|
1
|
Llovet JM, Zucman-Rossi J, Pikarsky E,
Sangro B, Schwartz M, Sherman M and Gores G: Hepatocellular
carcinoma. Nat Rev Dis Primers. 2:160182016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Villanueva A: Hepatocellular carcinoma. N
Engl J Med. 380:1450–1462. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Nair H, Simoes EA, Rudan I, Gessner BD,
Azziz-Baumgartner E, Zhang JSF, Feikin DR, Mackenzie GA, Moiïsi JC,
Roca A, et al: Global and regional burden of hospital admissions
for severe acute lower respiratory infections in young children in
2010: A systematic analysis. Lancet. 381:1380–1390. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Global Burden of Disease Liver Cancer
Collaboration; Akinyemiju T, Abera S, Ahmed M, Alam N, Alemayohu
MA, Allen C, Al-Raddadi R, Alvis-Guzman N, Amoako Y, et al: The
burden of primary liver cancer and underlying etiologies from 1990
to 2015 at the global, regional, and national level: Results from
the global burden of disease study 2015. JAMA Oncol. 3:1683–1691.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Llovet JM, Kelley RK, Villanueva A, Singal
AG, Pikarsky E, Roayaie S, Lencioni R, Koike K, Zucman-Rossi J and
Finn RS: Hepatocellular carcinoma. Nat Rev Dis Primers. 7:62021.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Liu J and Fan D: Hepatitis B in China.
Lancet. 369:1582–1583. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Laursen L: A preventable cancer. Nature.
516:S2–S3. 2014. View
Article : Google Scholar : PubMed/NCBI
|
|
8
|
European Association for the study of the
Liver and European Organisation for research and treatment of
Cancer: EASL-EORTC clinical practice guidelines: Management of
hepatocellular carcinoma. J Hepatol. 56:908–943. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ishizawa T, Hasegawa K, Aoki T, Takahashi
M, Inoue Y, Sano K, Imamura H, Sugawara Y, Kokudo N and Makuuchi M:
Neither multiple tumors nor portal hypertension are surgical
contraindications for hepatocellular carcinoma. Gastroenterology.
134:1908–1916. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Yu Y and Feng M: Radiotherapy for
hepatocellular carcinoma. Semin Radiat Oncol. 28:277–287. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Bang A and Dawson LA: Radiotherapy for
HCC: Ready for prime time? JHEP Rep. 1:131–137. 2019. View Article : Google Scholar
|
|
12
|
Ohri N, Dawson LA, Krishnan S, Seong J,
Cheng JC, Sarin SK, Kinkhabwala M, Ahmed MM, Vikram B, Coleman CN
and Guha C: Radiotherapy for hepatocellular carcinoma: New
indications and directions for future study. J Natl Cancer Inst.
108:djw1332016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ni J, Bucci J, Malouf D, Knox M, Graham P
and Li Y: Exosomes in cancer radioresistance. Front Oncol.
9:8692019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Barker HE, Paget JT, Khan AA and
Harrington KJ: The tumour microenvironment after radiotherapy:
Mechanisms of resistance and recurrence. Nat Rev Cancer.
15:409–425. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Chan R, Sethi P, Jyoti A, McGarry R and
Upreti M: Investigating the radioresistant properties of lung
cancer stem cells in the context of the tumor microenvironment.
Radiat Res. 185:169–181. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Swartz MA, Iida N, Roberts EW, Sangaletti
S, Wong MH, Yull FE, Coussens LM and DeClerck YA: Tumor
microenvironment complexity: Emerging roles in cancer therapy.
Cancer Res. 72:2473–2480. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Son B, Lee S, Youn H, Kim E, Kim W and
Youn B: The role of tumor microenvironment in therapeutic
resistance. Oncotarget. 8:3933–3945. 2017. View Article : Google Scholar :
|
|
18
|
Kalluri R and LeBleu VS: The biology,
function, and biomedical applications of exosomes. Science.
367:eaau69772020. View Article : Google Scholar :
|
|
19
|
Jeppesen DK, Fenix AM, Franklin JL,
Higginbotham JN, Zhang Q, Zimmerman LJ, Liebler DC, Ping J, Liu Q,
Evans R, et al: Reassessment of exosome composition. Cell.
177:428–445.e18. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Tai YL, Chen KC, Hsieh JT and Shen TL:
Exosomes in cancer development and clinical applications. Cancer
Sci. 109:2364–2374. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Dai J, Su Y, Zhong S, Cong L, Liu B, Yang
J, Tao Y, He Z, Chen C and Jiang Y: Exosomes: Key players in cancer
and potential therapeutic strategy. Signal Transduct Target Ther.
5:1452020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
van Niel G, D'Angelo G and Raposo G:
Shedding light on the cell biology of extracellular vesicles. Nat
Rev Mol Cell Biol. 19:213–228. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Sato S, Zhu XL and Sly WS: Carbonic
anhydrase Isozymes IV and II in urinary membranes from carbonic
anhydrase II-deficient patients. Proc Natl Acad Sci USA.
87:6073–6076. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhang L and Yu D: Exosomes in cancer
development, metastasis, and immunity. Biochim Biophys Acta Rev
Cancer. 1871:455–468. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Pegtel DM and Gould SJ: Exosomes. Annu Rev
Biochem. 88:487–514. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Chen W, Mao Y, Liu C, Wu H and Chen S:
Exosome in hepatocellular carcinoma: An update. J Cancer.
12:2526–2536. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wang HB, Lu ZM and Zhao XX: Tumorigenesis,
diagnosis, and therapeutic potential of exosomes in liver cancer. J
Hematol Oncol. 12:1332019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Keerthikumar S, Chisanga D, Ariyaratne D,
Al Saffar H, Anand S, Zhao K, Samuel M, Pathan M, Jois M,
Chilamkurti N, et al: ExoCarta: A Web-Based compendium of exosomal
cargo. J Mol Biol. 428:688–692. 2016. View Article : Google Scholar :
|
|
29
|
Nabet BY, Qiu Y, Shabason JE, Wu TJ, Yoon
T, Kim BC, Benci JL, DeMichele AM, Tchou J, Marcotrigiano J and
Minn AJ: Exosome RNA unshielding couples stromal activation to
pattern recognition receptor signaling in cancer. Cell.
170:352–366.e13. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Li I and Nabet BY: Exosomes in the tumor
microenvironment as mediators of cancer therapy resistance. Mol
Cancer. 18:322019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Conigliaro A, Costa V, Lo Dico A, Saieva
L, Buccheri S, Dieli F, Manno M, Raccosta S, Mancone C, Tripodi M,
et al: CD90+liver cancer cells modulate endothelial cell phenotype
through the release of exosomes containing H19 lncRNA. Mol Cancer.
14:1552015. View Article : Google Scholar
|
|
32
|
Ridder K, Keller S, Dams M, Rupp AK,
Schlaudraff J, Del Turco D, Starmann J, Macas J, Karpova D, Devraj
K, et al: Extracellular vesicle-mediated transfer of genetic
information between the hematopoietic system and the brain in
response to inflammation. PLoS Biol. 12:–e1001874. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Skotland T, Sandvig K and Llorente A:
Lipids in exosomes: Current knowledge and the way forward. Prog
Lipid Res. 66:30–41. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Li WH, Li CY, Zhou T, Liu X, Liu X, Li X
and Chen D: Role of exosomal proteins in cancer diagnosis. Mol
Cancer. 16:1452017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Cai J, Han Y, Ren HM, Chen C, He D, Zhou
L, Eisner GM, Asico LD, Jose PA and Zeng C: Extracellular
vesicle-mediated transfer of donor genomic DNA to recipient cells
is a novel mechanism for genetic influence between cells. J Mol
Cell Biol. 5:227–238. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Thakur BK, Zhang H, Becker A, Matei I,
Huang Y, Costa-Silva B, Zheng Y, Hoshino A, Brazier H, Xiang J, et
al: Double-stranded DNA in exosomes: A novel biomarker in cancer
detection. Cell Res. 24:766–769. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wong CM, Tsang FHC and Ng IOL: Non-coding
RNAs in hepatocellular carcinoma: Molecular functions and
pathological implications. Nat Rev Gastro Hepat. 15:137–151. 2018.
View Article : Google Scholar
|
|
38
|
He M, Qin H, Poon TC, Sze SC, Ding X, Co
NN, Ngai SM, Chan TF and Wong N: Hepatocellular carcinoma-derived
exosomes promote motility of immortalized hepatocyte through
transfer of oncogenic proteins and RNAs. Carcinogenesis.
36:1008–1018. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wang S, Xu M, Li X, Su X, Xiao X, Keating
A and Zhao RC: Exosomes released by hepatocarcinoma cells endow
adipocytes with tumor-promoting properties. J Hematol Oncol.
11:822018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Lee HY, Chen CK, Ho CM, Lee SS, Chang CY,
Chen KJ and Jou YS: EIF3C-enhanced exosome secretion promotes
angiogenesis and tumorigenesis of human hepatocellular carcinoma.
Oncotarget. 9:13193–13205. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wang S, Chen G, Lin X, Xing X, Cai Z, Liu
X and Liu J: Role of exosomes in hepatocellular carcinoma cell
mobility alteration. Oncol Lett. 14:8122–8131. 2017.PubMed/NCBI
|
|
42
|
Zhang J, Lu S, Zhou Y, Meng K, Chen Z, Cui
Y, Shi Y, Wang T and He QY: Motile hepatocellular carcinoma cells
preferentially secret sugar metabolism regulatory proteins via
exosomes. Proteomics. 17:17001032017. View Article : Google Scholar
|
|
43
|
Conde-Vancells J, Rodriguez-Suarez E,
Gonzalez E, Berisa A, Gil D, Embade N, Valle M, Luka Z, Elortza F,
Wagner C, et al: Candidate biomarkers in exosome-like vesicles
purified from rat and mouse urine samples. Proteom Clin Appl.
4:416–425. 2010. View Article : Google Scholar
|
|
44
|
Fu Q, Zhang Q, Lou Y, Yang J, Nie G, Chen
Q, Chen Y, Zhang J, Wang J, Wei T, et al: Primary tumor-derived
exosomes facilitate metastasis by regulating adhesion of
circulating tumor cells via SMAD3 in liver cancer. Oncogene.
37:6105–6118. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ye L, Zhang Q, Cheng Y, Chen X, Wang G,
Shi M, Zhang T, Cao Y, Pan H, Zhang L, et al: Tumor-derived
exosomal HMGB1 fosters hepatocellular carcinoma immune evasion by
promoting TIM-1 + regulatory B cell expansion. J Immunother Cancer.
6:1452018. View Article : Google Scholar
|
|
46
|
Wang X, Shen H, Zhangyuan G, Huang R,
Zhang W, He Q, Jin K, Zhuo H, Zhang Z, Wang J, et al: 14-3-3ζ
delivered by hepatocellular carcinoma-derived exosomes impaired
anti-tumor function of tumor-infiltrating T lymphocytes. Cell Death
Dis. 9:1592018. View Article : Google Scholar
|
|
47
|
Li M, Lu Y, Xu Y, Wang J, Zhang C, Du Y,
Wang L, Li L, Wang B, Shen J, et al: Horizontal transfer of
exosomal CXCR4 promotes murine hepatocarcinoma cell migration,
invasion and lymphangiogenesis. Gene. 676:101–109. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Dai WJ, Wang YL, Yang TX, Wang J, Wu WC
and Gu JX: Downregulation of exosomal CLEC3B in hepatocellular
carcinoma promotes metastasis and angiogenesis via AMPK and VEGF
signals. Cell Commun Signal. 17:1132019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Qiu QC, Wang L, Jin SS, Liu GF, Liu J, Ma
L, Mao RF, Ma YY, Zhao N, Chen M and Lin BY: CHI3L1 promotes tumor
progression by activating TGF-β signaling pathway in hepatocellular
carcinoma. Sci Rep. 8:150292018. View Article : Google Scholar
|
|
50
|
Gai X, Tang B, Liu F, Wu Y, Wang F, Jing
Y, Huang F, Jin D, Wang L and Zhang H: mTOR/miR-145-regulated
exosomal GOLM1 promotes hepatocellular carcinoma through augmented
GSK-3 beta/MMPs. J Genet Genomics. 46:235–245. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Skotland T, Sagini K, Sandvig K and
Llorente A: An emerging focus on lipids in extracellular vesicles.
Adv Drug Deliv Rev. 159:308–321. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Skotland T, Ekroos K, Kauhanen D, Simolin
H, Seierstad T, Berge V, Sandvig K and Llorente A: Molecular lipid
species in urinary exosomes as potential prostate cancer
biomarkers. Eur J Cancer. 70:122–132. 2017. View Article : Google Scholar
|
|
53
|
Lydic TA, Townsend S, Adda CG, Collins C,
Mathivanan S and Reid GE: Rapid and comprehensive 'Shotgun'
lipidome profiling of colorectal cancer cell derived exosomes.
Methods. 87:83–95. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Trajkovic K, Hsu C, Chiantia S, Rajendran
L, Wenzel D, Wieland F, Schwille P, Brügger B and Simons M:
Ceramide triggers budding of exosome vesicles into multivesicular
Endosomes. Science. 319:1244–1247. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Chapuy-Regaud S, Dubois M,
Plisson-Chastang C, Bonnefois T, Lhomme S, Bertrand-Michel J, You
B, Simoneau S, Gleizes PE, Flan B, et al: Characterization of the
lipid envelope of exosome encapsulated HEV particles protected from
the immune response. Biochimie. 141:70–79. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Haraszti RA, Didiot MC, Sapp E, Leszyk J,
Shaffer SA, Rockwell HE, Gao F, Narain NR, DiFiglia M, Kiebish MA,
et al: High-resolution proteomic and lipidomic analysis of exosomes
and microvesicles from different cell sources. J Extracell
Vesicles. 5:325702016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Sadovska L, Eglitis J and Line A:
Extracellular vesicles as biomarkers and therapeutic targets in
breast cancer. Anticancer Res. 35:6379–6390. 2015.PubMed/NCBI
|
|
58
|
Alix-Panabieres C and Pantel K: Clinical
applications of circulating tumor cells and circulating tumor DNA
as liquid biopsy. Cancer Discov. 6:479–491. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Li X, Li C, Zhang L, Wu M, Cao K, Jiang F,
Chen D, Li N and Li W: The significance of exosomes in the
development and treatment of hepatocellular carcinoma. Mol Cancer.
19:12020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Bernard V, Kim DU, San Lucas FA, Castillo
J, Allenson K, Mulu FC, Stephens BM, Huang J, Semaan A, Guerrero
PA, et al: Circulating nucleic acids are associated with outcomes
of patients with pancreatic cancer. Gastroenterology.
156:108–118.e4. 2019. View Article : Google Scholar
|
|
61
|
Yan LL, Chen YH, Zhou JY, Zhao H, Zhang HH
and Wang GQ: Diagnostic value of circulating cell-free DNA levels
for hepatocellular carcinoma. Int J Infect Dis. 67:92–97. 2018.
View Article : Google Scholar
|
|
62
|
Slack FJ and Chinnaiyan AM: The role of
Non-coding RNAs in oncology. Cell. 179:1033–1055. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ambros V: The functions of animal
microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Vickers KC, Palmisano BT, Shoucri BM,
Shamburek RD and Remaley AT: MicroRNAs are transported in plasma
and delivered to recipient cells by high-density lipoproteins. Nat
Cell Biol. 13:423–433. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Arroyo JD, Chevillet JR, Kroh EM, Ruf IK,
Pritchard CC, Gibson DF, Mitchell PS, Bennett CF,
Pogosova-Agadjanyan EL, Stirewalt DL, et al: Argonaute2 complexes
carry a population of circulating microRNAs independent of vesicles
in human plasma. Proc Natl Acad Sci USA. 108:5003–5008. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhang J, Li S, Li L, Li M, Guo C, Yao J
and Mi S: Exosome and exosomal MicroRNA: Trafficking, sorting, and
function. Genom Proteom Bioinf. 13:17–24. 2015. View Article : Google Scholar
|
|
68
|
Croce CM: Causes and consequences of
microRNA dysregulation in cancer. Nat Rev Genet. 10:704–714. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Lee YR, Kim G, Tak WY, Jang SY, Kweon YO,
Park JG, Lee HW, Han YS, Chun JM, Park SY and Hur K: Circulating
exosomal noncoding RNAs as prognostic biomarkers in human
hepatocellular carcinoma. Int J Cancer. 144:1444–1452. 2019.
View Article : Google Scholar
|
|
70
|
Tian XP, Wang CY, Jin XH, Li M, Wang FW,
Huang WJ, Yun JP, Xu RH, Cai QQ and Xie D: Acidic microenvironment
Up-Regulates exosomal miR-21 and miR-10b in early-stage
hepatocellular carcinoma to promote cancer cell proliferation and
metastasis. Theranostics. 9:1965–1979. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Lin XJ, Chong YT, Guo ZW, Xie C, Yang XJ,
Zhang Q, Li SP, Xiong Y, Yuan Y, Min J, et al: A serum microRNA
classifier for early detection of hepatocellular carcinoma: A
multicentre, retrospective, longitudinal biomarker identification
study with a nested case-control study. Lancet Oncol. 16:804–815.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Lin XJ, Fang JH, Yang XJ, Zhang C, Yuan Y,
Zheng L and Zhuang SM: Hepatocellular carcinoma cell-secreted
exosomal MicroRNA-210 promotes angiogenesis in vitro and in vivo.
Mol Ther Nucleic Acids. 11:243–252. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Cui Y, Xu HF, Liu MY, Xu YJ, He JC, Zhou Y
and Cang SD: Mechanism of exosomal microRNA-224 in development of
hepatocellular carcinoma and its diagnostic and prognostic value.
World J Gastroentero. 25:1890–1898. 2019. View Article : Google Scholar
|
|
74
|
Statello L, Guo CJ, Chen LL and Huarte M:
Gene regulation by long non-coding RNAs and its biological
functions. Nat Rev Mol Cell Biol. 22:96–118. 2021. View Article : Google Scholar
|
|
75
|
Pathania AS and Challagundla KB: Exosomal
long Non-coding RNAs: Emerging players in the tumor
microenvironment. Mol Ther Nucleic Acids. 23:1371–1383. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Prensner JR and Chinnaiyan AM: The
Emergence of lncRNAs in cancer biology. Cancer Discov. 1:391–407.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Bolha L, Ravnik-Glavac M and Glavac D:
Long noncoding RNAs as biomarkers in cancer. Dis Markers.
2017:2017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Takahashi K, Yan IK, Kogure T, Haga H and
Patel T: Extracellular vesicle-mediated transfer of long non-coding
RNA ROR modulates chemosensitivity in human hepatocellular cancer.
FEBS Open Bio. 4:458–467. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Takahashi K, Yan IK, Wood J, Haga H and
Patel T: Involvement of extracellular vesicle long noncoding RNA
(linc-VLDLR) in tumor cell responses to chemotherapy. Mol Cancer
Res. 12:1377–1387. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Chen SY, Teng SC, Cheng TH and Wu KJ:
miR-1236 regulates hypoxia-induced epithelial-mesenchymal
transition and cell migration/invasion through repressing SENP1 and
HDAC3. Cancer Lett. 378:59–67. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Li BG, Mao R, Liu CF, Zhang WH, Tang Y and
Guo Z: LncRNA FAL1 promotes cell proliferation and migration by
acting as a CeRNA of miR-1236 in hepatocellular carcinoma cells.
Life Sci. 197:122–129. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Yao ZC, Jia CC, Tai Y, Liang H, Zhong Z,
Xiong Z, Deng M and Zhang Q: Serum exosomal long noncoding RNAs
lnc-FAM72D3 and lnc-EPC14 as diagnostic biomarkers for
hepatocellular carcinoma. Aging (Albany NY). 12:11843–11863. 2020.
View Article : Google Scholar
|
|
83
|
Hou YC, Yu Z, Tam NL, Huang S, Sun C, Wang
R, Zhang X, Wang Z, Ma Y, He X and Wu L: Exosome-related lncRNAs as
predictors of HCC patient survival: A prognostic model. Am J Transl
Res. 10:1648–1662. 2018.PubMed/NCBI
|
|
84
|
Zhang C, Yang X, Qi Q, Gao YH, Wei Q and
Han SW: lncRNA-HEIH in serum and exosomes as a potential biomarker
in the HCV-related hepatocellular carcinoma. Cancer Biomark.
21:651–659. 2018. View Article : Google Scholar
|
|
85
|
Xu H, Chen YM, Dong XY and Wang XJ: Serum
exosomal long noncoding RNAs ENSG00000258332.1 and LINC00635 for
the diagnosis and prognosis of hepatocellular carcinoma. Cancer
Epidem Biomar. 27:710–716. 2018. View Article : Google Scholar
|
|
86
|
Sun L, Su Y, Liu X, Xu M, Chen X, Zhu Y,
Guo Z, Bai T, Dong L, Wei C, et al: Serum and exosome long non
coding RNAs as potential biomarkers for hepatocellular carcinoma. J
Cancer. 9:2631–2639. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ma X, Yuan T, Yang C, Wang Z, Zang Y, Wu L
and Zhuang L: X-inactive-specific transcript of peripheral blood
cells is regulated by exosomal Jpx and acts as a biomarker for
female patients with hepatocellular carcinoma. Ther Adv Med Oncol.
9:665–677. 2017. View Article : Google Scholar
|
|
88
|
Zhuang LK, Yang YT, Ma X, Han B, Wang ZS,
Zhao QY, Wu LQ and Qu ZQ: MicroRNA-92b promotes hepatocellular
carcinoma progression by targeting Smad7 and is mediated by long
non-coding RNA XIST. Cell Death Dis. 7:e22032016. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Kogure T, Yan IK, Lin WL and Patel T:
Extracellular vesicle-mediated transfer of a novel long noncoding
RNA TUC339: A mechanism of intercellular signaling in human
hepatocellular cancer. Genes Cancer. 4:261–272. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Li X, Lei Y, Wu M and Li N: Regulation of
macrophage activation and polarization by HCC-Derived Exosomal
lncRNA TUC339. Int J Mol Sci. 19:29582018. View Article : Google Scholar :
|
|
91
|
Ma D, Gao X, Liu Z, Lu X, Ju H and Zhang
N: Exosome-transferred long non-coding RNA ASMTL-AS1 contributes to
malignant phenotypes in residual hepatocellular carcinoma after
insufficient radiofrequency ablation. Cell Prolif. 53:e127952020.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Wang D, Xing N, Yang T, Liu J, Zhao H, He
J, Ai Y and Yang J: Exosomal lncRNA H19 promotes the progression of
hepatocellular carcinoma treated with Propofol via
miR-520a-3p/LIMK1 axis. Cancer Med. 9:7218–7230. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Ji JF, Yamashita T, Budhu A, Forgues M,
Jia HL, Li C, Deng C, Wauthier E, Reid LM, Ye QH, et al:
Identification of MicroRNA-181 by genome-wide screening as a
critical player in EpCAM-Positive hepatic cancer stem cells.
Hepatology. 50:472–480. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Sanger HL, Klotz G, Riesner D, Gross HJ
and Kleinschmidt AK: Viroids are single-stranded covalently closed
circular RNA molecules existing as highly base-paired rod-like
structures. Proc Natl Acad Sci USA. 73:3852–3856. 1976. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Seimiya T, Otsuka M, Iwata T, Shibata C,
Tanaka E, Suzuki T and Koike K: Emerging roles of exosomal circular
RNAs in cancer. Front Cell Dev Biol. 8:5683662020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang
W, Wang G, Wu P, Wang H, Jiang L, et al: Exosomal circRNAs:
Biogenesis, effect and application in human diseases. Mol Cancer.
18:1162019. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Wilusz JE and Sharp PA: Molecular biology.
A circuitous route to noncoding RNA. Science. 340:440–441. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Li SS, Yao JP, Xie MJ, Liu YN and Zheng M:
Exosomal miRNAs in hepatocellular carcinoma development and
clinical responses. J Hematol Oncol. 11:542018. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Geng X, Lin X, Zhang Y, Li Q, Guo Y, Fang
C and Wang H: Exosomal circular RNA sorting mechanisms and their
function in promoting or inhibiting cancer. Oncol Lett.
19:3369–3380. 2020.PubMed/NCBI
|
|
100
|
Zhang H, Deng T, Ge S, Liu Y, Bai M, Zhu
K, Fan Q, Li J, Ning T, Tian F, et al: Exosome circRNA secreted
from adipocytes promotes the growth of hepatocellular carcinoma by
targeting deubiquitination-related USP7. Oncogene. 38:2844–2859.
2019. View Article : Google Scholar :
|
|
101
|
Chen W, Quan Y, Fan S, Wang H, Liang J,
Huang L, Chen L, Liu Q, He P and Ye Y: Exosome-transmitted circular
RNA hsa_ circ_0051443 suppresses hepatocellular carcinoma
progression. Cancer Lett. 475:119–128. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Zhang PF, Wei CY, Huang XY, Peng R, Yang
X, Lu JC, Zhang C, Gao C, Cai JB, Gao PT, et al: Circular RNA
circTRIM33-12 acts as the sponge of MicroRNA-191 to suppress
hepatocellular carcinoma progression. Mol Cancer. 18:1052019.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Chen SP, Liu BX, Xu J, Pei XF, Liao YJ,
Yuan F and Zheng F: MiR-449a suppresses the epithelial-mesenchymal
transition and metastasis of hepatocellular carcinoma by multiple
targets. BMC Cancer. 15:7062015. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Wang GY, Liu W, Zou Y, Wang G, Deng Y, Luo
J, Zhang Y, Li H, Zhang Q, Yang Y and Chen G: Three isoforms of
exosomal circPTGR1 promote hepatocellular carcinoma metastasis via
the miR449a-MET pathway. EBioMedicine. 40:432–445. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zhang TT, Jing B, Bai YX, Zhang Y and Yu
HY: Circular RNA circTMEM45A Acts as the Sponge of MicroRNA-665 to
promote hepatocellular carcinoma progression. Mol Ther Nucleic
Acids. 22:285–297. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Shyu AB, Wilkinson MF and van Hoof A:
Messenger RNA regulation: To translate or to degrade. Embo J.
27:471–481. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Yu SL, Li YC, Liao Z, Wang Z, Wang Z, Li
Y, Qian L, Zhao J, Zong H, Kang B, et al: Plasma extracellular
vesicle long RNA profiling identifies a diagnostic signature for
the detection of pancreatic ductal adenocarcinoma. Gut. 69:540–550.
2020. View Article : Google Scholar
|
|
108
|
Li Y, Zhao J, Yu S, Wang Z, He X, Su Y,
Guo T, Sheng H, Chen J, Zheng Q, et al: Extracellular vesicles long
RNA sequencing reveals abundant mRNA, circRNA, and lncRNA in human
blood as potential biomarkers for cancer diagnosis. Clin Chem.
65:798–808. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Abd El Gwad A, Matboli M, El-Tawdi A,
Habib EK, Shehata H, Ibrahim D and Tash F: Role of exosomal
competing endogenous RNA in patients with hepatocellular carcinoma.
J Cell Biochem. 119:8600–8610. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Xu H, Dong XY, Chen YM and Wang XJ: Serum
exosomal hnRNPH1 mRNA as a novel marker for hepatocellular
carci-noma. Clin Chem Lab Med. 56:479–484. 2018. View Article : Google Scholar
|
|
111
|
He R, Wang Z, Shi W, Yu L, Xia H, Huang Z,
Liu S, Zhao X, Xu Y, Yam JWP and Cui Y: Exosomes in hepatocellular
carcinoma microenvironment and their potential clinical application
value. Biomed Pharmacother. 138:1115292021. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Pascut D, Pratama MY, Vo NVT, Masadah R
and Tiribelli C: The Crosstalk between tumor cells and the
microenvironment in hepatocellular carcinoma: The role of exosomal
microRNAs and their clinical implications. Cancers (Basel).
12:8232020. View Article : Google Scholar
|
|
113
|
Wu Q, Zhou L, Lv D, Zhu X and Tang H:
Exosome-mediated communication in the tumor microenvironment
contributes to hepatocellular carcinoma development and
progression. J Hematol Oncol. 12:532019. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Chen X, Chi H, Zhao X, Pan R, Wei Y and
Han Y: Role of exosomes in immune microenvironment of
hepatocellular carcinoma. J Oncol. 2022:25210252022. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Chen C, Luo F, Liu X, Lu L, Xu H, Yang Q,
Xue J, Shi L, Li J, Zhang A and Liu Q: NF-kB-regulated exosomal
miR-155 promotes the inflammation associated with arsenite
carcinogenesis. Cancer Lett. 388:21–33. 2017. View Article : Google Scholar
|
|
116
|
Fang T, Lv H, Lv G, Li T, Wang C, Han Q,
Yu L, Su B, Guo L, Huang S, et al: Tumor-derived exosomal
miR-1247-3p induces cancer-associated fibroblast activation to
foster lung metastasis of liver cancer. Nat Commun. 9:1912018.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Zhang Z, Li X, Sun W, Yue S, Yang J, Li J,
Ma B, Wang J, Yang X, Pu M, et al: Loss of exosomal miR-320a from
cancer-associated fibroblasts contributes to HCC proliferation and
metastasis. Cancer Lett. 397:33–42. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Goessler UR, Hormann K and Riedel F:
Tissue engineering with chondrocytes and function of the
extracellular matrix (Review). Int J Mol Med. 13:505–513.
2004.PubMed/NCBI
|
|
119
|
Yáñez-Mó M, Siljander PR, Andreu Z, Zavec
AB, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J,
et al: Biological properties of extracellular vesicles and their
physiological functions. J Extracell Vesicles. 4:270662015.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Herrera MB, Fonsato V, Gatti S, Deregibus
MC, Sordi A, Cantarella D, Calogero R, Bussolati B, Tetta C and
Camussi G: Human liver stem cell-derived microvesicles accelerate
hepatic regeneration in hepatectomized rats. J Cell Mol Med.
14:1605–1618. 2010. View Article : Google Scholar
|
|
121
|
Fonsato V, Collino F, Herrera MB,
Cavallari C, Deregibus MC, Cisterna B, Bruno S, Romagnoli R,
Salizzoni M, Tetta C and Camussi G: Human liver stem cell-derived
microvesicles inhibit hepatoma growth in SCID mice by delivering
antitumor microRNAs. Stem Cells. 30:1985–1998. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Fabregat I, Roncero C and Fernandez M:
Survival and apoptosis: A dysregulated balance in liver cancer.
Liver Int. 27:155–162. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Kountouras J, Zavos C and Chatzopoulos D:
Apoptosis in hepatocellular carcinoma. Hepatogastroenterology.
50:242–249. 2003.PubMed/NCBI
|
|
124
|
Thery C, Witwer KW, Aikawa E, Alcaraz MJ,
Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F,
Atkin-Smith GK, et al: Minimal information for studies of
extra-cellular vesicles 2018 (MISEV2018): A position statement of
the International Society for Extracellular Vesicles and update of
the MISEV2014 guidelines. J Extracell Vesicles. 7:15357502018.
View Article : Google Scholar
|
|
125
|
McAndrews KM and Kalluri R: Mechanisms
associated with biogenesis of exosomes in cancer. Mol Cancer.
18:522019. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Sasaki R, Kanda T, Yokosuka O, Kato N,
Matsuoka S and Moriyama M: Exosomes and hepatocellular carcinoma:
From bench to bedside. Int J Mol Sci. 20:14062019. View Article : Google Scholar :
|
|
127
|
Hennequin C, Quero L and Rivera S:
Radiosensitivity of hepatocellular carcinoma. Cancer Radiother.
15:39–42. 2011.In French. View Article : Google Scholar : PubMed/NCBI
|