Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
June-2022 Volume 60 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2022 Volume 60 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Aptamer‑based therapy for targeting key mediators of cancer metastasis (Review)

  • Authors:
    • Yahya Alhamhoom
    • Homood M. As Sobeai
    • Sary Alsanea
    • Ali Alhoshani
  • View Affiliations / Copyright

    Affiliations: Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Kingdom of Saudi Arabia, Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
    Copyright: © Alhamhoom et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 65
    |
    Published online on: April 14, 2022
       https://doi.org/10.3892/ijo.2022.5355
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer‑related deaths remain a challenging and devastating obstacle to defeat despite the tremendous advances in cancer treatment. Cancer metastasis is the major cause of these cancer‑related deaths. Metastasis involves sequential steps during cancer cells' journey to a new site. These steps are coordinately regulated by specific intracellular regulators and cellular interactions between the cancer cells and the supporting microenvironment of the different organs. The development of aptamer‑based therapeutics is a promising strategy to fight cancer metastasis as it holds potential advantages. Oligonucleotide and peptide aptamers are short sequences of single‑stranded nucleic acids or amino acids, respectively, that target proteins, genetic materials, and cells. Antimetastatic aptamer‑based therapeutics exert their pharmacological effect by direct interaction with the signaling pathways inside the cancer cells or the communications between cancer cells and the tumor microenvironment. In addition, aptamers have been utilized as a guiding ligand to deliver a therapeutic moiety to cancer cells or the supporting microenvironment. The selected aptamer possesses high specificity since it is designed to recognize and interact with its target. This review summarizes recent advances in the development of aptamer‑based therapeutics targeting mediators of cancer metastasis. In addition, potential opportunities are discussed to inspire researchers in the field to develop novel aptamer‑based antimetastatic treatments.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Chiang CJ, Lo WC, Yang YW, You SL, Chen CJ and Lai MS: Incidence and survival of adult cancer patients in Taiwan, 2002-2012. J Formos Med Assoc. 115:1076–1088. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Liu CM, Peng CY, Liao YW, Lu MY, Tsai ML, Yeh JC, Yu CH and Yu CC: Sulforaphane targets cancer stemness and tumor initiating properties in oral squamous cell carcinomas via miR-200c induction. J Formos Med Assoc. 116:41–48. 2017. View Article : Google Scholar

3 

Tsai CE, Wu KL, Chiu YC, Chuah SK, Tai WC, Hu ML and Liang CM: The incidence and clinical associated factors of interval colorectal cancers in Southern Taiwan. J Formos Med Assoc. 117:185–190. 2018. View Article : Google Scholar

4 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

5 

Dillekas H, Rogers MS and Straume O: Are 90% of deaths from cancer caused by metastases? Cancer Med. 8:5574–5576. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Fidler IJ: The pathogenesis of cancer metastasis: The 'seed and soil' hypothesis revisited. Nat Rev Cancer. 3:453–458. 2003. View Article : Google Scholar : PubMed/NCBI

7 

Stewart CM and Tsui DWY: Circulating cell-free DNA for non-invasive cancer management. Cancer Genet. 228-229:169–179. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Hafeez U, Gan HK and Scott AM: Monoclonal antibodies as immunomodulatory therapy against cancer and autoimmune diseases. Curr Opin Pharmacol. 41:114–121. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Dominiak A, Chelstowska B, Olejarz W and Nowicka G: Communication in the cancer microenvironment as a target for therapeutic interventions. Cancers (Basel). 12:12322020. View Article : Google Scholar

10 

Tuerk C and Gold L: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 249:505–510. 1990. View Article : Google Scholar : PubMed/NCBI

11 

Ellington AD and Szostak JW: In vitro selection of RNA molecules that bind specific ligands. Nature. 346:818–822. 1990. View Article : Google Scholar : PubMed/NCBI

12 

Zhou J and Rossi J: Aptamers as targeted therapeutics: Current potential and challenges. Nat Rev Drug Discov. 16:181–202. 2017. View Article : Google Scholar

13 

Toh SY, Citartan M, Gopinath SC and Tang TH: Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens Bioelectron. 64:392–403. 2015. View Article : Google Scholar

14 

Mascini M, Palchetti I and Tombelli S: Nucleic acid and peptide aptamers: Fundamentals and bioanalytical aspects. Angew Chem Int Ed Engl. 51:1316–1332. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Colas P, Cohen B, Jessen T, Grishina I, McCoy J and Brent R: Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature. 380:548–550. 1996. View Article : Google Scholar : PubMed/NCBI

16 

Reverdatto S, Burz DS and Shekhtman A: Peptide aptamers: Development and applications. Curr Top Med Chem. 15:1082–1101. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Han J, Gao L and Wang J and Wang J: Application and development of aptamer in cancer: From clinical diagnosis to cancer therapy. J Cancer. 11:6902–6915. 2020. View Article : Google Scholar : PubMed/NCBI

18 

Pan Q, Luo F, Liu M and Zhang XL: Oligonucleotide aptamers: Promising and powerful diagnostic and therapeutic tools for infectious diseases. J Infect. 77:83–98. 2018. View Article : Google Scholar : PubMed/NCBI

19 

Herrmann A, Priceman SJ, Swiderski P, Kujawski M, Xin H, Cherryholmes GA, Zhang W, Zhang C, Lahtz C, Kowolik C, et al: CTLA4 aptamer delivers STAT3 siRNA to tumor-associated and malignant T cells. J Clin Invest. 124:2977–2987. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Ospina-Villa JD, Zamorano-Carrillo A, Castanon-Sanchez CA, Ramirez-Moreno E and Marchat LA: Aptamers as a promising approach for the control of parasitic diseases. Braz J Infect Dis. 20:610–618. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Liu M, Zaman K and Fortenberry YM: Overview of the therapeutic potential of aptamers targeting coagulation factors. Int J Mol Sci. 22:38972021. View Article : Google Scholar : PubMed/NCBI

22 

Ninichuk V, Clauss S, Kulkarni O, Schmid H, Segerer S, Radomska E, Eulberg D, Buchner K, Selve N, Klussmann S and Anders HJ: Late onset of Ccl2 blockade with the Spiegelmer mNOX-E36-3′PEG prevents glomerulosclerosis and improves glomerular filtration rate in db/db mice. Am J Pathol. 172:628–637. 2008. View Article : Google Scholar : PubMed/NCBI

23 

Ng EW, Shima DT, Calias P, Cunningham ET Jr, Guyer DR and Adamis AP: Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov. 5:123–132. 2006. View Article : Google Scholar : PubMed/NCBI

24 

Gauthier NC and Roca-Cusachs P: Mechanosensing at integrin-mediated cell-matrix adhesions: From molecular to integrated mechanisms. Curr Opin Cell Biol. 50:20–26. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Bissell MJ and Hines WC: Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med. 17:320–329. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Friedl P and Wolf K: Tumour-cell invasion and migration: Diversity and escape mechanisms. Nat Rev Cancer. 3:362–374. 2003. View Article : Google Scholar

27 

Zheng X, Yu C and Xu M: Linking tumor microenvironment to plasticity of cancer stem cells: Mechanisms and application in cancer therapy. Front Oncol. 11:6783332021. View Article : Google Scholar : PubMed/NCBI

28 

Krakhmal NV, Zavyalova MV, Denisov EV, Vtorushin SV and Perelmuter VM: Cancer invasion: Patterns and mechanisms. Acta Naturae. 7:17–28. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Joyce JA and Pollard JW: Microenvironmental regulation of metastasis. Nat Rev Cancer. 9:239–252. 2009. View Article : Google Scholar : PubMed/NCBI

31 

Dirat B, Bochet L, Dabek M, Daviaud D, Dauvillier S, Majed B, Wang YY, Meulle A, Salles B, Le Gonidec S, et al: Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 71:2455–2465. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL, Berman T and Joyce JA: IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 24:241–255. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Gupta GP and Massague J: Cancer metastasis: Building a framework. Cell. 127:679–695. 2006. View Article : Google Scholar

34 

Carmeliet P and Jain RK: Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov. 10:417–427. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Gupta GP, Nguyen DX, Chiang AC, Bos PD, Kim JY, Nadal C, Gomis RR, Manova-Todorova K and Massagué J: Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature. 446:765–770. 2007. View Article : Google Scholar : PubMed/NCBI

36 

Guo W and Giancotti FG: Integrin signalling during tumour progression. Nat Rev Mol Cell Biol. 5:816–826. 2004. View Article : Google Scholar : PubMed/NCBI

37 

Douma S, Van Laar T, Zevenhoven J, Meuwissen R, Van Garderen E and Peeper DS: Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature. 430:1034–1039. 2004. View Article : Google Scholar : PubMed/NCBI

38 

Brown DM and Ruoslahti E: Metadherin, a cell surface protein in breast tumors that mediates lung metastasis. Cancer Cell. 5:365–374. 2004. View Article : Google Scholar : PubMed/NCBI

39 

Auguste P, Fallavollita L, Wang N, Burnier J, Bikfalvi A and Brodt P: The host inflammatory response promotes liver metastasis by increasing tumor cell arrest and extravasation. Am J Pathol. 170:1781–1792. 2007. View Article : Google Scholar : PubMed/NCBI

40 

Al-Mehdi AB, Tozawa K, Fisher AB, Shientag L, Lee A and Muschel RJ: Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: A new model for metastasis. Nat Med. 6:100–102. 2000. View Article : Google Scholar

41 

Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR and Massagué J: TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell. 133:66–77. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Psaila B and Lyden D: The metastatic niche: Adapting the foreign soil. Nat Rev Cancer. 9:285–293. 2009. View Article : Google Scholar

43 

Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, Le QT and Giaccia AJ: Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. 15:35–44. 2009. View Article : Google Scholar

44 

Chambers AF, Groom AC and MacDonald IC: Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2:563–572. 2002. View Article : Google Scholar : PubMed/NCBI

45 

Barkan D, El Touny LH, Michalowski AM, Smith JA, Chu I, Davis AS, Webster JD, Hoover S, Simpson RM, Gauldie J and Green JE: Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment. Cancer Res. 70:5706–5716. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Barkan D, Kleinman H, Simmons JL, Asmussen H, Kamaraju AK, Hoenorhoff MJ, Liu ZY, Costes SV, Cho EH, Lockett S, et al: Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res. 68:6241–6250. 2008. View Article : Google Scholar : PubMed/NCBI

47 

Shibue T and Weinberg RA: Integrin beta1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci USA. 106:10290–10295. 2009. View Article : Google Scholar : PubMed/NCBI

48 

Hiratsuka S, Duda DG, Huang Y, Goel S, Sugiyama T, Nagasawa T, Fukumura D and Jain RK: C-X-C receptor type 4 promotes metastasis by activating p38 mitogen-activated protein kinase in myeloid differentiation antigen (Gr-1)-positive cells. Proc Natl Acad Sci USA. 108:302–307. 2011. View Article : Google Scholar :

49 

McAllister SS, Gifford AM, Greiner AL, Kelleher SP, Saelzler MP, Ince TA, Reinhardt F, Harris LN, Hylander BL, Repasky EA and Weinberg RA: Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell. 133:994–1005. 2008. View Article : Google Scholar : PubMed/NCBI

50 

Kang SY, Halvorsen OJ, Gravdal K, Bhattacharya N, Lee JM, Liu NW, Johnston BT, Johnston AB, Haukaas SA, Aamodt K, et al: Prosaposin inhibits tumor metastasis via paracrine and endocrine stimulation of stromal p53 and Tsp-1. Proc Natl Acad Sci USA. 106:12115–12120. 2009. View Article : Google Scholar : PubMed/NCBI

51 

Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, Diehn M, Liu H, Panula SP, Chiao E, et al: Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 138:592–603. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Cai S, Yan J, Xiong H, Liu Y, Peng D and Liu Z: Investigations on the interface of nucleic acid aptamers and binding targets. Analyst. 143:5317–5338. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Ni S, Zhuo Z, Pan Y, Yu Y, Li F, Liu J, Wang L, Wu X, Li D, Wan Y, et al: Recent progress in aptamer discoveries and modifications for therapeutic applications. ACS Appl Mater Interfaces. 13:9500–9519. 2021. View Article : Google Scholar

54 

Zhang Y, Lai BS and Juhas M: Recent advances in aptamer discovery and applications. Molecules. 24:9412019. View Article : Google Scholar :

55 

Dong Y, Zhang T, Lin X, Feng J, Luo F, Gao H, Wu Y, Deng R and He Q: Graphene/aptamer probes for small molecule detection: from in vitro test to in situ imaging. Mikrochim Acta. 187:1792020. View Article : Google Scholar : PubMed/NCBI

56 

Cho SJ, Woo HM, Kim KS, Oh JW and Jeong YJ: Novel system for detecting SARS coronavirus nucleocapsid protein using an ssDNA aptamer. J Biosci Bioeng. 112:535–540. 2011. View Article : Google Scholar : PubMed/NCBI

57 

Li HY, Jia WN, Li XY, Zhang L, Liu C and Wu J: Advances in detection of infectious agents by aptamer-based technologies. Emerg Microbes Infect. 9:1671–1681. 2020. View Article : Google Scholar : PubMed/NCBI

58 

Hassan EM, Willmore WG and DeRosa MC: Aptamers: Promising tools for the detection of circulating tumor cells. Nucleic Acid Ther. 26:335–347. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Orava EW, Cicmil N and Gariepy J: Delivering cargoes into cancer cells using DNA aptamers targeting internalized surface portals. Biochim Biophys Acta. 1798:2190–2200. 2010. View Article : Google Scholar : PubMed/NCBI

60 

Zhang GX, Liu YL, Yang M, Huang WS and Xu JH: An aptamer-based, fluorescent and radionuclide dual-modality probe. Biochimie. 171-172:55–62. 2020. View Article : Google Scholar : PubMed/NCBI

61 

Hashemitabar S, Yazdian-Robati R, Hashemi M, Ramezani M, Abnous K and Kalalinia F: ABCG2 aptamer selectively delivers doxorubicin to drug-resistant breast cancer cells. J Biosci. 44:392019. View Article : Google Scholar : PubMed/NCBI

62 

Kruspe S and Giangrande PH: Aptamer-siRNA chimeras: Discovery, progress and future prospects. Biomedicines. 5:452017. View Article : Google Scholar

63 

Jiang L, Wang H and Chen S: Aptamer (AS1411)-conjugated liposome for enhanced therapeutic efficacy of miRNA-29b in ovarian cancer. J Nanosci Nanotechnol. 20:2025–2031. 2020. View Article : Google Scholar

64 

Meng HM, Liu H, Kuai H, Peng R, Mo L and Zhang XB: Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem Soc Rev. 45:2583–2602. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Xiang D, Shigdar S, Qiao G, Wang T, Kouzani AZ, Zhou SF, Kong L, Li Y, Pu C and Duan W: Nucleic acid aptamer-guided cancer therapeutics and diagnostics: The next generation of cancer medicine. Theranostics. 5:23–42. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Wu C, Han D, Chen T, Peng L, Zhu G, You M, Qiu L, Sefah K, Zhang X and Tan W: Building a multifunctional aptamer-based DNA nanoassembly for targeted cancer therapy. J Am Chem Soc. 135:18644–18650. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Kuwahara M and Sugimoto N: Molecular evolution of functional nucleic acids with chemical modifications. Molecules. 15:5423–5444. 2010. View Article : Google Scholar : PubMed/NCBI

68 

Mayer G: The chemical biology of aptamers. Angew Chem Int Ed Engl. 48:2672–2689. 2009. View Article : Google Scholar : PubMed/NCBI

69 

Turner JJ, Hoos JS, Vonhoff S and Klussmann S: Methods for L-ribooligonucleotide sequence determination using LCMS. Nucleic Acids Res. 39:e1472011. View Article : Google Scholar : PubMed/NCBI

70 

Lee CH, Lee SH, Kim JH, Noh YH, Noh GJ and Lee SW: Pharmacokinetics of a Cholesterol-conjugated aptamer against the Hepatitis C Virus (HCV) NS5B protein. Mol Ther Nucleic Acids. 4:e2542015. View Article : Google Scholar : PubMed/NCBI

71 

Dougan H, Lyster DM, Vo CV, Stafford A, Weitz JI and Hobbs JB: Extending the lifetime of anticoagulant oligodeoxynucleotide aptamers in blood. Nucl Med Biol. 27:289–297. 2000. View Article : Google Scholar

72 

Healy JM, Lewis SD, Kurz M, Boomer RM, Thompson KM, Wilson C and McCauley TG: Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm Res. 21:2234–2246. 2004. View Article : Google Scholar

73 

Marshall ML and Wagstaff KM: Internalized functional DNA aptamers as alternative cancer therapies. Front Pharmacol. 11:11152020. View Article : Google Scholar : PubMed/NCBI

74 

Thiel WH, Thiel KW, Flenker KS, Bair T, Dupuy AJ, McNamara JO II, Miller FJ and Giangrande PH: Cell-internalization SELEX: Method for identifying cell-internalizing RNA aptamers for delivering siRNAs to target cells. Methods Mol Biol. 1218:187–199. 2015. View Article : Google Scholar :

75 

Alamudi SH, Kimoto M and Hirao I: Uptake mechanisms of cell-internalizing nucleic acid aptamers for applications as pharmacological agents. RSC Med Chem. 12:1640–1649. 2021. View Article : Google Scholar : PubMed/NCBI

76 

Nagel-Wolfrum K, Buerger C, Wittig I, Butz K, Hoppe-Seyler F and Groner B: The interaction of specific peptide aptamers with the DNA binding domain and the dimerization domain of the transcription factor Stat3 inhibits transactivation and induces apoptosis in tumor cells. Mol Cancer Res. 2:170–182. 2004.PubMed/NCBI

77 

Taylor RE and Zahid M: Cell penetrating peptides, novel vectors for gene therapy. Pharmaceutics. 12:2252020. View Article : Google Scholar :

78 

Moutal A, Francois-Moutal L, Brittain JM, Khanna M and Khanna R: Differential neuroprotective potential of CRMP2 peptide aptamers conjugated to cationic, hydrophobic, and amphipathic cell penetrating peptides. Front Cell Neurosci. 8:4712014.

79 

Famulok M, Blind M and Mayer G: Intramers as promising new tools in functional proteomics. Chem Biol. 8:931–939. 2001. View Article : Google Scholar : PubMed/NCBI

80 

Kunz C, Borghouts C, Buerger C and Groner B: Peptide aptamers with binding specificity for the intracellular domain of the ErbB2 receptor interfere with AKT signaling and sensitize breast cancer cells to Taxol. Mol Cancer Res. 4:983–998. 2006. View Article : Google Scholar : PubMed/NCBI

81 

Shiozawa Y, Nie B, Pienta KJ, Morgan TM and Taichman RS: Cancer stem cells and their role in metastasis. Pharmacol Ther. 138:285–293. 2013. View Article : Google Scholar : PubMed/NCBI

82 

Velasco-Velazquez MA, Popov VM, Lisanti MP and Pestell RG: The role of breast cancer stem cells in metastasis and therapeutic implications. Am J Pathol. 179:2–11. 2011. View Article : Google Scholar : PubMed/NCBI

83 

Eyler CE and Rich JN: Survival of the fittest: Cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol. 26:2839–2845. 2008. View Article : Google Scholar

84 

Chiou SH, Wang ML, Chou YT, Chen CJ, Hong CF, Hsieh WJ, Chang HT, Chen YS, Lin TW, Hsu HS and Wu CW: Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res. 70:10433–10444. 2010. View Article : Google Scholar : PubMed/NCBI

85 

Chiou SH, Yu CC, Huang CY, Lin SC, Liu CJ, Tsai TH, Chou SH, Chien CS, Ku HH and Lo JF: Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res. 14:4085–4095. 2008. View Article : Google Scholar : PubMed/NCBI

86 

Leis O, Eguiara A, Lopez-Arribillaga E, Alberdi MJ, Hernandez-Garcia S, Elorriaga K, Pandiella A, Rezola R and Martin AG: Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene. 31:1354–1365. 2012. View Article : Google Scholar

87 

Lonardo E, Hermann PC, Mueller MT, Huber S, Balic A, Miranda-Lorenzo I, Zagorac S, Alcala S, Rodriguez-Arabaolaza I, Ramirez JC, et al: Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell. 9:433–446. 2011. View Article : Google Scholar : PubMed/NCBI

88 

Paranjape AN, Balaji SA, Mandal T, Krushik EV, Nagaraj P, Mukherjee G and Rangarajan A: Bmi1 regulates self-renewal and epithelial to mesenchymal transition in breast cancer cells through Nanog. BMC Cancer. 14:7852014. View Article : Google Scholar : PubMed/NCBI

89 

Villodre ES, Kipper FC, Pereira MB and Lenz G: Roles of OCT4 in tumorigenesis, cancer therapy resistance and prognosis. Cancer Treat Rev. 51:1–9. 2016. View Article : Google Scholar

90 

Hochedlinger K, Yamada Y, Beard C and Jaenisch R: Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell. 121:465–477. 2005. View Article : Google Scholar

91 

Wei X, He J, Wang J, Yang X and Ma B: Bmi-1 is essential for the oncogenic potential in CD133(+) human laryngeal cancer cells. Tumour Biol. 36:8931–8942. 2015. View Article : Google Scholar : PubMed/NCBI

92 

Chao HM, Huang HX, Chang PH, Tseng KC, Miyajima A and Chern E: Y-box binding protein-1 promotes hepatocellular carcinoma-initiating cell progression and tumorigenesis via Wnt/beta-catenin pathway. Oncotarget. 8:2604–2616. 2017. View Article : Google Scholar

93 

Chen YR, Sekine K, Nakamura K, Yanai H, Tanaka M and Miyajima A: Y-box binding protein-1 down-regulates expression of carbamoyl phosphate synthetase-I by suppressing CCAAT enhancer-binding protein-alpha function in mice. Gastroenterology. 137:330–340. 2009. View Article : Google Scholar : PubMed/NCBI

94 

Guerra C, Schuhmacher AJ, Cañamero M, Grippo PJ, Verdaguer L, Pérez-Gallego L, Dubus P, Sandgren EP and Barbacid M: Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell. 11:291–302. 2007. View Article : Google Scholar : PubMed/NCBI

95 

Macdonald J, Henri J, Goodman L, Xiang D, Duan W and Shigdar S: Development of a bifunctional aptamer targeting the transferrin receptor and epithelial cell adhesion molecule (EpCAM) for the treatment of brain cancer metastases. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. ACS Chem Neurosci. 8:777–784. 2017. View Article : Google Scholar

96 

Yin H, Xiong G, Guo S, Xu C, Xu R, Guo P and Shu D: Delivery of Anti-miRNA for Triple-negative breast cancer therapy Using RNA nanoparticles targeting stem cell marker CD133. Mol Ther. 27:1252–1261. 2019. View Article : Google Scholar : PubMed/NCBI

97 

Zeng YB, Yu ZC, He YN, Zhang T, Du LB, Dong YM, Chen HW, Zhang YY and Wang WQ: Salinomycin-loaded lipid-polymer nanoparticles with anti-CD20 aptamers selectively suppress human CD20+ melanoma stem cells. Acta Pharmacol Sin. 39:261–274. 2018. View Article : Google Scholar :

98 

Zhang Y, Leonard M, Shu Y, Yang Y, Shu D, Guo P and Zhang X: Overcoming tamoxifen resistance of human breast cancer by targeted gene silencing using multifunctional pRNA nanoparticles. ACS Nano. 11:335–346. 2017. View Article : Google Scholar

99 

Zhou G, Da Won Bae S, Nguyen R, Huo X, Han S, Zhang Z, Hebbard L, Duan W, Eslam M, Liddle C, et al: An aptamer-based drug delivery agent (CD133-apt-Dox) selectively and effectively kills liver cancer stem-like cells. Cancer Lett. 501:124–132. 2021. View Article : Google Scholar

100 

Kim DM, Kim M, Park HB, Kim KS and Kim DE: Anti-MUC1/CD44 dual-aptamer-conjugated liposomes for cotargeting breast cancer cells and cancer stem cells. ACS Applied Bio Materials. 2:4622–4633. 2019. View Article : Google Scholar

101 

Talmadge JE and Fidler IJ: AACR centennial series: The biology of cancer metastasis: Historical perspective. Cancer Res. 70:5649–5669. 2010. View Article : Google Scholar : PubMed/NCBI

102 

Sleeman JP, Nazarenko I and Thiele W: Do all roads lead to Rome? Routes to metastasis development. Int J Cancer. 128:2511–2526. 2011. View Article : Google Scholar : PubMed/NCBI

103 

Liljefors M, Nilsson B, Fagerberg J, Ragnhammar P, Mellstedt H and Frodin JE: Clinical effects of a chimeric anti-EpCAM monoclonal antibody in combination with granulocyte-macrophage colony-stimulating factor in patients with metastatic colorectal carcinoma. Int J Oncol. 26:1581–1589. 2005.PubMed/NCBI

104 

Scarberry KE, Mezencev R and McDonald JF: Targeted removal of migratory tumor cells by functionalized magnetic nanoparticles impedes metastasis and tumor progression. Nanomedicine (Lond). 6:69–78. 2011. View Article : Google Scholar

105 

Orava EW, Abdul-Wahid A, Huang EH, Mallick AI and Gariepy J: Blocking the attachment of cancer cells in vivo with DNA aptamers displaying anti-adhesive properties against the carcinoembryonic antigen. Mol Oncol. 7:799–811. 2013. View Article : Google Scholar : PubMed/NCBI

106 

Abdul-Wahid A, Huang EH, Cydzik M, Bolewska-Pedyczak E and Gariepy J: The carcinoembryonic antigen IgV-like N domain plays a critical role in the implantation of metastatic tumor cells. Mol Oncol. 8:337–350. 2014. View Article : Google Scholar : PubMed/NCBI

107 

Wang XK, Peng Y, Tao HR, Zhou FF, Zhang C, Su F, Wang SP, Liu Q, Xu LH, Pan XK, et al: Inhibition of adhesion and metastasis of HepG2 hepatocellular carcinoma cells in vitro by DNA aptamer against sialyl Lewis X. J Huazhong Univ Sci Technolog Med Sci. 37:343–347. 2017. View Article : Google Scholar

108 

Brodt P, Fallavollita L, Bresalier RS, Meterissian S, Norton CR and Wolitzky BA: Liver endothelial E-selectin mediates carcinoma cell adhesion and promotes liver metastasis. Int J Cancer. 71:612–619. 1997. View Article : Google Scholar : PubMed/NCBI

109 

Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M and Théry C: Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA. 113:E968–E977. 2016. View Article : Google Scholar : PubMed/NCBI

110 

Minciacchi VR, Freeman MR and Di Vizio D: Extracellular vesicles in cancer: Exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol. 40:41–51. 2015. View Article : Google Scholar : PubMed/NCBI

111 

Raposo G and Stoorvogel W: Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol. 200:373–383. 2013. View Article : Google Scholar : PubMed/NCBI

112 

Yang F, Ning Z, Ma L, Liu W, Shao C, Shu Y and Shen H: Exosomal miRNAs and miRNA dysregulation in cancer-associated fibroblasts. Mol Cancer. 16:1482017. View Article : Google Scholar : PubMed/NCBI

113 

Colombo M, Raposo G and Thery C: Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 30:255–289. 2014. View Article : Google Scholar : PubMed/NCBI

114 

Gould SJ and Raposo G: As we wait: Coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. 2:203892013. View Article : Google Scholar

115 

Li W, Ma H, Zhang J, Zhu L, Wang C and Yang Y: Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci Rep. 7:138562017. View Article : Google Scholar : PubMed/NCBI

116 

van Niel G, D'Angelo G and Raposo G: Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 19:213–228. 2018. View Article : Google Scholar : PubMed/NCBI

117 

Hannafon BN and Ding WQ: Intercellular communication by exosome-derived microRNAs in cancer. Int J Mol Sci. 14:14240–14269. 2013. View Article : Google Scholar : PubMed/NCBI

118 

Milane L, Singh A, Mattheolabakis G, Suresh M and Amiji MM: Exosome mediated communication within the tumor microenvironment. J Control Release. 219:278–294. 2015. View Article : Google Scholar : PubMed/NCBI

119 

Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ and Lotvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI

120 

Gezer U, Ozgur E, Cetinkaya M, Isin M and Dalay N: Long non-coding RNAs with low expression levels in cells are enriched in secreted exosomes. Cell Biol Int. 38:1076–1079. 2014.PubMed/NCBI

121 

Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI

122 

Sun T, Kalionis B, Lv G, Xia S and Gao W: Role of exosomal noncoding RNAs in lung carcinogenesis. Biomed Res Int. 2015:1258072015. View Article : Google Scholar : PubMed/NCBI

123 

Hood JL, San RS and Wickline SA: Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res. 71:3792–3801. 2011. View Article : Google Scholar : PubMed/NCBI

124 

Lobb RJ, Lima LG and Moller A: Exosomes: Key mediators of metastasis and pre-metastatic niche formation. Semin Cell Dev Biol. 67:3–10. 2017. View Article : Google Scholar : PubMed/NCBI

125 

Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, Buchanan M, Hosein AN, Basik M and Wrana JL: Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 151:1542–1556. 2012. View Article : Google Scholar : PubMed/NCBI

126 

Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Ghajar C, et al: Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 18:883–891. 2012. View Article : Google Scholar : PubMed/NCBI

127 

Tominaga N, Kosaka N, Ono M, Katsuda T, Yoshioka Y, Tamura K, Lötvall J, Nakagama H and Ochiya T: Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun. 6:67162015. View Article : Google Scholar : PubMed/NCBI

128 

Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, Ashby J, Chow A, O'Connor ST, Li S, Chin AR, et al: Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 17:183–194. 2015. View Article : Google Scholar : PubMed/NCBI

129 

Szajnik M, Czystowska M, Szczepanski MJ, Mandapathil M and Whiteside TL: Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). PLoS One. 5:e114692010. View Article : Google Scholar : PubMed/NCBI

130 

van der Vos KE, Abels ER, Zhang X, Lai C, Carrizosa E, Oakley D, Prabhakar S, Mardini O, Crommentuijn MH, Skog J, et al: Directly visualized glioblastoma-derived extracellular vesicles transfer RNA to microglia/macrophages in the brain. Neuro Oncol. 18:58–69. 2016. View Article : Google Scholar

131 

Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC, Li P, Li M, Wang X, Zhang C, et al: Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 527:100–104. 2015. View Article : Google Scholar : PubMed/NCBI

132 

Esposito CL, Quintavalle C, Ingenito F, Rotoli D, Roscigno G, Nuzzo S, Thomas R, Catuogno S, de Franciscis V and Condorelli G: Identification of a novel RNA aptamer that selectively targets breast cancer exosomes. Mol Ther Nucleic Acids. 23:982–994. 2021. View Article : Google Scholar : PubMed/NCBI

133 

Xie X, Nie H, Zhou Y, Lian S, Mei H, Lu Y, Dong H, Li F, Li T, Li B, et al: Eliminating blood oncogenic exosomes into the small intestine with aptamer-functionalized nanoparticles. Nat Commun. 10:54762019. View Article : Google Scholar : PubMed/NCBI

134 

Dunn GP, Old LJ and Schreiber RD: The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 21:137–148. 2004. View Article : Google Scholar : PubMed/NCBI

135 

Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J and Harris AL: Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res. 56:4625–4629. 1996.PubMed/NCBI

136 

DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N and Coussens LM: CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell. 16:91–102. 2009. View Article : Google Scholar : PubMed/NCBI

137 

Moaaz M, Lotfy H, Elsherbini B, Motawea MA and Fadali G: TGF-beta Enhances the Anti-inflammatory effect of tumor-infiltrating CD33+11b+HLA-DR myeloid-derived suppressor cells in gastric cancer: A possible relation to MicroRNA-494. Asian Pac J Cancer Prev. 21:3393–3403. 2020. View Article : Google Scholar : PubMed/NCBI

138 

Shitara K and Nishikawa H: Regulatory T cells: A potential target in cancer immunotherapy. Ann N Y Acad Sci. 1417:104–115. 2018. View Article : Google Scholar : PubMed/NCBI

139 

Kumar V, Patel S, Tcyganov E and Gabrilovich DI: The Nature of Myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 37:208–220. 2016. View Article : Google Scholar :

140 

Sarvaiya PJ, Guo D, Ulasov I, Gabikian P and Lesniak MS: Chemokines in tumor progression and metastasis. Oncotarget. 4:2171–2185. 2013. View Article : Google Scholar : PubMed/NCBI

141 

Briukhovetska D, Dorr J, Endres S, Libby P, Dinarello CA and Kobold S: Interleukins in cancer: From biology to therapy. Nat Rev Cancer. 21:481–499. 2021. View Article : Google Scholar :

142 

Manrique-Rincón AJ, Ruas LP, Fogagnolo CT, Brenneman RJ, Berezhnoy A, Castelucci B, Consonni SR, Gilboa E and Bajgelman MC: Aptamer-mediated transcriptional gene silencing of Fox 3 inhibits regulatory T cells and potentiates antitumor response. Mol Ther Nucleic Acids. 25:143–151. 2021. View Article : Google Scholar

143 

Borsig L, Wolf MJ, Roblek M, Lorentzen A and Heikenwalder M: Inflammatory chemokines and metastasis-tracing the accessory. Oncogene. 33:3217–3224. 2014. View Article : Google Scholar

144 

Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS and Albelda SM: Polarization of tumor-associated neutrophil phenotype by TGF-beta: 'N1' versus 'N2' TAN. Cancer Cell. 16:183–194. 2009. View Article : Google Scholar : PubMed/NCBI

145 

Tan W, Zhang W, Strasner A, Grivennikov S, Cheng JQ, Hoffman RM and Karin M: Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature. 470:548–553. 2011. View Article : Google Scholar : PubMed/NCBI

146 

Monteiro AC, Leal AC, Goncalves-Silva T, Mercadante AC, Kestelman F, Chaves SB, Azevedo RB, Monteiro JP and Bonomo A: T cells induce pre-metastatic osteolytic disease and help bone metastases establishment in a mouse model of metastatic breast cancer. PLoS One. 8:e681712013. View Article : Google Scholar

147 

Blomberg OS, Spagnuolo L and de Visser KE: Immune regulation of metastasis: Mechanistic insights and therapeutic opportunities. Dis Model Mech. 11:dmm0362362018. View Article : Google Scholar : PubMed/NCBI

148 

Kitamura T, Qian BZ and Pollard JW: Immune cell promotion of metastasis. Nat Rev Immunol. 15:73–86. 2015. View Article : Google Scholar : PubMed/NCBI

149 

Roth F, De La Fuente AC, Vella JL, Zoso A, Inverardi L and Serafini P: Aptamer-mediated blockade of IL4Rα triggers apoptosis of MDSCs and limits tumor progression. Cancer Res. 72:1373–1383. 2012. View Article : Google Scholar : PubMed/NCBI

150 

Liu H, Mai J, Shen J, Wolfram J, Li Z, Zhang G, Xu R, Li Y, Mu C, Zu Y, et al: A Novel DNA Aptamer for dual targeting of polymorphonuclear myeloid-derived suppressor cells and tumor cells. Theranostics. 8:31–44. 2018. View Article : Google Scholar : PubMed/NCBI

151 

Eberting CL, Shrayer DP, Butmarc J and Falanga V: Histologic progression of B16 F10 metastatic melanoma in C57BL/6 mice over a six week time period: Distant metastases before local growth. J Dermatol. 31:299–304. 2004. View Article : Google Scholar : PubMed/NCBI

152 

Meyer C, Eydeler K, Magbanua E, Zivkovic T, Piganeau N, Lorenzen I, Grötzinger J, Mayer G, Rose-John S and Hahn U: Interleukin-6 receptor specific RNA aptamers for cargo delivery into target cells. RNA Biol. 9:67–80. 2012. View Article : Google Scholar : PubMed/NCBI

153 

Gupta S, Hirota M, Waugh SM, Murakami I, Suzuki T, Muraguchi M, Shibamori M, Ishikawa Y, Jarvis TC, Carter JD, et al: Chemically modified DNA aptamers bind interleukin-6 with high affinity and inhibit signaling by blocking its interaction with interleukin-6 receptor. J Biol Chem. 289:8706–8719. 2014. View Article : Google Scholar : PubMed/NCBI

154 

Berezhnoy A, Stewart CA, McNamara JO II, Thiel W, Giangrande P, Trinchieri G and Gilboa E: Isolation and optimization of murine IL-10 receptor blocking oligonucleotide aptamers using high-throughput sequencing. Mol Ther. 20:1242–1250. 2012. View Article : Google Scholar :

155 

Levay A, Brenneman R, Hoinka J, Sant D, Cardone M, Trinchieri G, Przytycka TM and Berezhnoy A: Identifying high-affinity aptamer ligands with defined cross-reactivity using high-throughput guided systematic evolution of ligands by exponential enrichment. Nucleic Acids Res. 43:e822015. View Article : Google Scholar : PubMed/NCBI

156 

Yoon S, Huang KW, Andrikakou P, Vasconcelos D, Swiderski P, Reebye V, Sodergren M, Habib N and Rossi JJ: Targeted Delivery of C/EBPalpha-saRNA by RNA aptamers shows anti-tumor effects in a mouse model of advanced PDAC. Mol Ther Nucleic Acids. 18:142–154. 2019. View Article : Google Scholar :

157 

Camorani S, Passariello M, Agnello L, Pedone E, Pirone L, Chesta CA, Palacios RE, Fedele M and Cerchia L: Aptamer targeted therapy potentiates immune checkpoint blockade in triple-negative breast cancer. J Exp Clin Cancer Res. 39:1802020. View Article : Google Scholar :

158 

Quirico L, Orso F, Esposito CL, Bertone S, Coppo R, Conti L, Catuogno S, Cavallo F, de Franciscis V and Taverna D: Axl-148b chimeric aptamers inhibit breast cancer and melanoma progression. Int J Biol Sci. 16:1238–1251. 2020. View Article : Google Scholar : PubMed/NCBI

159 

Shelley G, Dai J, Keller JM and Keller ET: Pheno-SELEX: Engineering Anti-metastatic aptamers through targeting the invasive phenotype using systemic evolution of ligands by exponential enrichment. Bioengineering (Basel). 8:2122021. View Article : Google Scholar

160 

Li T, Li Y, Rehmani H, Guo J, Padia R, Calbay O, Ding Z, Jiang Y, Jin L and Huang S: Attenuated miR-203b-3p is critical for ovarian cancer progression and aptamer/miR-203b-3p chimera can be explored as a therapeutic. Adv Cancer Biol-Metastasis. 4:1000312022. View Article : Google Scholar

161 

Liu K, Xie F, Zhao T, Zhang R, Gao A, Chen Y, Li H, Zhang S, Xiao Z, Li J, et al: Targeting SOX2 protein with peptide aptamers for therapeutic gains against esophageal squamous cell carcinoma. Mol Ther. 28:901–913. 2020. View Article : Google Scholar : PubMed/NCBI

162 

Lincoff AM, Mehran R, Povsic TJ, Zelenkofske SL, Huang Z, Armstrong PW, Steg PG, Bode C, Cohen MG, Buller C, et al: Effect of the REG1 anticoagulation system versus bivalirudin on outcomes after percutaneous coronary intervention (REGULATE-PCI): A randomised clinical trial. Lancet. 387:349–356. 2016. View Article : Google Scholar

163 

Bruno JG: Potential inherent stimulation of the innate immune system by nucleic acid aptamers and possible corrective approaches. Pharmaceuticals (Basel). 11:622018. View Article : Google Scholar

164 

Verhoef JJ, Carpenter JF, Anchordoquy TJ and Schellekens H: Potential induction of anti-PEG antibodies and complement activation toward PEGylated therapeutics. Drug Discov Today. 19:1945–1952. 2014. View Article : Google Scholar : PubMed/NCBI

165 

Ganson NJ, Povsic TJ, Sullenger BA, Alexander JH, Zelenkofske SL, Sailstad JM, Rusconi CP and Hershfield MS: Pre-existing anti-polyethylene glycol antibody linked to first-exposure allergic reactions to pegnivacogin, a PEGylated RNA aptamer. J Allergy Clin Immunol. 137:1610–1613.e7. 2016. View Article : Google Scholar

166 

Shen W, De Hoyos CL, Sun H, Vickers TA, Liang XH and Crooke ST: Acute hepatotoxicity of 2′fluoro-modified 5-10-5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins. Nucleic Acids Res. 46:2204–2217. 2018. View Article : Google Scholar : PubMed/NCBI

167 

Burdick AD, Sciabola S, Mantena SR, Hollingshead BD, Stanton R, Warneke JA, Zeng M, Martsen E, Medvedev A, Makarov SS, et al: Sequence motifs associated with hepatotoxicity of locked nucleic acid-modified antisense oligonucleotides. Nucleic Acids Res. 42:4882–4891. 2014. View Article : Google Scholar : PubMed/NCBI

168 

Penedones A, Mendes D, Alves C and Batel Marques F: Safety monitoring of ophthalmic biologics: A systematic review of pre- and postmarketing safety data. J Ocul Pharmacol Ther. 30:729–751. 2014. View Article : Google Scholar : PubMed/NCBI

169 

Tessier Y, Achanzar W, Mihalcik L, Amuzie C, Andersson P, Parry JD, Moggs J and Whiteley LO: Outcomes of the European federation of pharmaceutical industries and associations oligonucleotide Working Group Survey on Nonclinical Practices and Regulatory Expectations for Therapeutic Oligonucleotide Safety Assessment. Nucleic Acid Ther. 31:7–20. 2021. View Article : Google Scholar

170 

Kim J, Yao F, Xiao Z, Sun Y and Ma L: MicroRNAs and metastasis: Small RNAs play big roles. Cancer Metastasis Rev. 37:5–15. 2018. View Article : Google Scholar :

171 

Chan SH and Wang LH: Regulation of cancer metastasis by microRNAs. J Biomed Sci. 22:92015. View Article : Google Scholar : PubMed/NCBI

172 

Sczepanski JT and Joyce GF: Specific inhibition of MicroRNA processing using L-RNA aptamers. J Am Chem Soc. 137:16032–16037. 2015. View Article : Google Scholar : PubMed/NCBI

173 

Daei P, Ramezanpour M, Khanaki K, Tabarzad M, Nikokar I, Hedayati Ch M and Elmi A: Aptamer-based targeted delivery of miRNA let-7d to gastric cancer cells as a novel anti-tumor therapeutic agent. Iran J Pharm Res. 17:1537–1549. 2018.PubMed/NCBI

174 

Esposito CL, Catuogno S and de Franciscis V: Aptamer-MiRNA conjugates for cancer cell-targeted delivery. Methods Mol Biol. 1364:197–208. 2016. View Article : Google Scholar

175 

Wang H, Zhao X, Guo C, Ren D, Zhao Y, Xiao W and Jiao W: Aptamer-dendrimer bioconjugates for targeted delivery of miR-34a expressing plasmid and antitumor effects in non-small cell lung cancer cells. PLoS One. 10:e01391362015. View Article : Google Scholar : PubMed/NCBI

176 

Guo JU, Agarwal V, Guo H and Bartel DP: Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 15:4092014. View Article : Google Scholar : PubMed/NCBI

177 

Chen LL and Yang L: Regulation of circRNA biogenesis. RNA Biol. 12:381–388. 2015. View Article : Google Scholar : PubMed/NCBI

178 

Du WW, Yang W, Liu E, Yang Z, Dhaliwal P and Yang BB: Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44:2846–2858. 2016. View Article : Google Scholar : PubMed/NCBI

179 

Guarnerio J, Bezzi M, Jeong JC, Paffenholz SV, Berry K, Naldini MM, Lo-Coco F, Tay Y, Beck AH and Pandolfi PP: Oncogenic role of Fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell. 165:289–302. 2016. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Alhamhoom Y, As Sobeai HM, Alsanea S and Alhoshani A: Aptamer‑based therapy for targeting key mediators of cancer metastasis (Review). Int J Oncol 60: 65, 2022.
APA
Alhamhoom, Y., As Sobeai, H.M., Alsanea, S., & Alhoshani, A. (2022). Aptamer‑based therapy for targeting key mediators of cancer metastasis (Review). International Journal of Oncology, 60, 65. https://doi.org/10.3892/ijo.2022.5355
MLA
Alhamhoom, Y., As Sobeai, H. M., Alsanea, S., Alhoshani, A."Aptamer‑based therapy for targeting key mediators of cancer metastasis (Review)". International Journal of Oncology 60.6 (2022): 65.
Chicago
Alhamhoom, Y., As Sobeai, H. M., Alsanea, S., Alhoshani, A."Aptamer‑based therapy for targeting key mediators of cancer metastasis (Review)". International Journal of Oncology 60, no. 6 (2022): 65. https://doi.org/10.3892/ijo.2022.5355
Copy and paste a formatted citation
x
Spandidos Publications style
Alhamhoom Y, As Sobeai HM, Alsanea S and Alhoshani A: Aptamer‑based therapy for targeting key mediators of cancer metastasis (Review). Int J Oncol 60: 65, 2022.
APA
Alhamhoom, Y., As Sobeai, H.M., Alsanea, S., & Alhoshani, A. (2022). Aptamer‑based therapy for targeting key mediators of cancer metastasis (Review). International Journal of Oncology, 60, 65. https://doi.org/10.3892/ijo.2022.5355
MLA
Alhamhoom, Y., As Sobeai, H. M., Alsanea, S., Alhoshani, A."Aptamer‑based therapy for targeting key mediators of cancer metastasis (Review)". International Journal of Oncology 60.6 (2022): 65.
Chicago
Alhamhoom, Y., As Sobeai, H. M., Alsanea, S., Alhoshani, A."Aptamer‑based therapy for targeting key mediators of cancer metastasis (Review)". International Journal of Oncology 60, no. 6 (2022): 65. https://doi.org/10.3892/ijo.2022.5355
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team