Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
February-2022 Volume 60 Issue 2

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2022 Volume 60 Issue 2

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Retrospective analysis of the preparation and application of immunotherapy in cancer treatment (Review)

  • Authors:
    • Jiachen Lu
    • Jianing Ding
    • Zhaoxia Liu
    • Tingtao Chen
  • View Affiliations / Copyright

    Affiliations: Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
    Copyright: © Lu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 12
    |
    Published online on: January 4, 2022
       https://doi.org/10.3892/ijo.2022.5302
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Monoclonal antibody technology plays a vital role in biomedical and immunotherapy, which greatly promotes the study of the structure and function of genes and proteins. To date, monoclonal antibodies have gone through four stages: murine monoclonal antibody, chimeric monoclonal antibody, humanised monoclonal antibody and fully human monoclonal antibody; thousands of monoclonal antibodies have been used in the fields of biology and medicine, playing a special role in the pathogenesis, diagnosis and treatment of disease. In this review, we compare the advantages and disadvantages of hybridoma technology, phage display technology, ribosome display technology, transgenic mouse technology, single B cell monoclonal antibody generation technologies, and forecast the promising applications of these technologies in clinical medicine, disease diagnosis and tumour treatment.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Patel A: Benign vs malignant tumors. JAMA Oncol. 6:14882020. View Article : Google Scholar : PubMed/NCBI

2 

Murray PG and Young LS: An etiological role for the Epstein-Barr virus in the pathogenesis of classical Hodgkin lymphoma. Blood. 134:591–596. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Keum N and Giovannucci E: Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol. 16:713–732. 2019. View Article : Google Scholar : PubMed/NCBI

4 

Hasanpourghadi M, Pandurangan AK and Mustafa MR: Modulation of oncogenic transcription factors by bioactive natural products in breast cancer. Pharmacol Res. 128:376–388. 2018. View Article : Google Scholar

5 

Stark A, Donahue TR, Reber HA and Hines OJ: Pancreatic cyst disease: A review. JAMA. 315:1882–1893. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Travis WD, Asamura H, Bankier AA, Beasley MB, Detterbeck F, Flieder DB, Goo JM, MacMahon H, Naidich D, Nicholson AG, et al: The IASLC lung cancer staging project: Proposals for coding T categories for subsolid nodules and assessment of tumor size in part-solid tumors in the forthcoming eighth edition of the TNM classification of lung cancer. J Thorac Oncol. 11:1204–1223. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Clara-Trujillo S, Gallego Ferrer G and Gómez Ribelles JL: In vitro modeling of non-solid tumors: How far can tissue engineering go? Int J Mol Sci. 21:57472020. View Article : Google Scholar :

8 

Shimada A: Hematological malignancies and molecular targeting therapy. Eur J Pharmacol. 862:1726412019. View Article : Google Scholar : PubMed/NCBI

9 

Dunn-Pirio AM and Vlahovic G: Immunotherapy approaches in the treatment of malignant brain tumors. Cancer. 123:734–750. 2017. View Article : Google Scholar

10 

Cassetta L and Pollard JW: Targeting macrophages: Therapeutic approaches in cancer. Nat Rev Drug Discov. 17:887–904. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Schweizer C, Schubert P, Rutzner S, Eckstein M, Haderlein M, Lettmaier S, Semrau S, Gostian AO, Frey B, Gaipl US, et al: Prospective evaluation of the prognostic value of immune-related adverse events in patients with non-melanoma solid tumour treated with PD-1/PD-L1 inhibitors alone and in combination with radiotherapy. Eur J Cancer. 140:55–62. 2020. View Article : Google Scholar : PubMed/NCBI

12 

Ovacik M and Lin K: Tutorial on monoclonal antibody pharmacokinetics and its considerations in early development. Clin Transl Sci. 11:540–552. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Cymer F, Beck H, Rohde A and Reusch D: Therapeutic monoclonal antibody N-glycosylation-structure, function and therapeutic potential. Biologicals. 52:1–11. 2018. View Article : Google Scholar

14 

Alkan SS: Legends of allergy/immunology: Georges Köhler and the discovery of MONOCLONAL antibodies. Allergy. 74:1412–1414. 2019.PubMed/NCBI

15 

Seaman S, Zhu Z, Saha S, Zhang XM, Yang MY, Hilton MB, Morris K, Szot C, Morris H, Swing DA, et al: Eradication of tumors through simultaneous ablation of CD276/B7H3-positive tumor cells and tumor vasculature. Cancer Cell. 31:501–515.e8. 2017. View Article : Google Scholar

16 

Fay EK and Graff JN: Immunotherapy in prostate cancer. Cancers (Basel). 12:17522020. View Article : Google Scholar

17 

Arlotta KJ and Owen SC: Antibody and antibody derivatives as cancer therapeutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 11:e15562019. View Article : Google Scholar : PubMed/NCBI

18 

Starr CG and Tessier PM: Selecting and engineering monoclonal antibodies with drug-like specificity. Curr Opin Biotechnol. 60:119–127. 2019. View Article : Google Scholar : PubMed/NCBI

19 

Chiu ML and Gilliland GL: Engineering antibody therapeutics. Curr Opin Struct Biol. 38:163–173. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Wootla B, Denic A and Rodriguez M: Polyclonal and monoclonal antibodies in clinic. Methods Mol Biol. 1060:79–110. 2014. View Article : Google Scholar

21 

Köhler G and Milstein C: Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 256:495–497. 1975. View Article : Google Scholar : PubMed/NCBI

22 

Miller RA, Maloney DG, Warnke R and Levy R: Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N Engl J Med. 306:517–522. 1982. View Article : Google Scholar : PubMed/NCBI

23 

An Z: Monoclonal antibodies-a proven and rapidly expanding therapeutic modality for human diseases. Protein Cell. 1:319–330. 2010. View Article : Google Scholar

24 

Grilo AL and Mantalaris A: The increasingly human and profitable monoclonal antibody market. Trends Biotechnol. 37:9–16. 2019. View Article : Google Scholar

25 

Garrard LJ and Zhukovsky EA: Antibody expression in bacteriophage systems: The future of monoclonal antibodies? Curr Opin Biotechnol. 3:474–480. 1992. View Article : Google Scholar : PubMed/NCBI

26 

Parray HA, Shukla S, Samal S, Shrivastava T, Ahmed S, Sharma C and Kumar R: Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives. Int Immunopharmacol. 85:1066392020. View Article : Google Scholar : PubMed/NCBI

27 

Shim H: Antibody phage display. Adv Exp Med Biol. 1053:21–34. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Groves MA and Osbourn JK: Applications of ribosome display to antibody drug discovery. Expert Opin Biol Ther. 5:125–135. 2005. View Article : Google Scholar : PubMed/NCBI

29 

Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ and Wu HC: Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 27:12020. View Article : Google Scholar : PubMed/NCBI

30 

Schmid AS and Neri D: Advances in antibody engineering for rheumatic diseases. Nat Rev Rheumatol. 15:197–207. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Kuramochi T, Igawa T, Tsunoda H and Hattori K: Humanization and simultaneous optimization of monoclonal antibody. Methods Mol Biol. 1904:213–230. 2019. View Article : Google Scholar

32 

Goydel RS, Weber J, Peng H, Qi J, Soden J, Freeth J, Park H and Rader C: Affinity maturation, humanization, and co-crystallization of a rabbit anti-human ROR2 monoclonal antibody for therapeutic applications. J Biol Chem. 295:5995–6006. 2020. View Article : Google Scholar : PubMed/NCBI

33 

Wu Y, Li C, Xia S, Tian X, Kong Y, Wang Z, Gu C, Zhang R, Tu C, Xie Y, et al: Identification of human single-domain antibodies against SARS-CoV-2. Cell Host Microbe. 27:891–898.e5. 2020. View Article : Google Scholar : PubMed/NCBI

34 

Frenzel A, Schirrmann T and Hust M: Phage display-derived human antibodies in clinical development and therapy. MAbs. 8:1177–1194. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Pucca MB, Cerni FA, Janke R, Bermúdez-Méndez E, Ledsgaard L, Barbosa JE and Laustsen AH: History of envenoming therapy and current perspectives. Front Immunol. 10:15982019. View Article : Google Scholar : PubMed/NCBI

36 

Ribatti D: From the discovery of monoclonal antibodies to their therapeutic application: An historical reappraisal. Immunol Lett. 161:96–99. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Elgundi Z, Reslan M, Cruz E, Sifniotis V and Kayser V: The state-of-play and future of antibody therapeutics. Adv Drug Deliv Rev. 122:2–19. 2017. View Article : Google Scholar

38 

Paci A, Desnoyer A, Delahousse J, Blondel L, Maritaz C, Chaput N, Mir O and Broutin S: Pharmacokinetic/pharmacodynamic relationship of therapeutic monoclonal antibodies used in oncology: Part 1, monoclonal antibodies, antibody-drug conjugates and bispecific T-cell engagers. Eur J Cancer. 128:107–118. 2020. View Article : Google Scholar : PubMed/NCBI

39 

Zaroff S and Tan G: Hybridoma technology: The preferred method for monoclonal antibody generation for in vivo applications. Biotechniques. 67:90–92. 2019. View Article : Google Scholar : PubMed/NCBI

40 

Schroff RW, Foon KA, Beatty SM, Oldham RK and Morgan AC Jr: Human anti-murine immunoglobulin responses in patients receiving monoclonal antibody therapy. Cancer Res. 45:879–885. 1985.PubMed/NCBI

41 

Angus DC, Birmingham MC, Balk RA, Scannon PJ, Collins D, Kruse JA, Graham DR, Dedhia HV, Homann S and MacIntyre N: E5 murine monoclonal antiendotoxin antibody in gram-negative sepsis: A randomized controlled trial. E5 study investigators JAMA. 283:1723–1730. 2000.

42 

Karmali R, Kimby E, Ghielmini M, Flinn IW, Gordon LI and Zucca E: Rituximab: A benchmark in the development of chemotherapy-free treatment strategies for follicular lymphomas. Ann Oncol. 29:332–340. 2018. View Article : Google Scholar

43 

Crowe JE Jr: Recent advances in the study of human antibody responses to influenza virus using optimized human hybridoma approaches. Vaccine. 27(Suppl 6): G47–G51. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Gonzales NR, De Pascalis R, Schlom J and Kashmiri SV: Minimizing the immunogenicity of antibodies for clinical application. Tumour Biol. 26:31–43. 2005. View Article : Google Scholar : PubMed/NCBI

45 

Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM and Hashem AM: Phage display derived monoclonal antibodies: From bench to bedside. Front Immunol. 11:19862020. View Article : Google Scholar : PubMed/NCBI

46 

LoBuglio AF, Wheeler RH, Trang J, Haynes A, Rogers K, Harvey EB, Sun L, Ghrayeb J and Khazaeli MB: Mouse/human chimeric monoclonal antibody in man: Kinetics and immune response. Proc Natl Acad Sci USA. 86:4220–4224. 1989. View Article : Google Scholar : PubMed/NCBI

47 

Targan SR, Hanauer SB, van Deventer SJ, Mayer L, Present DH, Braakman T, DeWoody KL, Schaible TF and Rutgeerts PJ: A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn.s disease. Crohn.s disease cA2 study group. N Engl J Med. 337:1029–1035. 1997. View Article : Google Scholar : PubMed/NCBI

48 

Liu AY, Robinson RR, Murray ED Jr, Ledbetter JA, Hellström I and Hellström KE: Production of a mouse-human chimeric monoclonal antibody to CD20 with potent Fc-dependent biologic activity. J Immunol. 139:3521–3526. 1987.PubMed/NCBI

49 

McLaughlin P, Grillo-López AJ, Link BK, Levy R, Czuczman MS, Williams ME, Heyman MR, Bence-Bruckler I, White CA, Cabanillas F, et al: Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: Half of patients respond to a four-dose treatment program. J Clin Oncol. 16:2825–2833. 1998. View Article : Google Scholar : PubMed/NCBI

50 

Piccolo R, Eitel I, Galasso G, Dominguez-Rodriguez A, Iversen AZ, Abreu-Gonzalez P, Windecker S, Thiele H and Piscione F: 1-Year outcomes with intracoronary abciximab in diabetic patients undergoing primary percutaneous coronary intervention. J Am Coll Cardiol. 68:727–738. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Bachlava E, Loukopoulou S, Karanasios E, Chrousos G and Michos A: Management of coronary artery aneurysms using abciximab in children with Kawasaki disease. Int J Cardiol. 220:65–69. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Liu SN, Zhang XH, Xu LP, Wang Y, Yan CH, Chen H, Chen YH, Han W, Wang FR, Wang JZ, et al: Prognostic factors and long-term follow-up of basiliximab for steroid-refractory acute graft-versus-host disease: Updated experience from a large-scale study. Am J Hematol. 95:927–936. 2020. View Article : Google Scholar : PubMed/NCBI

53 

Furuya Y, Jayarajan SN, Taghavi S, Cordova FC, Patel N, Shiose A, Leotta E, Criner GJ, Guy TS, Wheatley GH, et al: The impact of alemtuzumab and basiliximab induction on patient survival and time to bronchiolitis obliterans syndrome in double lung transplantation recipients. Am J Transplant. 16:2334–2341. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Aranda E, García-Alfonso P, Benavides M, Sánchez Ruiz A, Guillén-Ponce C, Safont MJ, Alcaide J, Gómez A, López R, Manzano JL, et al: First-line mFOLFOX plus cetuximab followed by mFOLFOX plus cetuximab or single-agent cetuximab as maintenance therapy in patients with metastatic colorectal cancer: Phase II randomised MACRO2 TTD study. Eur J Cancer. 101:263–272. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Strohbehn GW and Vokes EE: Palbociclib: A new partner for cetuximab? Lancet Oncol. 20:1195–1196. 2019. View Article : Google Scholar : PubMed/NCBI

56 

Strohl WR: Current progress in innovative engineered antibodies. Protein Cell. 9:86–120. 2018. View Article : Google Scholar :

57 

Presta LG: Engineering of therapeutic antibodies to minimize immunogenicity and optimize function. Adv Drug Deliv Rev. 58:640–656. 2006. View Article : Google Scholar : PubMed/NCBI

58 

Kumar R, Parray HA, Shrivastava T, Sinha S and Luthra K: Phage display antibody libraries: A robust approach for generation of recombinant human monoclonal antibodies. Int J Biol Macromol. 135:907–918. 2019. View Article : Google Scholar : PubMed/NCBI

59 

Saw PE and Song EW: Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell. 10:787–807. 2019. View Article : Google Scholar : PubMed/NCBI

60 

Ledsgaard L, Kilstrup M, Karatt-Vellatt A, McCafferty J and Laustsen AH: Basics of antibody phage display technology. Toxins (Basel). 10:2362018. View Article : Google Scholar

61 

Greenwood J, Willis AE and Perham RN: Multiple display of foreign peptides on a filamentous bacteriophage. Peptides from plasmodium falciparum circumsporozoite protein as antigens. J Mol Biol. 220:821–827. 1991. View Article : Google Scholar : PubMed/NCBI

62 

Smith GP: Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science. 228:1315–1317. 1985. View Article : Google Scholar : PubMed/NCBI

63 

Geysen HM, Tainer JA, Rodda SJ, Mason TJ, Alexander H, Getzoff ED and Lerner RA: Chemistry of antibody binding to a protein. Science. 235:1184–1190. 1987. View Article : Google Scholar : PubMed/NCBI

64 

Parmley SF and Smith GP: Antibody-selectable filamentous fd phage vectors: Affinity purification of target genes. Gene. 73:305–318. 1988. View Article : Google Scholar : PubMed/NCBI

65 

Scott JK and Smith GP: Searching for peptide ligands with an epitope library. Science. 249:386–390. 1990. View Article : Google Scholar : PubMed/NCBI

66 

McCafferty J, Griffiths AD, Winter G and Chiswell DJ: Phage antibodies: Filamentous phage displaying antibody variable domains. Nature. 348:552–554. 1990. View Article : Google Scholar : PubMed/NCBI

67 

Tan Y, Tian T, Liu W, Zhu Z and C JY: Advance in phage display technology for bioanalysis. Biotechnol J. 11:732–745. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Deng X, Wang L, You X, Dai P and Zeng Y: Advances in the T7 phage display system (Review). Mol Med Rep. 17:714–720. 2018.

69 

Burritt JB, Bond CW, Doss KW and Jesaitis AJ: Filamentous phage display of oligopeptide libraries. Anal Biochem. 238:1–13. 1996. View Article : Google Scholar : PubMed/NCBI

70 

Huang J, Doria-Rose NA, Longo NS, Laub L, Lin CL, Turk E, Kang BH, Migueles SA, Bailer RT, Mascola JR and Connors M: Isolation of human monoclonal antibodies from peripheral blood B cells. Nat Protoc. 8:1907–1915. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Wang Z, Li Y, Hou B, Pronobis MI, Wang M, Wang Y, Cheng G, Weng W, Wang Y, Tang Y, et al: An array of 60,000 antibodies for proteome-scale antibody generation and target discovery. Sci Adv. 6:eaax22712020. View Article : Google Scholar : PubMed/NCBI

72 

Galán A, Comor L, Horvatić A, Kuleš J, Guillemin N, Mrljak V and Bhide M: Library-based display technologies: Where do we stand? Mol Biosyst. 12:2342–2358. 2016. View Article : Google Scholar : PubMed/NCBI

73 

Lim CC, Choong YS and Lim TS: Cognizance of molecular methods for the generation of mutagenic phage display antibody libraries for affinity maturation. Int J Mol Sci. 20:18612019. View Article : Google Scholar :

74 

Goracci M, Pignochino Y and Marchiò S: Phage display-based nanotechnology applications in cancer immunotherapy. Molecules. 25:8432020. View Article : Google Scholar :

75 

Rahbarnia L, Farajnia S, Babaei H, Majidi J, Veisi K, Ahmadzadeh V and Akbari B: Evolution of phage display technology: From discovery to application. J Drug Target. 25:216–224. 2017. View Article : Google Scholar

76 

Petrenko VA: Landscape phage: Evolution from phage display to nanobiotechnology. Viruses. 10:3112018. View Article : Google Scholar :

77 

Brüggemann M and Neuberger MS: Strategies for expressing human antibody repertoires in transgenic mice. Immunol Today. 17:391–397. 1996. View Article : Google Scholar : PubMed/NCBI

78 

Brüggemann M, Osborn MJ, Ma B, Hayre J, Avis S, Lundstrom B and Buelow R: Human antibody production in transgenic animals. Arch Immunol Ther Exp (Warsz). 63:101–108. 2015. View Article : Google Scholar

79 

Laffleur B, Pascal V, Sirac C and Cogné M: Production of human or humanized antibodies in mice. Methods Mol Biol. 901:149–159. 2012. View Article : Google Scholar : PubMed/NCBI

80 

Chen WC and Murawsky CM: Strategies for generating diverse antibody repertoires using transgenic animals expressing human antibodies. Front Immunol. 9:4602018. View Article : Google Scholar : PubMed/NCBI

81 

Alt FW, Blackwell TK and Yancopoulos GD: Immunoglobulin genes in transgenic mice. Trends Genet. 1:231–236. 1985. View Article : Google Scholar

82 

Frippiat JP, Williams SC, Tomlinson IM, Cook GP, Cherif D, Le Paslier D, Collins JE, Dunham I, Winter G and Lefranc MP: Organization of the human immunoglobulin lambda light-chain locus on chromosome 22q11.2. Hum Mol Genet. 4:983–991. 1995. View Article : Google Scholar : PubMed/NCBI

83 

Fishwild DM, O'Donnell SL, Bengoechea T, Hudson DV, Harding F, Bernhard SL, Jones D, Kay RM, Higgins KM, Schramm SR and Lonberg N: High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice. Nat Biotechnol. 14:845–851. 1996. View Article : Google Scholar : PubMed/NCBI

84 

Mendez MJ, Green LL, Corvalan JR, Jia XC, Maynard-Currie CE, Yang XD, Gallo ML, Louie DM, Lee DV, Erickson KL, et al: Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat Genet. 15:146–156. 1997. View Article : Google Scholar : PubMed/NCBI

85 

Lonberg N: Human antibodies from transgenic animals. Nat Biotechnol. 23:1117–1125. 2005. View Article : Google Scholar : PubMed/NCBI

86 

Siegel SA, Shealy DJ, Nakada MT, Le J, Woulfe DS, Probert L, Kollias G, Ghrayeb J, Vilcek J and Daddona PE: The mouse/human chimeric monoclonal antibody cA2 neutralizes TNF in vitro and protects transgenic mice from cachexia and TNF lethality in vivo. Cytokine. 7:15–25. 1995. View Article : Google Scholar : PubMed/NCBI

87 

Tsujinaka T, Fujita J, Ebisui C, Yano M, Kominami E, Suzuki K, Tanaka K, Katsume A, Ohsugi Y, Shiozaki H and Monden M: Interleukin 6 receptor antibody inhibits muscle atrophy and modulates proteolytic systems in interleukin 6 transgenic mice. J Clin Invest. 97:244–249. 1996. View Article : Google Scholar : PubMed/NCBI

88 

Crombet-Ramos T, Rak J, Pérez R and Viloria-Petit A: Antiproliferative, antiangiogenic and proapoptotic activity of h-R3: A humanized anti-EGFR antibody. Int J Cancer. 101:567–575. 2002. View Article : Google Scholar : PubMed/NCBI

89 

Jakobovits A, Amado RG, Yang X, Roskos L and Schwab G: From XenoMouse technology to panitumumab, the first fully human antibody product from transgenic mice. Nat Biotechnol. 25:1134–1143. 2007. View Article : Google Scholar : PubMed/NCBI

90 

Ros F, Offner S, Klostermann S, Thorey I, Niersbach H, Breuer S, Zarnt G, Lorenz S, Puels J, Siewe B, et al: Rabbits transgenic for human IgG genes recapitulating rabbit B-cell biology to generate human antibodies of high specificity and affinity. MAbs. 12:18469002020. View Article : Google Scholar : PubMed/NCBI

91 

He M and Taussig MJ: Eukaryotic ribosome display with in situ DNA recovery. Nat Methods. 4:281–288. 2007. View Article : Google Scholar : PubMed/NCBI

92 

Thom G and Groves M: Ribosome display. Methods Mol Biol. 901:101–116. 2012. View Article : Google Scholar : PubMed/NCBI

93 

Plückthun A: Ribosome display: A perspective. Methods Mol Biol. 805:3–28. 2012. View Article : Google Scholar

94 

Rothe A, Hosse RJ and Power BE: Ribosome display for improved biotherapeutic molecules. Expert Opin Biol Ther. 6:177–187. 2006. View Article : Google Scholar : PubMed/NCBI

95 

Ministro J, Manuel AM and Goncalves J: Therapeutic antibody engineering and selection strategies. Adv Biochem Eng Biotechnol. 171:55–86. 2020.

96 

Mattheakis LC, Bhatt RR and Dower WJ: An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc Natl Acad Sci USA. 91:9022–9026. 1994. View Article : Google Scholar : PubMed/NCBI

97 

Hammers CM and Stanley JR: Antibody phage display: Technique and applications. J Invest Dermatol. 134:1–5. 2014. View Article : Google Scholar : PubMed/NCBI

98 

Loh B, Kuhn A and Leptihn S: The fascinating biology behind phage display: Filamentous phage assembly. Mol Microbiol. 111:1132–1138. 2019. View Article : Google Scholar

99 

Zahnd C, Amstutz P and Plückthun A: Ribosome display: Selecting and evolving proteins in vitro that specifically bind to a target. Nat Methods. 4:269–279. 2007. View Article : Google Scholar : PubMed/NCBI

100 

Hammerling MJ, Fritz BR, Yoesep DJ, Kim DS, Carlson ED and Jewett MC: In vitro ribosome synthesis and evolution through ribosome display. Nat Commun. 11:11082020. View Article : Google Scholar : PubMed/NCBI

101 

He M and Khan F: Ribosome display: Next-generation display technologies for production of antibodies in vitro. Expert Rev Proteomics. 2:421–430. 2005. View Article : Google Scholar : PubMed/NCBI

102 

Lagoutte P, Lugari A, Elie C, Potisopon S, Donnat S, Mignon C, Mariano N, Troesch A, Werle B and Stadthagen G: Combination of ribosome display and next generation sequencing as a powerful method for identification of affibody binders against β-lactamase CTX-M15. N Biotechnol. 50:60–69. 2019. View Article : Google Scholar : PubMed/NCBI

103 

Rouet R, Jackson KJL, Langley DB and Christ D: Next-generation sequencing of antibody display repertoires. Front Immunol. 9:1182018. View Article : Google Scholar : PubMed/NCBI

104 

Yamaguchi J, Naimuddin M, Biyani M, Sasaki T, Machida M, Kubo T, Funatsu T, Husimi Y and Nemoto N: cDNA display: A novel screening method for functional disulfide-rich peptides by solid-phase synthesis and stabilization of mRNA-protein fusions. Nucleic Acids Res. 37:e1082009. View Article : Google Scholar : PubMed/NCBI

105 

Lipovsek D and Plückthun A: In-vitro protein evolution by ribosome display and mRNA display. J Immunol Methods. 290:51–67. 2004. View Article : Google Scholar : PubMed/NCBI

106 

Ueda T, Kanamori T and Ohashi H: Ribosome display with the PURE technology. Methods Mol Biol. 607:219–225. 2010. View Article : Google Scholar : PubMed/NCBI

107 

Roberts RW and Szostak JW: RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc Natl Acad Sci USA. 94:12297–12302. 1997. View Article : Google Scholar : PubMed/NCBI

108 

Muranaka N, Hohsaka T and Sisido M: Four-base codon mediated mRNA display to construct peptide libraries that contain multiple nonnatural amino acids. Nucleic Acids Res. 34:e72006. View Article : Google Scholar : PubMed/NCBI

109 

Dufner P, Jermutus L and Minter RR: Harnessing phage and ribosome display for antibody optimisation. Trends Biotechnol. 24:523–529. 2006. View Article : Google Scholar : PubMed/NCBI

110 

Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E and Nussenzweig MC: Predominant autoantibody production by early human B cell precursors. Science. 301:1374–1377. 2003. View Article : Google Scholar : PubMed/NCBI

111 

Traggiai E, Becker S, Subbarao K, Kolesnikova L, Uematsu Y, Gismondo MR, Murphy BR, Rappuoli R and Lanzavecchia A: An efficient method to make human monoclonal antibodies from memory B cells: Potent neutralization of SARS coronavirus. Nat Med. 10:871–875. 2004. View Article : Google Scholar : PubMed/NCBI

112 

Bushey RT, Moody MA, Nicely NL, Haynes BF, Alam SM, Keir ST, Bentley RC, Roy Choudhury K, Gottlin EB, Campa MJ, et al: A Therapeutic antibody for cancer, derived from single human B cells. Cell Rep. 15:1505–1513. 2016. View Article : Google Scholar : PubMed/NCBI

113 

Tiller T: Single B cell antibody technologies. N Biotechnol. 28:453–457. 2011. View Article : Google Scholar : PubMed/NCBI

114 

Rudkin FM, Raziunaite I, Workman H, Essono S, Belmonte R, MacCallum DM, Johnson EM, Silva LM, Palma AS, Feizi T, et al: Single human B cell-derived monoclonal anti-Candida antibodies enhance phagocytosis and protect against disseminated candidiasis. Nat Commun. 9:52882018. View Article : Google Scholar : PubMed/NCBI

115 

Rajan S, Kierny MR, Mercer A, Wu J, Tovchigrechko A, Wu H, Dall Acqua WF, Xiao X and Chowdhury PS: Recombinant human B cell repertoires enable screening for rare, specific, and natively paired antibodies. Commun Biol. 1:52018. View Article : Google Scholar : PubMed/NCBI

116 

Buisman AM, de Rond CG, Oztürk K, Ten Hulscher HI and van Binnendijk RS: Long-term presence of memory B-cells specific for different vaccine components. Vaccine. 28:179–186. 2009. View Article : Google Scholar : PubMed/NCBI

117 

Jilg W, Schmidt M and Deinhardt F: Decline of anti-HBs after hepatitis B vaccination and timing of revaccination. Lancet. 335:173–174. 1990. View Article : Google Scholar : PubMed/NCBI

118 

Inoue T, Moran I, Shinnakasu R, Phan TG and Kurosaki T: Generation of memory B cells and their reactivation. Immunol Rev. 283:138–149. 2018. View Article : Google Scholar : PubMed/NCBI

119 

von Bredow B, Arias JF, Heyer LN, Moldt B, Le K, Robinson JE, Zolla-Pazner S, Burton DR and Evans DT: Comparison of antibody-dependent cell-mediated cytotoxicity and virus neutralization by HIV-1 Env-specific monoclonal antibodies. J Virol. 90:6127–6139. 2016. View Article : Google Scholar : PubMed/NCBI

120 

von Boehmer L, Liu C, Ackerman S, Gitlin AD, Wang Q, Gazumyan A and Nussenzweig MC: Sequencing and cloning of antigen-specific antibodies from mouse memory B cells. Nat Protoc. 11:1908–1923. 2016. View Article : Google Scholar : PubMed/NCBI

121 

Lei L, Tran K, Wang Y, Steinhardt JJ, Xiao Y, Chiang CI, Wyatt RT and Li Y: Antigen-specific single B cell sorting and monoclonal antibody cloning in guinea pigs. Front Microbiol. 10:6722019. View Article : Google Scholar : PubMed/NCBI

122 

Cao Y, Su B, Guo X, Sun W, Deng Y, Bao L, Zhu Q, Zhang X, Zheng Y, Geng C, et al: Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients. B cells. Cell. 182:73–84.e16. 2020. View Article : Google Scholar

123 

Lanzavecchia A, Corti D and Sallusto F: Human monoclonal antibodies by immortalization of memory B cells. Curr Opin Biotechnol. 18:523–528. 2007. View Article : Google Scholar : PubMed/NCBI

124 

Wrammert J, Koutsonanos D, Li GM, Edupuganti S, Sui J, Morrissey M, McCausland M, Skountzou I, Hornig M, Lipkin WI, et al: Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J Exp Med. 208:181–193. 2011. View Article : Google Scholar : PubMed/NCBI

125 

Hafeez U, Gan HK and Scott AM: Monoclonal antibodies as immunomodulatory therapy against cancer and autoimmune diseases. Curr Opin Pharmacol. 41:114–121. 2018. View Article : Google Scholar : PubMed/NCBI

126 

Walcheck B and Wu J: iNK-CD64/16A cells: A promising approach for ADCC? Expert Opin Biol Ther. 19:1229–1232. 2019. View Article : Google Scholar : PubMed/NCBI

127 

Decaup E, Rossi C, Gravelle P, Laurent C, Bordenave J, Tosolini M, Tourette A, Perrial E, Dumontet C, Poupot M, et al: A tridimensional model for NK cell-mediated ADCC of follicular lymphoma. Front Immunol. 10:19432019. View Article : Google Scholar : PubMed/NCBI

128 

Giles AJ, Hao S, Padget M, Song H, Zhang W, Lynes J, Sanchez V, Liu Y, Jung J, Cao X, et al: Efficient ADCC killing of meningioma by avelumab and a high-affinity natural killer cell line, haNK. JCI Insight. 4:e1306882019. View Article : Google Scholar :

129 

Pockley AG, Vaupel P and Multhoff G: NK cell-based therapeutics for lung cancer. Expert Opin Biol Ther. 20:23–33. 2020. View Article : Google Scholar

130 

Adams GP and Weiner LM: Monoclonal antibody therapy of cancer. Nat Biotechnol. 23:1147–1157. 2005. View Article : Google Scholar : PubMed/NCBI

131 

Seguin-Devaux C, Plesseria JM, Verschueren C, Masquelier C, Iserentant G, Fullana M, Józsi M, Cohen JHM and Dervillez X: FHR4-based immunoconjugates direct complement-dependent cytotoxicity and phagocytosis towards HER2-positive cancer cells. Mol Oncol. 13:2531–2553. 2019. View Article : Google Scholar : PubMed/NCBI

132 

Wyant T, Fedyk E and Abhyankar B: An overview of the mechanism of action of the monoclonal antibody vedolizumab. J Crohns Colitis. 10:1437–1444. 2016. View Article : Google Scholar : PubMed/NCBI

133 

Czyz M: Fibroblast growth factor receptor signaling in skin cancers. Cells. 8:5402019. View Article : Google Scholar :

134 

Jimenez-Pascual A and Siebzehnrubl FA: Fibroblast growth factor receptor functions in glioblastoma. Cells. 8:7152019. View Article : Google Scholar :

135 

Lee YT, Tan YJ and Oon CE: Molecular targeted therapy: Treating cancer with specificity. Eur J Pharmacol. 834:188–196. 2018. View Article : Google Scholar : PubMed/NCBI

136 

Weiner GJ: Building better monoclonal antibody-based therapeutics. Nat Rev Cancer. 15:361–370. 2015. View Article : Google Scholar : PubMed/NCBI

137 

Howie LJ, Scher NS, Amiri-Kordestani L, Zhang L, King-Kallimanis BL, Choudhry Y, Schroeder J, Goldberg KB, Kluetz PG, Ibrahim A, et al: FDA approval summary: Pertuzumab for adjuvant treatment of HER2-positive early breast cancer. Clin Cancer Res. 25:2949–2955. 2019. View Article : Google Scholar

138 

Touat M, Idbaih A, Sanson M and Ligon KL: Glioblastoma targeted therapy: Updated approaches from recent biological insights. Ann Oncol. 28:1457–1472. 2017. View Article : Google Scholar : PubMed/NCBI

139 

Xu MJ, Johnson DE and Grandis JR: EGFR-targeted therapies in the post-genomic era. Cancer Metastasis Rev. 36:463–473. 2017. View Article : Google Scholar : PubMed/NCBI

140 

Frezzetti D, Gallo M, Maiello MR, D'Alessio A, Esposito C, Chicchinelli N, Normanno N and De Luca A: VEGF as a potential target in lung cancer. Expert Opin Ther Targets. 21:959–966. 2017. View Article : Google Scholar : PubMed/NCBI

141 

Yalcin F, Dzaye O and Xia S: Tenascin-C function in glioma: Immunomodulation and beyond. Adv Exp Med Biol. 1272:149–172. 2020. View Article : Google Scholar : PubMed/NCBI

142 

Lieverse RIY, Van Limbergen EJ, Oberije CJG, Troost EGC, Hadrup SR, Dingemans AC, Hendriks LEL, Eckert F, Hiley C, Dooms C, et al: Stereotactic ablative body radiotherapy (SABR) combined with immunotherapy (L19-IL2) versus standard of care in stage IV NSCLC patients, ImmunoSABR: A multicentre, randomised controlled open-label phase II trial. BMC Cancer. 20:5572020. View Article : Google Scholar : PubMed/NCBI

143 

Wester HJ and Schottelius M: PSMA-targeted radiopharmaceuticals for imaging and therapy. Semin Nucl Med. 49:302–312. 2019. View Article : Google Scholar : PubMed/NCBI

144 

Apte RS, Chen DS and Ferrara N: VEGF in signaling and disease: Beyond discovery and development. Cell. 176:1248–1264. 2019. View Article : Google Scholar : PubMed/NCBI

145 

Topalian SL, Taube JM, Anders RA and Pardoll DM: Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 16:275–287. 2016. View Article : Google Scholar : PubMed/NCBI

146 

Zhang JC, Chen WD, Alvarez JB, Jia K, Shi L, Wang Q, Zou N, He K and Zhu H: Cancer immune checkpoint blockade therapy and its associated autoimmune cardiotoxicity. Acta Pharmacol Sin. 39:1693–1698. 2018. View Article : Google Scholar : PubMed/NCBI

147 

Chamoto K, Al-Habsi M and Honjo T: Role of PD-1 in immunity and diseases. Curr Top Microbiol Immunol. 410:75–97. 2017.PubMed/NCBI

148 

Darvin P, Toor SM, Sasidharan Nair V and Elkord E: Immune checkpoint inhibitors: Recent progress and potential biomarkers. Exp Mol Med. 50:1–11. 2018. View Article : Google Scholar : PubMed/NCBI

149 

Postow MA, Sidlow R and Hellmann MD: Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 378:158–168. 2018. View Article : Google Scholar : PubMed/NCBI

150 

Gotwals P, Cameron S, Cipolletta D, Cremasco V, Crystal A, Hewes B, Mueller B, Quaratino S, Sabatos-Peyton C, Petruzzelli L, et al: Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer. 17:286–301. 2017. View Article : Google Scholar : PubMed/NCBI

151 

Abril-Rodriguez G and Ribas A: SnapShot: Immune checkpoint inhibitors. Cancer Cell. 31:848–848.e1. 2017. View Article : Google Scholar : PubMed/NCBI

152 

Rowshanravan B, Halliday N and Sansom DM: CTLA-4: A moving target in immunotherapy. Blood. 131:58–67. 2018. View Article : Google Scholar

153 

Lo B and Abdel-Motal UM: Lessons from CTLA-4 deficiency and checkpoint inhibition. Curr Opin Immunol. 49:14–19. 2017. View Article : Google Scholar : PubMed/NCBI

154 

Duperret EK, Trautz A, Stoltz R, Patel A, Wise MC, Perales-Puchalt A, Smith T, Broderick KE, Masteller E, Kim JJ, et al: Synthetic DNA-encoded monoclonal antibody delivery of anti-CTLA-4 antibodies induces tumor shrinkage in vivo. Cancer Res. 78:6363–6370. 2018. View Article : Google Scholar : PubMed/NCBI

155 

Specenier P: Ipilimumab in melanoma. Expert Rev Anticancer Ther. 16:811–826. 2016. View Article : Google Scholar : PubMed/NCBI

156 

Carter BW, Bhosale PR and Yang WT: Immunotherapy and the role of imaging. Cancer. 124:2906–2922. 2018. View Article : Google Scholar : PubMed/NCBI

157 

Kuehn HS, Ouyang W, Lo B, Deenick EK, Niemela JE, Avery DT, Schickel JN, Tran DQ, Stoddard J, Zhang Y, et al: Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science. 345:1623–1627. 2014. View Article : Google Scholar : PubMed/NCBI

158 

Schubert D, Bode C, Kenefeck R, Hou TZ, Wing JB, Kennedy A, Bulashevska A, Petersen BS, Schäffer AA, Grüning BA, et al: Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med. 20:1410–1416. 2014. View Article : Google Scholar : PubMed/NCBI

159 

Chesney J, Puzanov I, Collichio F, Singh P, Milhem MM, Glaspy J, Hamid O, Ross M, Friedlander P, Garbe C, et al: Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J Clin Oncol. 36:1658–1667. 2018. View Article : Google Scholar :

160 

Soularue E, Lepage P, Colombel JF, Coutzac C, Faleck D, Marthey L, Collins M, Chaput N, Robert C and Carbonnel F: Enterocolitis due to immune checkpoint inhibitors: A systematic review. Gut. 67:2056–2067. 2018. View Article : Google Scholar : PubMed/NCBI

161 

Spain L, Diem S and Larkin J: Management of toxicities of immune checkpoint inhibitors. Cancer Treat Rev. 44:51–60. 2016. View Article : Google Scholar : PubMed/NCBI

162 

Rotte A: Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J Exp Clin Cancer Res. 38:2552019. View Article : Google Scholar : PubMed/NCBI

163 

Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD, Cowey CL, Schadendorf D, Wagstaff J, Dummer R, et al: Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 381:1535–1546. 2019. View Article : Google Scholar : PubMed/NCBI

164 

Sidaway P: Immunotherapy: Local chemotherapy synergizes with CTLA-4 inhibition. Nat Rev Clin Oncol. 15:2022018.PubMed/NCBI

165 

Weber JS, Kähler KC and Hauschild A: Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol. 30:2691–2697. 2012. View Article : Google Scholar : PubMed/NCBI

166 

Han Y, Liu D and Li L: PD-1/PD-L1 pathway: Current researches in cancer. Am J Cancer Res. 10:727–742. 2020.PubMed/NCBI

167 

Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK and Iyer AK: PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Front Pharmacol. 8:5612017. View Article : Google Scholar : PubMed/NCBI

168 

Xu-Monette ZY, Zhou J and Young KH: PD-1 expression and clinical PD-1 blockade in B-cell lymphomas. Blood. 131:68–83. 2018. View Article : Google Scholar :

169 

Du S, McCall N, Park K, Guan Q, Fontina P, Ertel A, Zhan T, Dicker AP and Lu B: Blockade of tumor-expressed PD-1 promotes lung cancer growth. Oncoimmunology. 7:e14087472018. View Article : Google Scholar : PubMed/NCBI

170 

Yi M, Jiao D, Xu H, Liu Q, Zhao W, Han X and Wu K: Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol Cancer. 17:1292018. View Article : Google Scholar : PubMed/NCBI

171 

Naidoo J, Page DB, Li BT, Connell LC, Schindler K, Lacouture ME, Postow MA and Wolchok JD: Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 26:2375–2391. 2015. View Article : Google Scholar : PubMed/NCBI

172 

Sunshine J and Taube JM: PD-1/PD-L1 inhibitors. Curr Opin Pharmacol. 23:32–38. 2015. View Article : Google Scholar : PubMed/NCBI

173 

Patel SA and Minn AJ: Combination cancer therapy with immune checkpoint blockade: Mechanisms and strategies. Immunity. 48:417–433. 2018. View Article : Google Scholar : PubMed/NCBI

174 

Hayashi H and Nakagawa K: Combination therapy with PD-1 or PD-L1 inhibitors for cancer. Int J Clin Oncol. 25:818–830. 2020. View Article : Google Scholar

175 

Aggen DH, Drake CG and Rini BI: Targeting PD-1 or PD-L1 in metastatic kidney cancer: Combination therapy in the first-line setting. Clin Cancer Res. 26:2087–2095. 2020. View Article : Google Scholar : PubMed/NCBI

176 

Mathew M, Enzler T, Shu CA and Rizvi NA: Combining chemotherapy with PD-1 blockade in NSCLC. Pharmacol Ther. 186:130–137. 2018. View Article : Google Scholar : PubMed/NCBI

177 

Kong Y, Zhao X, Zou L, Xing P, Ma Y, Tian Y and Zhang L: PD-1 inhibitor combined with radiotherapy and GM-CSF as salvage therapy in patients with chemotherapy-refractory metastatic solid tumors. J Clin Oncol. 38(Suppl 15): e151732020. View Article : Google Scholar

178 

Kordbacheh T, Honeychurch J, Blackhall F, Faivre-Finn C and Illidge T: Radiotherapy and anti-PD-1/PD-L1 combinations in lung cancer: Building better translational research platforms. Ann Oncol. 29:301–310. 2018. View Article : Google Scholar : PubMed/NCBI

179 

Walshaw RC, Honeychurch J, Illidge TM and Choudhury A: The anti-PD-1 era-an opportunity to enhance radiotherapy for patients with bladder cancer. Nat Rev Urol. 15:251–259. 2018. View Article : Google Scholar

180 

Sheng X, Yan X, Chi Z, Si L, Cui C, Tang B, Li S, Mao L, Lian B, Wang X, et al: Axitinib in combination with toripalimab, a humanized immunoglobulin G4 monoclonal antibody against programmed cell death-1, in patients with metastatic mucosal melanoma: An open-label phase IB trial. J Clin Oncol. 37:2987–2999. 2019. View Article : Google Scholar : PubMed/NCBI

181 

Kato Y, Tabata K, Kimura T, Yachie-Kinoshita A, Ozawa Y, Yamada K, Ito J, Tachino S, Hori Y, Matsuki M, et al: Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway. PLoS One. 14:e02125132019. View Article : Google Scholar

182 

Atkins MB, Plimack ER, Puzanov I, Fishman MN, McDermott DF, Cho DC, Vaishampayan U, George S, Olencki TE, Tarazi JC, et al: Axitinib in combination with pembrolizumab in patients with advanced renal cell cancer: A non-randomised, open-label, dose-finding, and dose-expansion phase 1b trial. Lancet Oncol. 19:405–415. 2018. View Article : Google Scholar : PubMed/NCBI

183 

Kohlhapp FJ and Kaufman HL: Molecular pathways: Mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res. 22:1048–1054. 2016. View Article : Google Scholar : PubMed/NCBI

184 

Kowalsky SJ, Liu Z, Feist M, Berkey SE, Ma C, Ravindranathan R, Dai E, Roy EJ, Guo ZS and Bartlett DL: Superagonist IL-15-armed oncolytic virus elicits potent antitumor immunity and therapy that are enhanced with PD-1 blockade. Mol Ther. 26:2476–2486. 2018. View Article : Google Scholar : PubMed/NCBI

185 

Sahin U and Türeci Ö: Personalized vaccines for cancer immunotherapy. Science. 359:1355–1360. 2018. View Article : Google Scholar : PubMed/NCBI

186 

Sui H, Ma N, Wang Y, Li H, Liu X, Su Y and Yang J: Anti-PD-1/PD-L1 therapy for non-small-cell lung cancer: Toward personalized medicine and combination strategies. J Immunol Res. 2018:69849482018. View Article : Google Scholar : PubMed/NCBI

187 

Rafiq S, Yeku OO, Jackson HJ, Purdon TJ, van Leeuwen DG, Drakes DJ, Song M, Miele MM, Li Z, Wang P, et al: Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo. Nat Biotechnol. 36:847–856. 2018. View Article : Google Scholar : PubMed/NCBI

188 

Shi X, Zhang D, Li F, Zhang Z, Wang S, Xuan Y, Ping Y and Zhang Y: Targeting glycosylation of PD-1 to enhance CAR-T cell cytotoxicity. J Hematol Oncol. 12:1272019. View Article : Google Scholar : PubMed/NCBI

189 

Xu J, Sun HH, Fletcher CD, Hornick JL, Morgan EA, Freeman GJ, Hodi FS, Pinkus GS and Rodig SJ: Expression of programmed cell death 1 ligands (PD-L1 and PD-L2) in histiocytic and dendritic cell disorders. Am J Surg Pathol. 40:443–453. 2016. View Article : Google Scholar : PubMed/NCBI

190 

Xia L, Liu Y and Wang Y: PD-1/PD-L1 blockade therapy in advanced non-small-cell lung cancer: Current status and future directions. Oncologist. 24(Suppl 1): S31–S41. 2019. View Article : Google Scholar : PubMed/NCBI

191 

Chaudhri A, Xiao Y, Klee AN, Wang X, Zhu B and Freeman GJ: PD-L1 binds to B7-1 only in Cis on the same cell surface. Cancer Immunol Res. 6:921–929. 2018. View Article : Google Scholar : PubMed/NCBI

192 

Inman BA, Longo TA, Ramalingam S and Harrison MR: Atezolizumab: A PD-L1-blocking antibody for bladder cancer. Clin Cancer Res. 23:1886–1890. 2017. View Article : Google Scholar

193 

Garassino MC, Cho BC, Kim JH, Mazières J, Vansteenkiste J, Lena H, Corral Jaime J, Gray JE, Powderly J, Chouaid C, et al: Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): An open-label, single-arm, phase 2 study. Lancet Oncol. 19:521–536. 2018. View Article : Google Scholar : PubMed/NCBI

194 

Lui Y and Davis SJ: LAG-3: A very singular immune checkpoint. Nat Immunol. 19:1278–1279. 2018. View Article : Google Scholar : PubMed/NCBI

195 

Maruhashi T, Sugiura D, Okazaki IM and Okazaki T: LAG-3: From molecular functions to clinical applications. J Immunother Cancer. 8:e0010142020. View Article : Google Scholar : PubMed/NCBI

196 

Anderson AC, Joller N and Kuchroo VK: Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation. Immunity. 44:989–1004. 2016. View Article : Google Scholar : PubMed/NCBI

197 

Das M, Zhu C and Kuchroo VK: Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev. 276:97–111. 2017. View Article : Google Scholar : PubMed/NCBI

198 

Thomas A, Teicher BA and Hassan R: Antibody-drug conjugates for cancer therapy. Lancet Oncol. 17:e254–e262. 2016. View Article : Google Scholar : PubMed/NCBI

199 

Sharabi AB, Lim M, DeWeese TL and Drake CG: Radiation and checkpoint blockade immunotherapy: Radiosensitisation and potential mechanisms of synergy. Lancet Oncol. 16:e498–e509. 2015. View Article : Google Scholar : PubMed/NCBI

200 

Yaghoubi S, Karimi MH, Lotfinia M, Gharibi T, Mahi-Birjand M, Kavi E, Hosseini F, Sineh Sepehr K, Khatami M, Bagheri N, et al: Potential drugs used in the antibody-drug conjugate (ADC) architecture for cancer therapy. J Cell Physiol. 235:31–64. 2020. View Article : Google Scholar

201 

Qin SY, Cheng YJ, Lei Q, Zhang AQ and Zhang XZ: Combinational strategy for high-performance cancer chemotherapy. Biomaterials. 171:178–197. 2018. View Article : Google Scholar : PubMed/NCBI

202 

Yu WD, Sun G, Li J, Xu J and Wang X: Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy. Cancer Lett. 452:66–70. 2019. View Article : Google Scholar : PubMed/NCBI

203 

Pérez-Herrero E and Fernández-Medarde A: Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 93:52–79. 2015. View Article : Google Scholar : PubMed/NCBI

204 

Nadal R and Bellmunt J: Management of metastatic bladder cancer. Cancer Treat Rev. 76:10–21. 2019. View Article : Google Scholar : PubMed/NCBI

205 

Akbari B, Farajnia S, Ahdi Khosroshahi S, Safari F, Yousefi M, Dariushnejad H and Rahbarnia L: Immunotoxins in cancer therapy: Review and update. Int Rev Immunol. 36:207–219. 2017. View Article : Google Scholar : PubMed/NCBI

206 

Alewine C, Hassan R and Pastan I: Advances in anticancer immunotoxin therapy. Oncologist. 20:176–185. 2015. View Article : Google Scholar : PubMed/NCBI

207 

Polito L, Djemil A and Bortolotti M: Plant toxin-based immunotoxins for cancer therapy: A short overview. Biomedicines. 4:122016. View Article : Google Scholar

208 

Madhumathi J, Devilakshmi S, Sridevi S and Verma RS: Immunotoxin therapy for hematologic malignancies: Where are we heading? Drug Discov Today. 21:325–332. 2016. View Article : Google Scholar

209 

Kumar M, Thangavel C, Becker RC and Sadayappan S: Monoclonal antibody-based immunotherapy and its role in the development of cardiac toxicity. Cancers (Basel). 13:862020. View Article : Google Scholar

210 

Tse BW, Collins A, Oehler MK, Zippelius A and Heinzelmann-Schwarz VA: Antibody-based immunotherapy for ovarian cancer: Where are we at? Ann Oncol. 25:322–331. 2014. View Article : Google Scholar

211 

Chau CH, Steeg PS and Figg WD: Antibody-drug conjugates for cancer. Lancet. 394:793–804. 2019. View Article : Google Scholar : PubMed/NCBI

212 

Khongorzul P, Ling CJ, Khan FU, Ihsan AU and Zhang J: Antibody-drug conjugates: A comprehensive review. Mol Cancer Res. 18:3–19. 2020. View Article : Google Scholar

213 

Tsuchikama K and An Z: Antibody-drug conjugates: Recent advances in conjugation and linker chemistries. Protein Cell. 9:33–46. 2018. View Article : Google Scholar :

214 

Erickson HK, Park PU, Widdison WC, Kovtun YV, Garrett LM, Hoffman K, Lutz RJ, Goldmacher VS and Blättler WA: Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res. 66:4426–4433. 2006. View Article : Google Scholar : PubMed/NCBI

215 

Huang Y, Lee C, Borgström P and Gjerset RA: Macrophage-mediated bystander effect triggered by tumor cell apoptosis. Mol Ther. 15:524–533. 2007. View Article : Google Scholar : PubMed/NCBI

216 

Staudacher AH and Brown MP: Antibody drug conjugates and bystander killing: Is antigen-dependent internalisation required? Br J Cancer. 117:1736–1742. 2017. View Article : Google Scholar : PubMed/NCBI

217 

Beck A, Goetsch L, Dumontet C and Corvaïa N: Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 16:315–337. 2017. View Article : Google Scholar : PubMed/NCBI

218 

Birrer MJ, Moore KN, Betella I and Bates RC: Antibody-drug conjugate-based therapeutics: State of the science. J Natl Cancer Inst. 111:538–549. 2019. View Article : Google Scholar : PubMed/NCBI

219 

Mahalingaiah PK, Ciurlionis R, Durbin KR, Yeager RL, Philip BK, Bawa B, Mantena SR, Enright BP, Liguori MJ and Van Vleet TR: Potential mechanisms of target-independent uptake and toxicity of antibody-drug conjugates. Pharmacol Ther. 200:110–125. 2019. View Article : Google Scholar : PubMed/NCBI

220 

Lambert JM and Berkenblit A: Antibody-drug conjugates for cancer treatment. Annu Rev Med. 69:191–207. 2018. View Article : Google Scholar : PubMed/NCBI

221 

Duerr C and Friess W: Antibody-drug conjugates-stability and formulation. Eur J Pharm Biopharm. 139:168–176. 2019. View Article : Google Scholar : PubMed/NCBI

222 

Theocharopoulos C, Lialios PP, Gogas H and Ziogas DC: An overview of antibody-drug conjugates in oncological practice. Ther Adv Med Oncol. Oct 4–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

223 

Abdollahpour-Alitappeh M, Lotfinia M, Gharibi T, Mardaneh J, Farhadihosseinabadi B, Larki P, Faghfourian B, Sepehr KS, Abbaszadeh-Goudarzi K, Abbaszadeh-Goudarzi G, et al: Antibody-drug conjugates (ADCs) for cancer therapy: Strategies, challenges, and successes. J Cell Physiol. 234:5628–5642. 2019. View Article : Google Scholar

224 

Liu L: Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins. Protein Cell. 9:15–32. 2018. View Article : Google Scholar :

225 

Yu B and Liu D: Antibody-drug conjugates in clinical trials for lymphoid malignancies and multiple myeloma. J Hematol Oncol. 12:942019. View Article : Google Scholar : PubMed/NCBI

226 

Gébleux R and Casi G: Antibody-drug conjugates: Current status and future perspectives. Pharmacol Ther. 167:48–59. 2016. View Article : Google Scholar : PubMed/NCBI

227 

Tiller KE and Tessier PM: Advances in antibody design. Annu Rev Biomed Eng. 17:191–216. 2015. View Article : Google Scholar : PubMed/NCBI

228 

Ponziani S, Di Vittorio G, Pitari G, Cimini AM, Ardini M, Gentile R, Iacobelli S, Sala G, Capone E, Flavell DJ, et al: Antibody-drug conjugates: The new frontier of chemotherapy. Int J Mol Sci. 21:55102020. View Article : Google Scholar :

229 

Kobayashi H and Choyke PL: Near-infrared photoimmunotherapy of cancer. Acc Chem Res. 52:2332–2339. 2019. View Article : Google Scholar : PubMed/NCBI

230 

Ozog DM, Rkein AM, Fabi SG, Gold MH, Goldman MP, Lowe NJ, Martin GM and Munavalli GS: Photodynamic therapy: A clinical consensus guide. Dermatol Surg. 42:804–827. 2016. View Article : Google Scholar : PubMed/NCBI

231 

Larue L, Myrzakhmetov B, Ben-Mihoub A, Moussaron A, Thomas N, Arnoux P, Baros F, Vanderesse R, Acherar S and Frochot C: Fighting hypoxia to improve PDT. Pharmaceuticals (Basel). 12:1632019. View Article : Google Scholar

232 

Nagaya T, Nakamura Y, Okuyama S, Ogata F, Maruoka Y, Choyke PL, Allen C and Kobayashi H: Syngeneic mouse models of oral cancer are effectively targeted by anti-CD44-Based NIR-PIT. Mol Cancer Res. 15:1667–1677. 2017. View Article : Google Scholar : PubMed/NCBI

233 

Mew D, Lum V, Wat CK, Towers GH, Sun CH, Walter RJ, Wright W, Berns MW and Levy JG: Ability of specific monoclonal antibodies and conventional antisera conjugated to hematoporphyrin to label and kill selected cell lines subsequent to light activation. Cancer Res. 45:4380–4386. 1985.PubMed/NCBI

234 

Mew D, Wat CK, Towers GH and Levy JG: Photoimmunotherapy: Treatment of animal tumors with tumor-specific monoclonal antibody-hematoporphyrin conjugates. J Immunol. 130:1473–1477. 1983.PubMed/NCBI

235 

Wang M, Rao J, Wang M, Li X, Liu K, Naylor MF, Nordquist RE, Chen WR and Zhou F: Cancer photo-immunotherapy: From bench to bedside. Theranostics. 11:2218–2231. 2021. View Article : Google Scholar : PubMed/NCBI

236 

Mitsunaga M, Ogawa M, Kosaka N, Rosenblum LT, Choyke PL and Kobayashi H: Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med. 17:1685–1691. 2011. View Article : Google Scholar : PubMed/NCBI

237 

Isobe Y, Sato K, Nishinaga Y, Takahashi K, Taki S, Yasui H, Shimizu M, Endo R, Koike C, Kuramoto N, et al: Near infrared photoimmunotherapy targeting DLL3 for small cell lung cancer. EBioMedicine. 52:1026322020. View Article : Google Scholar : PubMed/NCBI

238 

Nishimura T, Mitsunaga M, Ito K, Kobayashi H and Saruta M: Cancer neovasculature-targeted near-infrared photoimmunotherapy (NIR-PIT) for gastric cancer: Different mechanisms of phototoxicity compared to cell membrane-targeted NIR-PIT. Gastric Cancer. 23:82–94. 2020. View Article : Google Scholar

239 

Deshaies RJ: Multispecific drugs herald a new era of biopharmaceutical innovation. Nature. 580:329–338. 2020. View Article : Google Scholar : PubMed/NCBI

240 

Kaplon H, Muralidharan M, Schneider Z and Reichert JM: Antibodies to watch in 2020. MAbs. 12:17035312020. View Article : Google Scholar :

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Lu J, Ding J, Liu Z and Chen T: Retrospective analysis of the preparation and application of immunotherapy in cancer treatment (Review). Int J Oncol 60: 12, 2022.
APA
Lu, J., Ding, J., Liu, Z., & Chen, T. (2022). Retrospective analysis of the preparation and application of immunotherapy in cancer treatment (Review). International Journal of Oncology, 60, 12. https://doi.org/10.3892/ijo.2022.5302
MLA
Lu, J., Ding, J., Liu, Z., Chen, T."Retrospective analysis of the preparation and application of immunotherapy in cancer treatment (Review)". International Journal of Oncology 60.2 (2022): 12.
Chicago
Lu, J., Ding, J., Liu, Z., Chen, T."Retrospective analysis of the preparation and application of immunotherapy in cancer treatment (Review)". International Journal of Oncology 60, no. 2 (2022): 12. https://doi.org/10.3892/ijo.2022.5302
Copy and paste a formatted citation
x
Spandidos Publications style
Lu J, Ding J, Liu Z and Chen T: Retrospective analysis of the preparation and application of immunotherapy in cancer treatment (Review). Int J Oncol 60: 12, 2022.
APA
Lu, J., Ding, J., Liu, Z., & Chen, T. (2022). Retrospective analysis of the preparation and application of immunotherapy in cancer treatment (Review). International Journal of Oncology, 60, 12. https://doi.org/10.3892/ijo.2022.5302
MLA
Lu, J., Ding, J., Liu, Z., Chen, T."Retrospective analysis of the preparation and application of immunotherapy in cancer treatment (Review)". International Journal of Oncology 60.2 (2022): 12.
Chicago
Lu, J., Ding, J., Liu, Z., Chen, T."Retrospective analysis of the preparation and application of immunotherapy in cancer treatment (Review)". International Journal of Oncology 60, no. 2 (2022): 12. https://doi.org/10.3892/ijo.2022.5302
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team