Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
June-2022 Volume 60 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2022 Volume 60 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Signaling pathways and therapeutic approaches in glioblastoma multiforme (Review)

  • Authors:
    • Marsel Khabibov
    • Airat Garifullin
    • Yanis Boumber
    • Karam Khaddour
    • Manuel Fernandez
    • Firat Khamitov
    • Larisa Khalikova
    • Natalia Kuznetsova
    • Oleg Kit
    • Leonid Kharin
  • View Affiliations / Copyright

    Affiliations: Department of Oncology, I. M. Sechenov First Moscow State Medical University, 119992 Moscow, Russia, Department of Histology, Bashkir State Medical University, 450000 Ufa, Russia, Division of Hematology/Oncology at The Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA, Department of Hematology and Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA, Department of Neuro‑Oncology, National Medical Research Center for Oncology, 344037 Rostov‑on‑Don, Russia, Abdominal Oncology Department, National Medical Research Center for Oncology, 344037 Rostov‑on‑Don, Russia
    Copyright: © Khabibov et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 69
    |
    Published online on: April 19, 2022
       https://doi.org/10.3892/ijo.2022.5359
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Glioblastoma multiforme (GBM) is the most aggressive type of primary brain tumor and is associated with a poor clinical prognosis. Despite the progress in the understanding of the molecular and genetic changes that promote tumorigenesis, effective treatment options are limited. The present review intended to identify and summarize major signaling pathways and genetic abnormalities involved in the pathogenesis of GBM, as well as therapies that target these pathways. Glioblastoma remains a difficult to treat tumor; however, in the last two decades, significant improvements in the understanding of GBM biology have enabled advances in available therapeutics. Significant genomic events and signaling pathway disruptions (NF‑κB, Wnt, PI3K/AKT/mTOR) involved in the formation of GBM were discussed. Current therapeutic options may only marginally prolong survival and the current standard of therapy cures only a small fraction of patients. As a result, there is an unmet requirement for further study into the processes of glioblastoma pathogenesis and the discovery of novel therapeutic targets in novel signaling pathways implicated in the evolution of glioblastoma.
View Figures

Figure 1

Figure 2

View References

1 

Darlix A, Zouaoui S, Rigau V, Bessaoud F, Figarella-Branger D, Mathieu-Daudé H, Trétarre B, Bauchet F, Duffau H, Taillandier L and Bauchet L: Epidemiology for primary brain tumors: A nationwide population-based study. J Neurooncol. 131:525–546. 2017. View Article : Google Scholar

2 

Tykocki T and Eltayeb M: Ten-year survival in glioblastoma. A systematic review. J Clin Neurosci. 54:7–13. 2018. View Article : Google Scholar

3 

Faleh TA and Juweid M: Epidemiology and outcome of glioblastoma. Exon Publications. 143–153. 2017.

4 

Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM, Reifenberger G, et al: The 2021 WHO classification of tumors of the central nervous system: A summary. Neuro Oncol. 23:1231–1251. 2021. View Article : Google Scholar

5 

World Health Organization: Histological classification of tumors of the central nervous system. Lyon, France: IARC; 2016

6 

Zong H, Parada LF and Baker SJ: Cell of origin for malignant gliomas and its implication in therapeutic development. Cold Spring Harb Perspect Biol. 7:a0206102015. View Article : Google Scholar

7 

Pombo Antunes AR, Scheyltjens I, Duerinck J, Neyns B, Movahedi K and Van Ginderachter JA: Understanding the glioblastoma immune microenvironment as basis for the development of new immunotherapeutic strategies. Elife. 9:e521762020. View Article : Google Scholar

8 

Khaddour K, Johanns TM and Ansstas G: The landscape of novel therapeutics and challenges in glioblastoma multiforme: Contemporary state and future directions. Pharmaceuticals (Basel). 13:3892020. View Article : Google Scholar

9 

Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, et al: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar

10 

Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B, Toms S, Idbaih A, Ahluwalia MS, Fink K, et al: Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: A randomized clinical trial. JAMA. 318:2306–2316. 2017. View Article : Google Scholar

11 

Cloughesy TF, Brenner A, de Groot JF, Butowski NA, Zach L, Campian JL, Ellingson BM, Freedman LS, Cohen YC, Lowenton-Spier N, et al: A randomized controlled phase III study of VB-111 combined with bevacizumab vs bevacizumab monotherapy in patients with recurrent glioblastoma (GLOBE). Neuro Oncol. 22:705–717. 2020. View Article : Google Scholar

12 

Nabors LB, Portnow J, Ahluwalia M, Baehring J, Brem H, Brem S, Butowski N, Campian JL, Clark SW, Fabiano AJ, et al: Central nervous system cancers, Version 3.2020, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 18:1537–1570. 2020. View Article : Google Scholar

13 

Lombardi G, De Salvo GL, Brandes AA, Eoli M, Rudà R, Faedi M, Lolli I, Pace A, Daniele B, Pasqualetti F, et al: Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): A multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol. 20:110–119. 2019. View Article : Google Scholar

14 

Grothey A, Blay JY, Pavlakis N, Yoshino T and Bruix J: Evolving role of regorafenib for the treatment of advanced cancers. Cancer Treat Rev. 86:1019932020. View Article : Google Scholar

15 

Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016. Neuro Oncol. 21(Suppl 5): v1–v100. 2019. View Article : Google Scholar

16 

Levin VA, Leibel SA and Gutin PH: Neoplasms of the central nervous system In: Cancer: Principles and Practice of Oncology. 6th edition. Lippincott Williams and Wilkins; Philadelphia, PA: pp. 2100–2160. 2001

17 

Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, et al: Effects of radiotherapy with concomitant and adjuvant temozolo-mide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10:459–466. 2009. View Article : Google Scholar

18 

Hanif F, Muzaffar K, Perveen K, Malhi SM and Simjee ShU: Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev. 18:3–9. 2017.

19 

Amirian ES, Ostrom QT, Armstrong GN, Lai RK, Gu X, Jacobs DI, Jalali A, Claus EB, Barnholtz-Sloan JS, Il'yasova D, et al: Aspirin, NSAIDs, and Glioma Risk: Original data from the glioma international Case-Control study and a meta-analysis. Cancer Epidemiol Biomarkers Prev. 28:555–562. 2019.

20 

Scheurer ME, El-Zein R, Thompson PA, Aldape KD, Levin VA, Gilbert MR, Weinberg JS and Bondy ML: Long-term anti-inflam-matory and antihistamine medication use and adult glioma risk. Cancer Epidemiol Biomarkers Prev. 17:1277–1281. 2008. View Article : Google Scholar

21 

Dziurzynski K, Chang SM, Heimberger AB, Kalejta RF, McGregor Dallas SR, Smit M, Soroceanu L and Cobbs CS; HCMV and Gliomas Symposium: Consensus on the role of human cytomegalovirus in glioblastoma. Neuro Oncol. 14:246–255. 2012. View Article : Google Scholar

22 

Söderberg-Nauclér C, Rahbar A and Stragliotto G: Survival in patients with glioblastoma receiving valganciclovir. N Engl J Med. 369:985–986. 2013. View Article : Google Scholar

23 

Bei R, Marzocchella L and Turriziani M: The use of temozolo-mide for the treatment of malignant tumors: Clinical evidence and molecular mechanisms of action. Recent Pat Anticancer Drug Discov. 5:172–187. 2010. View Article : Google Scholar

24 

Lacal PM, D'Atri S, Orlando L, Bonmassar E and Graziani G: In vitro inactivation of human O6-alkylguanine DNA alkyl-transferase by antitumor triazene compounds. J Pharmacol Exp Ther. 279:416–422. 1996.

25 

D'Atri S, Tentori L, Lacal PM, Graziani G, Pagani E, Benincasa E, Zambruno G, Bonmassar E and Jiricny J: Involvement of the mismatch repair system in temozolomide-induced apoptosis. Mol Pharmacol. 54:334–341. 1998. View Article : Google Scholar

26 

Baer JC, Freeman AA, Newlands ES, Watson AJ, Rafferty JA and Margison GP: Depletion of O 6-alkylguanine-DNA alkyltrans-ferase correlates with potentiation of temozolomide and CCNU toxicity in human tumour cells. Br J Cancer. 67:1299–1302. 1993. View Article : Google Scholar

27 

Wu W, Klockow JL, Zhang M, Lafortune F, Chang E, Jin L, Wu Y and Daldrup-Link HE: Glioblastoma Multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacol Res. 17:1057802021. View Article : Google Scholar

28 

Grossmann P, Narayan V, Chang K, Rahman R, Abrey L, Reardon DA, Schwartz LH, Wen PY, Alexander BM, Huang R and Aerts HJWL: Quantitative imaging biomarkers for risk stratification of patients with recurrent glioblastoma treated with bevacizumab. Neuro Oncol. 19:1688–1697. 2017. View Article : Google Scholar

29 

Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, Yung WK, Paleologos N, Nicholas MK, Jensen R, et al: Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 27:4733–4740. 2009. View Article : Google Scholar

30 

Chinot OL, de La Motte Rouge T, Moore N, Zeaiter A, Das A, Phillips H, Modrusan Z and Cloughesy T: AVAglio: Phase 3 trial of bevacizumab plus temozolomide and radiotherapy in newly diagnosed glioblastoma multiforme. Adv Ther. 28:334–340. 2011. View Article : Google Scholar

31 

Gilbert MR, Dignam J, Won M, Blumenthal DT, Vogelbaum MA, AldapeHoward Colman KD, Chakravarti A, Jeraj R, Armstrong TS, Scott Wefel J, et al: RTOG 0825: Phase III double-blind placebo-controlled trial evaluating bevacizumab (Bev) in patients (Pts) with newly diagnosed glioblastoma (GBM). J Clin Oncol. 31:12013. View Article : Google Scholar

32 

Diaz RJ, Ali S, Qadir MG, De La Fuente MI, Ivan ME and Komotar RJ: The role of bevacizumab in the treatment of glio-blastoma. J Neurooncol. 133:455–467. 2017. View Article : Google Scholar

33 

Taal W, Oosterkamp HM, Walenkamp AM, Dubbink HJ, Beerepoot LV, Hanse MC, Buter J, Honkoop AH, Boerman D, de Vos FY, et al: Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): A randomised controlled phase 2 Trial. Lancet Oncol. 15:943–953. 2014. View Article : Google Scholar

34 

Brandsma D and van den Bent MJ: Pseudoprogression and pseu-doresponse in the treatment of gliomas. Curr Opin Neurol. 22:633–638. 2009. View Article : Google Scholar

35 

Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, Degroot J, Wick W, Gilbert MR, Lassman AB, et al: Updated response assessment criteria for high-grade gliomas: Response assessment in Neuro-Oncology working group. J Clin Oncol. 28:1963–1972. 2010. View Article : Google Scholar

36 

Batchelor TT, Mulholland P, Neyns B, Nabors LB, Campone M, Wick A, Mason W, Mikkelsen T, Phuphanich S, Ashby LS, et al: Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma. J Clin Oncol. 31:32122013. View Article : Google Scholar

37 

de Groot JF, Lamborn KR, Chang SM, Gilbert MR, Cloughesy TF, Aldape K, Yao J, Jackson EF, Lieberman F, Robins HI, et al: Phase II study of aflibercept in recurrent malignant glioma: A North American Brain Tumor Consortium study. J Clin Oncol. 29:2689–2995. 2011. View Article : Google Scholar

38 

Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA, Taylor LP, Lieberman F, Silvani A, Fink KL, et al: Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: A randomized clinical trial. JAMA. 314:2535–2543. 2015. View Article : Google Scholar

39 

Fabian D, Guillermo Prieto Eibl MDP, Alnahhas I, Sebastian N, Giglio P, Puduvalli V, Gonzalez J and Palmer JD: Treatment of glioblastoma (GBM) with the addition of tumor-treating fields (TTF): A review. Cancers (Basel). 11:1742019. View Article : Google Scholar

40 

Brown TJ, Brennan MC, Li M, Church EW, Brandmeir NJ, Rakszawski KL, Patel AS, Rizk EB, Suki D, Sawaya R and Glantz M: Association of the extent of resection with survival in glioblastoma: A systematic review and meta-analysis. JAMA Oncol. 2:1460–1469. 2016. View Article : Google Scholar

41 

Noorbakhsh A, Tang JA, Marcus LP, McCutcheon B, Gonda DD, Schallhorn CS, Talamini MA, Chang DC, Carter BS and Chen CC: Gross-total resection outcomes in an elderly population with glioblastoma: A SEER-based analysis. J Neurosurg. 120:31–39. 2014. View Article : Google Scholar

42 

Eigenbrod S, Trabold R, Brucker D, Erös C, Egensperger R, La Fougere C, Göbel W, Rühm A, Kretzschmar HA, Tonn JC, et al: Molecular stereotactic biopsy technique improves diagnostic accuracy and enables personalized treatment strategies in glioma patients. Acta Neurochir (Wien). 156:1427–1440. 2014. View Article : Google Scholar

43 

Stummer W, Tonn JC, Mehdorn HM, Nestler U, Franz K, Goetz C, Bink A and Pichlmeier U; ALA-Glioma Study Group: Counterbalancing risks and gains from extended resections in malignant glioma surgery: A supplemental analysis from the randomized 5-aminolevulinic acid glioma resection study. J Neurosurg. 114:613–623. 2011. View Article : Google Scholar

44 

Berntsen EM, Gulati S, Solheim O, Kvistad KA, Torp SH, Selbekk T, Unsgård G and Håberg AK: Functional magnetic resonance imaging and diffusion tensor tractography incorporated into an intraoperative 3-dimensional ultrasound-based neuronavigation system: Impact on therapeutic strategies, extent of resection, and clinical outcome. Neurosurgery. 67:251–264. 2010. View Article : Google Scholar

45 

Ringel F, Pape H, Sabel M, Krex D, Bock HC, Misch M, Weyerbrock A, Westermaier T, Senft C, Schucht P, et al: Clinical benefit from resection of recurrent glioblastomas: Results of a multicenter study including 503 patients with recurrent glioblastomas undergoing surgical resection. Neuro Oncol. 18:96–104. 2016. View Article : Google Scholar

46 

Zuccarini M, Giuliani P, Ziberi S, Carluccio M, Iorio PD, Caciagli F and Ciccarelli R: The role of Wnt signal in glioblastoma development and progression: A possible new pharmacological target for the therapy of this tumor. Genes (Basel). 9:1052018. View Article : Google Scholar

47 

Sigismund S, Avanzato D and Lanzetti L: Emerging functions of the EGFR in cancer. Mol Oncol. 12:3–20. 2018. View Article : Google Scholar

48 

Xiao A, Brenneman B, Floyd D, Comeau L, Spurio K, Olmez I, Lee J, Nakano I, Godlewski J, Bronisz A, et al: Statins affect human glioblastoma and other cancers through TGF-β inhibition. Oncotarget. 10:1716–1728. 2019. View Article : Google Scholar

49 

Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SA, Fack F, Thorsen F, Taxt T, Bartos M, Jirik R, et al: Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci USA. 108:3749–3754. 2011. View Article : Google Scholar

50 

Cyclin-dependent kinase inhibitor 2A. GeneCards. Weizmann institute of science. Retrieved December 15, 2021.

51 

Albensi BC: What is nuclear factor kappa B (NF-κB) doing in and to the mitochondrion? Front Cell Dev Biol. 7:1542019. View Article : Google Scholar

52 

Xia L, Tan S, Zhou Y, Lin J, Wang H, Oyang L, Tian Y, Liu L, Su M, Wang H, et al: Role of the NFκB-signaling pathway in cancer. Onco Targets Ther. 11:2063–2073. 2018. View Article : Google Scholar

53 

Xia Y, Shen S and Verma IM: NF-κB, an active player in human cancers. Cancer Immunol Res. 2:823–830. 2014. View Article : Google Scholar

54 

Li X, Wu C, Chen N, Gu H, Yen A, Cao L, Wang E and Wang L: PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget. 7:33440–33450. 2016. View Article : Google Scholar

55 

Markman B, Dienstmann R and Tabernero J: Targeting the PI3K/Akt/mTOR pathway-beyond rapalogs. Oncotarget. 1:5302010. View Article : Google Scholar

56 

Crespo I, Vital AL, Gonzalez-Tablas M, Patino Mdel C, Otero A, Lopes MC, de Oliveira C, Domingues P, Orfao A and Tabernero MD: Molecular and genomic alterations in glioblastoma multiforme. Am J Pathol. 185:1820–1833. 2015. View Article : Google Scholar

57 

Balça-Silva J, Matias D, Carmo AD, Sarmento-Ribeiro AB, Lopes MC and Moura-Neto V: Cellular and molecular mechanisms of glioblastoma malignancy: Implications in resistance and therapeutic strategies. Semin Cancer Biol. 58:130–141. 2019. View Article : Google Scholar

58 

Rajesh Y, Pal I, Banik P, Chakraborty S, Borkar SA, Dey G, Mukherjee A and Mandal M: Insights into molecular therapy of glioma: Current challenges and next generation blueprint. Acta Pharmacol Sin. 38:591–613. 2017. View Article : Google Scholar

59 

Cancer Genome Atlas and Research Network: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 455:1061–1068. 2008. View Article : Google Scholar

60 

Hegi ME, Genbrugge E, Gorlia T, Stupp R, Gilbert MR, Chinot OL, Nabors LB, Jones G, Van Criekinge W, Straub J and Weller M: MGMT promoter methylation cutoff with safety margin for selecting glioblastoma patients into trials omitting temozolomide: A pooled analysis of four clinical trials. Clin Cancer Res. 25:1809–1816. 2019. View Article : Google Scholar

61 

Chai RC, Zhang KN, Chang YZ, Wu F, Liu YQ, Zhao Z, Wang KY, Chang YH, Jiang T and Wang YZ: Systematically characterize the clinical and biological significances of 1p19q genes in 1p/19q non-codeletion glioma. Carcinogenesis. 40:1229–1239. 2019. View Article : Google Scholar

62 

Wang Y, Li S, Chen L, You G, Bao Z, Yan W, Shi Z, Chen Y, Yao K, Zhang W, et al: Glioblastoma with an oligodendroglioma component: Distinct clinical behavior, genetic alterations, and outcome. Neuro Oncol. 14:518–525. 2012. View Article : Google Scholar

63 

Clark KH, Villano JL, Nikiforova MN, Hamilton RL and Horbinski C: 1p/19q testing has no significance in the workup of glioblastomas. Neuropathol Appl Neurobiol. 39:706–717. 2013. View Article : Google Scholar

64 

Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, et al: Mutational landscape and significance across 12 major cancer types. Nature. 502:333–339. 2013. View Article : Google Scholar

65 

Brosh R and Rotter V: When mutants gain new powers: News from the mutant p53 field. Nat Rev Cancer. 9:701–713. 2009. View Article : Google Scholar

66 

Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, et al: Erratum: The somatic genomic landscape of glioblastoma. Cell. 155:462–477. 2013. View Article : Google Scholar

67 

Liu F, Huang J, Liu X, Cheng Q, Luo C and Liu Z: CTLA-4 correlates with immune and clinical characteristics of glioma. Cancer Cell Int. 20:72020. View Article : Google Scholar

68 

Garofano L, Migliozzi S, Oh YT, D'Angelo F, Najac RD, Ko A, Frangaj B, Caruso FP, Yu K, Yuan J, et al: Pathway-based clas-sification of glioblastoma uncovers a mitochondrial subtype with therapeutic vulnerabilities. Nat Cancer. 2:141–156. 2021. View Article : Google Scholar

69 

Lu VM, O'Connor KP, Shah AH, Eichberg DG, Luther EM, Komotar RJ and Ivan ME: The prognostic significance of CDKN2A homozygous deletion in IDH-mutant lower-grade glioma and glioblastoma: A systematic review of the contemporary literature. J Neurooncol. 148:221–229. 2020. View Article : Google Scholar

70 

William D, Mokri P, Lamp N, Linnebacher M, Classen CF, Erbersdobler A and Schneider B: Amplification of the EGFR gene can be maintained and modulated by variation of EGF concentrations in in vitro models of glioblastoma multiforme. PLoS One. 12:e01852082017. View Article : Google Scholar

71 

Felsberg J, Hentschel B, Kaulich K, Gramatzki D, Zacher A, Malzkorn B, Kamp M, Sabel M, Simon M, Westphal M, et al: Epidermal growth factor receptor variant III (EGFRvIII) positivity in EGFR-amplified glioblastomas: Prognostic role and comparison between primary and recurrent tumors. Clin Cancer Res. 23:6846–6855. 2017. View Article : Google Scholar

72 

An Z, Aksoy O, Zheng T, Fan QW and Weiss WA: Epidermal growth factor receptor and EGFRvIII in glioblastoma: Signaling pathways and targeted therapies. Oncogene. 37:1561–1575. 2018. View Article : Google Scholar

73 

Xu H, Zong H, Ma C, Ming X, Shang M, Li K, He X, Du H and Cao L: Epidermal growth factor receptor in glioblastoma. Oncol Lett. 14:512–516. 2017. View Article : Google Scholar

74 

De S, Dermawan JK and Stark GR: EGF receptor uses SOS1 to drive constitutive activation of NFκB in cancer cells. Proc Natl Acad Sci USA. 111:11721–11726. 2014. View Article : Google Scholar

75 

Talasila KM, Soentgerath A, Euskirchen P, Rosland GV, Wang J, Huszthy PC, Prestegarden L, Skaftnesmo KO, Sakariassen PØ, Eskilsson E, et al: EGFR wild-type amplification and activation promote invasion and development of glioblastoma independent of angiogenesis. Acta Neuropathol. 125:683–698. 2013. View Article : Google Scholar

76 

Katanasaka Y, Kodera Y, Kitamura Y, Morimoto T, Tamura T and Koizumi F: Epidermal growth factor receptor variant type III markedly accelerates angiogenesis and tumor growth via inducing c-myc mediated angiopoietin-like 4 expression in malignant glioma. Mol Cancer. 12:312013. View Article : Google Scholar

77 

Sarkaria JN, Yang L, Grogan PT, Kitange GJ, Carlson BL, Schroeder MA, Galanis E, Giannini C, Wu W, Dinca EB and James CD: Identification of molecular characteristics correlated with glioblastoma sensitivity to EGFR kinase inhibition through use of an intracranial xenograft test panel. Mol Cancer Ther. 6:1167–1174. 2007. View Article : Google Scholar

78 

Cetintas VB and Batada NN: Is there a causal link between PTEN deficient tumors and immunosuppressive tumor microenvironment? J Transl Med. 18:452020. View Article : Google Scholar

79 

Raizer JJ, Abrey LE, Lassman AB, Chang SM, Lamborn KR, Kuhn JG, Yung WK, Gilbert MR, Aldape KA, Wen PY, et al: A phase II trial of erlotinib in patients with recurrent malignant gliomas and nonprogressive glioblastoma multiforme postradiation therapy. Neuro Oncol. 12:95–103. 2010. View Article : Google Scholar

80 

Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, Lu KV, Yoshimoto K, Huang JH, Chute DJ, et al: Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med. 353:2012–2024. 2005. View Article : Google Scholar

81 

Chakravarti A, Wang M, Robins HI, Lautenschlaeger T, Curran WJ, Brachman DG, Schultz CJ, Choucair A, Dolled-Filhart M, Christiansen J, et al: RTOG 0211: A phase 1/2 study of radiation therapy with concurrent gefitinib for newly diagnosed glioblastoma patients. Int J Radiat Oncol Biol Phy. 85:1206–1211. 2013. View Article : Google Scholar

82 

Uhm JH, Ballman KV, Wu W, Giannini C, Krauss JC, Buckner JC, James CD, Scheithauer BW, Behrens RJ, Flynn PJ, et al: Phase II evaluation of gefitinib in patients with newly diagnosed Grade 4 astrocytoma: Mayo/North central cancer treatment group study N0074. Int J Radiat Oncol Biol Phys. 80:347–353. 2011. View Article : Google Scholar

83 

Inda MM, Bonavia R, Mukasa A, Narita Y, Sah DW, Vandenberg S, Brennan C, Johns TG, Bachoo R, Hadwiger P, et al: Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev. 24:1731–1745. 2010. View Article : Google Scholar

84 

Mazzoleni S, Politi LS, Pala M, Cominelli M, Franzin A, Sergi Sergi L, Falini A, De Palma M, Bulfone A, Poliani PL and Galli R: Epidermal growth factor receptor expression identifies functionally and molecularly distinct tumor-initiating cells in human glioblastoma multiforme and is required for gliomagenesis. Cancer Res. 70:7500–7513. 2010. View Article : Google Scholar

85 

Van Den Bent M, Eoli M, Sepulveda JM, Smits M, Walenkamp A, Frenel JS, Franceschi E, Clement PM, Chinot O, De Vos F, et al: INTELLANCE 2/EORTC 1410 randomized phase II study of Depatux-M alone and with temozolomide vs temozolomide or lomustine in recurrent EGFR amplified glioblastoma. Neuro Oncol. 22:684–693. 2020. View Article : Google Scholar

86 

Oeckinghaus A and Ghosh S: The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 1:a0000342009. View Article : Google Scholar

87 

Dresselhaus EC and Meffert MK: Cellular specificity of NF-κB function in the nervous system. Front Immunol. 10:10432019. View Article : Google Scholar

88 

Friedmann-Morvinski D, Narasimamurthy R, Xia Y, Myskiw C, Soda Y and Verma IM: Targeting NF-κB in glioblastoma: A therapeutic approach. Sci Adv. 2:e15012922016. View Article : Google Scholar

89 

Wang H, Wang H, Zhang W, Huang HJ, Liao WS and Fuller GN: Analysis of the activation status of Akt, NFkappaB, and Stat3 in human diffuse gliomas. Lab Invest. 84:941–951. 2004. View Article : Google Scholar

90 

Yang W, Xia Y, Cao Y, Zheng Y, Bu W, Zhang L, You MJ, Koh MY, Cote G, Aldape K, et al: EGFR-induced and PKCε monoubiquitylation-dependent NF-κB activation upregulates PKM2 expression and promotes tumorigenesis. Mol Cell. 48:771–784. 2012. View Article : Google Scholar

91 

Yap YS, McPherson JR, Ong CK, Rozen SG, The BT, Lee AS and Callen DF: The NF1 gene revisited-from bench to bedside. Oncotarget. 5:5873–5892. 2014. View Article : Google Scholar

92 

Schäfer C, Göder A, Beyer M, Kiweler N, Mahendrarajah N, Rauch A, Nikolova T, Stojanovic N, Wieczorek M, Reich TR, et al: Class I histone deacetylases regulate p53/NF-κB crosstalk in cancer cells. Cell Signal. 29:218–225. 2018. View Article : Google Scholar

93 

Zanotto-Filho A, Braganhol E, Schröder R, de Souza LH, Dalmolin RJ, Pasquali MA, Gelain DP, Battastini AM and Moreira JC: NFκB inhibitors induce cell death in glioblastomas. Biochem Pharmacol. 81:412–424. 2011. View Article : Google Scholar

94 

Shinoda K, Kuboki S, Shimizu H, Ohtsuka M, Kato A, Yoshitomi H, Furukawa K and Miyazaki M: Pin1 facilitates NF-κ B activation and promotes tumour progression in human hepatocellular carcinoma. Br J Cancer. 113:1323–1331. 2015. View Article : Google Scholar

95 

Medeiros M, Candido MF, Valera ET and Brassesco MS: The multifaceted NF-kB: Are there still prospects of its inhibition for clinical intervention in pediatric central nervous system tumors? Cell Mol Life Sci. 78:6161–6200. 2021. View Article : Google Scholar

96 

Phesse T, Flanagan D and Vincan E: Frizzled7: A promising Achilles' Heel for targeting the Wnt receptor complex to treat cancer. Cancers (Basel). 8:502016. View Article : Google Scholar

97 

Gao J, Liao Y, Qiu M and Shen W: Wnt/β-catenin signaling in neural stem cell homeostasis and neurological diseases. Neuroscientist. 27:58–72. 2021. View Article : Google Scholar

98 

Tang C, Guo J, Chen H, Yao CJ, Zhuang DX, Wang Y, Tang WJ, Ren G, Yao Y, Wu JS, et al: Gene mutation profiling of primary glioblastoma through multiple tumor biopsy guided by 1H-magnetic resonance spectroscopy. Int J Clin Exp Pathol. 8:5327–5335. 2015.

99 

Yun EJ, Kim S, Hsieh JT and Baek ST: Wnt/β-catenin signaling pathway induces autophagy-mediated temozolomide-resistance in human glioblastoma. Cell Death Dis. 11:7712020. View Article : Google Scholar

100 

Tompa M, Kalovits F, Nagy A and Kalman B: Contribution of the Wnt pathway to defining biology of glioblastoma. Neuromolecular Med. 20:437–451. 2018. View Article : Google Scholar

101 

Mori H, Yao Y, Learman BS, Kurozumi K, Ishida J, Ramakrishnan SK, Overmyer KA, Xue X, Cawthorn WP, Reid MA, et al: Induction of WNT11 by hypoxia and hypoxia-inducible factor-1α regulates cell proliferation, migration and invasion. Sci Rep. 6:215202016. View Article : Google Scholar

102 

Rampazzo E, Persano L, Pistollato F, Moro E, Frasson C, Porazzi P, Della Puppa A, Bresolin S, Battilana G, Indraccolo S, et al: Wnt activation promotes neuronal differentiation of glioblastoma. Cell Death Dis. 4:e5002013. View Article : Google Scholar

103 

Liu C, Takada K and Di Z: Targeting Wnt/β-catenin pathway for drug therapy. Med Drug Discovery. 8:1000662020. View Article : Google Scholar

104 

Diamond JR, Becerra C, Richards D, Mita A, Osborne C, O'Shaughnessy J, Zhang C, Henner R, Kapoun AM, Xu L, et al: Phase Ib clinical trial of the anti-frizzled antibody vantictumab (OMP-18R5) plus paclitaxel in patients with locally advanced or metastatic HER2-negative breast cancer. Breast Cancer Res Treat. 184:53–62. 2020. View Article : Google Scholar

105 

Selivanova LS, Volganova KS and Abrosimov AY: Telomerase reverse transcriptase (TERT) promoter mutations in the tumors of human endocrine organs: Biological and prognostic value. Arkh Patol. 78:62–69. 2016.In Russian. View Article : Google Scholar

106 

Pekmezci M, Rice T, Molinaro AM, Walsh KM, Decker PA, Hansen H, Sicotte H, Kollmeyer TM, McCoy LS, Sarkar G, et al: Adult infiltrating gliomas with WHO 2016 integrated diagnosis: Additional prognostic roles of ATRX and TERT. Acta Neuropathol. 133:1001–1016. 2017. View Article : Google Scholar

107 

Bell RJ, Rube HT, Xavier-Magalhães A, Costa BM, Mancini A, Song JS and Costello JF: Understanding TERT promoter mutations: A common path to immortality. Mol Cancer Res. 14:315–323. 2016. View Article : Google Scholar

108 

Huang JJ, Lin MC, Bai YX, Jing DD, Wong BC, Han SW, Lin J, Xu B, Huang CF and Kung HF: Ectopic expression of a COOH-terminal fragment of the human telomerase reverse transcriptase leads to telomere dysfunction and reduction of growth and tumorigenicity in HeLa cells. Cancer Res. 62:3226–3232. 2002.

109 

Ng SS, Gao Y, Chau DH, Li GH, Lai LH, Huang PT, Huang CF, Huang JJ, Chen YC, Kung HF and Lin MC: A novel glioblastoma cancer gene therapy using AAV-mediated long-term expression of human TERT C-terminal polypeptide. Cancer Gene Ther. 14:561–572. 2007. View Article : Google Scholar

110 

Lavanya C, Sibin MK, Srinivas Bharath MM, Manoj MJ, Venkataswamy MM, Bhat DI, Narasinga Rao KV and Chetan GK: RNA interference mediated downregulation of human telomerase reverse transcriptase (hTERT) in LN18 cells. Cytotechnology. 68:2311–2321. 2016. View Article : Google Scholar

111 

Li X, Qian X, Wang B, Xia Y, Zheng Y, Du L, Xu D, Xing D, DePinho RA and Lu Z: Programmable base editing of mutated TERT promoter inhibits brain tumour growth. Nat Cell Biol. 22:282–288. 2020. View Article : Google Scholar

112 

McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Montalto G, Cervello M, Nicoletti F, Fagone P, Malaponte G, Mazzarino MC, et al: Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades which alter therapy response. Oncotarget. 3:954–987. 2012. View Article : Google Scholar

113 

Zhao HF, Wang J, Shao W, Wu CP, Chen ZP, To ST and Li WP: Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: Current preclinical and clinical development. Mol Cancer. 16:1002017. View Article : Google Scholar

114 

Gymnopoulos M, Elsliger MA and Vogt PK: Rare cancer-specific mutations in PIK3CA show gain of function. Proc Natl Acad Sci USA. 104:5569–5574. 2007. View Article : Google Scholar

115 

Höland K, Boller D, Hagel C, Dolski S, Treszl A, Pardo OE, Cwiek P, Salm F, Leni Z, Shepherd PR, et al: Targeting class IA PI3K isoforms selectively impairs cell growth, survival, and migration in glioblastoma. PLoS One. 9:e941322014. View Article : Google Scholar

116 

Chen H, Mei L, Zhou L, Shen X, Guo C, Zheng Y, Zhu H, Zhu Y and Huang L: PTEN restoration and PIK3CB knockdown synergistically suppress glioblastoma growth in vitro and in xenografts. J Neurooncol. 104:155–167. 2011. View Article : Google Scholar

117 

Huang H, Regan KM, Wang F, Wang D, Smith DI, van Deursen JM and Tindall DJ: Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci USA. 102:1649–1654. 2005. View Article : Google Scholar

118 

Baretić D and Williams RL: PIKKs-the solenoid nest where partners and kinases meet. Curr Opin Struct Biol. 29:134–142. 2014. View Article : Google Scholar

119 

Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P and Sabatini DM: Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 14:1296–1302. 2004. View Article : Google Scholar

120 

Cornu M, Albert V and Hall MN: mTOR in aging, metabolism, and cancer. Curr Opin Genet Dev. 23:53–62. 2013. View Article : Google Scholar

121 

Lawlor MA and Alessi DR: PKB/Akt: A key mediator of cell proliferation, survival and insulin responses? J Cell Sci. 114:2903–2910. 2001. View Article : Google Scholar

122 

Gini B, Zanca C, Guo D, Matsutani T, Masui K, Ikegami S, Yang H, Nathanson D, Villa GR, Shackelford D, et al: The mTOR kinase inhibitors, CC214-1 and CC214-2, preferentially block the growth of EGFRvIII-activated glioblastomas. Clin Cancer Res. 19:5722–5732. 2013. View Article : Google Scholar

123 

Masri J, Bernath A, Martin J, Jo OD, Vartanian R, Funk A and Gera J: mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor. Cancer Res. 67:11712–11720. 2007. View Article : Google Scholar

124 

Agliano A, Balarajah G, Ciobota DM, Sidhu J, Clarke PA, Jones C, Workman P, Leach MO and Al-Saffar NMS: Pediatric and adult glioblastoma radiosensitization induced by PI3K/mTOR inhibition causes early metabolic alterations detected by nuclear magnetic resonance spectroscopy. Oncotarget. 8:47969–47983. 2017. View Article : Google Scholar

125 

Chinnaiyan P, Won M, Wen PY, Rojiani AM, Werner-Wasik M, Shih HA, Ashby LS, Michael Yu HH, Stieber VW, Malone SC, et al: A randomized phase II study of everolimus in combination with chemoradiation in newly diagnosed glioblas-toma: Results of NRG Oncology RTOG 0913. Neuro Oncol. 20:666–673. 2018. View Article : Google Scholar

126 

Reardon DA, Wen PY, Alfred Yung WK, Berk L, Narasimhan N, Turner CD, Clackson T, Rivera VM and Vogelbaum MA: Ridaforolimus for patients with progressive or recurrent malignant glioma: A perisurgical, sequential, ascending-dose trial. Cancer Chemother Pharmacol. 69:849–860. 2012. View Article : Google Scholar

127 

Wick W, Gorlia T, Bady P, Platten M, van den Bent MJ, Taphoorn MJ, Steuve J, Brandes AA, Hamou MF, Wick A, et al: Phase II study of radiotherapy and temsirolimus versus radiochemotherapy with temozolomide in patients with newly diagnosed glioblastoma without MGMT promoter hypermethylation (EORTC 26082). Clin Cancer Res. 22:4797–4806. 2016. View Article : Google Scholar

128 

U.S National Library of Medincine (NIH): NCT Neuro Master Match-N2M2 (NOA-20). ClinicalTrials.gov Identifier: NCT03158389. https://clinicaltrials.gov/ct2/show/NCT03158389. Accessed May 18, 2017.

129 

Rodrik-Outmezguine VS, Okaniwa M, Yao Z, Novotny CJ, McWhirter C, Banaji A, Won H, Wong W, Berger M, de Stanchina E, et al: Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature. 534:272–276. 2016. View Article : Google Scholar

130 

Babak S and Mason WP: mTOR inhibition in glioblastoma: Requiem for a dream? Neuro Oncol. 20:584–585. 2018. View Article : Google Scholar

131 

Zhang Y, Xia M, Jin K, Wang S, Wei H, Fan C, Wu Y, Li X, Li X, Li G, et al: Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer. 17:752018. View Article : Google Scholar

132 

Carvalho B, Lopes JM, Silva R, Peixoto J, Leitão D, Soares P, Fernandes AC, Linhares P, Vaz R and Lima J: The role of c-Met and VEGFR2 in glioblastoma resistance to bevacizumab. Sci Rep. 11:60672021. View Article : Google Scholar

133 

McCarty JH: Glioblastoma resistance to anti-VEGF therapy: Has the challenge been MET? Clin Cancer Res. 19:1631–1633. 2013. View Article : Google Scholar

134 

Manneh Kopp RA, Sepúlveda-Sánchez JM, Ruano Y, Toldos O, Pérez Núñez A, Cantero D, Hilario A, Ramos A, de Velasco G, Sánchez-Gómez P and Hernández-Laín A: Correlation of radiological and immunochemical parameters with clinical outcome in patients with recurrent glioblastoma treated with Bevacizumab. Clin Transl Oncol. 21:1413–1423. 2019. View Article : Google Scholar

135 

Merchant M, Ma X, Maun HR, Zheng Z, Peng J, Romero M, Huang A, Yang NY, Nishimura M, Greve J, et al: Monovalent antibody design and mechanism of action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent. Proc Natl Acad Sci USA. 110:E2987–E2996. 2013. View Article : Google Scholar

136 

Cloughesy T, Finocchiaro G, Belda-Iniesta C, Recht L, Brandes AA, Pineda E, Mikkelsen T, Chinot OL, Balana C, Macdonald DR, et al: Randomized, double-blind, placebo-controlled, multicenter phase II study of onartuzumab plus bevacizumab versus placebo plus bevacizumab in patients with recurrent glioblastoma: Efficacy, safety, and hepatocyte growth factor and O6-methylguanine-DNA methyltransferase biomarker analyses. J Clin Oncol. 35:343–351. 2017. View Article : Google Scholar

137 

Garcia MM, Gil MJ, Losada E, Martin Soberón MC, Mesia Barroso C, Foro P, Capellades J, Sarmiento B, Bruna J, Verger E, et al: GEINO 1402: A phase Ib dose-escalation study followed by an extension phase to evaluate safety and efficacy of crizotinib in combination with temozolomide (TMZ) and radiotherapy (RT) in patients with newly diagnosed glioblastoma (GB. Ann Oncol. 30:v1472019. View Article : Google Scholar

138 

Guillemot F and Zimmer C: From cradle to grave: The multiple roles of fibroblast growth factors in neural development. Neuron. 71:574–588. 2011. View Article : Google Scholar

139 

Frinchi M, Bonomo A, Trovato-Salinaro A, Condorelli DF, Fuxe K, Spampinato MG and Mudò G: Fibroblast growth factor-2 and its receptor expression in proliferating precursor cells of the subventricular zone in the adult rat brain. Neurosci Lett. 447:20–25. 2008. View Article : Google Scholar

140 

Dienstmann R, Rodon J, Prat A, Perez-Garcia J, Adamo B, Felip E, Cortes J, Iafrate AJ, Nuciforo P and Tabernero J: Genomic aberrations in the FGFR pathway: Opportunities for targeted therapies in solid tumors. Ann Oncol. 25:552–563. 2014. View Article : Google Scholar

141 

Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, Cole CG, Ward S, Dawson E, Ponting L, et al: COSMIC: Somatic cancer genetics at high-resolution. Nucleic Acids Res. 45:D777–D783. 2017. View Article : Google Scholar

142 

Hatlen MA, Schmidt-Kittler O, Sherwin CA, Rozsahegyi E, Rubin N, Sheets MP, Kim JL, Miduturu C, Bifulco N, Brooijmans N, et al: Acquired on-target clinical resistance validates FGFR4 as a driver of hepatocellular carcinoma. Cancer Discov. 9:1686–1695. 2019.

143 

Kim RD, Sarker D, Meyer T, Yau T, Macarulla T, Park JW, Choo SP, Hollebecque A, Sung MW, Lim HY, et al: First-in-human phase I study of fisogatinib (BLU-554) validates aberrant FGF19 signaling as a driver event in hepatocellular carcinoma. Cancer Discov. 9:1696–1707. 2019. View Article : Google Scholar

144 

Li W, Sparidans R, El-Lari M, Wang Y, Lebre MC, Beijnen JH and Schinkel AH: P-glycoprotein (ABCB1/MDR1) limits brain accumulation and Cytochrome P450-3A (CYP3A) restricts oral availability of the novel FGFR4 inhibitor fisogatinib (BLU-554). Int J Pharm. 573:1188422020. View Article : Google Scholar

145 

Sootome H, Fujita H, Ito K, Ochiiwa H, Fujioka Y, Ito K, Miura A, Sagara T, Ito S, Ohsawa H, et al: Futibatinib is a novel irreversible FGFR 1-4 inhibitor that shows selective antitumor activity against FGFR-deregulated tumors. Cancer Res. 80:4986–4997. 2020. View Article : Google Scholar

146 

Singh D, Chan JM, Zoppoli P, Niola F, Sullivan R, Castano A, Liu EM, Reichel J, Porrati P, Pellegatta S, et al: Transforming fusions of FGFR and TACC genes in human glioblastoma. Science. 337:1231–1235. 2012. View Article : Google Scholar

147 

Andre F, Ranson M, Dean E, Varga A, van der Noll R, Stockman PK, Ghiorghiu D, Kilgour E, Smith PD, Macpherson M, et al: Abstract LB-145: Results of a phase I study of AZD4547, an inhibitor of fibroblast growth factor receptor (FGFR), in patients with advanced solid tumors. Cancer Res. 73:LB–145. 2013.

148 

Takahashi Y, Akahane T, Sawada T, Ikeda H, Tempaku A, Yamauchi S, Nishihara H, Tanaka S, Nitta K, Ide W, et al: Adult classical glioblastoma with a BRAF V600E mutation. World J Surg Oncol. 13:1002015. View Article : Google Scholar

149 

Tosuner Z, Geçer MÖ, Hatiboğlu MA, Abdallah A and Turna S: BRAF V600E mutation and BRAF VE1 immunoexpression profiles in different types of glioblastoma. Oncol Lett. 16:2402–2408. 2018.

150 

Raabe EH, Lim KS, Kim JM, Meeker A, Mao XG, Nikkhah G, Maciaczyk J, Kahlert U, Jain D, Bar E, et al: BRAF activation induces transformation and then senescence in human neural stem cells: A pilocytic astrocytoma model. Clin Cancer Res. 17:3590–3599. 2011. View Article : Google Scholar

151 

Behling F and Schittenhelm J: Oncogenic BRAF alterations and their role in brain tumors. Cancers (Basel). 11:7942019. View Article : Google Scholar

152 

Cantwell-Dorris ER, O'Leary JJ and Sheils OM: BRAFV600E: Implications for carcinogenesis and molecular therapy. Mol Cancer Ther. 10:385–394. 2011. View Article : Google Scholar

153 

Nakajima N, Nobusawa S, Nakata S, Nakada M, Yamazaki T, Matsumura N, Harada K, Matsuda H, Funata N, Nagai S, et al: BRAF V600E, TERT promoter mutations and CDKN2A/B homozygous deletions are frequent in epithelioid glioblastomas: A histological and molecular analysis focusing on intratumoral heterogeneity. Brain Pathol. 28:663–673. 2018. View Article : Google Scholar

154 

Chapman PB, Robert C, Larkin J, Haanen JB, Ribas A, Hogg D, Hamid O, Ascierto PA, Testori A, Lorigan PC, et al: Vemurafenib in patients with BRAFV600 mutation-positive metastatic melanoma: Final overall survival results of the randomized BRIM-3 study. Ann Oncol. 28:2581–2587. 2017. View Article : Google Scholar

155 

Burger MC, Ronellenfitsch MW, Lorenz NI, Wagner M, Voss M, Capper D, Tzaridis T, Herrlinger U, Steinbach JP, Stoffels G, et al: Dabrafenib in patients with recurrent, BRAF V600E mutated malignant glioma and leptomeningeal disease. Oncol Rep. 38:3291–3296. 2017.

156 

Woo PYM, Lam TC, Pu JKS, Li LF, Leung RCY, Ho JMK, Zhung JTF, Wong B, Chan TSK, Loong HHF and Ng HK: Regression of BRAFV600E mutant adult glioblastoma after primary combined BRAF-MEK inhibitor targeted therapy: A report of two cases. Oncotarget. 10:3818–3826. 2019. View Article : Google Scholar

157 

Schiff D and Sarkaria J: Dasatinib in recurrent glioblastoma: Failure as a teacher. Neuro Oncol. 17:910–911. 2015. View Article : Google Scholar

158 

Dumont RA, Hildebrandt I, Su H, Haubner R, Reischl G, Czernin JG, Mischel PS and Weber WA: Noninvasive imaging of alphaVbeta3 function as a predictor of the antimigratory and anti-proliferative effects of dasatinib. Cancer Res. 69:3173–3179. 2009. View Article : Google Scholar

159 

Galanis E, Anderson SK, Twohy EL, Carrero XW, Dixon JG, Tran DD, Jeyapalan SA, Anderson DM, Kaufmann TJ, Feathers RW, et al: A phase 1 and randomized, placebo-controlled phase 2 trial of bevacizumab plus dasatinib in patients with recurrent glioblastoma: Alliance/North Central Cancer Treatment Group N0872. Cancer. 125:3790–3800. 2019. View Article : Google Scholar

160 

Srivastava S, Jackson C, Kim T, Choi J and Lim M: A characterization of dendritic cells and their role in immunotherapy in glioblastoma: From preclinical studies to clinical trials. Cancers. 11:5372019. View Article : Google Scholar

161 

Wen PY, Reardon DA, Armstrong TS, Phuphanich S, Aiken RD, Landolfi JC, Curry WT, Zhu JJ, Glantz M, Peereboom DM, et al: A randomized double-blind placebo-controlled phase II trial of dendritic cell vaccine ICT-107 in newly diagnosed patients with glioblastoma. Clin Cancer Res. 25:5799–5807. 2019. View Article : Google Scholar

162 

Polson ES, Kuchler VB, Abbosh C, Ross EM, Mathew RK, Beard HA, da Silva B, Holding AN, Ballereau S, Chuntharpursat-Bon E, et al: KHS101 disrupts energy metabolism in human glioblastoma cells and reduces tumor growth in mice. Sci Transl Med. 10:eaar27182018. View Article : Google Scholar

163 

Gruslova A, Cavazos DA, Miller JR, Breitbart E, Cohen YC, Bangio L, Yakov N, Soundararajan A, Floyd JR and Brenner AJ: VB-111: A novel anti-vascular therapeutic for glioblastoma multiforme. J Neurooncol. 124:365–372. 2015. View Article : Google Scholar

164 

Brenner AJ, Peters KB, Vredenburgh J, Bokstein F, Blumenthal DT, Yust-Katz S, Peretz I, Oberman B, Freedman LS, Ellingson BM, et al: Safety and efficacy of VB-111, an anticancer gene therapy, in patients with recurrent glioblastoma: Results of a phase I/II study. Neuro Oncol. 22:694–704. 2020. View Article : Google Scholar

165 

Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, Ashby L, Mechtler L, Goldlust SA, Iwamoto F, et al: Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): A randomized, double-blind, international phase 3 trial. Lancet Oncol. 18:1373–1385. 2017. View Article : Google Scholar

166 

Reardon DA, Desjardins A, Vredenburgh JJ, O'Rourke DM, Tran DD, Fink KL, Nabors LB, Li G, Bota DA, Lukas RV, et al: Rindopepimut with bevacizumab for patients with relapsed EGFRvIII-expressing glioblastoma (ReACT): Results of a double-blind randomized phase II trial. Clin Cancer Res. 26:1586–1594. 2020. View Article : Google Scholar

167 

Heimberger AB, Archer GE, Crotty LE, McLendon RE, Friedman AH, Friedman HS, Bigner DD and Sampson JH: Dendritic cells pulsed with a tumor-specific peptide induce long-lasting immunity and are effective against murine intrace-rebral melanoma. Neurosurgery. 50:158–166. 2002.

168 

Filley AC, Henriquez M and Dey M: Recurrent glioma clinical trial, CheckMate-143: The game is not over yet. Oncotarget. 8:91779–91794. 2017. View Article : Google Scholar

169 

Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, Harrington K, Kasper S, Vokes EE, Even C, et al: Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 375:1856–1867. 2016. View Article : Google Scholar

170 

Reardon DA, Brandes AA, Omuro A, Mulholland P, Lim M, Wick A, Baehring J, Ahluwalia MS, Roth P, Bähr O, et al: Effect of nivolumab vs bevaci-zumab in patients with recurrent glioblastoma: The CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol. 6:1003–1010. 2020. View Article : Google Scholar

171 

Sampson JH, Padula Omuro AM, Preusser M, Lim M, Butowski NA, Cloughesy TF, Strauss LC, Latek RR, Paliwal P, Weller M and Reardon DA: A randomized, phase 3, open-label study of nivolumab versus temozolomide (TMZ) in combination with radiotherapy (RT) in adult patients (pts) with newly diagnosed, O-6-methylguanine DNA methyltransferase (MGMT)-unmethylated glioblastoma (GBM): CheckMate-498. J Clin Oncol. 34:TPS20792016. View Article : Google Scholar

172 

Reardon DA, Nayak L, Peters KB, Clarke JL, Jordan JT, De Groot JF, Nghiemphu PL, Kaley TJ, Colman H, Gaffey SC, et al: Phase II study of pembrolizumab or pembrolizumab plus bevacizumab for recurrent glioblastoma (rGBM) patients. J Clin Oncol. 36:20062018. View Article : Google Scholar

173 

Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R, López-Janeiro A, Porciuncula A, Idoate MA, Inogés S, de Andrea C, López-Diaz de Cerio A, Tejada S, et al: Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat Med. 25:470–476. 2019. View Article : Google Scholar

174 

Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB, Wang AC, Ellingson BM, Rytlewski JA, Sanders CM, et al: Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med. 25:477–486. 2019. View Article : Google Scholar

175 

Li R, Pourpak A and Morris SW: Inhibition of the insulin-like growth factor-1 receptor (IGF1R) tyrosine kinase as a novel cancer therapy approach. J Med Chem. 52:4981–5004. 2009. View Article : Google Scholar

176 

Chakravarti A, Loeffler JS and Dyson NJ: Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res. 62:200–207. 2002.

177 

Zhou X, Shen F, Ma P, Hui H, Pei S, Chen M, Wang Z, Zhou W and Jin B: GSK1838705A, an IGF-1R inhibitor, inhibits glioma cell proliferation and suppresses tumor growth in vivo. Mol Med Rep. 12:5641–5646. 2015. View Article : Google Scholar

178 

Osher E and Macaulay VM: Therapeutic targeting of the IGF axis. Cells. 8:8952019. View Article : Google Scholar

179 

Janes PW, Vail ME, Gan HK and Scott AM: Antibody targeting of eph receptors in cancer. Pharmaceuticals. 13:882020. View Article : Google Scholar

180 

Anderton M, van der Meulen E, Blumenthal MJ and Schäfer G: The role of the Eph receptor family in tumorigenesis. Cancers (Basel). 13:2062021. View Article : Google Scholar

181 

Binda E, Visioli A, Giani F, Lamorte G, Copetti M, Pitter KL, Huse JT, Cajola L, Zanetti N, DiMeco F, et al: The EphA2 receptor drives self-renewal and tumorigenicity in stem-like tumor-propagating cells from human glioblastomas. Cancer Cell. 22:765–780. 2012. View Article : Google Scholar

182 

Wykosky J, Gibo DM, Stanton C and Debinski W: EphA2 as a novel molecular marker and target in glioblastoma multiforme. Mol Cancer Res. 3:541–551. 2005. View Article : Google Scholar

183 

Swords RT, Greenberg PL, Wei AH, Durrant S, Advani AS, Hertzberg MS, Jonas BA, Lewis ID, Rivera G, Gratzinger D, et al: KB004, a first in class monoclonal antibody targeting the receptor tyrosine kinase EphA3, in patients with advanced hematologic malignancies: Results from a phase 1 study. Leuk Res. 50:123–131. 2016. View Article : Google Scholar

184 

Wade M, Li YC and Wahl GM: MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer. 13:83–96. 2013. View Article : Google Scholar

185 

Avci NG, Ebrahimzadeh-Pustchi S, Akay YM, Esquenazi Y, Tandon N, Zhu JJ and Akay M: NF-κB inhibitor with Temozolomide results in significant apoptosis in glioblastoma via the NF-κB(p65) and actin cytoskeleton regulatory pathways. Sci Rep. 10:133522020. View Article : Google Scholar

186 

Beck S, Jin X, Sohn YW, Kim JK, Kim SH, Yin J, Pian X, Kim SC, Nam DH, Choi YJ and Kim H: Telomerase activity-independent function of TERT allows glioma cells to attain cancer stem cell characteristics by inducing EGFR expression. Mol Cells. 31:9–15. 2011. View Article : Google Scholar

187 

Olympios N, Gilard V, Marguet F, Clatot F, Di Fiore F and Fontanilles M: TERT promoter alterations in glioblastoma: A systematic review. Cancers (Basel). 13:11472021. View Article : Google Scholar

188 

Metro G, Pierini T and La Starza R: TERT Mutations in Glioma: ESMO Biomarker Factsheet. European Society for Medical Oncology; Lugano: 2019, https://oncologypro.esmo.org/education-library/factsheets-on-biomarkers/tert-mutations-in-glioma. Accessed January 25, 2019.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Khabibov M, Garifullin A, Boumber Y, Khaddour K, Fernandez M, Khamitov F, Khalikova L, Kuznetsova N, Kit O, Kharin L, Kharin L, et al: Signaling pathways and therapeutic approaches in glioblastoma multiforme (Review). Int J Oncol 60: 69, 2022.
APA
Khabibov, M., Garifullin, A., Boumber, Y., Khaddour, K., Fernandez, M., Khamitov, F. ... Kharin, L. (2022). Signaling pathways and therapeutic approaches in glioblastoma multiforme (Review). International Journal of Oncology, 60, 69. https://doi.org/10.3892/ijo.2022.5359
MLA
Khabibov, M., Garifullin, A., Boumber, Y., Khaddour, K., Fernandez, M., Khamitov, F., Khalikova, L., Kuznetsova, N., Kit, O., Kharin, L."Signaling pathways and therapeutic approaches in glioblastoma multiforme (Review)". International Journal of Oncology 60.6 (2022): 69.
Chicago
Khabibov, M., Garifullin, A., Boumber, Y., Khaddour, K., Fernandez, M., Khamitov, F., Khalikova, L., Kuznetsova, N., Kit, O., Kharin, L."Signaling pathways and therapeutic approaches in glioblastoma multiforme (Review)". International Journal of Oncology 60, no. 6 (2022): 69. https://doi.org/10.3892/ijo.2022.5359
Copy and paste a formatted citation
x
Spandidos Publications style
Khabibov M, Garifullin A, Boumber Y, Khaddour K, Fernandez M, Khamitov F, Khalikova L, Kuznetsova N, Kit O, Kharin L, Kharin L, et al: Signaling pathways and therapeutic approaches in glioblastoma multiforme (Review). Int J Oncol 60: 69, 2022.
APA
Khabibov, M., Garifullin, A., Boumber, Y., Khaddour, K., Fernandez, M., Khamitov, F. ... Kharin, L. (2022). Signaling pathways and therapeutic approaches in glioblastoma multiforme (Review). International Journal of Oncology, 60, 69. https://doi.org/10.3892/ijo.2022.5359
MLA
Khabibov, M., Garifullin, A., Boumber, Y., Khaddour, K., Fernandez, M., Khamitov, F., Khalikova, L., Kuznetsova, N., Kit, O., Kharin, L."Signaling pathways and therapeutic approaches in glioblastoma multiforme (Review)". International Journal of Oncology 60.6 (2022): 69.
Chicago
Khabibov, M., Garifullin, A., Boumber, Y., Khaddour, K., Fernandez, M., Khamitov, F., Khalikova, L., Kuznetsova, N., Kit, O., Kharin, L."Signaling pathways and therapeutic approaches in glioblastoma multiforme (Review)". International Journal of Oncology 60, no. 6 (2022): 69. https://doi.org/10.3892/ijo.2022.5359
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team