|
1
|
Germing U, Aul C, Niemeyer CM, Haas R and
Bennett JM: Epidemiology, classification and prognosis of adults
and children with myelodysplastic syndromes. Ann Hematol.
87:691–699. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Germing U, Strupp C, Kündgen A, Bowen D,
Aul C, Haas R and Gattermann N: No increase in age-specific
incidence of myelodysplastic syndromes. Haematologica. 89:905–910.
2004.
|
|
3
|
Durrani J and Maciejewski JP: Idiopathic
aplastic anemia vs hypocellular myelodysplastic syndrome.
Hematology Am Soc Hematol Educ Program. 2019:97–104. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Arber DA, Orazi A, Hasserjian R, Thiele J,
Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M and Vardiman JW:
The 2016 revision to the World Health Organization classification
of myeloid neoplasms and acute leukemia. Blood. 127:2391–2405.
2016. View Article : Google Scholar
|
|
5
|
Bono E, McLornan D, Travaglino E, Gandhi
S, Gallì A, Khan AA, Kulasekararaj AG, Boveri E, Raj K, Elena C, et
al: Clinical, histopathological and molecular characterization of
hypoplastic myelodysplastic syndrome. Leukemia. 33:2495–2505. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Huang TC, Ko BS, Tang JL, Hsu C, Chen CY,
Tsay W, Huang SY, Yao M, Chen YC, Shen MC, et al: Comparison of
hypoplastic myelodysplastic syndrome (MDS) with
normo-/hypercellular MDS by International prognostic scoring
system, cytogenetic and genetic studies. Leukemia. 22:544–550.
2008. View Article : Google Scholar
|
|
7
|
Marisavljevic D, Cemerikic V, Rolovic Z,
Boskovic D and Colovic M: Hypocellular myelodysplastic syndromes:
Clinical and biological significance. Med Oncol. 22:169–175. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Yue G, Hao S, Fadare O, Baker S,
Pozdnyakova O, Galili N, Woda BA, Raza A and Wang SA:
Hypocellularity in myelodysplastic syndrome is an independent
factor which predicts a favorable outcome. Leuk Res. 32:553–558.
2008. View Article : Google Scholar
|
|
9
|
Stahl M, DeVeaux M, de Witte T, Neukirchen
J, Sekeres MA, Brunner AM, Roboz GJ, Steensma DP, Bhatt VR,
Platzbecker U, et al: The use of immunosuppressive therapy in MDS:
Clinical outcomes and their predictors in a large international
patient cohort. Blood Adv. 2:1765–1772. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Selleri C, Maciejewski JP, Catalano L,
Ricci P, Andretta C, Luciano L and Rotoli B: Effects of
cyclosporine on hematopoietic and immune functions in patients with
hypoplastic myelodysplasia: In vitro and in vivo studies. Cancer.
95:1911–1922. 2002. View Article : Google Scholar
|
|
11
|
Gil-Perez A and Montalban-Bravo G:
Management of myelodysplastic syndromes after failure of response
to hypomethylating agents. Ther Adv Hematol.
10:20406207198470592019. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Nazha A, Narkhede M, Radivoyevitch T,
Seastone DJ, Patel BJ, Gerds AT, Mukherjee S, Kalaycio M, Advani A,
Przychodzen B, et al: Incorporation of molecular data into the
revised international prognostic scoring system in treated patients
with myelodysplastic syndromes. Leukemia. 30:2214–2220. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Bond DR, Lee HJ and Enjeti AK: Unravelling
the epigenome of myelodysplastic syndrome: Diagnosis, prognosis,
and response to therapy. Cancers (Basel). 12:–3128. 2020.
View Article : Google Scholar
|
|
14
|
Zhou M, Wu L, Zhang Y, Mo W, Li Y, Chen X,
Wang C, Pan S, Xu S, Zhou W, et al: Outcome of allogeneic
hematopoietic stem cell transplantation for hypoplastic
myelodysplastic syndrome. Int J Hematol. 112:825–834. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Issaragrisil S, Kaufman DW, Anderson T,
Chansung K, Leaverton PE, Shapiro S and Young NS: The epidemiology
of aplastic anemia in Thailand. Blood. 107:1299–1307. 2006.
View Article : Google Scholar
|
|
16
|
Shallis RM, Ahmad R and Zeidan AM:
Aplastic anemia: Etiology, molecular pathogenesis, and emerging
concepts. Eur J Haematol. 101:711–720. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Alter BP: Diagnosis, genetics, and
management of inherited bone marrow failure syndromes. Hematology
Am Soc Hematol Educ Program. 2007:29–39. 2007. View Article : Google Scholar
|
|
18
|
Young NS: Aplastic anemia. N Engl J Med.
379:1643–1656. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Afable MG II, Tiu RV and Maciejewski JP:
Clonal evolution in aplastic anemia. Hematology Am Soc Hematol Educ
Program. 2011:90–95. 2011. View Article : Google Scholar
|
|
20
|
Risitano AM: Immunosuppressive therapies
in the management of acquired immune-mediated marrow failures. Curr
Opin Hematol. 19:3–13. 2012. View Article : Google Scholar
|
|
21
|
Koh Y, Lee HR, Kim HK, Kim I, Park S, Park
MH, Kim BK, Yoon SS and Lee DS: Hypoplastic myelodysplastic
syndrome (h-MDS) is a distinctive clinical entity with poorer
prognosis and frequent karyotypic and FISH abnormalities compared
to aplastic anemia (AA). Leuk Res. 34:1344–1350. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Fattizzo B, Dunlop A, Ireland R, Kassam S,
Yallop D, Mufti G, Marsh J and Kulasekararaj A: Prevalence of small
PNH clones and their prognostic significance in patients tested for
unusual indications: A single center experience. Br J Haematol.
185:1252019.
|
|
23
|
Kulasekararaj AG, Jiang J, Smith AE,
Mohamedali AM, Mian S, Gandhi S, Gaken J, Czepulkowski B, Marsh JC
and Mufti GJ: Somatic mutations identify a subgroup of aplastic
anemia patients who progress to myelodysplastic syndrome. Blood.
124:2698–2704. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhu Y, Gao Q, Hu J, Liu X, Guan D and
Zhang F: Allo-HSCT compared with immunosuppressive therapy for
acquired aplastic anemia: A system review and meta-analysis. BMC
Immunol. 21:102020. View Article : Google Scholar :
|
|
25
|
Bennett JM and Orazi A: Diagnostic
criteria to distinguish hypocellular acute myeloid leukemia from
hypocellular myelodysplastic syndromes and aplastic anemia:
Recommendations for a standardized approach. Haematologica.
94:264–268. 2009. View Article : Google Scholar
|
|
26
|
Feng X, Scheinberg P, Wu CO, Samsel L,
Nunez O, Prince C, Ganetzky RD, McCoy JP Jr, Maciejewski JP and
Young NS: Cytokine signature profiles in acquired aplastic anemia
and myelodysplastic syndromes. Haematologica. 96:602–606. 2011.
View Article : Google Scholar :
|
|
27
|
Warlick ED and Smith BD: Myelodysplastic
syndromes: Review of pathophysiology and current novel treatment
approaches. Curr Cancer Drug Targets. 7:541–558. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ganguly BB and Kadam NN: Mutations of
myelodysplastic syndromes (MDS): An update. Mutat Res Rev Mutat
Res. 769:47–62. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Nazha A, Seastone D, Radivoyevitch T,
Przychodzen B, Carraway HE, Patel BJ, Carew J, Makishima H, Sekeres
MA and Maciejewski JP: Genomic patterns associated with hypoplastic
compared to hyperplastic myelodysplastic syndromes. Haematologica.
100:e434–e437. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Yao CY, Hou HA, Lin TY, Lin CC, Chou WC,
Tseng MH, Chiang YC, Liu MC, Liu CW, Kuo YY, et al: Distinct
mutation profile and prognostic relevance in patients with
hypoplastic myelodysplastic syndromes (h-MDS). Oncotarget.
7:63177–63188. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Schwartz JR, Ma J, Lamprecht T, Walsh M,
Wang S, Bryant V, Song G, Wu G, Easton J, Kesserwan C, et al: The
genomic landscape of pediatric myelodysplastic syndromes. Nat
Commun. 8:15572017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Mufti GJ and Marsh JCW: Somatic mutations
in aplastic anemia. Hematol Oncol Clin North Am. 32:595–607. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Stanley N, Olson TS and Babushok DV:
Recent advances in understanding clonal haematopoiesis in aplastic
anaemia. Br J Haematol. 177:509–525. 2017. View Article : Google Scholar :
|
|
34
|
Yoshizato T, Dumitriu B, Hosokawa K,
Makishima H, Yoshida K, Townsley D, Sato-Otsubo A, Sato Y, Liu D,
Suzuki H, et al: Somatic mutations and clonal hematopoiesis in
aplastic anemia. N Engl J Med. 373:35–47. 2015. View Article : Google Scholar
|
|
35
|
Marsh JC and Kulasekararaj AG: Management
of the refractory aplastic anemia patient: What are the options?
Blood. 122:3561–3567. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Keel SB, Scott A, Sanchez-Bonilla M, Ho
PA, Gulsuner S, Pritchard CC, Abkowitz JL, King MC, Walsh T and
Shimamura A: Genetic features of myelodysplastic syndrome and
aplastic anemia in pediatric and young adult patients.
Haematologica. 101:1343–1350. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Huang J, Ge M, Lu S, Shi J, Li X, Zhang J,
Wang M, Yu W, Shao Y, Huang Z, et al: Mutations of ASXL1 and TET2
in aplastic anemia. Haematologica. 100:e172–e175. 2015. View Article : Google Scholar :
|
|
38
|
Heuser M, Schlarmann C, Dobbernack V,
Panagiota V, Wiehlmann L, Walter C, Beier F, Ziegler P, Yun H, Kade
S, et al: Genetic characterization of acquired aplastic anemia by
targeted sequencing. Haematologica. 99:e165–e167. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Lekka E and Hall J: Noncoding RNAs in
disease. FEBS Lett. 592:2884–2900. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kuang X, Chi J and Wang L: Deregulated
microRNA expression and its pathogenetic implications for
myelodysplastic syndromes. Hematology. 21:593–602. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Rhyasen GW and Starczynowski DT:
Deregulation of microRNAs in myelodysplastic syndrome. Leukemia.
26:13–22. 2012. View Article : Google Scholar
|
|
42
|
Dostalova Merkerova M, Krejcik Z, Votavova
H, Belickova M, Vasikova A and Cermak J: Distinctive microRNA
expression profiles in CD34+ bone marrow cells from patients with
myelodysplastic syndrome. Eur J Hum Genet. 19:313–319. 2011.
View Article : Google Scholar :
|
|
43
|
Sokol L, Caceres G, Volinia S, Alder H,
Nuovo GJ, Liu CG, McGraw K, Clark JA, Sigua CA, Chen DT, et al:
Identification of a risk dependent microRNA expression signature in
myelodysplastic syndromes. Br J Haematol. 153:24–32. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Boultwood J, Fidler C, Strickson AJ,
Watkins F, Gama S, Kearney L, Tosi S, Kasprzyk A, Cheng JF, Jaju RJ
and Wainscoat JS: Narrowing and genomic annotation of the commonly
deleted region of the 5q-syndrome. Blood. 99:4638–4641. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Pidíkova P, Reis R and Herichova I: miRNA
clusters with down-regulated expression in human colorectal cancer
and their regulation. Int J Mol Sci. 21:46332020. View Article : Google Scholar :
|
|
46
|
Takagi T, Iio A, Nakagawa Y, Naoe T,
Tanigawa N and Akao Y: Decreased expression of microRNA-143 and
-145 in human gastric cancers. Oncology. 77:12–21. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Starczynowski DT, Kuchenbauer F,
Argiropoulos B, Sung S, Morin R, Muranyi A, Hirst M, Hogge D, Marra
M, Wells RA, et al: Identification of miR-145 and miR-146a as
mediators of the 5q-syndrome phenotype. Nat Med. 16:49–58. 2010.
View Article : Google Scholar
|
|
48
|
Votavova H, Grmanova M, Dostalova
Merkerova M, Belickova M, Vasikova A, Neuwirtova R and Cermak J:
Differential expression of microRNAs in CD34+ cells of 5q-syndrome.
J Hematol Oncol. 4:12011. View Article : Google Scholar
|
|
49
|
Barreyro L, Chlon TM and Starczynowski DT:
Chronic immune response dysregulation in MDS pathogenesis. Blood.
132:1553–1560. 2018. View Article : Google Scholar :
|
|
50
|
Gañán-Gómez I, Wei Y, Yang H, Pierce S,
Bueso-Ramos C, Calin G, Boyano-Adánez Mdel C and García-Manero G:
Overexpression of miR-125a in myelodysplastic syndrome CD34+ cells
modulates NF-κB activation and enhances erythroid differentiation
arrest. PLoS One. 9:e934042014. View Article : Google Scholar
|
|
51
|
Srivastava J, Chaturvedi CP, Rahman K,
Gupta R, Sharma A, Chandra D, Singh MK, Gupta A, Yadav S and
Nityanand S: Differential expression of miRNAs and their target
genes: Exploring a new perspective of acquired aplastic anemia
pathogenesis. Int J Lab Hematol. 42:501–509. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lu S, Yadav AK and Qiao X: Identification
of potential miRNA-mRNA interaction network in bone marrow T cells
of acquired aplastic anemia. Hematology. 25:168–175. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Adhikari S and Mandal P: Integrated
analysis of global gene and microRNA expression profiling
associated with aplastic anaemia. Life Sci. 228:47–52. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Hosokawa K, Kajigaya S, Feng X, Desierto
MJ, Fernandez Ibanez MD, Rios O, Weinstein B, Scheinberg P,
Townsley DM and Young NS: A plasma microRNA signature as a
biomarker for acquired aplastic anemia. Haematologica. 102:69–78.
2017. View Article : Google Scholar
|
|
55
|
Hosokawa K, Muranski P, Feng X, Keyvanfar
K, Townsley DM, Dumitriu B, Chen J, Kajigaya S, Taylor JG, Hourigan
CS, et al: Identification of novel microRNA signatures linked to
acquired aplastic anemia. Haematologica. 100:1534–1545. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Sun YX, Li H, Feng Q, Li X, Yu YY, Zhou
LW, Gao Y, Li GS, Ren J, Ma CH, et al: Dysregulated
miR34a/diacylglycerol kinase ζ interaction enhances T-cell
activation in acquired aplastic anemia. Oncotarget. 8:6142–6154.
2017. View Article : Google Scholar
|
|
57
|
Giudice V, Banaszak LG,
Gutierrez-Rodrigues F, Kajigaya S, Panjwani R, Ibanez MDPF, Rios O,
Bleck CK, Stempinski ES, Raffo DQ, et al: Circulating exosomal
microRNAs in acquired aplastic anemia and myelodysplastic
syndromes. Haematologica. 103:1150–1159. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Benetatos L, Hatzimichael E, Dasoula A,
Dranitsaris G, Tsiara S, Syrrou M, Georgiou I and Bourantas KL: CpG
methylation analysis of the MEG3 and SNRPN imprinted genes in acute
myeloid leukemia and myelodysplastic syndromes. Leuk Res.
34:148–153. 2010. View Article : Google Scholar
|
|
59
|
Szikszai K, Krejcik Z, Klema J, Loudova N,
Hrustincova A, Belickova M, Hruba M, Vesela J, Stranecky V, Kundrat
D, et al: LncRNA profiling reveals that the deregulation of H19,
WT1-AS, TCL6, and LEF1-AS1 is associated with higher-risk
myelodysplastic syndrome. Cancers (Basel). 12:27262020. View Article : Google Scholar
|
|
60
|
Yao CY, Chen CH, Huang HH, Hou HA, Lin CC,
Tseng MH, Kao CJ, Lu TP, Chou WC and Tien HF: A 4-lncRNA scoring
system for prognostication of adult myelodysplastic syndromes.
Blood Adv. 1:1505–1516. 2017. View Article : Google Scholar
|
|
61
|
Liu K, Beck D, Thoms JAI, Liu L, Zhao W,
Pimanda JE and Zhou X: Annotating function to differentially
expressed LincRNAs in myelodysplastic syndrome using a
network-based method. Bioinformatics. 33:2622–2630. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wu Z, Gao S, Zhao X, Chen J, Keyvanfar K,
Feng X, Kajigaya S and Young NS: Long noncoding RNAs of single
hematopoietic stem and progenitor cells in healthy and dysplastic
human bone marrow. Haematologica. 104:894–906. 2019. View Article : Google Scholar :
|
|
63
|
Hung SY, Lin CC, Hsu CL, Yao CY, Wang YH,
Tsai CH, Hou HA, Chou WC and Tien HF: The expression levels of long
non-coding RNA KIAA0125 are associated with distinct clinical and
biological features in myelodysplastic syndromes. Br J Haematol.
192:589–598. 2021. View Article : Google Scholar
|
|
64
|
Li N, Ma Y, Wang W, Yin CC, Wu W, Sun R,
Zhao G, Li S and Wang X: LOC101928834, a novel lncRNA in
Wnt/β-catenin signaling pathway, promotes cell proliferation and
predicts poor clinical outcome in myelodysplastic syndromes. Clin
Sci (Lond). 134:1279–1293. 2020. View Article : Google Scholar
|
|
65
|
Congrains-Castillo A, Niemann FS, Santos
Duarte AS and Olalla-Saad ST: LEF1-AS1 long non-coding RNA,
inhibits proliferation in myeloid malignancy. J Cell Mol Med.
23:3021–3025. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wang J, Liu X, Hao C, Lu Y, Duan X, Liang
R, Gao G and Zhang T: MEG3 modulates TIGIT expression and CD4 + T
cell activation through absorbing miR-23a. Mol Cell Biochem.
454:67–76. 2019. View Article : Google Scholar
|
|
67
|
Jiang S, Xia M, Yang J, Shao J, Liao X,
Zhu J and Jiang H: Novel insights into a treatment for aplastic
anemia based on the advanced proliferation of bone marrow-derived
mesenchymal stem cells induced by fibroblast growth factor 1. Mol
Med Rep. 12:7877–7882. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Lu S, Song X, Chen J and Qiao X:
Identification of differentially expressed lncRNAs and mRNAs in
children with acquired aplastic anemia by RNA sequencing. Biomed
Res Int. 2020:89620902020. View Article : Google Scholar :
|
|
69
|
Risitano AM, Maciejewski JP, Green S,
Plasilova M, Zeng W and Young NS: In-vivo dominant immune responses
in aplastic anaemia: Molecular tracking of putatively pathogenetic
T-cell clones by TCR beta-CDR3 sequencing. Lancet. 364:355–364.
2004. View Article : Google Scholar
|
|
70
|
Risitano AM, Kook H, Zeng W, Chen G, Young
NS and Maciejewski JP: Oligoclonal and polyclonal CD4 and CD8
lymphocytes in aplastic anemia and paroxysmal nocturnal
hemoglobinuria measured by V beta CDR3 spectratyping and flow
cytometry. Blood. 100:178–183. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Melenhorst JJ, Eniafe R, Follmann D,
Nakamura R, Kirby M and Barrett AJ: Molecular and flow cytometric
characterization of the CD4 and CD8 T-cell repertoire in patients
with myelodys- plastic syndrome. Br J Haematol. 119:97–105. 2002.
View Article : Google Scholar
|
|
72
|
Fozza C, Contini S, Galleu A, Simula MP,
Virdis P, Bonfigli S and Longinotti M: Patients with
myelodysplastic syndromes display several T-cell expansions, which
are mostly polyclonal in the CD4(+) subset and oligoclonal in the
CD8(+) subset. Exp Hematol. 37:947–955. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Kochenderfer JN, Kobayashi S, Wieder ED,
Su C and Molldrem JJ: Loss of T-lymphocyte clonal dominance in
patients with myelodysplastic syndrome responsive to
immunosuppression. Blood. 100:3639–3645. 2002. View Article : Google Scholar
|
|
74
|
Li X, Xu F, He Q, Wu L, Zhang Z and Chang
C: Comparison of immunological abnormalities of lymphocytes in bone
marrow in myelodysplastic syndrome (MDS) and aplastic anemia (AA).
Intern Med. 49:1349–1355. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Solomou EE, Rezvani K, Mielke S, Malide D,
Keyvanfar K, Visconte V, Kajigaya S, Barrett AJ and Young NS:
Deficient CD4+ CD25+ FOXP3+ T regulatory cells in acquired aplastic
anemia. Blood. 110:1603–1606. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Bouchliou I, Miltiades P, Nakou E,
Spanoudakis E, Goutzouvelidis A, Vakalopoulou S, Garypidou V,
Kotoula V, Bourikas G, Tsatalas C and Kotsianidis I: Th17 and
Foxp3(+) T regulatory cell dynamics and distribution in
myelodysplastic syndromes. Clin Immunol. 139:350–359. 2011.
View Article : Google Scholar
|
|
77
|
Sloand EM and Barrett AJ:
Immunosuppression for myelodys- plastic syndrome: How bench to
bedside to bench research led to success. Hematol Oncol Clin North
Am. 24:331–341. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Sloand EM, Mainwaring L, Fuhrer M,
Ramkissoon S, Risitano AM, Keyvanafar K, Lu J, Basu A, Barrett AJ
and Young NS: Preferential suppression of trisomy 8 compared with
normal hematopoietic cell growth by autologous lymphocytes in
patients with trisomy 8 myelodysplastic syndrome. Blood.
106:841–851. 2005. View Article : Google Scholar
|
|
79
|
Sloand EM, Melenhorst JJ, Tucker ZC,
Pfannes L, Brenchley JM, Yong A, Visconte V, Wu C, Gostick E,
Scheinberg P, et al: T-cell immune responses to Wilms tumor 1
protein in myelodysplasia responsive to immunosuppressive therapy.
Blood. 117:2691–2699. 2011. View Article : Google Scholar :
|
|
80
|
Kitagawa M, Saito I, Kuwata T, Yoshida S,
Yamaguchi S, Takahashi M, Tanizawa T, Kamiyama R and Hirokawa K:
Overexpression of tumor necrosis factor (TNF)-alpha and interferon
(IFN)-gamma by bone marrow cells from patients with myelodysplastic
syndromes. Leukemia. 11:2049–2054. 1997. View Article : Google Scholar
|
|
81
|
Allampallam K, Shetty VT and Raza A:
Cytokines and MDS. Cancer Treat Res. 108:93–100. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Stifter G, Heiss S, Gastl G, Tzankov A and
Stauder R: Over-expression of tumor necrosis factor-alpha in bone
marrow biopsies from patients with myelodysplastic syndromes:
Relationship to anemia and prognosis. Eur J Haematol. 75:485–491.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhang Z, Li X, Guo J, Xu F, He Q, Zhao Y,
Yang Y, Gu S, Zhang Y, Wu L and Chang C: Interleukin-17 enhances
the production of interferon-γ and tumour necrosis factor-α by bone
marrow T lymphocytes from patients with lower risk myelodysplastic
syndromes. Eur J Haematol. 90:375–384. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Fattizzo B, Serpenti F, Barcellini W and
Caprioli C: Hypoplastic myelodysplastic syndromes: Just an overlap
syndrome? Cancers (Basel). 13:1322021. View Article : Google Scholar
|
|
85
|
Giudice V, Feng X, Lin Z, Hu W, Zhang F,
Qiao W, Ibanez MDPF, Rios O and Young NS: Deep sequencing and flow
cytometric characterization of expanded effector memory
CD8+CD57+ T cells frequently reveals T-cell
receptor Vβ oligoclonality and CDR3 homology in acquired aplastic
anemia. Haematologica. 103:759–769. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
de Latour RP, Visconte V, Takaku T, Wu C,
Erie AJ, Sarcon AK, Desierto MJ, Scheinberg P, Keyvanfar K, Nunez
O, et al: Th17 immune responses contribute to the pathophysiology
of aplastic anemia. Blood. 116:4175–4184. 2010. View Article : Google Scholar :
|
|
87
|
Vibhuti, Tripathy NK and Nityanand S:
Massive apoptosis of bone marrow cells in aplastic anaemia. Br J
Haematol. 117:993–994. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Callera F and Falcão RP: Increased
apoptotic cells in bone marrow biopsies from patients with aplastic
anaemia. Br J Haematol. 98:18–20. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Callera F, Garcia AB and Falcão RP:
Fas-mediated apoptosis with normal expression of bcl-2 and p53 in
lymphocytes from aplastic anaemia. Br J Haematol. 100:698–703.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Kordasti S, Costantini B, Seidl T, Perez
Abellan P, Martinez Llordella M, McLornan D, Diggins KE,
Kulasekararaj A, Benfatto C, Feng X, et al: Deep phenotyping of
Tregs identifies an immune signature for idiopathic aplastic anemia
and predicts response to treatment. Blood. 128:1193–1205. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Young NS and Maciejewski JP: Genetic and
environmental effects in paroxysmal nocturnal hemoglobinuria: This
little PIG-A goes 'Why? Why? Why?'. J Clin Invest. 106:637–641.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Gargiulo L, Papaioannou M, Sica M, Talini
G, Chaidos A, Richichi B, Nikolaev AV, Nativi C, Layton M, de la
Fuente J, et al: Glycosylphosphatidylinositol-specific,
CD1d-restricted T cells in paroxysmal nocturnal hemoglobinuria.
Blood. 121:2753–2761. 2013. View Article : Google Scholar
|
|
93
|
Hanaoka N, Kawaguchi T, Horikawa K,
Nagakura S, Mitsuya H and Nakakuma H: Immunoselection by natural
killer cells of PIGA mutant cells missing stress-inducible ULBP.
Blood. 107:1184–1191. 2006. View Article : Google Scholar
|
|
94
|
Shen W, Clemente MJ, Hosono N, Yoshida K,
Przychodzen B, Yoshizato T, Shiraishi Y, Miyano S, Ogawa S,
Maciejewski JP and Makishima H: Deep sequencing reveals stepwise
mutation acquisition in paroxysmal nocturnal hemoglobinuria. J Clin
Invest. 124:4529–4538. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Sadighi Akha AA: Aging and the immune
system: An overview. J Immunol Methods. 463:21–26. 2018. View Article : Google Scholar
|
|
96
|
Gidvani V, Ramkissoon S, Sloand EM and
Young NS: Cytokine gene polymorphisms in acquired bone marrow
failure. Am J Hematol. 82:721–724. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Saunthararajah Y, Nakamura R, Nam JM,
Robyn J, Loberiza F, Maciejewski JP, Simonis T, Molldrem J, Young
NS and Barrett AJ: HLA-DR15 (DR2) is overrepresented in
myelodysplastic syndrome and aplastic anemia and predicts a
response to immunosuppression in myelodysplastic syndrome. Blood.
100:1570–1574. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Maciejewski JP, Follmann D, Nakamura R,
Saunthararajah Y, Rivera CE, Simonis T, Brown KE, Barrett JA and
Young NS: Increased frequency of HLA-DR2 in patients with
paroxysmal nocturnal hemoglobinuria and the PNH/aplastic anemia
syndrome. Blood. 98:3513–3519. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Wang H, Chuhjo T, Yasue S, Omine M and
Nakao S: Clinical significance of a minor population of paroxysmal
nocturnal hemoglobinuria-type cells in bone marrow failure
syndrome. Blood. 100:3897–3902. 2002. View Article : Google Scholar
|
|
100
|
Katagiri T, Sato-Otsubo A, Kashiwase K,
Morishima S, Sato Y, Mori Y, Kato M, Sanada M, Morishima Y,
Hosokawa K, et al: Frequent loss of HLA alleles associated with
copy number-neutral 6p LOH in acquired aplastic anemia. Blood.
118:6601–6609. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Osumi T, Miharu M, Saji H, Kusunoki Y,
Kojima H, Nakamura J and Shimada H: Nonsense mutation in
HLA-B*40-02 in a case with acquired aplastic anaemia: A possible
origin of clonal escape from autoimmune insult. Br J Haematol.
162:706–707. 2013. View Article : Google Scholar
|
|
102
|
Babushok DV, Duke JL, Xie HM, Stanley N,
Atienza J, Perdigones N, Nicholas P, Ferriola D, Li Y, Huang H, et
al: Somatic HLA mutations expose the role of class I-mediated
autoimmunity in aplastic anemia and its clonal complications. Blood
Adv. 1:1900–1910. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Zijlstra M, Bix M, Simister NE, Loring JM,
Raulet DH and Jaenisch R: Beta 2-microglobulin deficient mice lack
CD4-8+ cytolytic T cells. Nature. 344:742–746. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Brümmendorf TH, Maciejewski JP, Mak J,
Young NS and Lansdorp PM: Telomere length in leukocyte
subpopulations of patients with aplastic anemia. Blood. 97:895–900.
2001. View Article : Google Scholar
|
|
105
|
Scheinberg P, Cooper JN, Sloand EM, Wu CO,
Calado RT and Young NS: Association of telomere length of
peripheral blood leukocytes with hematopoietic relapse, malignant
transformation, and survival in severe aplastic anemia. JAMA.
304:1358–1364. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Boultwood J, Fidler C, Kusec R, Rack K,
Elliott PJ, Atoyebi O, Chapman R, Oscier DG and Wainscoat JS:
Telomere length in myelodysplastic syndromes. Am J Hematol.
56:266–271. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Rollison DE, Epling-Burnette PK, Park JY,
Lee JH, Park H, Jonathan K, Cole AL, Painter JS, Guerrier M,
Meléndez-Santiago J, et al: Telomere length in myelodysplastic
syndromes. Leuk Lymphoma. 52:1528–1536. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Sanz GF, Sanz MA and Greenberg PL:
Prognostic factors and scoring systems in myelodysplastic
syndromes. Haematologica. 83:358–368. 1998.PubMed/NCBI
|
|
109
|
Bouillon AS, Ferreira MS, Werner B, Hummel
S, Panse JP, Reinecke P, Schemenau J, Haas R, Traulsen A,
Bruemmendorf TH, et al: Comprehensive analysis of telomere biology
in patients with aplastic anemia and hypoplastic myelodysplastic
syndrome: Further evidence for a common mechanism. Blood.
126:28582015. View Article : Google Scholar
|
|
110
|
Yamaguchi H, Calado RT, Ly H, Kajigaya S,
Baerlocher GM, Chanock SJ, Lansdorp PM and Young NS: Mutations in
TERT, the gene for telomerase reverse transcriptase, in aplastic
anemia. N Engl J Med. 352:1413–1424. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Ueda Y, Calado RT, Norberg A, Kajigaya S,
Roos G, Hellstrom-Lindberg E and Young NS: A mutation in the H/ACA
box of telomerase RNA component gene (TERC) in a young patient with
myelodysplastic syndrome. BMC Med Genet. 15:682014. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Young NS: Current concepts in the
pathophysiology and treatment of aplastic anemia. Hematology Am Soc
Hematol Educ Program. 2013:76–81. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Savage SA, Calado RT, Xin ZT, Ly H, Young
NS and Chanock SJ: Genetic variation in telomeric repeat binding
factors 1 and 2 in aplastic anemia. Exp Hematol. 34:664–671. 2006.
View Article : Google Scholar
|
|
114
|
Marsh JCW, Gutierrez-Rodrigues F, Cooper
J, Jiang J, Gandhi S, Kajigaya S, Feng X, Ibanez MDPF, Donaires FS,
Lopes da Silva JP, et al: Heterozygous RTEL1 variants in bone
marrow failure and myeloid neoplasms. Blood Adv. 2:36–48. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Thol F, Friesen I, Damm F, Yun H,
Weissinger EM, Krauter J, Wagner K, Chaturvedi A, Sharma A,
Wichmann M, et al: Prognostic significance of ASXL1 mutations in
patients with myelodysplastic syndromes. J Clin Oncol.
29:2499–2506. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Jerez A, Clemente MJ, Makishima H, Rajala
H, Gómez-Seguí I, Olson T, McGraw K, Przychodzen B, Kulasekararaj
A, Afable M, et al: STAT3 mutations indicate the presence of
subclinical T-cell clones in a subset of aplastic anemia and myelo-
dysplastic syndrome patients. Blood. 122:2453–2459. 2013.
View Article : Google Scholar :
|
|
117
|
Kuehn HS, Ouyang W, Lo B, Deenick EK,
Niemela JE, Avery DT, Schickel JN, Tran DQ, Stoddard J, Zhang Y, et
al: Immune dysregulation in human subjects with heterozygous
germline mutations in CTLA4. Science. 345:1623–1627. 2014.
View Article : Google Scholar
|
|
118
|
Wlodarski MW, Collin M and Horwitz MS:
GATA2 deficiency and related myeloid neoplasms. Semin Hematol.
54:81–86. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Ogawa S: Clonal hematopoiesis in acquired
aplastic anemia. Blood. 128:337–347. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
West RR, Stafford DA, White AD, Bowen DT
and Padua RA: Cytogenetic abnormalities in the myelodysplastic
syndromes and occupational or environmental exposure. Blood.
95:2093–2097. 2000. View Article : Google Scholar
|
|
121
|
Negoro E, Nagata Y, Clemente MJ, Hosono N,
Shen W, Nazha A, Yoshizato T, Hirsch C, Przychodzen B, Mahfouz RZ,
et al: Origins of myelodysplastic syndromes after aplastic anemia.
Blood. 130:1953–1957. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Pons A, Nomdedeu B, Navarro A, Gaya A, Gel
B, Diaz T, Valera S, Rozman M, Belkaid M, Montserrat E and Monzo M:
Hematopoiesis-related microRNA expression in myelodysplastic
syndromes. Leuk Lymphoma. 50:1854–1859. 2009. View Article : Google Scholar
|
|
123
|
Krejčík Z, Beličková M, Hruštincová A,
Kléma J, Zemanová Z, Michalová K, Čermák J, Jonášová A and
Dostálová Merkerová M: Aberrant expression of the microRNA cluster
in 14q32 is associated with del(5q) myelodysplastic syndrome and
lenalidomide treatment. Cancer Genet. 208:156–161. 2015. View Article : Google Scholar
|
|
124
|
Starczynowski DT, Kuchenbauer F, Wegrzyn
J, Rouhi A, Petriv O, Hansen CL, Humphries RK and Karsan A:
MicroRNA-146a disrupts hematopoietic differentiation and survival.
Exp Hematol. 39:167–178.e4. 2011. View Article : Google Scholar
|
|
125
|
Chen Y, Zhao G, Li N, Luo Z, Wang X and Gu
J: Role of 4-aminobutyrate aminotransferase (ABAT) and the lncRNA
co-expression network in the development of myelodysplastic
syndrome. Oncol Rep. 42:509–520. 2019.PubMed/NCBI
|
|
126
|
Kordasti S, Marsh J, Al-Khan S, Jiang J,
Smith A, Mohamedali A, Abellan PP, Veen C, Costantini B,
Kulasekararaj AG, et al: Functional characterization of CD4+ T
cells in aplastic anemia. Blood. 119:2033–2043. 2012. View Article : Google Scholar
|
|
127
|
Serio B, Risitano A, Giudice V, Montuori N
and Selleri C: Immunological derangement in hypocellular
myelodysplastic syndromes. Transl Med UniSa. 8:31–42.
2014.PubMed/NCBI
|
|
128
|
Kordasti SY, Afzali B, Lim Z, Ingram W,
Hayden J, Barber L, Matthews K, Chelliah R, Guinn B, Lombardi G, et
al: IL-17-producing CD4(+) T cells, pro-inflammatory cytokines and
apoptosis are increased in low risk myelodysplastic syndrome. Br J
Haematol. 145:64–72. 2009. View Article : Google Scholar
|
|
129
|
Zhang HF, Huang ZD, Wu XR, Li Q and Yu ZF:
Comparison of T lymphocyte subsets in aplastic anemia and
hypoplastic myelodysplastic syndromes. Life Sci. 189:71–75. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Serio B, Selleri C and Maciejewski JP:
Impact of immunogenetic polymorphisms in bone marrow failure
syndromes. Mini Rev Med Chem. 11:544–552. 2011. View Article : Google Scholar : PubMed/NCBI
|