|
1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Stanford JL, Feng Z, Hamilton AS,
Gilliland FD, Stephenson RA, Eley JW, Albertsen PC, Harlan LC and
Potosky AL: Urinary and sexual function after radical prostatectomy
for clinically localized prostate cancer: The prostate cancer
outcomes study. JAMA. 283:354–360. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Mohler JL, Antonarakis ES, Armstrong AJ,
D'Amico AV, Davis BJ, Dorff T, Eastham JA, Enke CA, Farrington TA,
Higano CS, et al: Prostate cancer, version 2.2019, NCCN clinical
practice guidelines in oncology. J Natl Compr Canc Netw.
17:479–505. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Nuhn P, De Bono JS, Fizazi K, Freedland
SJ, Grilli M, Kantoff PW, Sonpavde G, Sternberg CN,
Yegnasubramanian S and Antonarakis ES: Update on systemic prostate
cancer therapies: Management of metastatic castration-resistant
prostate cancer in the era of precision oncology. Eur Urol.
75:88–99. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Dorff TB and Agarwal N: Bone-targeted
therapies to reduce skeletal morbidity in prostate cancer. Asian J
Androl. 20:215–220. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kelly SP, Anderson WF, Rosenberg PS and
Cook MB: Past, current, and future incidence rates and burden of
metastatic prostate cancer in the United States. Eur Urol Focus.
4:121–127. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Gleave AM, Ci X, Lin D and Wang Y: A
synopsis of prostate organoid methodologies, applications, and
limitations. Prostate. 80:518–526. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Cheng HH, Sokolova AO, Schaeffer EM, Small
EJ and Higano CS: Germline and somatic mutations in prostate cancer
for the clinician. J Natl Compr Canc Netw. 17:515–521. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lucas AL, Frado LE, Hwang C, Kumar S,
Khanna LG, Levinson EJ, Chabot JA, Chung WK and Frucht H: BRCA1 and
BRCA2 germline mutations are frequently demonstrated in both
high-risk pancreatic cancer screening and pancreatic cancer
cohorts. Cancer. 120:1960–1967. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Couch FJ, Nathanson KL and Offit K: Two
decades after BRCA: Setting paradigms in personalized cancer care
and prevention. Science. 343:1466–1470. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Nishikawa T, Maemura K, Hirata I, Matsuse
R, Morikawa H, Toshina K, Murano M, Hashimoto K, Nakagawa Y, Saitoh
O, et al: A simple method of detecting K-ras point mutations in
stool samples for colorectal cancer screening using one-step
polymerase chain reaction/restriction fragment length polymorphism
analysis. Clin Chim Acta. 318:107–112. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Bayot ML and Bragg BN: Antimicrobial
Susceptibility Testing. StatPearls [Internet] Treasure Island, FL:
StatPearls Publishing; 2020, [cited Jun 26, 2020]. Available from.
http://www.ncbi.nlm.nih.gov/books/NBK539714/
|
|
13
|
Sachs N, de Ligt J, Kopper O, Gogola E,
Bounova G, Weeber F, Balgobind AV, Wind K, Gracanin A, Begthel H,
et al: A living biobank of breast cancer organoids captures disease
heterogeneity. Cell. 172:373–386.e10. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Weeber F, Ooft SN, Dijkstra KK and Voest
EE: Tumor organoids as a pre-clinical cancer model for drug
discovery. Cell Chem Biol. 24:1092–1100. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Muthuswamy SK: Organoid models of cancer
explode with possibilities. Cell Stem Cell. 22:290–291. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Shi C, Chen X and Tan D: Development of
patient-derived xenograft models of prostate cancer for maintaining
tumor heterogeneity. Transl Androl Urol. 8:519–528. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Namekawa T, Ikeda K, Horie-Inoue K and
Inoue S: Application of prostate cancer models for preclinical
study: Advantages and limitations of cell lines, patient-derived
xenografts, and three-dimensional culture of patient-derived cells.
Cells. 8:742019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Cunha GR, Donjacour AA, Cooke PS, Mee S,
Bigsby RM, Higgins SJ and Sugimura Y: The endocrinology and
developmental biology of the prostate. Endocr Rev. 8:338–362. 1987.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Drost J, Karthaus WR, Gao D, Driehuis E,
Sawyers CL, Chen Y and Clevers H: Organoid culture systems for
prostate epithelial tissue and prostate cancer tissue. Nat Protoc.
11:347–358. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Heinlein CA and Chang C: Androgen receptor
in prostate cancer. Endocr Rev. 25:276–308. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Robinson EJ, Neal DE and Collins AT: Basal
cells are progenitors of luminal cells in primary cultures of
differentiating human prostatic epithelium. Prostate. 37:149–160.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Barclay WW, Woodruff RD, Hall MC and
Cramer SD: A system for studying epithelial-stromal interactions
reveals distinct inductive abilities of stromal cells from benign
prostatic hyperplasia and prostate cancer. Endocrinology.
146:13–18. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kurita T, Medina RT, Mills AA and Cunha
GR: Role of p63 and basal cells in the prostate. Development.
131:4955–4964. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kwon OJ, Zhang L and Xin L: Stem Cell
Antigen-1 identifies a distinct androgen-independent murine
prostatic luminal cell lineage with bipotent potential. Stem Cells.
34:191–202. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Shibata M, Epsi NJ, Xuan S, Mitrofanova A
and Shen MM: Bipotent progenitors do not require androgen receptor
for luminal specification during prostate organogenesis. Stem Cell
Reports. 15:1026–1036. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ousset M, Van Keymeulen A, Bouvencourt G,
Sharma N, Achouri Y, Simons BD and Blanpain C: Multipotent and
unipotent progenitors contribute to prostate postnatal development.
Nat Cell Biol. 14:1131–1138. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Karthaus WR, Iaquinta PJ, Drost J,
Gracanin A, van Boxtel R, Wongvipat J, Dowling CM, Gao D, Begthel
H, Sachs N, et al: Identification of multipotent luminal progenitor
cells in human prostate organoid cultures. Cell. 159:163–175. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Choi N, Zhang B, Zhang L, Ittmann M and
Xin L: Adult murine prostate basal and luminal cells are
self-sustained lineages that can both serve as targets for prostate
cancer initiation. Cancer Cell. 21:253–265. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Liu AY and True LD: Characterization of
prostate cell types by CD cell surface molecules. Am J Pathol.
160:37–43. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hudson DL: Epithelial stem cells in human
prostate growth and disease. Prostate Cancer Prostatic Dis.
7:188–194. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zenzmaier C, Untergasser G and Berger P:
Aging of the prostate epithelial stem/progenitor cell. Exp
Gerontol. 43:981–985. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Di Sant'Agnese PA: Neuroendocrine cells of
the prostate and neuroendocrine differentiation in prostatic
carcinoma: A review of morphologic aspects. Urology. 51 (5A
Suppl):S121–S124. 1998. View Article : Google Scholar
|
|
33
|
Abrahamsson PA: Neuroendocrine
differentiation in prostatic carcinoma. Prostate. 39:135–148. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Prostate gland [Internet]. Kenhub. [cited
Sep 7, 2020]. Available from. https://www.kenhub.com/en/library/anatomy/the-prostate-gland
|
|
35
|
Chung LW, Baseman A, Assikis V and Zhau
HE: Molecular insights into prostate cancer progression: The
missing link of tumor microenvironment. J Urol. 173:10–20. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Mueller MM and Fusenig NE: Friends or
foes-bipolar effects of the tumour stroma in cancer. Nat Rev
Cancer. 4:839–849. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang R, Xu J, Juliette L, Castilleja A,
Love J, Sung SY, Zhau HE, Goodwin TJ and Chung LW:
Three-dimensional co-culture models to study prostate cancer
growth, progression, and metastasis to bone. Semin Cancer Biol.
15:353–364. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Igney FH and Krammer PH: Immune escape of
tumors: Apoptosis resistance and tumor counterattack. J Leukoc
Biol. 71:907–920. 2002.PubMed/NCBI
|
|
39
|
Beatty GL and Gladney WL: Immune escape
mechanisms as a guide for cancer immunotherapy. Clin Cancer Res.
21:687–692. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Liu X, Ory V, Chapman S, Yuan H, Albanese
C, Kallakury B, Timofeeva OA, Nealon C, Dakic A, Simic V, et al:
ROCK inhibitor and feeder cells induce the conditional
reprogramming of epithelial cells. Am J Pathol. 180:599–607. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Drost J, van Jaarsveld RH, Ponsioen B,
Zimberlin C, van Boxtel R, Buijs A, Sachs N, Overmeer RM, Offerhaus
GJ, Begthel H, et al: Sequential cancer mutations in cultured human
intestinal stem cells. Nature. 521:43–47. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Toivanen R, Taylor RA, Pook DW, Ellem SJ
and Risbridger GP: Breaking through a roadblock in prostate cancer
research: An update on human model systems. J Steroid Biochem Mol
Biol. 131:122–131. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Nupponen NN, Hyytinen ER, Kallioniemi AH
and Visakorpi T: Genetic alterations in prostate cancer cell lines
detected by comparative genomic hybridization. Cancer Genet
Cytogenet. 101:53–57. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Palechor-Ceron N, Krawczyk E, Dakic A,
Simic V, Yuan H, Blancato J, Wang W, Hubbard F, Zheng YL, Dan H, et
al: Conditional reprogramming for patient-derived cancer models and
next-generation living biobanks. Cells. 8:13272019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Dasgupta P, Baade PD, Aitken JF, Ralph N,
Chambers SK and Dunn J: Geographical variations in prostate cancer
outcomes: A systematic review of International evidence. Front
Oncol. 9:2382019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Parrinello S, Samper E, Krtolica A,
Goldstein J, Melov S and Campisi J: Oxygen sensitivity severely
limits the replicative lifespan of murine fibroblasts. Nat Cell
Biol. 5:741–747. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Panchision DM: The role of oxygen in
regulating neural stem cells in development and disease. J Cell
Physiol. 220:562–568. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wu X, Wang S, Li M, Li J, Shen J, Zhao Y,
Pang J, Wen Q, Chen M, Wei B, et al: Conditional reprogramming:
Next generation cell culture. Acta Pharm Sin B. 10:1360–1381. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Sharpless NE and DePinho RA: The mighty
mouse: Genetically engineered mouse models in cancer drug
development. Nat Rev Drug Discov. 5:741–754. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Chapman S, Liu X, Meyers C, Schlegel R and
McBride AA: Human keratinocytes are efficiently immortalized by a
Rho kinase inhibitor. J Clin Invest. 120:2619–2626. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Hynds RE, Ben Aissa A, Gowers KHC, Watkins
TBK, Bosshard-Carter L, Rowan AJ, Veeriah S, Wilson GA, Quezada SA,
Swanton C, et al: Expansion of airway basal epithelial cells from
primary human non-small cell lung cancer tumors. Int J Cancer.
143:160–166. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Suprynowicz FA, Upadhyay G, Krawczyk E,
Kramer SC, Hebert JD, Liu X, Yuan H, Cheluvaraju C, Clapp PW,
Boucher RC Jr, et al: Conditionally reprogrammed cells represent a
stem-like state of adult epithelial cells. Proc Natl Acad Sci USA.
109:20035–20040. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Suprynowicz FA, Kamonjoh CM, Krawczyk E,
Agarwal S, Wellstein A, Agboke FA, Choudhury S, Liu X and Schlegel
R: Conditional cell reprogramming involves non-canonical β-catenin
activation and mTOR-mediated inactivation of Akt. PLoS One.
12:e01808972017. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Sugaya M, Takenoyama M, Osaki T, Yasuda M,
Nagashima A, Sugio K and Yasumoto K: Establishment of 15 cancer
cell lines from patients with lung cancer and the potential tools
for immunotherapy. Chest. 122:282–288. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Liu X, Krawczyk E, Suprynowicz FA,
Palechor-Ceron N, Yuan H, Dakic A, Simic V, Zheng YL, Sripadhan P,
Chen C, et al: Conditional reprogramming and long-term expansion of
normal and tumor cells from human biospecimens. Nat Protoc.
12:439–451. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Timofeeva OA, Palechor-Ceron N, Li G, Yuan
H, Krawczyk E, Zhong X, Liu G, Upadhyay G, Dakic A, Yu S, et al:
Conditionally reprogrammed normal and primary tumor prostate
epithelial cells: A novel patient-derived cell model for studies of
human prostate cancer. Oncotarget. 8:22741–22758. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Borodovsky A, McQuiston TJ, Stetson D,
Ahmed A, Whitston D, Zhang J, Grondine M, Lawson D, Challberg SS,
Zinda M, et al: Generation of stable PDX derived cell lines using
conditional reprogramming. Mol Cancer. 16:1772017. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Saeed K, Rahkama V, Eldfors S, Bychkov D,
Mpindi JP, Yadav B, Paavolainen L, Aittokallio T, Heckman C,
Wennerberg K, et al: Comprehensive drug testing of patient-derived
conditionally reprogrammed cells from castration-resistant prostate
cancer. Eur Urol. 71:319–327. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Vondálová Blanářová O, Šafaříková B,
Herůdková J, Krkoška M, Tománková S, Kahounová Z, Anděra L, Bouchal
J, Kharaishvili G, Král M, et al: Cisplatin or LA-12 enhance
killing effects of TRAIL in prostate cancer cells through
Bid-dependent stimulation of mitochondrial apoptotic pathway but
not caspase-10. PLoS One. 12:e01885842017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yuan H, Myers S, Wang J, Zhou D, Woo JA,
Kallakury B, Ju A, Bazylewicz M, Carter YM, Albanese C, et al: Use
of reprogrammed cells to identify therapy for respiratory
papillomatosis. N Engl J Med. 367:1220–1227. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Brown DD, Dabbs DJ, Lee AV, McGuire KP,
Ahrendt GM, Bhargava R, Davidson NE, Brufsky AM, Johnson RR,
Oesterreich S and McAuliffe PF: Developing in vitro models of human
ductal carcinoma in situ from primary tissue explants. Breast
Cancer Res Treat. 153:311–321. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ellis L, Ku S, Li Q, Azabdaftari G,
Seliski J, Olson B, Netherby CS, Tang DG, Abrams SI, Goodrich DW
and Pili R: Generation of a C57BL/6 MYC-Driven Mouse Model and Cell
Line of Prostate Cancer. Prostate. 76:1192–1202. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Jensen TJ, Foster C, Sayej W and Finck CM:
Conditional reprogramming of pediatric human esophageal epithelial
cells for use in tissue engineering and disease investigation. J
Vis Exp. 121:e552432017.
|
|
64
|
Tricoli L, Naeem A, Parasido E, Mikhaiel
JP, Choudhry MU, Berry DL, Abdelgawad IA, Lee RJ, Feldman AS,
Ihemelandu C, et al: Characterization of the effects of defined,
multidimensional culture conditions on conditionally reprogrammed
primary human prostate cells. Oncotarget. 9:2193–2207. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Serrano-Heras G, Domínguez-Berzosa C,
Collantes E, Guadalajara H, García-Olmo D and García-Olmo DC:
NIH-3T3 fibroblasts cultured with plasma from colorectal cancer
patients generate poorly differentiated carcinomas in mice. Cancer
Lett. 316:85–90. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yu F, Lu Y, Tao L, Jiang YY, Lin DC, Wang
L, Petersson F, Yoshiyama H, Koeffler PH, Goh BC and Loh KS:
Non-malignant epithelial cells preferentially proliferate from
nasopharyngeal carcinoma biopsy cultured under conditionally
reprogrammed conditions. Sci Rep. 7:173592017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Yu F, Hsieh W, Petersson F, Yang H, Li Y,
Li C, Low SW, Liu J, Yan Y, Wang DY and Loh KS: Malignant cells
derived from 3T3 fibroblast feeder layer in cell culture for
nasopharyngeal carcinoma. Exp Cell Res. 322:193–201. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhao W, Liu K, Sun Z, Wang L, Liu B, Liu
L, Qu X, Cao Z, Sun J and Chai J: Application research of
individualized conditional reprogramming system to guide treatment
of gastric cancer. Front Oncol. 11:7095112021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Dong Y, Wang J, Ji W, Zheng M, Wang P, Liu
L and Li S: Establishment and preclinical application of
conditional reprogramming culture system for laryngeal and
hypopharyngeal carcinoma. Front Cell Dev Biol. 9:7449692021.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Liu X, Krawczyk E, Timofeeva O,
Palechor-Ceron N, Dakic A, Simic V, Kallakury B, Dritschilo A and
Schlegel R: Functional analysis for cancer precision medicine using
patient-derived 2D and 3D cell models. Cancer Res. 76 (Suppl
14):S42562016.
|
|
71
|
Morton CL and Houghton PJ: Establishment
of human tumor xenografts in immunodeficient mice. Nat Protoc.
2:247–250. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Cao X, Shores EW, Hu-Li J, Anver MR,
Kelsail BL, Russell SM, Drago J, Noguchi M, Grinberg A, Bloom ET,
et al: Defective lymphoid development in mice lacking expression of
the common cytokine receptor γ chain. Immunity. 2:223–238. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Govindaraj V, Arya SV and Rao AJ:
Differential action of glycoprotein hormones: Significance in
cancer progression. Horm Cancer. 5:1–10. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Lawrence MG, Taylor RA, Toivanen R,
Pedersen J, Norden S, Pook DW, Frydenberg M; Australian Prostate
Cancer BioResource, ; Papargiris MM, Niranjan B, et al: A
preclinical xenograft model of prostate cancer using human tumors.
Nat Protoc. 8:836–848. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
McLean DT, Strand DW and Ricke WA:
Prostate cancer xenografts and hormone induced prostate
carcinogenesis. Differentiation. 97:23–32. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lam HM, Nguyen HM and Corey E: Generation
of prostate cancer patient-derived xenografts to investigate
mechanisms of novel treatments and treatment resistance. Methods
Mol Biol. 1786:1–27. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lin D, Wyatt AW, Xue H, Wang Y, Dong X,
Haegert A, Wu R, Brahmbhatt S, Mo F, Jong L, et al: High fidelity
patient-derived xenografts for accelerating prostate cancer
discovery and drug development. Cancer Res. 74:1272–1283. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Williams SA, Anderson WC, Santaguida MT
and Dylla SJ: Patient-derived xenografts, the cancer stem cell
paradigm, and cancer pathobiology in the 21st century. Lab Invest.
93:970–982. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Wu CH, Yang CY, Wang L, Gao HX,
Rakhshandehroo T, Afghani S, Pincus L, Balassanian R, Rubenstein J,
Gill R, et al: Cutaneous T-cell lymphoma PDX drug screening
platform identifies cooperation between inhibitions of PI3Kα/δ and
HDAC. J Invest Dermatol. 141:364–373. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Russell PJ, Russell P, Rudduck C, Tse BW,
Williams ED and Raghavan D: Establishing prostate cancer patient
derived xenografts: Lessons learned from older studies. Prostate.
75:628–636. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Nguyen HM, Vessella RL, Morrissey C, Brown
LG, Coleman IM, Higano CS, Mostaghel EA, Zhang X, True LD, Lam HM,
et al: LuCaP prostate cancer patient-derived xenografts reflect the
molecular heterogeneity of advanced disease and serve as models for
evaluating cancer therapeutics. Prostate. 77:654–671. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wang Y, Revelo MP, Sudilovsky D, Cao M,
Chen WG, Goetz L, Xue H, Sadar M, Shappell SB, Cunha GR and Hayward
SW: Development and characterization of efficient xenograft models
for benign and malignant human prostate tissue. Prostate.
64:149–159. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Yoshikawa T, Kobori G, Goto T, Akamatsu S,
Terada N, Kobayashi T, Tanaka Y, Jung G, Kamba T, Ogawa O and Inoue
T: An original patient-derived xenograft of prostate cancer with
cyst formation. Prostate. 76:994–1003. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Beltran H, Prandi D, Mosquera JM, Benelli
M, Puca L, Cyrta J, Marotz C, Giannopoulou E, Chakravarthi BV,
Varambally S, et al: Divergent clonal evolution of
castration-resistant neuroendocrine prostate cancer. Nat Med.
22:298–305. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Gao D and Chen Y: Organoid development in
cancer genome discovery. Curr Opin Genet Dev. 30:42–48. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Owonikoko TK, Zhang G, Kim HS, Stinson RM,
Bechara R, Zhang C, Chen Z, Saba NF, Pakkala S, Pillai R, et al:
Patient-derived xenografts faithfully replicated clinical outcome
in a phase II co-clinical trial of arsenic trioxide in relapsed
small cell lung cancer. J Transl Med. 14:1112016. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Williams JA: Using PDX for preclinical
cancer drug discovery: The evolving field. J Clin Med. 7:412018.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Gao H, Korn JM, Ferretti S, Monahan JE,
Wang Y, Singh M, Zhang C, Schnell C, Yang G, Zhang Y, et al:
High-throughput screening using patient-derived tumor xenografts to
predict clinical trial drug response. Nat Med. 21:1318–1325. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Ni J, Ramkissoon SH, Xie S, Goel S, Stover
DG, Guo H, Luu V, Marco E, Ramkissoon LA, Kang YJ, et al:
Combination inhibition of PI3K and mTORC1 yields durable remissions
in orthotopic patient-derived xenografts of HER2-positive breast
cancer brain metastases. Nat Med. 22:723–726. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Corcoran RB, Atreya CE, Falchook GS, Kwak
EL, Ryan DP, Bendell JC, Hamid O, Messersmith WA, Daud A, Kurzrock
R, et al: Combined BRAF and MEK inhibition with dabrafenib and
trametinib in BRAF V600-Mutant colorectal cancer. J Clin Oncol.
33:4023–4031. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Lai Y, Wei X, Lin S, Qin L, Cheng L and Li
P: Current status and perspectives of patient-derived xenograft
models in cancer research. J Hematol Oncol. 10:1062017. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Bartucci M, Ferrari AC, Kim IY, Ploss A,
Yarmush M and Sabaawy HE: Personalized medicine approaches in
prostate cancer employing patient derived 3D organoids and
humanized mice. Front Cell Dev Biol. 4:642016. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Lamouille S, Xu J and Derynck R: Molecular
mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell
Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Ito R, Takahashi T and Ito M: Humanized
mouse models: Application to human diseases. J Cell Physiol.
233:3723–3728. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Puca L, Bareja R, Prandi D, Shaw R,
Benelli M, Karthaus WR, Hess J, Sigouros M, Donoghue A, Kossai M,
et al: Patient derived organoids to model rare prostate cancer
phenotypes. Nat Commun. 9:24042018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Praharaj PP, Bhutia SK, Nagrath S, Bitting
RL and Deep G: Circulating tumor cell-derived organoids: Current
challenges and promises in medical research and precision medicine.
Biochim Biophys Acta Rev Cancer. 1869:117–127. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Gorges TM, Tinhofer I, Drosch M, Röse L,
Zollner TM, Krahn T and von Ahsen O: Circulating tumour cells
escape from EpCAM-based detection due to epithelial-to-mesenchymal
transition. BMC Cancer. 12:1782012. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Armstrong AJ, Marengo MS, Oltean S, Kemeny
G, Bitting RL, Turnbull JD, Herold CI, Marcom PK, George DJ and
Garcia-Blanco MA: Circulating tumor cells from patients with
advanced prostate and breast cancer display both epithelial and
mesenchymal markers. Mol Cancer Res. 9:997–1007. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Beshiri ML, Tice CM, Tran C, Nguyen HM,
Sowalsky AG, Agarwal S, Jansson KH, Yang Q, McGowen KM, Yin J, et
al: A PDX/organoid biobank of advanced prostate cancers captures
genomic and phenotypic heterogeneity for disease modeling and
therapeutic screening. Clin Cancer Res. 24:4332–4345. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Chua CW, Shibata M, Lei M, Toivanen R,
Barlow LJ, Bergren SK, Badani KK, McKiernan JM, Benson MC,
Hibshoosh H and Shen MM: Single luminal epithelial progenitors can
generate prostate organoids in culture. Nat Cell Biol. 16:951–961.
1–4. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Clevers H: Modeling development and
disease with organoids. Cell. 165:1586–1597. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Allard WJ: Tumor cells circulate in the
peripheral blood of all major carcinomas but not in healthy
subjects or patients with nonmalignant diseases. Clin Cancer Res.
10:6897–6904. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Tsai S, McOlash L, Palen K, Johnson B,
Duris C, Yang Q, Dwinell MB, Hunt B, Evans DB, Gershan J and James
MA: Development of primary human pancreatic cancer organoids,
matched stromal and immune cells and 3D tumor microenvironment
models. BMC Cancer. 18:3352018. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Neal JT, Li X, Zhu J, Giangarra V,
Grzeskowiak CL, Ju J, Liu IH, Chiou SH, Salahudeen AA, Smith AR, et
al: Organoid modeling of the tumor immune microenvironment. Cell.
175:1972–1988.e16. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Dijkstra KK, Cattaneo CM, Weeber F,
Chalabi M, van de Haar J, Fanchi LF, Slagter M, van der Velden DL,
Kaing S, Kelderman S, et al: Generation of Tumor-Reactive T Cells
by Co-culture of peripheral blood lymphocytes and tumor organoids.
Cell. 174:1586–1598.e12. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Gstraunthaler G, Lindl T and van der Valk
J: A plea to reduce or replace fetal bovine serum in cell culture
media. Cytotechnology. 65:791–793. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Hughes CS, Postovit LM and Lajoie GA:
Matrigel: A complex protein mixture required for optimal growth of
cell culture. Proteomics. 10:1886–1890. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Patel R and Alahmad AJ: Growth-factor
reduced Matrigel source influences stem cell derived brain
microvascular endothelial cell barrier properties. Fluids Barriers
CNS. 13:62016. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Nguyen EH, Daly WT, Le NNT, Farnoodian M,
Belair DG, Schwartz MP, Lebakken CS, Ananiev GE, Saghiri MA,
Knudsen TB, et al: Versatile synthetic alternatives to Matrigel for
vascular toxicity screening and stem cell expansion. Nat Biomed
Eng. 1:00962017. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zhang S, Gelain F and Zhao X: Designer
self-assembling peptide nanofiber scaffolds for 3D tissue cell
cultures. Semin Cancer Biol. 15:413–420. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Stingl J, Rowbotham D, Thomas TE, Eaves AC
and Louis SA: Expansion of mouse prostate epithelial stem cells in
serum-free ProstaCult Organoid Growth Medium. Cancer Res. 78 (13
Suppl):S31112018.
|
|
112
|
Richards Z, McCray T, Marsili J, Zenner
ML, Manlucu JT, Garcia J, Kajdacsy-Balla A, Murray M, Voisine C,
Murphy AB, et al: Prostate stroma increases the viability and
maintains the branching phenotype of human prostate organoids.
iScience. 12:304–317. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
von Amsberg G and Merseburger AS:
Treatment of metastatic, castration-resistant prostate cancer.
Urologe A. 59:673–679. 2020.(In German). View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Kantoff PW, Higano CS, Shore ND, Berger
ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims
RB, et al: Sipuleucel-T immunotherapy for castration-resistant
prostate cancer. N Engl J Med. 363:411–422. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Kleinman HK and Martin GR: Matrigel:
Basement membrane matrix with biological activity. Semin Cancer
Biol. 15:378–386. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Pauli C, Hopkins BD, Prandi D, Shaw R,
Fedrizzi T, Sboner A, Sailer V, Augello M, Puca L, Rosati R, et al:
Personalized in vitro and in vivo cancer models to guide precision
medicine. Cancer Discov. 7:462–477. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Koo BK, Stange DE, Sato T, Karthaus W,
Farin HF, Huch M, van Es JH and Clevers H: Controlled gene
expression in primary Lgr5 organoid cultures. Nat Methods. 9:81–83.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Gao D, Vela I, Sboner A, Iaquinta PJ,
Karthaus WR, Gopalan A, Dowling C, Wanjala JN, Undvall EA, Arora
VK, et al: Organoid cultures derived from patients with advanced
prostate cancer. Cell. 159:176–187. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Risbridger GP, Toivanen R and Taylor RA:
Preclinical models of prostate cancer: Patient-derived xenografts,
organoids, and other explant models. Cold Spring Harb Perspect Med.
8:a0305362018. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Lawrence MG, Obinata D, Sandhu S, Selth
LA, Wong SQ, Porter LH, Lister N, Pook D, Pezaro CJ, Goode DL, et
al: Patient-derived models of abiraterone- and
enzalutamide-resistant prostate cancer reveal sensitivity to
ribosome-directed therapy. Eur Urol. 74:562–572. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Ooft SN, Weeber F, Dijkstra KK, McLean CM,
Kaing S, van Werkhoven E, Schipper L, Hoes L, Vis DJ, van de Haar
J, et al: Patient-derived organoids can predict response to
chemotherapy in metastatic colorectal cancer patients. Sci Transl
Med. 11:eaay25742019. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Tiriac H, Belleau P, Engle DD, Plenker D,
Deschênes A, Somerville TDD, Froeling FEM, Burkhart RA, Denroche
RE, Jang GH, et al: Organoid profiling identifies common responders
to chemotherapy in pancreatic cancer. Cancer Discov. 8:1112–1129.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Ganesh K, Wu C, O'Rourke KP, Szeglin BC,
Zheng Y, Sauvé CG, Adileh M, Wasserman I, Marco MR, Kim AS, et al:
A rectal cancer organoid platform to study individual responses to
chemoradiation. Nat Med. 25:1607–1614. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Sawicki LA and Kloxin AM: Light-mediated
formation and patterning of hydrogels for cell culture
applications. J Vis Exp. 115:e544622016.PubMed/NCBI
|
|
125
|
Koga Y and Ochiai A: Systematic review of
Patient-Derived xenograft models for preclinical studies of
anti-cancer drugs in solid tumors. Cells. 8:4182019. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Nardella C, Lunardi A, Patnaik A, Cantley
LC and Pandolfi PP: The APL paradigm and the ‘co-clinical trial’
project. Cancer Discov. 1:108–116. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Clohessy JG and Pandolfi PP: Mouse
hospital and co-clinical trial project-from bench to bedside. Nat
Rev Clin Oncol. 12:491–498. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Chen M and Pandolfi PP: Preclinical and
coclinical studies in prostate cancer. Cold Spring Harb Perspect
Med. 8:a0305442018. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Lunardi A, Ala U, Epping MT, Salmena L,
Clohessy JG, Webster KA, Wang G, Mazzucchelli R, Bianconi M, Stack
EC, et al: A co-clinical approach identifies mechanisms and
potential therapies for androgen deprivation resistance in prostate
cancer. Nat Genet. 45:747–755. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
van Moorselaar RJA and Voest EE:
Angiogenesis in prostate cancer: its role in disease progression
and possible therapeutic approaches. Mol Cell Endocrinol.
197:239–250. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Zittermann SI and Issekutz AC: Basic
fibroblast growth factor (bFGF, FGF-2) potentiates leukocyte
recruitment to inflammation by enhancing endothelial adhesion
molecule expression. Am J Pathol. 168:835–846. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Lail-Trecker M, Gulati R and Peluso JJ: A
role for hepatocyte growth factor/scatter factor in regulating
normal and neoplastic cells of reproductive tissues. J Soc Gynecol
Investig. 5:114–121. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Blanchère M, Saunier E, Mestayer C,
Broshuis M and Mowszowicz I: Alterations of expression and
regulation of transforming growth factor beta in human cancer
prostate cell lines. J Steroid Biochem Mol Biol. 82:297–304. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Royuela M, Ricote M, Parsons MS,
García-Tuñón I, Paniagua R and de Miguel MP: Immunohistochemical
analysis of the IL-6 family of cytokines and their receptors in
benign, hyperplasic, and malignant human prostate. J Pathol.
202:41–49. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Planz B, Wang Q, Kirley SD, Marberger M
and McDougal WS: Regulation of keratinocyte growth factor receptor
and androgen receptor in epithelial cells of the human prostate. J
Urol. 166:678–683. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Francis JC, Thomsen MK, Taketo MM and
Swain A: β-catenin is required for prostate development and
cooperates with pten loss to drive invasive carcinoma. PLoS Genet.
9:e10031802013. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Cook C, Vezina CM, Allgeier SH, Shaw A, Yu
M, Peterson RE and Bushman W: Noggin is required for normal lobe
patterning and ductal budding in the mouse prostate. Dev Biol.
312:217–230. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Jarrard DF, Blitz BF, Smith RC, Patai BL
and Rukstalis DB: Effect of epidermal growth factor on prostate
cancer cell line PC3 growth and invasion. Prostate. 24:46–53. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Sastry KS, Karpova Y and Kulik G:
Epidermal growth factor protects prostate cancer cells from
apoptosis by inducing BAD phosphorylation via redundant signaling
pathways. J Biol Chem. 281:27367–27377. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Watanabe K, Ueno M, Kamiya D, Nishiyama A,
Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S,
Muguruma K and Sasai Y: A ROCK inhibitor permits survival of
dissociated human embryonic stem cells. Nat Biotechnol. 25:681–686.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Tojo M, Hamashima Y, Hanyu A, Kajimoto T,
Saitoh M, Miyazono K, Node M and Imamura T: The ALK-5 inhibitor
A-83-01 inhibits Smad signaling and epithelial-to-mesenchymal
transition by transforming growth factor-beta. Cancer Sci.
96:791–800. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Zhang F, Lau SS and Monks TJ: The
Cytoprotective Effect of N-acetyl-L-cysteine against ROS-induced
cytotoxicity is independent of its ability to enhance glutathione
synthesis. Toxicol Sci. 120:87–97. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Gu Y, Fu J, Lo PK, Wang S, Wang Q and Chen
H: The Effect of B27 Supplement on Promoting In Vitro Propagation
of Her2/neu-Transformed mammary tumorspheres. J Biotech Res.
3:7–18. 2011.
|
|
144
|
Sato T, Stange DE, Ferrante M, Vries RG,
Van Es JH, Van den Brink S, Van Houdt WJ, Pronk A, Van Gorp J,
Siersema PD and Clevers H: Long-term expansion of epithelial
organoids from human colon, adenoma, adenocarcinoma, and Barrett's
Epithelium. Gastroenterology. 141:1762–1772. 2011. View Article : Google Scholar : PubMed/NCBI
|