|
1
|
Hartenian E, Nandakumar D, Lari A, Ly M,
Tucker JM and Glaunsinger BA: The molecular virology of
coronaviruses. J Biol Chem. 295:12910–12934. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Mortaz E, Tabarsi P, Varahram M, Folkerts
G and Adcock IM: The immune response and immunopathology of
COVID-19. Front Immunol. 11:20372020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Tan HW, Xu YM and Lau ATY:
Angiotensin-converting enzyme 2: The old door for new severe acute
respiratory syndrome coronavirus 2 infection. Rev Med Virol.
30:e21222020. View
Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ye ZW, Yuan S, Yuen KS, Fung SY, Chan CP
and Jin DY: Zoonotic origins of human coronaviruses. Int J Biol
Sci. 16:1686–1697. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Chang L, Yan Y and Wang L: Coronavirus
disease 2019: Coronaviruses and blood safety. Transfus Med Rev.
34:75–80. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Yi C, Sun X, Ye J, Ding L, Liu M, Yang Z,
Lu X, Zhang Y, Ma L, Gu W, et al: Key residues of the receptor
binding motif in the spike protein of SARS-CoV-2 that interact with
ACE2 and neutralizing antibodies. Cell Mol Immunol. 17:621–630.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Yuan M, Wu NC, Zhu X, Lee CD, So RTY, Lv
H, Mok CKP and Wilson IA: A highly conserved cryptic epitope in the
receptor binding domains of SARS-CoV-2 and SARS-CoV. Science.
368:630–633. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Jiang S, Hillyer C and Du L: Neutralizing
antibodies against SARS-CoV-2 and other human coronaviruses. Trends
Immunol. 41:355–359. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
van Dam PA, Huizing M, Mestach G,
Dierckxsens S, Tjalma W, Trinh XB, Papadimitriou K, Altintas S,
Vermorken J, Vulsteke C, et al: SARS-CoV-2 and cancer: Are they
really part- ners in crime? Cancer Treat Rev. 89:1020682020.
View Article : Google Scholar
|
|
10
|
Garrone O, Denaro N, Ruatta F, Vanella P,
Granetto C, Vandone AM, Occelli M, Cauchi C, Ricci V, Fea E, et al:
Treating patients with cancer amidst the COVID-19 pandemic:
Experience of a regional hospital in the Piedmont region in
northern Italy. Tumori. 106:427–431. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Bojkova D, Klann K, Koch B, Widera M,
Krause D, Ciesek S, Cinatl J and Münch C: Proteomics of
SARS-CoV-2-infected host cells reveals therapy targets. Nature.
583:469–472. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Pasin F, Mascalchi Calveri M, Calabrese A,
Pizzarelli G, Bongiovanni I, Andreoli M, Cattaneo C and Rignanese
G: Oncolytic effect of SARS-CoV2 in a patient with NK lymphoma.
Acta Biomed. 91:e20200472020.
|
|
13
|
Akram N, Imran M, Noreen M, Ahmed F, Atif
M, Fatima Z and Bilal Waqar A: Oncogenic role of tumor viruses in
humans. Viral Immunol. 30:20–27. 2017. View Article : Google Scholar
|
|
14
|
White MK, Pagano JS and Khalili K: Viruses
and human cancers: A long road of discovery of molecular paradigms.
Clin Microbiol Rev. 27:463–481. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kuss-Duerkop SK, Westrich JA and Pyeon D:
DNA tumor virus regulation of host DNA methylation and its
implications for immune evasion and oncogenesis. Viruses.
10:822018. View Article : Google Scholar :
|
|
16
|
Liu S, Kaddis Maldonado R, Rye-McCurdy T,
Binkley C, Bah A, Chen EC, Rice BL, Parent LJ and Musier-Forsyth K:
Rous sarcoma virus genomic RNA dimerization capability in vitro is
not a prerequisite for viral infectivity. Viruses. 12:5682020.
View Article : Google Scholar :
|
|
17
|
Simatou A, Simatos G, Goulielmaki M,
Spandidos DA, Baliou S and Zoumpourlis V: Historical retrospective
of the SRC oncogene and new perspectives (review). Mol Clin Oncol.
13:212020.
|
|
18
|
Dupin N and Deleuze J: Kaposi sarcoma and
HHV-8: A model of cutaneous cancer in immunosuppressed patients.
Rev Prat. 64:311–316. 2014.In French. PubMed/NCBI
|
|
19
|
Stern J, Miller G, Li X and Saxena D:
Virome and bacteriome: Two sides of the same coin. Curr Opin Virol.
37:37–43. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Etta EM, Alayande DP, Mavhandu-Ramarumo
LG, Gachara G and Bessong PO: HHV-8 seroprevalence and genotype
distribution in Africa, 1998-2017: A systematic review. Viruses.
10:4582018. View Article : Google Scholar
|
|
21
|
Rusan M, Li YY and Hammerman PS: Genomic
landscape of human papillomavirus-associated cancers. Clin Cancer
Res. 21:2009–2019. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ojesina AI, Lichtenstein L, Freeman SS,
Pedamallu CS, Imaz-Rosshandler I, Pugh TJ, Cherniack AD, Ambrogio
L, Cibulskis K, Bertelsen B, et al: Landscape of genomic
alterations in cervical carcinomas. Nature. 506:371–375. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Parfenov M, Pedamallu CS, Gehlenborg N,
Freeman SS, Danilova L, Bristow CA, Lee S, Hadjipanayis AG, Ivanova
EV, Wilkerson MD, et al: Characterization of HPV and host genome
interactions in primary head and neck cancers. Proc Natl Acad Sci
USA. 111:15544–15549. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lei J, Ploner A, Elfström KM, Wang J, Roth
A, Fang F, Sundström K, Dillner J and Sparén P: HPV vaccination and
the risk of invasive cervical cancer. N Engl J Med. 383:1340–1348.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Sadri Nahand J, Moghoofei M, Salmaninejad
A, Bahmanpour Z, Karimzadeh M, Nasiri M, Mirzaei HR, Pourhanifeh
MH, Bokharaei-Salim F, Mirzaei H and Hamblin MR: Pathogenic role of
exosomes and microRNAs in HPV-mediated inflammation and cervical
cancer: A review. Int J Cancer. 146:305–320. 2020. View Article : Google Scholar
|
|
26
|
Chen J, Kendrick S and Qin Z: Mechanistic
insights into chemoresistance mediated by oncogenic viruses in
lymphomas. Viruses. 11:11612019. View Article : Google Scholar
|
|
27
|
Paradowska E, Jabłońska A, Studzińska M,
Wilczyński M and Wilczyński JR: Detection and genotyping of CMV and
HPV in tumors and fallopian tubes from epithelial ovarian cancer
patients. Sci Rep. 9:199352019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Li A, Wu J, Zhai A, Qian J, Wang X, Qaria
MA, Zhang Q, Li Y, Fang Y, Kao W, et al: HBV triggers APOBEC2
expression through miR-122 regulation and affects the proliferation
of liver cancer cells. Int J Oncol. 55:1137–1148. 2019.PubMed/NCBI
|
|
29
|
Levrero M and Zucman-Rossi J: Mechanisms
of HBV-induced hepatocellular carcinoma. J Hepatol. 64(Suppl 1):
S84–S101. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zapatka M, Borozan I, Brewer DS, Iskar M,
Grundhoff A, Alawi M, Desai N, Sültmann H, Moch H, et al; PCAWG
Pathogens. The landscape of viral associations in human cancers.
Nat Genet. 52:320–330. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Peng RJ, Han BW, Cai QQ, Zuo XY, Xia T,
Chen JR, Feng LN, Lim JQ, Chen SW, Zeng MS, et al: Genomic and
transcriptomic landscapes of Epstein-Barr virus in extranodal
natural killer T-cell lymphoma. Leukemia. 33:1451–1462. 2019.
View Article : Google Scholar :
|
|
32
|
Re De V, Caggiari L, De Zorzi M, Fanotto
V, Miolo G, Puglisi F, Cannizzaro R, Canzonieri V, Steffan A,
Farruggia P, et al: Epstein-Barr virus BART microRNAs in
EBV-associated Hodgkin lymphoma and gastric cancer. Infect Agents
Cancer. 15:422020. View Article : Google Scholar
|
|
33
|
Camargo MC, Kim KM, Matsuo K, Torres J,
Liao LM, Morgan D, Michel A, Waterboer T, Song M, Gulley ML, et al:
Circulating antibodies against Epstein-Barr virus (EBV) and p53 in
EBV-positive and -negative gastric cancer. Cancer Epidemiol
Biomarkers Prev. 29:414–419. 2020. View Article : Google Scholar
|
|
34
|
Fitzsimmons L, Cartlidge R, Chang C, Sejic
N, Galbraith LCA, Suraweera CD, Croom-Carter D, Dewson G, Tierney
RJ, Bell AI, et al: EBV BCL-2 homologue BHRF1 drives
chemo-resistance and lymphomagenesis by inhibiting multiple
cellular pro-apoptotic proteins. Cell Death Differ. 27:1554–1568.
2020. View Article : Google Scholar
|
|
35
|
Fukayama M, Abe H, Kunita A,
Shinozaki-Ushiku A, Matsusaka K, Ushiku T and Kaneda A: Thirty
years of Epstein-Barr virus-associated gastric carcinoma. Virchows
Arch. 476:353–365. 2020. View Article : Google Scholar
|
|
36
|
Rahman M, Dastmalchi F, Karachi A and
Mitchell D: The role of CMV in glioblastoma and implications for
immunotherapeutic strategies. Oncoimmunology. 8:e15149212018.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Chang Z, Wang Y, Zhou X and Long JE: STAT3
roles in viral infection: Antiviral or proviral? Future Virol.
13:557–574. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wilski NA and Snyder CM: From vaccine
vector to oncomodulation: Understanding the complex interplay
between CMV and cancer. Vaccines (Basel). 7:622019. View Article : Google Scholar
|
|
39
|
Bayurova E, Jansons J, Skrastina D,
Smirnova O, Mezale D, Kostyusheva A, Kostyushev D, Petkov S,
Podschwadt P, Valuev-Elliston V, et al: HIV-1 reverse transcriptase
promotes tumor growth and metastasis formation via ROS-dependent
upregulation of twist. Oxid Med Cell Longev. 2019:60162782019.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Purushothaman P, Uppal T, Sarkar R and
Verma SC: KSHV-mediated angiogenesis in tumor progression. Viruses.
8:1982016. View Article : Google Scholar :
|
|
41
|
Dupin N: Update on oncogenesis and therapy
for Kaposi sarcoma. Curr Opin Oncol. 32:122–128. 2020. View Article : Google Scholar
|
|
42
|
Markazi A, Bracci PM, McGrath M and Gao
SJ: Pseudomonas aeruginosa stimulates inflammation and enhances
Kaposi's sarcoma herpesvirus-induced cell proliferation and
cellular transformation through both lipopolysaccharide and
flagellin. mBio. 11:e02843–20. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yasunaga JI: Strategies of human T-cell
leukemia virus type 1 for persistent infection: Implications for
leukemogenesis of adult T-cell leukemia-lymphoma. Front Microbiol.
11:9792020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Higuchi Y, Yasunaga JI, Mitagami Y,
Tsukamoto H, Nakashima K, Ohshima K and Matsuoka M: HTLV-1 induces
T cell malignancy and inflammation by viral antisense
factor-mediated modulation of the cytokine signaling. Proc Natl
Acad Sci USA. 117:13740–13749. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Benkheil M, Paeshuyse J, Neyts J, Van
Haele M, Roskams T and Liekens S: HCV-induced EGFR-ERK signaling
promotes a pro-inflammatory and pro-angiogenic signature
contributing to liver cancer pathogenesis. Biochem Pharmacol.
155:305–315. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
El-Bendary M, Nour D, Arafa M and
Neamatallah M: Methylation of tumour suppressor genes RUNX3,
RASSF1A and E-Cadherin in HCV-related liver cirrhosis and
hepatocellular carcinoma. Br J Biomed Sci. 77:35–40. 2020.
View Article : Google Scholar
|
|
47
|
Huang P, Wang CH, Zhuo LY, Xia XS, Yang S,
Zhang JW, Fan HZ, Wu JJ, Yu R, Yue M and Zhang Y: Polymorphisms
rs763110 in FASL is linked to hepatitis C virus infection among
high-risk populations. Br J Biomed Sci. 77:112–117. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Defrancesco I, Zerbi C, Rattotti S, Merli
M, Bruno R, Paulli M and Arcaini L: HCV infection and non-Hodgkin
lymphomas: An evolving story. Clin Exp Med. 20:321–328. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Elgui de Oliveira D: DNA viruses in human
cancer: An integrated overview on fundamental mechanisms of viral
carcinogenesis. Cancer Lett. 247:182–196. 2007. View Article : Google Scholar
|
|
50
|
Fujimuro M, Wu FY, ApRhys C, Kajumbula H,
Young DB, Hayward GS and Hayward SD: A novel viral mechanism for
dysregulation of beta-catenin in Kaposi's sarcoma-associated
herpesvirus latency. Nat Med. 9:300–306. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Buchkovich NJ, Yu Y, Zampieri CA and
Alwine JC: The TORrid affairs of viruses: Effects of mammalian DNA
viruses on the PI3K-Akt-mTOR signalling pathway. Nat Rev Microbiol.
6:266–275. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Gaglia MM and Munger K: More than just
oncogenes: Mechanisms of tumorigenesis by human viruses. Curr Opin
Virol. 32:48–59. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Imamichi H, Smith M, Adelsberger JW, Izumi
T, Scrimieri F, Sherman BT, Rehm CA, Imamichi T, Pau A, Catalfamo
M, et al: Defective HIV-1 proviruses produce viral proteins. Proc
Natl Acad Sci USA. 117:3704–3710. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Takahashi M, Kawai K and Asai N: Roles of
the RET proto- oncogene in cancer and development. JMA J.
3:175–181. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wang H, Boussouar A, Mazelin L,
Tauszig-Delamasure S, Sun Y, Goldschneider D, Paradisi A and Mehlen
P: The proto-oncogene c-Kit inhibits tumor growth by behaving as a
dependence receptor. Mol Cell. 72:413–425.e5. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Chen S, Li F, Xu D, Hou K, Fang W and Li
Y: The function of RAS mutation in cancer and advances in its drug
research. Curr Pharm Des. 25:1105–1114. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Terrell EM, Durrant DE, Ritt DA, Sealover
NE, Sheffels E, Spencer-Smith R, Esposito D, Zhou Y, Hancock JF,
Kortum RL and Morrison DK: Distinct binding preferences between Ras
and Raf family members and the impact on oncogenic Ras signaling.
Mol Cell. 76:872–884.e5. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang Y, Wu D and Wang D: Long non-coding
RNA ARAP1-AS1 promotes tumorigenesis and metastasis through
facilitating proto-oncogene c-Myc translation via dissociating
PSF/PTB dimer in cervical cancer. Cancer Med. 9:1855–1866. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Trigo J, Subbiah V, Besse B, Moreno V,
López R, Sala MA, Peters S, Ponce S, Fernández C, Alfaro V, et al:
Lurbinectedin as second-line treatment for patients with small-cell
lung cancer: A single-arm, open-label, phase 2 basket trial. Lancet
Oncol. 21:645–654. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Adoue V and Joffre O: Endogenous
retroviruses: Friend or foe of the immune system? Med Sci (Paris).
36:253–260. 2020.In French. View Article : Google Scholar
|
|
61
|
Giannuzzi D and Aresu L: A first NGS
investigation suggests no association between viruses and canine
cancers. Front Vet Sci. 7:3652020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
He J, Tao H, Yan Y, Huang SY and Xiao Y:
Molecular mechanism of evolution and human infection with
SARS-CoV-2. Viruses. 12:4282020. View Article : Google Scholar :
|
|
63
|
Wang IH, Burckhardt CJ, Yakimovich A and
Greber UF: Imaging, tracking and computational analyses of virus
entry and egress with the cytoskeleton. Viruses. 10:1662018.
View Article : Google Scholar :
|
|
64
|
McLaughlin-Drubin ME, Crum CP and Münger
K: Human papillomavirus E7 oncoprotein induces KDM6A and KDM6B
histone demethylase expression and causes epigenetic reprogramming.
Proc Natl Acad Sci USA. 108:2130–2135. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Burgers WA, Blanchon L, Pradhan S, de
Launoit Y, Kouzarides T and Fuks F: Viral oncoproteins target the
DNA methyltransferases. Oncogene. 26:1650–1655. 2007. View Article : Google Scholar
|
|
66
|
Avanzi S, Alvisi G and Ripalti A: How
virus persistence can initiate the tumorigenesis process. World J
Virol. 2:102–109. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Addeo A and Friedlaender A: Cancer and
COVID-19: Unmasking their ties. Cancer Treat Rev. 88:1020412020.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng
Q, Meredith HR, Azman AS, Reich NG and Lessler J: The incubation
period of coronavirus disease 2019 (COVID-19) from publicly
reported confirmed cases: Estimation and application. Ann Intern
Med. 172:577–582. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Tang S, Mao Y, Jones RM, Tan Q, Ji JS, Li
N, Shen J, Lv Y, Pan L, Ding P, et al: Aerosol transmission of
SARS-CoV-2? Evidence, prevention and control. Environ Int.
144:1060392020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
van Doremalen N, Bushmaker T, Morris DH,
Holbrook MG, Gamble A, Williamson BN, Tamin A, Harcourt JL,
Thornburg NJ, Gerber SI, et al: Aerosol and surface stability of
SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med.
382:1564–1567. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Smither SJ, Eastaugh LS, Findlay JS and
Lever MS: Experimental aerosol survival of SARS-CoV-2 in artificial
saliva and tissue culture media at medium and high humidity. Emerg
Microbes Infect. 9:1415–1417. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Bouhaddou M, Memon D, Meyer B, White KM,
Rezelj VV, Correa Marrero M, Polacco BJ, Melnyk JE, Ulferts S,
Kaake RM, et al: The global phosphorylation landscape of SARS-CoV-2
infection. Cell. 182:685–712.e19. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Kim JM, Kim HM, Lee EJ, Jo HJ, Yoon Y, Lee
NJ, Son J, Lee YJ, Kim MS, Lee YP, et al: Detection and isolation
of SARS-CoV-2 in serum, urine, and stool specimens of COVID-19
patients from the Republic of Korea. Osong Public Health Res
Perspect. 11:112–117. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Elfiky AA: Ribavirin, remdesivir,
sofosbuvir, galidesivir, and tenofovir against SARS-CoV-2 RNA
dependent RNA polymerase (RdRp): A molecular docking study. Life
Sci. 253:1175922020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Icard P, Lincet H, Wu Z, Coquerel A,
Forgez P, Alifano M and Fournel L: The key role of Warburg effect
in SARS-CoV-2 replication and associated inflammatory response.
Biochimie. 180:169–177. 2021. View Article : Google Scholar
|
|
76
|
Codo AC, Davanzo GG, Monteiro LB, de Souza
GF, Muraro SP, Virgilio-da-Silva JV, Prodonoff JS, Carregari VC, de
Biagi Junior CAO, Crunfli F, et al: Elevated glucose levels favor
SARS-CoV-2 infection and monocyte response through a
HIF-1α/glycolysis-dependent axis. Cell Metab. 32:498–499. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Raymond E, Thieblemont C, Alran S and
Faivre S: Impact of the COVID-19 outbreak on the management of
patients with cancer. Target Oncol. 15:249–259. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Robilotti EV, Babady NE, Mead PA, Rolling
T, Perez-Johnston R, Bernardes M, Bogler Y, Caldararo M, Figueroa
CJ, Glickman MS, et al: Determinants of COVID-19 disease severity
in patients with cancer. Nat Med. 26:1218–1223. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Lewis WD, Lilly S and Jones KL: Lymphoma:
Diagnosis and treatment. Am Fam Physician. 101:34–41.
2020.PubMed/NCBI
|
|
80
|
Arshad S, Kilgore P, Chaudhry ZS, Jacobsen
G, Wang DD, Huitsing K, Brar I, Alangaden GJ, Ramesh MS, McKinnon
JE, et al: Treatment with hydroxychloroquine, azithromycin, and
combination in patients hospitalized with COVID-19. Int J Infect
Dis. 97:396–403. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Johnson KM, Belfer JJ, Peterson GR,
Boelkins MR and Dumkow LE: Managing COVID-19 in renal transplant
recipients: A review of recent literature and case supporting
corticosteroid- sparing immunosuppression. Pharmacotherapy.
40:517–524. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Singh AK, Majumdar S, Singh R and Misra A:
Role of corticosteroid in the management of COVID-19: A systemic
review and a Clinician's perspective. Diabetes Metab Syndr.
14:971–978. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Luo P, Liu Y, Qiu L, Liu X, Liu D and Li
J: Tocilizumab treatment in COVID-19: A single center experience. J
Med Virol. 92:814–818. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wooding DJ and Bach H: Treatment of
COVID-19 with convalescent plasma: Lessons from past coronavirus
outbreaks. Clin Microbiol Infect. 26:1436–1446. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Dai M, Liu D, Liu M, Zhou F, Li G, Chen Z,
Zhang Z, You H, Wu M, Zheng Q, et al: Patients with cancer appear
more vulnerable to SARS-CoV-2: A multicenter study during the
COVID-19 outbreak. Cancer Discov. 10:783–791. 2020.PubMed/NCBI
|
|
86
|
Li D, Liu C, Liu J, Hu J, Yang Y and Zhou
Y: Analysis of risk factors for 24 patients with COVID-19
developing from moderate to severe condition. Front Cell Infect
Microbiol. 10:5485822020. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Li X, Xu S, Yu M, Wang K, Tao Y, Zhou Y,
Shi J, Zhou M, Wu B, Yang Z, et al: Risk factors for severity and
mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin
Immunol. 146:110–118. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Turnquist C, Ryan BM, Horikawa I, Harris
BT and Harris CC: Cytokine storms in cancer and COVID-19. Cancer
Cell. 38:598–601. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Gosain R, Abdou Y, Singh A, Rana N,
Puzanov I and Ernstoff MS: COVID-19 and cancer: A comprehensive
review. Curr Oncol Rep. 22:532020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Tian Y, Qiu X, Wang C, Zhao J, Jiang X,
Niu W, Huang J and Zhang F: Cancer associates with risk and severe
events of COVID-19: A systematic review and meta-analysis. Int J
Cancer. 148:363–374. 2021. View Article : Google Scholar
|
|
91
|
Yang K, Sheng Y, Huang C, Jin Y, Xiong N,
Jiang K, Lu H, Liu J, Yang J, Dong Y, et al: Clinical
characteristics, outcomes, and risk factors for mortality in
patients with cancer and COVID-19 in Hubei, China: A multicentre,
retrospective, cohort study. Lancet Oncol. 21:904–913. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Pinato DJ, Zambelli A, Aguilar-Company J,
Bower M, Sng C, Salazar R, Bertuzzi A, Brunet J, Mesia R, Segui E,
et al: Clinical portrait of the SARS-CoV-2 epidemic in European
cancer patients. Cancer Discov. 10:1465–1474. Jul 31–2020.Epub
ahead of print. View Article : Google Scholar :
|
|
93
|
Jindal V, Sahu KK, Gaikazian S, Siddiqui
AD and Jaiyesimi I: Cancer treatment during COVID-19 pandemic. Med
Oncol. 37:582020. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Moris D, Tsilimigras DI and Schizas D:
Cancer and COVID-19. Lancet. 396:10662020. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Arnaldez FI, O'Day SJ, Drake CG, Fox BA,
Fu B, Urba WJ, Montesarchio V, Weber JS, Wei H, Wigginton JM and
Ascierto PA: The society for immunotherapy of cancer perspective on
regulation of interleukin-6 signaling in COVID-19-related systemic
inflammatory response. J Immunother Cancer. 8:e0009302020.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Zhang C, Rong HM, Li T, Zhai K and Tong
ZH: PD-1 deficiency promotes macrophage activation and T-helper
cell type 1/T-helper cell type 17 response in pneumocystis
pneumonia. Am J Respir Cell Mol Biol. 62:767–782. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Yekedüz E, Dursun B, Aydın GÇ, Yazgan SC,
Öztürk HH, Azap A, Utkan G and Ürün Y: Clinical course of COVID-19
infection in elderly patient with melanoma on nivolumab. J Oncol
Pharm Pract. 26:1289–1294. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Dumoulin DW, Gietema HA, Paats MS,
Hendriks LEL and Cornelissen R: Differentiation of COVID-19
pneumonitis and ICI induced pneumonitis. Front Oncol.
10:5776962020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Sullivan RJ, Johnson DB, Rini BI, Neilan
TG, Lovly CM, Moslehi JJ and Reynolds KL: COVID-19 and immune
checkpoint inhibitors: Initial considerations. J Immunother Cancer.
8:e0009332020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Presti M, Westergaard MCW, Draghi A,
Chamberlain CA, Gokuldass A, Svane IM and Donia M: The effects of
targeted immune-regulatory strategies on tumor-specific T-cell
responses in vitro. Cancer Immunol Immunother. 70:1771–1776. 2021.
View Article : Google Scholar
|
|
101
|
Klopfenstein T, Zayet S, Lohse A, Balblanc
JC, Badie J, Royer PY, Toko L, Mezher C, Kadiane-Oussou NJ, Bossert
M, et al: Tocilizumab therapy reduced intensive care unit
admissions and/or mortality in COVID-19 patients. Med Mal Infect.
50:397–400. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Toniati P, Piva S, Cattalini M, Garrafa E,
Regola F, Castelli F, Franceschini F, Airò P, Bazzani C, Beindorf
EA, et al: Tocilizumab for the treatment of severe COVID-19
pneumonia with hyperinflammatory syndrome and acute respiratory
failure: A single center study of 100 patients in Brescia, Italy.
Autoimmun Rev. 19:1025682020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Luo J, Rizvi H, Egger JV, Preeshagul IR,
Wolchok JD and Hellmann MD: Impact of PD-1 blockade on severity of
COVID-19 in patients with lung cancers. Cancer Discov.
10:1121–1128. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Weinkove R, McQuilten ZK, Adler J, Agar
MR, Blyth E, Cheng AC, Conyers R, Haeusler GM, Hardie C, Jackson C,
et al: Managing haematology and oncology patients during the
COVID-19 pandemic: Interim consensus guidance. Med J Aust.
212:481–489. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Curigliano G, Cardoso MJ, Poortmans P,
Gentilini O, Pravettoni G, Mazzocco K, Houssami N, Pagani O, Senkus
E and Cardoso F; editorial board of The Breast: Recommendations for
triage, prioritization and treatment of breast cancer patients
during the COVID-19 pandemic. Breast. 52:8–16. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Huang SH, O'Sullivan B, Su J, Ringash J,
Bratman SV, Kim J, Hosni A, Bayley A, Cho J, Giuliani M, et al:
Hypofractionated radiotherapy alone with 2.4 Gy per fraction for
head and neck cancer during the COVID-19 pandemic: The princess
margaret experience and proposal. Cancer. 126:3426–3437. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Bhowmick NA, Oft J, Dorff T, Pal S,
Agarwal N, Figlin RA, Posadas EM, Freedland SJ and Gong J: COVID-19
and androgen-targeted therapy for prostate cancer patients. Endocr
Relat Cancer. 27:R281–R292. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Shang J, Wan Y, Luo C, Ye G, Geng Q,
Auerbach A and Li F: Cell entry mechanisms of SARS-CoV-2. Proc Natl
Acad Sci USA. 117:11727–11734. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Zhou P, Yang XL, Wang XG, Hu B, Zhang L,
Zhang W, Si HR, Zhu Y, Li B, Huang CL, et al: A pneumonia outbreak
associated with a new coronavirus of probable bat origin. Nature.
579:270–273. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Mihalopoulos M, Dogra N, Mohamed N, Badani
K and Kyprianou N: COVID-19 and kidney disease: Molecular
determinants and clinical implications in renal cancer. Eur Urol
Focus. 6:1086–1096. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Li G, Hu R and Zhang X: Antihypertensive
treatment with ACEI/ARB of patients with COVID-19 complicated by
hypertension. Hypertens Res. 43:588–590. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Rico-Mesa JS, White A and Anderson AS:
Outcomes in patients with COVID-19 infection taking ACEI/ARB. Curr
Cardiol Rep. 22:312020. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
De Spiegeleer A, Bronselaer A, Teo JT,
Byttebier G, De Tré G, Belmans L, Dobson R, Wynendaele E, Van De
Wiele C, Vandaele F, et al: The effects of ARBs, ACEis, and statins
on clinical outcomes of COVID-19 infection among nursing home
residents. J Am Med Dir Assoc. 21:909–914.e2. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Ender F, Freund A, Quecke T, Steidel C,
Zamzow P, von Bubnoff N and Gieseler F: Tissue factor activity on
microvesicles from cancer patients. J Cancer Res Clin Oncol.
146:467–475. 2020. View Article : Google Scholar :
|
|
115
|
Barnes GD, Burnett A, Allen A, Blumenstein
M, Clark NP, Cuker A, Dager WE, Deitelzweig SB, Ellsworth S, Garcia
D, et al: Thromboembolism and anticoagulant therapy during the
COVID-19 pandemic: Interim clinical guidance from the
anticoagulation forum. J Thromb Thrombolysis. 50:72–81. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Asokan I, Rabadia SV and Yang EH: The
COVID-19 pandemic and its impact on the cardio-oncology population.
Curr Oncol Rep. 22:602020. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Lee KCH, Sewa DW and Phua GC: Potential
role of statins in COVID-19. Int J Infect Dis. 96:615–617. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Aldinucci D, Borghese C and Casagrande N:
The CCL5/CCR5 axis in cancer progression. Cancers (Basel).
12:17652020. View Article : Google Scholar
|
|
119
|
Patterson BK, Seethamraju H, Dhody K,
Corley MJ, Kazempour K, Lalezari J, Pang APS, Sugai C, Mahyari E,
Francisco EB, et al: CCR5 inhibition in critical COVID-19 patients
decreases inflammatory cytokines, increases CD8 T-cells, and
decreases SARS-CoV2 RNA in plasma by day 14. Int J Infect Dis.
103:25–32. 2021. View Article : Google Scholar
|
|
120
|
Patterson BK, Seethamraju H, Dhody K,
Corley MJ, Kazempour K, Lalezari JP, Pang AP, Sugai C, Francisco
EB, Pise A, et al: Disruption of the CCL5/RANTES-CCR5 pathway
restores immune homeostasis and reduces plasma viral load in
critical COVID-19. medRxiv. 2020.05.02.20084673. 2020.
|
|
121
|
Choueiri TK, Motzer RJ, Rini BI, Haanen J,
Campbell MT, Venugopal B, Kollmannsberger C, Gravis-Mescam G,
Uemura M, Lee JL, et al: Updated efficacy results from the JAVELIN
Renal 101 trial: First-line avelumab plus axitinib versus sunitinib
in patients with advanced renal cell carcinoma. Ann Oncol.
31:1030–1039. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Aeppli S, Eboulet EI, Eisen T, Escudier B,
Fischer S, Larkin J, Gruenwald V, McDermott D, Oldenburg J, Omlin
A, et al: Impact of COVID-19 pandemic on treatment patterns in
metastatic clear cell renal cell carcinoma. ESMO Open. 5(Suppl 3):
e0008522020. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Wang C, Wang J, Shuai L, Ma X, Zhang H,
Liu R, Chen W, Wang X, Ge J, Wen Z and Bu Z: The serine/threonine
kinase AP2-associated kinase 1 plays an important role in rabies
virus entry. Viruses. 12:452019. View Article : Google Scholar
|
|
124
|
Abdelgalil AA, Al-Kahtani HM and
Al-Jenoobi FI: Erlotinib Profiles Drug Subst Excip Relat Methodol.
45:93–117. 2020. View Article : Google Scholar
|
|
125
|
Birk R, Schell A, Aderhold C, Hoch S,
Huber L, Mueller CE, Lammert A, Scherl C, Rotter N, Sommer JU and
Kramer B: Apoptosis-related proteins are altered by selective
tyrosine kinase inhibitors and everolimus in HPV-dependent SCC.
Anticancer Res. 40:6195–6203. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
El Bairi K, Trapani D, Petrillo A, Le Page
C, Zbakh H, Daniele B, Belbaraka R, Curigliano G and Afqir S:
Repurposing anticancer drugs for the management of COVID-19. Eur J
Cancer. 141:40–61. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Pang J, Xu F, Aondio G, Li Y, Fumagalli A,
Lu M, Valmadre G, Wei J, Bian Y, Canesi M, et al: Efficacy and
tolerability of bevacizumab in patients with severe Covid-19. Nat
Commun. 12:8142021. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Stebbing J, Phelan A, Griffin I, Tucker C,
Oechsle O, Smith D and Richardson P: COVID-19: Combining antiviral
and anti- inflammatory treatments. Lancet Infect Dis. 20:400–402.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Jin Z, Zhao Y, Sun Y, Zhang B, Wang H, Wu
Y, Zhu Y, Zhu C, Hu T, Du X, et al: Structural basis for the
inhibition of SARS-CoV-2 main protease by antineoplastic drug
carmofur. Nat Struct Mol Biol. 27:529–532. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Martin WR and Cheng F: Repurposing of
FDA-approved toremifene to treat COVID-19 by blocking the spike
glycoprotein and NSP14 of SARS-CoV-2. J Proteome Res. 19:4670–4677.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Dhar D and Mohanty A: Gut microbiota and
Covid-19-possible link and implications. Virus Res. 285:1980182020.
View Article : Google Scholar
|
|
132
|
Bottari B, Castellone V and Neviani E:
Probiotics and Covid-19. Int J Food Sci Nutr. 72:293–299. 2021.
View Article : Google Scholar
|
|
133
|
Annweiler G, Corvaisier M, Gautier J,
Dubée V, Legrand E, Sacco G and Annweiler C: Vitamin D
supplementation associated to better survival in hospitalized frail
elderly COVID-19 patients: The GERIA-COVID quasi-experimental
study. Nutrients. 12:33772020. View Article : Google Scholar :
|
|
134
|
Jeon SM and Shin EA: Exploring vitamin D
metabolism and function in cancer. Exp Mol Med. 50:1–14. 2018.
|
|
135
|
Munshi R, Hussein MH, Toraih EA, Elshazli
RM, Jardak C, Sultana N, Youssef MR, Omar M, Attia AS, Fawzy MS, et
al: Vitamin D insufficiency as a potential culprit in critical
COVID-19 patients. J Med Virol. 93:733–740. 2021. View Article : Google Scholar
|
|
136
|
Carpagnano GE, Di Lecce V, Quaranta VN,
Zito A, Buonamico E, Capozza E, Palumbo A, Di Gioia G, Valerio VN
and Resta O: Vitamin D deficiency as a predictor of poor prognosis
in patients with acute respiratory failure due to COVID-19. J
Endocrinol Invest. 44:765–771. 2021. View Article : Google Scholar
|
|
137
|
Shakoor H, Feehan J, Al Dhaheri AS, Ali
HI, Platat C, Ismail LC, Apostolopoulos V and Stojanovska L:
Immune-boosting role of vitamins D, C, E, zinc, selenium and
omega-3 fatty acids: Could they help against COVID-19? Maturitas.
143:1–9. 2021. View Article : Google Scholar
|
|
138
|
Akula SM, Abrams SL, Steelman LS, Candido
S, Libra M, Lerpiriyapong K, Cocco L, Ramazzotti G, Ratti S, Follo
MY, et al: Cancer therapy and treatments during COVID-19 era. Adv
Biol Regul. 77:1007392020. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Tan HW, Mo HY, Lau ATY and Xu YM: Selenium
species: Current status and potentials in cancer prevention and
therapy. Int J Mol Sci. 20:752018. View Article : Google Scholar
|
|
140
|
Chung YH, Beiss V, Fiering SN and
Steinmetz NF: COVID-19 vaccine frontrunners and their
nanotechnology design. ACS Nano. 14:12522–12537. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Thakkar A, Gonzalez-Lugo JD, Goradia N,
Gali R, Shapiro LC, Pradhan K, Rahman S, Kim SY, Ko B, Sica RA, et
al: Seroconversion rates following COVID-19 vaccination among
patients with cancer. Cancer Cell. 39:1081–1090.e2. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Rodriguez Socarrás M, Gómez Rivas J, Teoh
JY, Puente J, Moschini M and Moreno-Sierra J: The Uro-oncology
patient and vaccination against SARS-CoV-2. Eur Urol Open Sci.
29:77–81. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Gavriatopoulou M, Ntanasis-Stathopoulos I,
Korompoki E, Terpos E and Dimopoulos MA: SARS-CoV-2 vaccines in
patients with multiple myeloma. Hemasphere. 5:e5472021. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Han HJ, Nwagwu C, Anyim O, Ekweremadu C
and Kim S: COVID-19 and cancer: From basic mechanisms to vaccine
development using nanotechnology. Int Immunopharmacol.
90:1072472021. View Article : Google Scholar
|
|
145
|
von Lilienfeld-Toal M, Rieger C, Giesen N
and Wörmann B: Vaccination against SARS-CoV-2 in cancer patients.
Onkologe (Berl). 1–6. May 17–2021.In German. Epub ahead of print.
View Article : Google Scholar
|
|
146
|
Mondal M, Guo J, He P and Zhou D: Recent
advances of oncolytic virus in cancer therapy. Hum Vaccin
Immunother. 16:2389–2402. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Cao GD, He XB, Sun Q, Chen S, Wan K, Xu X,
Feng X, Li PP, Chen B and Xiong MM: The oncolytic virus in cancer
diagnosis and treatment. Front Oncol. 10:17862020. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Nguyen HM, Guz-Montgomery K and Saha D:
Oncolytic virus encoding a master pro-inflammatory cytokine
interleukin 12 in cancer immunotherapy. Cells. 9:4002020.
View Article : Google Scholar :
|
|
149
|
Wang G, Kang X, Chen KS, Jehng T, Jones L,
Chen J, Huang XF and Chen SY: An engineered oncolytic virus
expressing PD-L1 inhibitors activates tumor neoantigen-specific T
cell responses. Nat Commun. 11:13952020. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Ji W, Li L, Zhou S, Qiu L, Qian Z, Zhang H
and Zhao P: Combination immunotherapy of oncolytic virus
nanovesicles and PD-1 blockade effectively enhances therapeutic
effects and boosts antitumour immune response. J Drug Target.
28:982–990. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Duijf PHG: Low baseline pulmonary levels
of cytotoxic lymphocytes as a predisposing risk factor for severe
COVID-19. mSystems. 5:e00741202020. View Article : Google Scholar
|
|
152
|
Challenor S and Tucker D:
SARS-CoV-2-induced remission of Hodgkin lymphoma. Br J Haematol.
192:4152021. View Article : Google Scholar : PubMed/NCBI
|