Keefe C, Sekeres M, Saunthararajah Y and Maciejewski JP: Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood. 113:1315–1325. 2009. View Article : Google Scholar :

29 

Chen J, Odenike O and Rowley JD: Leukaemogenesis: More than mutant genes. Nat Rev Cancer. 10:23–36. 2010. View Article : Google Scholar

30 

Schoofs T, Berdel WE and Müller-Tidow C: Origins of aberrant DNA methylation in acute myeloid leukemia. Leukemia. 28:1–14. 2014. View Article : Google Scholar

31 

Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ, Schifano E, Booth J, van Putten W, Skrabanek L, et al: DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell. 17:13–27. 2010. View Article : Google Scholar :

32 

Cole CB, Verdoni AM, Ketkar S, Leight ER, Russler-Germain DA, Lamprecht TL, Demeter RT, Magrini V and Ley TJ: PML-RARA requires DNA methyltransferase 3A to initiate acute promyelocytic leukemia. J Clin Invest. 126:85–98. 2016. View Article : Google Scholar :

33 

Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson AG, Hoadley K, Triche TJ Jr, Laird PW, Batty JD, et al: Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 368:2059–2074. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Thol F, Damm F, Lüdeking A, Winschel C, Wagner K, Morgan M, Yun H, Göhring G, Schlegelberger B, Hoelzer D, et al: Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia. J Clin Oncol. 29:2889–2896. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Marková J, Michková P, Burčková K, Březinová J, Michalová K, Dohnalová A, Maaloufová JS, Soukup P, Vítek A, Cetkovský P and Schwarz J: Prognostic impact of DNMT3A mutations in patients with intermediate cytogenetic risk profile acute myeloid leukemia. Eur J Haematol. 88:128–135. 2012. View Article : Google Scholar

36 

Alvarez S, Suela J, Valencia A, Fernández A, Wunderlich M, Agirre X, Prósper F, Martín-Subero JI, Maiques A, Acquadro F, et al: DNA methylation profiles and their relationship with cytogenetic status in adult acute myeloid leukemia. PLoS One. 5:e121972010. View Article : Google Scholar : PubMed/NCBI

37 

Akalin A, Garrett-Bakelman FE, Kormaksson M, Busuttil J, Zhang L, Khrebtukova I, Milne TA, Huang Y, Biswas D, Hess JL, et al: Base-pair resolution DNA methylation sequencing reveals profoundly divergent epigenetic landscapes in acute myeloid leukemia. PLoS Genet. 8:e10027812012. View Article : Google Scholar :

38 

Cimmino L, Dawlaty MM, Ndiaye-Lobry D, Yap YS, Bakogianni S, Yu Y, Bhattacharyya S, Shaknovich R, Geng H, Lobry C, et al: Erratum: TET1 is a tumor suppressor of hematopoietic malignancy. Nat Immunol. 16:8892015. View Article : Google Scholar

39 

Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, Figueroa ME, Vasanthakumar A, Patel J, Zhao X, et al: Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 20:11–24. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Li Z, Cai X, Cai CL, Wang J, Zhang W, Petersen BE, Yang FC and Xu M: Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood. 118:4509–4518. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel J, Wadleigh M, Malinge S, Yao J, Kilpivaara O, Bhat R, et al: Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood. 114:144–147. 2009. View Article : Google Scholar :

42 

Tefferi A, Lim KH, Abdel-Wahab O, Lasho TL, Patel J, Patnaik MM, Hanson CA, Pardanani A, Gilliland DG and Levine RL: Detection of mutant TET2 in myeloid malignancies other than myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML. Leukemia. 23:1343–1345. 2009. View Article : Google Scholar : PubMed/NCBI

43 

Bacher U, Haferlach C, Schnittger S, Kohlmann A, Kern W and Haferlach T: Mutations of the TET2 and CBL genes: Novel molecular markers in myeloid malignancies. Ann Hematol. 89:643–652. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Sato H, Wheat JC, Steidl U and Ito K: DNMT3A and TET2 in the pre-leukemic phase of hematopoietic disorders. Front Oncol. 6:1872016. View Article : Google Scholar : PubMed/NCBI

45 

Chan SM and Majeti R: Role of DNMT3A, TET2, and IDH1/2 mutations in pre-leukemic stem cells in acute myeloid leukemia. Int J Hematol. 98:648–657. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Weissmann S, Alpermann T, Grossmann V, Kowarsch A, Nadarajah N, Eder C, Dicker F, Fasan A, Haferlach C, Haferlach T, et al: Landscape of TET2 mutations in acute myeloid leukemia. Leukemia. 26:934–942. 2012. View Article : Google Scholar

47 

Shih AH, Jiang Y, Meydan C, Shank K, Pandey S, Barreyro L, Antony-Debre I, Viale A, Socci N, Sun Y, et al: Mutational cooperativity linked to combinatorial epigenetic gain of function in acute myeloid leukemia. Cancer Cell. 27:502–515. 2015. View Article : Google Scholar

48 

Rasmussen KD, Jia G, Johansen JV, Pedersen MT, Rapin N, Bagger F, Porse BT, Bernard OA, Christensen J, Helin K, et al: Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes Dev. 29:910–922. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Berger SL: The complex language of chromatin regulation during transcription. Nature. 447:407–412. 2007. View Article : Google Scholar : PubMed/NCBI

50 

Podobinska M, Szablowska-Gadomska I, Augustyniak J, Sandvig I, Sandvig A and Buzanska L: Epigenetic modulation of stem cells in neurodevelopment: The role of methylation and acetylation. Front Cell Neurosci. 11:232017. View Article : Google Scholar : PubMed/NCBI

51 

Zhang Y, Gilquin B, Khochbin S and Matthias P: Two catalytic domains are required for protein deacetylation. J Biol Chem. 281:2401–2404. 2006. View Article : Google Scholar

52 

Uchida T, Kinoshita T, Nagai H, Nakahara Y, Saito H, Hotta T and Murate T: Hypermethylation of the p15INK4B gene in myelodysplastic syndromes. Blood. 90:1403–1409. 1997. View Article : Google Scholar : PubMed/NCBI

53 

Melki JR, Vincent PC and Clark SJ: Concurrent DNA hyper-methylation of multiple genes in acute myeloid leukemia. Cancer Res. 59:3730–3740. 1999.PubMed/NCBI

54 

Herman JG, Jen J, Merlo A and Baylin SB: Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B. Cancer Res. 56:722–727. 1996.PubMed/NCBI

55 

Jenuwein T: Translating the histone code. Science. 293:1074–1080. 2001. View Article : Google Scholar : PubMed/NCBI

56 

van Dijk AD, Hu CW, de Bont ESJM, Qiu Y, Hoff FW, Yoo SY, Coombes KR, Qutub AA and Kornblau SM: Histone modification patterns using RPPA-based profiling predict outcome in acute myeloid leukemia patients. Proteomics. 18:17003792018. View Article : Google Scholar

57 

Zaghlool A, Halvardson J, Zhao JJ, Etemadikhah M, Kalushkova A, Konska K, Jernberg-Wiklund H, Thuresson AC and Feuk L: A role for the chromatin-remodeling factor BAZ1A in neurodevelopment. Hum Mutat. 37:964–975. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Olave IA, Reck-Peterson SL and Crabtree GR: Nuclear actin and actin-related proteins in chromatin remodeling. Annu Rev Biochem. 71:755–781. 2002. View Article : Google Scholar

59 

Choi KY, Yoo M and Han JH: Toward understanding the role of the neuron-specific BAF chromatin remodeling complex in memory formation. Exp Mol Med. 47:e1552015. View Article : Google Scholar : PubMed/NCBI

60 

Redner RL, Wang J and Liu JM: Chromatin remodeling and leukemia: New therapeutic paradigms. Blood. 94:417–428. 1999. View Article : Google Scholar

61 

Sperlazza J, Rahmani M, Beckta J, Aust M, Hawkins E, Wang SZ, Zu Zhu S, Podder S, Dumur C, Archer K, et al: Depletion of the chromatin remodeler CHD4 sensitizes AML blasts to genotoxic agents and reduces tumor formation. Blood. 126:1462–1472. 2015. View Article : Google Scholar

62 

Denslow SA and Wade PA: The human Mi-2/NuRD complex and gene regulation. Oncogene. 26:5433–5438. 2007. View Article : Google Scholar

63 

D'Alesio C, Punzi S, Cicalese A, Fornasari L, Furia L, Riva L, Carugo A, Curigliano G, Criscitiello C, Pruneri G, et al: RNAi screens identify CHD4 as an essential gene in breast cancer growth. Oncotarget. 7:80901–80915. 2016. View Article : Google Scholar : PubMed/NCBI

64 

O'Shaughnessy A and Hendrich B: CHD4 in the DNA-damage response and cell cycle progression: Not so NuRDy now. Biochem Soc Trans. 41:777–782. 2013. View Article : Google Scholar :

65 

Polo SE, Kaidi A, Baskcomb L, Galanty Y and Jackson SP: Regulation of DNA-damage responses and cell-cycle progression by the chromatin remodelling factor CHD4. EMBO J. 29:3130–3139. 2010. View Article : Google Scholar :

66 

Xia L, Huang W, Bellani M, Seidman MM, Wu K, Fan D, Nie Y, Cai Y, Zhang YW, Yu LR, et al: CHD4 has oncogenic functions in initiating and maintaining epigenetic suppression of multiple tumor suppressor genes. Cancer Cell. 31:653–668.e7. 2017. View Article : Google Scholar :

67 

Heshmati Y, Türköz G, Harisankar A, Kharazi S, Boström J, Dolatabadi EK, Krstic A, Chang D, Månsson R, Altun M, et al: The chromatin-remodeling factor CHD4 is required for maintenance of childhood acute myeloid leukemia. Haematologica. 103:1169–1181. 2018. View Article : Google Scholar :

68 

Zhen T, Kwon EM, Zhao L, Hsu J, Hyde RK, Lu Y, Alemu L, Speck NA and Liu PP: Chd7 deficiency delays leukemogenesis in mice induced by Cbfb-MYH11. Blood. 130:2431–2442. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Fazi F, Racanicchi S, Zardo G, Starnes LM, Mancini M, Travaglini L, Diverio D, Ammatuna E, Cimino G, Lo-Coco F, et al: Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell. 12:457–466. 2007. View Article : Google Scholar

70 

Li Y, Gao L, Luo X, Wang L, Gao X, Wang W, Sun J, Dou L, Li J, Xu C, et al: Epigenetic silencing of microRNA-193a contributes to leukemogenesis in t(8;21) acute myeloid leukemia by activating the PTEN/PI3K signal pathway. Blood. 121:499–509. 2013. View Article : Google Scholar

71 

Berger SL, Kouzarides T, Shiekhattar R and Shilatifard A: An operational definition of epigenetics. Genes Dev. 23:781–783. 2009. View Article : Google Scholar : PubMed/NCBI

72 

Sun WJ, Li JH, Liu S, Wu J, Zhou H, Qu LH and Yang JH: RMBase: A resource for decoding the landscape of RNA modifications from high-throughput sequencing data. Nucleic Acids Res. 44:D259–D265. 2016. View Article : Google Scholar :

73 

Lee M, Kim B and Kim VN: Emerging roles of RNA modification: m6A and U-tail. Cell. 158:980–987. 2014. View Article : Google Scholar

74 

Flamand MN and Meyer KD: The epitranscriptome and synaptic plasticity. Curr Opin Neurobiol. 59:41–48. 2019. View Article : Google Scholar

75 

Maden BE: The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog Nucleic Acid Res Mol Biol. 39:241–303. 1990. View Article : Google Scholar

76 

Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, et al: N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 505:117–120. 2014. View Article : Google Scholar

77 

Zhang X and Jia GF: RNA epigenetic modification: N6-methyladenosine. Yi Chuan. 38:275–288. 2016.

78 

Wei CM, Gershowitz A and Moss B: Methylated nucleotides block 5′ terminus of HeLa cell messenger RNA. Cell. 4:379–386. 1975. View Article : Google Scholar : PubMed/NCBI

79 

Niu Y, Zhao X, Wu YS, Li MM, Wang XJ and Yang YG: N6-methyl-adenosine (m6A) in RNA: An old modification with a novel epigenetic function. Genomics Proteomics Bioinformatics. 11:8–17. 2013. View Article : Google Scholar

80 

Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE and Jaffrey SR: Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell. 149:1635–1646. 2012. View Article : Google Scholar : PubMed/NCBI

81 

Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, et al: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 485:201–206. 2012. View Article : Google Scholar

82 

Chen K, Lu Z, Wang X, Fu Y, Luo GZ, Liu N, Han D, Dominissini D, Dai Q, Pan T and He C: High-resolution N(6)-methyladenosine (m(6) A) map using photo-crosslinking-assisted m(6) A sequencing. Angew Chemie Int Ed. 54:1587–1590. 2015. View Article : Google Scholar

83 

Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE and Jaffrey SR: Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 12:767–772. 2015. View Article : Google Scholar : PubMed/NCBI

84 

Roundtree IA and He C: RNA epigenetics-chemical messages for posttranscriptional gene regulation. Curr Opin Chem Biol. 30:46–51. 2016. View Article : Google Scholar

85 

Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, et al: Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24:177–189. 2014. View Article : Google Scholar : PubMed/NCBI

86 

Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, et al: A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 10:93–95. 2014. View Article : Google Scholar :

87 

Bokar JA, Rath-Shambaugh ME, Ludwiczak R, Narayan P and Rottman F: Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J Biol Chem. 269:17697–17704. 1994. View Article : Google Scholar

88 

Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K, Bushkin GG, Mertins P, Ter-Ovanesyan D, Habib N, Cacchiarelli D, et al: Perturbation of m6A writers reveals two distinct classes of mrna methylation at internal and 5′ sites. Cell Rep. 8:284–296. 2014. View Article : Google Scholar : PubMed/NCBI

89 

Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ, Mele A, Haripal B, Zucker-Scharff I, Moore MJ, Park CY, et al: A majority of m 6 A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev. 29:2037–2053. 2015. View Article : Google Scholar

90 

Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB and Jaffrey SR: 5′ UTR m6A promotes cap-independent translation. Cell. 163:999–1010. 2015. View Article : Google Scholar : PubMed/NCBI

91 

Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR and Qian SB: Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature. 526:591–594. 2015. View Article : Google Scholar : PubMed/NCBI

92 

Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y, Tu BP and Conrad NK: The U6 snRNA m 6 A methyltransferase METTL16 regulates SAM synthetase intron retention. Cell. 169:824–835.e14. 2017. View Article : Google Scholar

93 

Dina C, Meyre D, Gallina S, Durand E, Körner A, Jacobson P, Carlsson LMS, Kiess W, Vatin V, Lecoeur C, et al: Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. 39:724–726. 2007. View Article : Google Scholar

94 

Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG and He C: N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 7:885–887. 2011. View Article : Google Scholar : PubMed/NCBI

95 

Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, et al: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 49:18–29. 2013. View Article : Google Scholar :

96 

Fu Y, Jia G, Pang X, Wang RN, Wang X, Li CJ, Smemo S, Dai Q, Bailey KA, Nobrega MA, et al: FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nat Commun. 4:17982013. View Article : Google Scholar

97 

Zhao X, Yang Y, Sun BF, Shi Y, Yang X, Xiao W, Hao YJ, Ping XL, Chen YS, Wang WJ, et al: FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res. 24:1403–1419. 2014. View Article : Google Scholar : PubMed/NCBI

98 

Hess ME, Hess S, Meyer KD, Verhagen LAW, Koch L, Brönneke HS, Dietrich MO, Jordan SD, Saletore Y, Elemento O, et al: The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat Neurosci. 16:1042–1048. 2013. View Article : Google Scholar

99 

Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon-Divon M, Hershkovitz V, Peer E, Mor N, Manor YS, et al: Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science. 347:1002–1006. 2015. View Article : Google Scholar : PubMed/NCBI

100 

Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, Huang H, Nachtergaele S, Dong L, Hu C, et al: FTO plays an oncogenic role in acute myeloid leukemia as a 6-methyladenosine RNA demethylase. Cancer Cell. 31:127–141. 2017. View Article : Google Scholar

101 

Jaffrey SR and Kharas MG: Emerging links between m6A and misregulated mRNA methylation in cancer. Genome Med. 9:22017. View Article : Google Scholar :

102 

Zhang Z, Theler D, Kaminska KH, Hiller M, de la Grange P, Pudimat R, Rafalska I, Heinrich B, Bujnicki JM, Allain FHT and Stamm S: The YTH domain is a novel RNA binding domain. J Biol Chem. 285:14701–14710. 2010. View Article : Google Scholar :

103 

Xu C, Wang X, Liu K, Roundtree IA, Tempel W, Li Y, Lu Z, He C and Min J: Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat Chem Biol. 10:927–929. 2014. View Article : Google Scholar

104 

Luo S and Tong L: Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain. Proc Natl Acad Sci USA. 111:13834–13839. 2014. View Article : Google Scholar

105 

Zhu T, Roundtree IA, Wang P, Wang X, Wang L, Sun C, Tian Y, Li J, He C and Xu Y: Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine. Cell Res. 24:1493–1496. 2014. View Article : Google Scholar : PubMed/NCBI

106 

Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H and He C: N6-methyladenosine modulates messenger RNA translation efficiency. Cell. 161:1388–1399. 2015. View Article : Google Scholar

107 

Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z and Zhao JC: N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol. 16:191–198. 2014. View Article : Google Scholar : PubMed/NCBI

108 

Fustin JM, Doi M, Yamaguchi Y, Hida H, Nishimura S, Yoshida M, Isagawa T, Morioka MS, Kakeya H, Manabe I and Okamura H: RNA-methylation-dependent rna processing controls the speed of the circadian clock. Cell. 155:793–806. 2013. View Article : Google Scholar

109 

Alarcón CR, Lee H, Goodarzi H, Halberg N and Tavazoie SF: N6-methyladenosine marks primary microRNAs for processing. Nature. 519:482–485. 2015. View Article : Google Scholar : PubMed/NCBI

110 

Chen T, Hao YJ, Zhang Y, Li MM, Wang M, Han W, Wu Y, Lv Y, Hao J, Wang L, et al: m6A RNA methylation is regulated by MicroRNAs and promotes reprogramming to pluripotency. Cell Stem Cell. 16:289–301. 2015. View Article : Google Scholar : PubMed/NCBI

111 

Liu N, Dai Q, Zheng G, He C, Parisien M and Pan T: N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. 518:560–564. 2015. View Article : Google Scholar

112 

Klungland A and Dahl JA: Dynamic RNA modifications in disease. Curr Opin Genet Dev. 26:47–52. 2014. View Article : Google Scholar

113 

Kwok CT, Marshall AD, Rasko JEJ and Wong JJL: Erratum to: Genetic alterations of m6A regulators predict poorer survival in acute myeloid leukemia. J Hematol Oncol. 10:492017. View Article : Google Scholar :

114 

Su R, Dong L, Li C, Nachtergaele S, Wunderlich M, Qing Y, Deng X, Wang Y, Weng X, Hu C, et al: R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA signaling. Cell. 172:90–105.e23. 2018. View Article : Google Scholar

115 

Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, Chou T, Chow A, Saletore Y, MacKay M, et al: The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 23:1369–1376. 2017. View Article : Google Scholar

116 

Weng H, Huang H, Wu H, Qin X, Zhao BS, Dong L, Shi H, Skibbe J, Shen C, Hu C, et al: METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A modification. Cell Stem Cell. 22:191–205.e9. 2018. View Article : Google Scholar

117 

Chhabra R: miRNA and methylation: A multifaceted liaison. Chembiochem. 16:195–203. 2015. View Article : Google Scholar

118 

Hall RH: Isolation of 3-methyluridine and 3-methylcytidine from soluble ribonucleic acid. Biochem Biophys Res Commun. 12:361–364. 1963. View Article : Google Scholar

119 

Xu L, Liu X, Sheng N, Oo KS, Liang J, Chionh YH, Xu J, Ye F, Gao YG, Dedon PC and Fu XY: Three distinct 3-methylcytidine (m3C) methyltransferases modify tRNA and mRNA in mice and humans. J Biol Chem. 292:14695–14703. 2017. View Article : Google Scholar :

120 

Glasner H, Riml C, Micura R and Breuker K: Label-free, direct localization and relative quantitation of the RNA nucleobase methylations m6A, m5C, m3U, and m5U by top-down mass spectrometry. Nucleic Acids Res. 45:8014–8025. 2017. View Article : Google Scholar :

121 

Li X, Zhu P, Ma S, Song J, Bai J, Sun F and Yi C: Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat Chem Biol. 11:592–597. 2015. View Article : Google Scholar

122 

Charette M and Gray MW: Pseudouridine in RNA: What, where, how, and why. IUBMB Life. 49:341–351. 2000. View Article : Google Scholar : PubMed/NCBI

123 

Ofengand J: Ribosomal RNA pseudouridines and pseudouridine synthases. FEBS Lett. 514:17–25. 2002. View Article : Google Scholar

124 

Jack K, Bellodi C, Landry DM, Niederer RO, Meskauskas A, Musalgaonkar S, Kopmar N, Krasnykh O, Dean AM, Thompson SR, et al: rRNA pseudouridylation defects affect ribosomal ligand binding and translational fidelity from yeast to human cells. Mol Cell. 44:660–666. 2011. View Article : Google Scholar : PubMed/NCBI

125 

Kiss T, Fayet-Lebaron E and Jády BE: Box H/ACA small ribonucleoproteins. Mol Cell. 37:597–606. 2010. View Article : Google Scholar

126 

Yu AT, Ge J and Yu YT: Pseudouridines in spliceosomal snRNAs. Protein Cell. 2:712–725. 2011. View Article : Google Scholar : PubMed/NCBI

127 

Karijolich J and Yu YT: Converting nonsense codons into sense codons by targeted pseudouridylation. Nature. 474:395–398. 2011. View Article : Google Scholar : PubMed/NCBI

128 

Rosselló-Tortella M, Ferrer G and Esteller M: Epitranscriptomics in hematopoiesis and hematologic malignancies. Blood Cancer Discov. 1:26–31. 2020. View Article : Google Scholar

129 

Alseth I, Dalhus B and Bjørås M: Inosine in DNA and RNA. Curr Opin Genet Dev. 26:116–123. 2014. View Article : Google Scholar : PubMed/NCBI

130 

Bass BL, Nishikura K, Keller W, Seeburg PH, Emeson RB, O'Connell MA, Samuel CE and Herbert A: A standardized nomenclature for adenosine deaminases that act on RNA. RNA. 3:947–949. 1997.

131 

Li X, Yang L and Chen LL: The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 71:428–442. 2018. View Article : Google Scholar

132 

Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al: Circ-ZNF609 is a circular rna that can be translated and functions in myogenesis. Mol Cell. 66:22–37.e9. 2017. View Article : Google Scholar : PubMed/NCBI

133 

Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, et al: Translation of CircRNAs. Mol Cell. 66:9–21.e7. 2017. View Article : Google Scholar :

134 

Haimov O, Sinvani H and Dikstein R: Cap-dependent, scanning-free translation initiation mechanisms. Biochim Biophys Acta. 1849:1313–1318. 2015. View Article : Google Scholar : PubMed/NCBI

135 

Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, et al: Novel role of FBXW7 Circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst. 110:304–315. 2018. View Article : Google Scholar :

136 

Zhang M, Huang N, Yang X, Luo J, Yan S, Xiao F, Chen W, Gao X, Zhao K, Zhou H, et al: A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene. 37:1805–1814. 2018. View Article : Google Scholar : PubMed/NCBI

137 

Liang WC, Wong CW, Liang PP, Shi M, Cao Y, Rao ST, Tsui SKW, Waye MMY, Zhang Q, Fu WM and Zhang JF: Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the wnt pathway. Genome Biol. 20:842019. View Article : Google Scholar

138 

Huang X, He M, Huang S, Lin R, Zhan M, Yang D, Shen H, Xu S, Cheng W, Yu J, et al: Circular RNA circERBB2 promotes gallbladder cancer progression by regulating PA2G4-dependent rDNA transcription. Mol Cancer. 18:1662019. View Article : Google Scholar

139 

Chen RX, Chen X, Xia LP, Zhang JX, Pan ZZ, Ma XD, Han K, Chen JW, Judde JG, Deas O, et al: 6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun. 10:46952019. View Article : Google Scholar

140 

Wu P, Fang X, Liu Y, Tang Y, Wang W, Li X and Fan Y: N6-methyladenosine modification of circCUX1 confers radio-resistance of hypopharyngeal squamous cell carcinoma through caspase1 pathway. Cell Death Dis. 12:2982021. View Article : Google Scholar

141 

Park OH, Ha H, Lee Y, Boo SH, Kwon DH, Song HK and Kim YK: Endoribonucleolytic cleavage of m6A-containing RNAs by RNase P/MRP complex. Mol Cell. 74:494–507.e8. 2019. View Article : Google Scholar

142 

Zhang L, Hou C, Chen C, Guo Y, Yuan W, Yin D, Liu J and Sun Z: The role of N6-methyladenosine (m6A) modification in the regulation of circRNAs. Mol Cancer. 19:1052020. View Article : Google Scholar

143 

Chen YG, Chen R, Ahmad S, Verma R, Kasturi SP, Amaya L, Broughton JP, Kim J, Cadena C, Pulendran B, et al: N6-methyladenosine modification controls circular RNA immunity. Mol Cell. 76:96–109.e9. 2019. View Article : Google Scholar

144 

Lux S, Blätte TJ, Gillissen B, Richter A, Cocciardi S, Skambraks S, Schwarz K, Schrezenmeier H, Döhner H, Döhner K, et al: Deregulated expression of circular RNAs in acute myeloid leukemia. Blood Adv. 5:1490–1503. 2021. View Article : Google Scholar : PubMed/NCBI

145 

Bell CC, Fennell KA, Chan YC, Rambow F, Yeung MM, Vassiliadis D, Lara L, Yeh P, Martelotto LG, Rogiers A, et al: Targeting enhancer switching overcomes non-genetic drug resistance in acute myeloid leukaemia. Nat Commun. 10:27232019. View Article : Google Scholar :

146 

Arteaga CL and Engelman JA: ERBB receptors: From oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell. 25:282–303. 2014. View Article : Google Scholar :

147 

Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA and Goodall GJ: The RNA binding protein quaking regulates formation of circRNAs. Cell. 160:1125–1134. 2015. View Article : Google Scholar

148 

L'Abbate A, Tolomeo D, Cifola I, Severgnini M, Turchiano A, Augello B, Squeo G, D'Addabbo P, Traversa D, Daniele G, et al: MYC-containing amplicons in acute myeloid leukemia: Genomic structures, evolution, and transcriptional consequences. Leukemia. 32:2152–2166. 2018. View Article : Google Scholar

149 

Guarnerio J, Bezzi M, Jeong JC, Paffenholz SV, Berry K, Naldini MM, Lo-Coco F, Tay Y, Beck AH and Pandolfi PP: Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell. 165:289–302. 2016. View Article : Google Scholar

150 

Wu DM, Wen X, Han XR, Wang S, Wang YJ, Shen M, Fan SH, Zhang ZF, Shan Q, Li MQ, et al: Role of circular RNA DLEU2 in human acute myeloid leukemia. Mol Cell Biol. 38:e00259–e00218. 2018. View Article : Google Scholar : PubMed/NCBI

151 

Ping L, Jian-Jun C, Chu-Shu L, Guang-Hua L and Ming Z: Silencing of circ_0009910 inhibits acute myeloid leukemia cell growth through increasing miR-20a-5p. Blood Cells Mol Dis. 75:41–47. 2019. View Article : Google Scholar

152 

Fan H, Li Y, Liu C, Liu Y, Bai J and Li W: Circular RNA-100290 promotes cell proliferation and inhibits apoptosis in acute myeloid leukemia cells via sponging miR-203. Biochem Biophys Res Commun. 507:178–184. 2018. View Article : Google Scholar : PubMed/NCBI

153 

Chen H, Liu T, Liu J, Feng Y, Wang B, Wang J, Bai J, Zhao W, Shen Y, Wang X, et al: Circ-ANAPC7 is upregulated in acute myeloid leukemia and appears to target the miR-181 family. Cell Physiol Biochem. 47:1998–2007. 2018. View Article : Google Scholar : PubMed/NCBI

154 

Li W, Zhong C, Jiao J, Li P, Cui B, Ji C and Ma D: Characterization of hsa_circ_0004277 as a new biomarker for acute myeloid leukemia via circular RNA profile and bioinformatics analysis. Int J Mol Sci. 18:5972017. View Article : Google Scholar :

155 

Shang J, Chen WM, Wang ZH, Wei TN, Chen ZZ and Wu WB: CircPAN3 mediates drug resistance in acute myeloid leukemia through the miR-153-5p/miR-183-5p-XIAP axis. Exp Hematol. 70:42–54.e3. 2019. View Article : Google Scholar

156 

Hirsch S, Blätte TJ, Grasedieck S, Cocciardi S, Rouhi A, Jongen-Lavrencic M, Paschka P, Krönke J, Gaidzik VI, Döhner H, et al: Circular RNAs of the nucleophosmin (NPM1) gene in acute myeloid leukemia. Haematologica. 102:2039–2047. 2017. View Article : Google Scholar : PubMed/NCBI

157 

Chen LL: The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 17:205–211. 2016. View Article : Google Scholar

158 

Okcanoğlu TB and Gündüz C: Circular RNAs in leukemia (Review). Biomed Rep. 10:87–91. 2019.

159 

Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Sun W, Dou K and Li H: Circular RNA: A new star of noncoding RNAs. Cancer Lett. 365:141–148. 2015. View Article : Google Scholar : PubMed/NCBI

160 

Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K and Gorospe M: CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 13:34–42. 2016. View Article : Google Scholar

161 

Wang E, Lu SX, Pastore A, Chen X, Imig J, Lee SC, Hockemeyer K, Ghebrechristos YE, Yoshimi A, Inoue D, et al: Targeting an RNA-binding protein network in acute myeloid leukemia. Cancer Cell. 35:369–384.e7. 2019. View Article : Google Scholar

162 

Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, Sato Y, Sato-Otsubo A, Kon A, Nagasaki M, et al: Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 478:64–69. 2011. View Article : Google Scholar : PubMed/NCBI

163 

Sun YM, Wang WT, Zeng ZC, Chen TQ, Han C, Pan Q, Huang W, Fang K, Sun LY, Zhou YF, et al: circMYBL2, a circRNA from MYBL2, regulates FLT3 translation by recruiting PTBP1 to promote FLT3-ITD AML progression. Blood. 134:1533–1546. 2019. View Article : Google Scholar

164 

Guil S and Esteller M: Cis-acting noncoding RNAs: Friends and foes. Nat Struct Mol Biol. 19:1068–1075. 2012. View Article : Google Scholar : PubMed/NCBI

165 

Mercer TR and Mattick JS: Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 20:300–307. 2013. View Article : Google Scholar

166 

Conn VM, Hugouvieux V, Nayak A, Conos SA, Capovilla G, Cildir G, Jourdain A, Tergaonkar V, Schmid M, Zubieta C and Conn SJ: A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat Plants. 3:170532017. View Article : Google Scholar : PubMed/NCBI

167 

Schmitz KM, Mayer C, Postepska A and Grummt I: Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev. 24:2264–2269. 2010. View Article : Google Scholar : PubMed/NCBI

168 

Starke S, Jost I, Rossbach O, Schneider T, Schreiner S, Hung LH and Bindereif A: Exon circularization requires canonical splice signals. Cell Rep. 10:103–111. 2015. View Article : Google Scholar

169 

van Rossum D, Verheijen BM and Pasterkamp RJ: Circular RNAs: Novel regulators of neuronal development. Front Mol Neurosci. 9:742016. View Article : Google Scholar : PubMed/NCBI

170 

Chen C, Yuan W, Zhou Q, Shao B, Guo Y, Wang W, Yang S, Guo Y, Zhao L, Dang Q, et al: N6-methyladenosine-induced circ1662 promotes metastasis of colorectal cancer by accelerating YAP1 nuclear localization. Theranostics. 11:4298–4315. 2021. View Article : Google Scholar

171 

Dai F, Wu Y, Lu Y, An C, Zheng X, Dai L, Guo Y, Zhang L, Li H, Xu W and Gao W: Crosstalk between RNA m6A modification and non-coding RNA contributes to cancer growth and progression. Mol Ther Nucleic Acids. 22:62–71. 2020. View Article : Google Scholar

172 

Harding CV, Heuser JE and Stahl PD: Exosomes: Looking back three decades and into the future. J Cell Biol. 200:367–371. 2013. View Article : Google Scholar : PubMed/NCBI

173 

Melo SA, Sugimoto H, O'Connell JT, Kato N, Villanueva A, Vidal A, Qiu L, Vitkin E, Perelman LT, Melo CA, et al: Cancer exosomes perform cell-independent MicroRNA biogenesis and promote tumorigenesis. Cancer Cell. 26:707–721. 2014. View Article : Google Scholar :

174 

Boyiadzis M and Whiteside TL: Exosomes in acute myeloid leukemia inhibit hematopoiesis. Curr Opin Hematol. 25:279–284. 2018. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Issah MA, Wu D, Zhang F, Zheng W, Liu Y, Fu H, Zhou H, Chen R and Shen J: Epigenetic modifications in acute myeloid leukemia: The emerging role of circular RNAs (Review). Int J Oncol 59: 107, 2021.
APA
Issah, M.A., Wu, D., Zhang, F., Zheng, W., Liu, Y., Fu, H. ... Shen, J. (2021). Epigenetic modifications in acute myeloid leukemia: The emerging role of circular RNAs (Review). International Journal of Oncology, 59, 107. https://doi.org/10.3892/ijo.2021.5287
MLA
Issah, M. A., Wu, D., Zhang, F., Zheng, W., Liu, Y., Fu, H., Zhou, H., Chen, R., Shen, J."Epigenetic modifications in acute myeloid leukemia: The emerging role of circular RNAs (Review)". International Journal of Oncology 59.6 (2021): 107.
Chicago
Issah, M. A., Wu, D., Zhang, F., Zheng, W., Liu, Y., Fu, H., Zhou, H., Chen, R., Shen, J."Epigenetic modifications in acute myeloid leukemia: The emerging role of circular RNAs (Review)". International Journal of Oncology 59, no. 6 (2021): 107. https://doi.org/10.3892/ijo.2021.5287
Copy and paste a formatted citation
x
Spandidos Publications style
Issah MA, Wu D, Zhang F, Zheng W, Liu Y, Fu H, Zhou H, Chen R and Shen J: Epigenetic modifications in acute myeloid leukemia: The emerging role of circular RNAs (Review). Int J Oncol 59: 107, 2021.
APA
Issah, M.A., Wu, D., Zhang, F., Zheng, W., Liu, Y., Fu, H. ... Shen, J. (2021). Epigenetic modifications in acute myeloid leukemia: The emerging role of circular RNAs (Review). International Journal of Oncology, 59, 107. https://doi.org/10.3892/ijo.2021.5287
MLA
Issah, M. A., Wu, D., Zhang, F., Zheng, W., Liu, Y., Fu, H., Zhou, H., Chen, R., Shen, J."Epigenetic modifications in acute myeloid leukemia: The emerging role of circular RNAs (Review)". International Journal of Oncology 59.6 (2021): 107.
Chicago
Issah, M. A., Wu, D., Zhang, F., Zheng, W., Liu, Y., Fu, H., Zhou, H., Chen, R., Shen, J."Epigenetic modifications in acute myeloid leukemia: The emerging role of circular RNAs (Review)". International Journal of Oncology 59, no. 6 (2021): 107. https://doi.org/10.3892/ijo.2021.5287
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team