Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
June-2022 Volume 60 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2022 Volume 60 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Epigenetic modification regulates tumor progression and metastasis through EMT (Review)

  • Authors:
    • Tingshan Tan
    • Pengfei Shi
    • Muhammad Nadeem Abbas
    • Yi Wang
    • Jie Xu
    • Yu Chen
    • Hongjuan Cui
  • View Affiliations / Copyright

    Affiliations: The 9th People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing 400716, P.R. China, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
    Copyright: © Tan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 70
    |
    Published online on: April 21, 2022
       https://doi.org/10.3892/ijo.2022.5360
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Epigenetics is the study of heritable molecular determinants that are independent of phenotypic features. The epigenetic features include DNA methylation, histone modifications, non‑coding RNAs, and chromatin remodeling. In multicellular organisms, the epigenetic state of a cell is critical in determining its differentiation status and its ability to perform its proper function. These processes are now well recognized as being a substantial factor in tumor progression and metastasis. The process through which epithelial cells acquire mesenchymal features is known as epithelial‑mesenchymal transition (EMT). EMT is associated with tumorigenesis, invasion, metastasis, and resistance to therapy in cancer. In the present review, we examine the recent studies that demonstrate the biological role of epigenetics, in particular, DNA methylation, histone modifications, non‑coding RNAs, and chromatin remodeling in tumor progression and metastasis by regulating EMT status, and we provide an overview of the current state of knowledge regarding the epigenetics involvement in tumor progression and metastasis. Because epigenetic changes can be reversed, learning more about their biological roles in EMT will not only help us better understand how cancer progresses and spreads, but it will also help us identify new ways to diagnose and treat human malignancy, which is currently lacking in the clinical setting.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Rodenhiser DI: Epigenetic contributions to cancer metastasis. Clin Exp Metastasis. 26:5–18. 2009. View Article : Google Scholar

2 

Timp W and Feinberg AP: Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat Rev Cancer. 13:497–510. 2013. View Article : Google Scholar

3 

Dario LS, Rosa MA, Mariela E, Roberto G and Caterina C: Chromatin remodeling agents for cancer therapy. Rev Recent Clin Trials. 3:192–203. 2008. View Article : Google Scholar

4 

Werner RJ, Kelly A and DIssa JJ: Epigenetics and precision oncology. Cancer J. 23:262–269. 2017. View Article : Google Scholar

5 

Guan X: Cancer metastases: Challenges and opportunities. Acta Pharm Sin B. 5:402–418. 2015. View Article : Google Scholar

6 

Pachmayr E, Treese C and Stein U: Underlying mechanisms for distant metastasis-molecular biology. Visc Med. 33:11–20. 2017. View Article : Google Scholar

7 

Micalizzi DS, Maheswaran S and Haber DA: A conduit to metastasis: Circulating tumor cell biology. Genes Dev. 31:1827–1840. 2017. View Article : Google Scholar

8 

Pastushenko I and Blanpain C: EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29:212–226. 2019. View Article : Google Scholar

9 

van Roy F and Berx G: The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci. 65:3756–3788. 2008. View Article : Google Scholar

10 

Birchmeier W and Behrens J: Cadherin expression in carcinomas: Role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta. 1198:11–26. 1994.

11 

Berx G and van Roy F: Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol. 1:a0031292009. View Article : Google Scholar

12 

Derksen PW, Liu X, Saridin F, van der Gulden H, Zevenhoven J, Evers B, van Beijnum JR, Griffioen AW, Vink J, Krimpenfort P, et al: Somatic inactivation of E-cadherin and p53 in mice leads to meta-static lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell. 10:437–449. 2006. View Article : Google Scholar

13 

Wong SHM, Fang CM, Chuah LH, Leong CO and Ngai SC: E-cadherin: Its dysregulation in carcinogenesis and clinical implications. Crit Rev Oncol Hematol. 121:11–22. 2018. View Article : Google Scholar

14 

Odero-Marah V, Hawsawi O, Henderson V and Sweeney J: Epithelial-mesenchymal transition (EMT) and prostate cancer. Adv Exp Med Biol. 1095:101–110. 2018. View Article : Google Scholar

15 

Chiang SP, Cabrera RM and Segall JE: Tumor cell intravasation. Am J Physiol Cell Physiol. 311:C1–C14. 2016. View Article : Google Scholar

16 

Hamilton G and Rath B: Mesenchymal-epithelial transition and circulating tumor cells in small cell lung cancer. Adv Exp Med Biol. 994:229–245. 2017. View Article : Google Scholar

17 

Zhao B, Li L, Wang L, Wang CY, Yu J and Guan KL: Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev. 26:54–68. 2012. View Article : Google Scholar

18 

Pantel K and Speicher MR: The biology of circulating tumor cells. Oncogene. 35:1216–1224. 2016. View Article : Google Scholar

19 

Joyce JA and Pollard JW: Microenvironmental regulation of metastasis. Nat Rev Cancer. 9:239–252. 2009. View Article : Google Scholar

20 

Paoletti C and Hayes DF: Circulating tumor cells. Adv Exp Med Biol. 882:235–258. 2016. View Article : Google Scholar

21 

Haemmerle M, Stone RL, Menter DG, Afshar-Kharghan V and Sood AK: The platelet lifeline to cancer: Challenges and opportunities. Cancer Cell. 33:965–983. 2018. View Article : Google Scholar

22 

Fu BM: Tumor metastasis in the microcirculation. Adv Exp Med Biol. 1097:201–218. 2018. View Article : Google Scholar

23 

Bui TM, Wiesolek HL and Sumagin R: ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukoc Biol. 108:787–799. 2020. View Article : Google Scholar

24 

Sarvaiya PJ, Guo D, Ulasov I, Gabikian P and Lesniak MS: Chemokines in tumor progression and metastasis. Oncotarget. 4:2171–2185. 2013. View Article : Google Scholar

25 

Mielgo A and Schmid MC: Liver Tropism in Cancer: The hepatic metastatic niche. Cold Spring Harb Perspect Med. 10:a0372592020. View Article : Google Scholar

26 

Walker S, Busatto S, Pham A, Tian M, Suh A, Carson K, Quintero A, Lafrence M, Malik H, Santana MX and Wolfram J: Extracellular vesicle-based drug delivery systems for cancer treatment. Theranostics. 9:8001–8017. 2019. View Article : Google Scholar

27 

Pramani KA, Jones S, Gao Y, Sweet C, Vangara A, Begum S and Ray PC: Multifunctional hybrid graphene oxide for circulating tumor cell isolation and analysis. Adv Drug Deliv Rev. 125:21–35. 2018. View Article : Google Scholar

28 

Dabagh M and Randles A: Role of deformable cancer cells on wall shear stress-associated-VEGF secretion by endothelium in microvasculature. PLoS One. 14:e02114182019. View Article : Google Scholar

29 

Hsu SK, Chiu CC, Dahms HU, Chou CK, Cheng CM, Chang WT, Cheng KC, Wang HD and Lin IL: Unfolded protein response (UPR) in survival, dormancy, immunosuppression, metastasis, and treatments of cancer cells. Int J Mol Sci. 20:25182019. View Article : Google Scholar

30 

Hu X, Zang X and Lv Y: Detection of circulating tumor cells: Advances and critical concerns. Oncol Lett. 21:4222021. View Article : Google Scholar

31 

Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, et al: VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 438:820–827. 2005. View Article : Google Scholar

32 

Liu T, Xu H, Huang M, Ma W, Saxena D, Lustig RA, Alonso-Basanta M, Zhang Z, O'Rourke DM, Zhang L, et al: Circulating glioma cells exhibit stem cell-like properties. Cancer Res. 78:6632–6642. 2018.

33 

Malanchi I, Santamaria-Martínez A, Susanto E, Peng H, Lehr HA, Delaloye JF and Huelsken J: Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 481:85–89. 2011. View Article : Google Scholar

34 

Oskarsson T, Batlle E and Massagué J: Metastatic stem cells: Sources, niches, and vital pathways. Cell Stem Cell. 14:306–321. 2014. View Article : Google Scholar

35 

Kaminsky ZA, Tang T, Wang SC, Ptak C, Oh GH, Wong AH, Feldcamp LA, Virtanen C, Halfvarson J, Tysk C, et al: DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet. 41:240–245. 2009. View Article : Google Scholar

36 

Riggs AD: X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet. 14:9–25. 1975. View Article : Google Scholar

37 

Cooper DN: Eukaryotic DNA methylation. Human Genet. 64:315–333. 1983. View Article : Google Scholar

38 

Compere SJ and Palmiter RD: DNA methylation controls the inducibility of the mouse metallothionein-I gene lymphoid cells. Cell. 25:233–240. 1981. View Article : Google Scholar

39 

Dong Z, Pu L and Cui H: Mitoepigenetics and its emerging roles in cancer. Front Cell Dev Biol. 8:42020. View Article : Google Scholar

40 

Moore LD, Le T and Fan G: DNA methylation and its basic function. Neuropsychopharmacology. 38:23–38. 2013. View Article : Google Scholar

41 

Morgan AE, Davies TJ and Mc Auley MT: The role of DNA methylation in ageing and cancer. Proc Nutr Soc. 77:412–422. 2018. View Article : Google Scholar

42 

Zhao H, Yang L and Cui H: SIRT1 regulates autophagy and diploidization in parthenogenetic haploid embryonic stem cells. Biochem Biophys Res Commun. 464:1163–1170. 2015. View Article : Google Scholar

43 

Lyko F: The DNA methyltransferase family: A versatile toolkit for epigenetic regulation. Nat Rev Genet. 19:81–92. 2018. View Article : Google Scholar

44 

Kausar S, Abbas MN and Cui H: A review on the DNA methyltransferase family of insects: Aspect and prospects. Int J Biol Macromol. 186:289–302. 2021. View Article : Google Scholar

45 

Dong Z and Cui H: Epigenetic modulation of metabolism in glioblastoma. Semin Cancer Biol. 57:45–51. 2019. View Article : Google Scholar

46 

Anteneh H, Fang J and Song J: Structural basis for impairment of DNA methylation by the DNMT3A R882H mutation. Nat Commu. 11:22942020. View Article : Google Scholar

47 

Hayashi K, Hishikawa A and Itoh H: DNA damage repair and DNA methylation in the kidney. Am J Nephrol. 50:81–91. 2019. View Article : Google Scholar

48 

de Araújo ÉS, Pramio DT, Kashiwabara AY, Pennacchi PC, Maria-Engler SS, Achatz MI, Campos AH, Duprat JP, Rosenberg C, Carraro DM and Krepischi AC: DNA methylation levels of melanoma risk genes are associated with clinical characteristics of melanoma patients. Biomed Res Int. 2015:3764232015. View Article : Google Scholar

49 

Farhadova S, Gomez-Velazquez M and Feil R: Stability and lability of parental methylation imprints in development and disease. Genes (Basel). 10:9992019. View Article : Google Scholar

50 

Horvath S and Raj K: DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 19:371–384. 2018. View Article : Google Scholar

51 

Wu A, Cremaschi P, Wetterskog D, Conteduca V, Franceschini GM, Kleftogiannis D, Jayaram A, Sandhu S, Wong SQ, Benelli M, et al: Genome-wide plasma DNA methylation features of metastatic prostate cancer. J Clin Invest. 130:1991–2000. 2020. View Article : Google Scholar

52 

Hermann A, Goyal R and Jeltsch A: The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem. 279:48350–48359. 2004. View Article : Google Scholar

53 

Espada J, Ballestar E, Fraga MF, Villar-Garea A, Juarranz A, Stockert JC, Robertson KD, Fuks F and Esteller M: Human DNA methyltransferase 1 is required for maintenance of the histone H3 modification pattern. J Biol Chem. 279:37175–37184. 2004. View Article : Google Scholar

54 

Lee E, Wang J, Yumoto K, Jung Y, Cackowski FC, Decker AM, Li Y, Franceschi RT, Pienta KJ and Taichman RS: DNMT1 regulates epithelial-mesenchymal transition and cancer stem cells, which promotes prostate cancer metastasis. Neoplasia. 18:553–566. 2016. View Article : Google Scholar

55 

Jiang H, Cao HJ, Ma N, Bao WD, Wang JJ, Chen TW, Zhang EB, Yuan YM, Ni QZ, Zhang FK, et al: Chromatin remodeling factor ARID2 suppresses hepatocellular carcinoma metastasis via DNMT1-Snail axis. Proc Natl Acad Sci USA. 117:4770–4780. 2020. View Article : Google Scholar

56 

Tang H, Liu P, Yang L and Xie X, Ye F, Wu M, Liu X, Chen B, Zhang L and Xie X: miR-185 suppresses tumor proliferation by directly targeting E2F6 and DNMT1 and indirectly upregulating BRCA1 in triple-negative breast cancer. Mol Cancer Ther. 13:3185–3197. 2014. View Article : Google Scholar

57 

Zhu A, Hopkins KM, Friedman RA, Bernstock JD, Broustas CG and Lieberman HB: DNMT1 and DNMT3B regulate tumorigenicity of human prostate cancer cells by controlling RAD9 expression through targeted methylation. Carcinogenesis. 42:220–231. 2021. View Article : Google Scholar

58 

Gao X, Sheng Y, Yang J, Wang C, Zhang R, Zhu Y, Zhang Z, Zhang K, Yan S, Sun H, et al: Osteopontin alters DNA methylation through up-regulating DNMT1 and sensitizes CD133+/CD44+ cancer stem cells to 5 azacytidine in hepatocellular carcinoma. J Exp Clin Cancer Res. 37:1792018. View Article : Google Scholar

59 

Bai J, Zhang X, Hu K, Liu B, Wang H, Li A, Lin F, Zhang L, Sun X, Du Z and Song J: Silencing DNA methyltransferase 1 (DNMT1) inhibits proliferation, metastasis and invasion in ESCC by suppressing methylation of RASSF1A and DAPK. Oncotarget. 7:44129–44141. 2016. View Article : Google Scholar

60 

Xie M, Nie FQ, Sun M, Xia R, Liu YW, Zhou P, De W and Liu XH: Decreased long noncoding RNA SPRY4-IT1 contributing to gastric cancer cell metastasis partly via affecting epithelial-mesenchymal transition. J Transl Med. 13:2502015. View Article : Google Scholar

61 

Wu Y, Liu H, Shi X, Yao Y, Yang W and Song Y: The long non-coding RNA HNF1A-AS1 regulates proliferation and metastasis in lung adenocarcinoma. Oncotarget. 6:9160–9172. 2015. View Article : Google Scholar

62 

Meng F, Liu X, Lin C, Xu L, Liu J, Zhang P, Zhang X, Song J, Yan Y, Ren Z and Zhang Y: SMYD2 suppresses APC2 expression to activate the Wnt/β-catenin pathway and promotes epithelial-mesenchymal transition in colorectal cancer. Am J Cancer Res. 10:997–1011. 2020.

63 

Okano M, Bell DW, Haber DA and Li E: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 99:247–257. 1999. View Article : Google Scholar

64 

Chédin F: The DNMT3 family of mammalian de novo DNA methyltransferases. Prog Mol Biol Transl Sci. 101:255–285. 2011. View Article : Google Scholar

65 

Zhang ZM, Lu R, Wang P, Yu Y, Chen D, Gao L, Liu S, Ji D, Rothbart SB, Wang Y, et al: Structural basis for DNMT3A-mediated de novo DNA methylation. Nature. 554:387–391. 2018. View Article : Google Scholar

66 

Walton EL, Francastel C and Velasco G: Maintenance of DNA methylation: Dnmt3b joins the dance. Epigenetics. 6:1373–1377. 2011. View Article : Google Scholar

67 

Walton EL, Francastel C and Velasco G: Dnmt3b prefers germ line genes and centromeric regions: Lessons from the ICF syndrome and cancer and implications for diseases. Biology. 3:578–605. 2014. View Article : Google Scholar

68 

Xu J, Zhang W, Yan XJ, Lin XQ, Li W, Mi JQ, Li JM, Zhu J, Chen Z and Chen SJ: DNMT3A mutation leads to leukemic extramedullary infiltration mediated by TWIST1. J Hematol Oncol. 9:1062016. View Article : Google Scholar

69 

Cui H, Hu Y, Guo D, Zhang A, Gu Y, Zhang S, Zhao C, Gong P, Shen X, Li Y, et al: DNA methyltransferase 3A isoform b contributes to repressing E-cadherin through cooperation of DNA methylation and H3K27/H3K9 methylation in EMT-related metastasis of gastric cancer. Oncogene. 37:4358–4371. 2018. View Article : Google Scholar

70 

Deivendran S, Marzook H, Santhoshkumar TR, Kumar R and Pillai MR: Metastasis-associated protein 1 is an upstream regulator of DNMT3a and stimulator of insulin-growth factor binding protein-3 in breast cancer. Sci Rep. 7:442252017. View Article : Google Scholar

71 

Zhang L, Niu H, Ma J, Yuan BY, Chen YH, Zhuang Y, Chen GW, Zeng ZC and Xiang ZL: The molecular mechanism of lncRNA34a-mediated regulation of bone metastasis in hepatocellular carcinoma. Mol Cancer. 18:1202019. View Article : Google Scholar

72 

Shi W, Tang T, Li X, Deng S, Li R, Wang Y, Wang Y, Xia T, Zhang Y, Zen K, et al: Methylation-mediated silencing of miR-133a-3p promotes breast cancer cell migration and stemness via miR-133a-3p/MAML1/DNMT3A positive feedback loop. J Exp Clin Cancer Res. 38:4292019. View Article : Google Scholar

73 

Xu K, Chen B, Li B, Li C, Zhang Y, Jiang N and Lang B: DNMT3B silencing suppresses migration and invasion by epigenetically promoting miR-34a in bladder cancer. Aging. 12:23668–23683. 2020. View Article : Google Scholar

74 

Lv M, Zhong Z, Huang M, Tian Q, Jiang R and Chen J: lncRNA H19 regulates epithelial-mesenchymal transition and metastasis of bladder cancer by miR-29b-3p as competing endogenous RNA. Biochimica et biophysica acta. Biochim Biophys Acta Mol Cell Res. 1864:1887–1899. 2017. View Article : Google Scholar

75 

Takeshima H, Niwa T, Yamashita S, Takamura-Enya T, Iida N, Wakabayashi M, Nanjo S, Abe M, Sugiyama T, Kim YJ and Ushijima T: TET repression and increased DNMT activity synergistically induce aberrant DNA methylation. J Clin Invest. 130:5370–5379. 2020. View Article : Google Scholar

76 

Ning B, Liu G, Liu Y, Su X, Anderson GJ, Zheng X, Chang Y, Guo M, Liu Y, Zhao Y and Nie G: 5-aza-2'-deoxycytidine activates iron uptake and heme biosynthesis by increasing c-Myc nuclear localization and binding to the E-boxes of transferrin receptor 1 (TfR1) and ferrochelatase (Fech) genes. J Biol Chemistry. 286:37196–37206. 2011. View Article : Google Scholar

77 

Schmelz K, Sattler N, Wagner M, Lübbert M, Dörken B and Tamm I: Induction of gene expression by 5-Aza-2'-deoxycytidine in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) but not epithelial cells by DNA-methylation-dependent and -independent mechanisms. Leukemia. 19:103–111. 2005. View Article : Google Scholar

78 

Tong HY and Lin MF: Effect of 5-aza-2'-deoxycytidine on cell of high-risk patients with myelodysplastic syndrome in vitro. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 12:467–471. 2004.In Chinese.

79 

Gagnon J, Shaker S, Primeau M, Hurtubise A and Momparler RL: Interaction of 5-aza-2'-deoxycytidine and depsipeptide on anti-neoplastic activity and activation of 14-3-3sigma, E-cadherin and tissue inhibitor of metalloproteinase 3 expression in human breast carcinoma cells. Anticancer Drugs. 14:193–202. 2003. View Article : Google Scholar

80 

Jambhekar A, Dhall A and Shi Y: Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol. 20:625–641. 2019. View Article : Google Scholar

81 

Zhao E, Ding J, Xia Y, Liu M, Ye B, Choi JH, Yan C, Dong Z, Huang S, Zha Y, et al: KDM4C and ATF4 cooperate in transcriptional control of amino acid metabolism. Cell Rep. 14:506–519. 2016. View Article : Google Scholar

82 

Hyun K, Jeon J, Park K and Kim J: Writing, erasing and reading histone lysine methylations. Exp Mol Med. 49:e3242017. View Article : Google Scholar

83 

Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P and Zhang Y: Histone demethylation by a family of JmjC domain-containing proteins. Nature. 439:811–816. 2006. View Article : Google Scholar

84 

Skucha A, Ebner J and Grebien F: Roles of SETD2 in Leukemia-Transcription, DNA-Damage, and Beyond. Int J Mol Sci. 20:10292019. View Article : Google Scholar

85 

Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS and Zhang Y: Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 298:1039–1043. 2002. View Article : Google Scholar

86 

Montgomery ND, Yee D, Chen A, Kalantry S, Chamberlain SJ, Otte AP and Magnuson T: The murine polycomb group protein Eed is required for global histone H3 lysine-27 methylation. Curr Biol. 15:942–947. 2005. View Article : Google Scholar

87 

Moore HM, Gonzalez ME, Toy KA, Cimino-Mathews A, Argani P and Kleer CG: EZH2 inhibition decreases p38 signaling and suppresses breast cancer motility and metastasis. Breast Cancer Res Treat. 138:741–752. 2013. View Article : Google Scholar

88 

Yi X, Guo J, Guo J, Sun S, Yang P, Wang J, Li Y, Xie L, Cai J and Wang Z: EZH2-mediated epigenetic silencing of TIMP2 promotes ovarian cancer migration and invasion. Sci Rep. 7:35682017. View Article : Google Scholar

89 

Mahmoud F, Shields B, Makhoul I, Hutchins LF, Shalin SC and Tackett AJ: Role of EZH2 histone methyltrasferase in melanoma progression and metastasis. Cancer Biol Ther. 17:579–591. 2016. View Article : Google Scholar

90 

Lo Sardo F, Pulito C, Sacconi A, Korita E, Sudol M, Strano S and Blandino G: YAP/TAZ and EZH2 synergize to impair tumor suppressor activity of TGFBR2 in non-small cell lung cancer. Cancer Lett. 500:51–63. 2021. View Article : Google Scholar

91 

Niu N, Lu P, Yang Y, He R, Zhang L, Shi J, Wu J, Yang M, Zhang ZG, Wang LW, et al: Loss of Setd2 promotes Kras-induced acinar-to-ductal metaplasia and epithelia-mesenchymal transition during pancreatic carcinogenesis. Gut. 69:715–726. 2020. View Article : Google Scholar

92 

Yuan H, Han Y, Wang X, Li N, Liu Q, Yin Y, Wang H, Pan L, Li L, Song K, et al: SETD2 restricts prostate cancer metastasis by integrating EZH2 and AMPK signaling pathways. Cancer Cell. 38:350–365.e7. 2020. View Article : Google Scholar

93 

Wu PC, Lu JW, Yang JY, Lin IH, Ou DL, Lin YH, Chou KH, Huang WF, Wang WP, Huang YL, et al: H3K9 histone methyl-transferase, KMT1E/SETDB1, cooperates with the SMAD2/3 pathway to suppress lung cancer metastasis. Cancer Res. 74:7333–7343. 2014. View Article : Google Scholar

94 

Luan X and Wang Y: Long non-coding RNA XLOC_006390 promotes cervical cancer proliferation and metastasis through the regulation of SET domain containing 8. Oncol Rep. 38:159–166. 2017. View Article : Google Scholar

95 

Kang J, Shin SH, Yoon H, Huh J, Shin HW, Chun YS and Park JW: FIH Is an oxygen sensor in ovarian cancer for G9a/GLP-Driven epigenetic regulation of metastasis-related genes. Cancer Res. 78:1184–1199. 2018. View Article : Google Scholar

96 

Qiang R, Cai N, Wang X, Wang L, Cui K, Wang X and Li X: MLL1 promotes cervical carcinoma cell tumorigenesis and metastasis through interaction with β-catenin. OncoTargets Ther. 9:6631–6640. 2016. View Article : Google Scholar

97 

Li L, Zhang Z, Ma T and Huo R: PRMT1 regulates tumor growth and metastasis of human melanoma via targeting ALCAM. Mol Med Rep. 14:521–528. 2016. View Article : Google Scholar

98 

Chuang CY, Chang CP, Lee YJ, Lin WL, Chang WW, Wu JS, Cheng YW, Lee H and Li C: PRMT1 expression is elevated in head and neck cancer and inhibition of protein arginine methylation by adenosine dialdehyde or PRMT1 knockdown downregulates proliferation and migration of oral cancer cells. Oncol Rep. 38:1115–1123. 2017. View Article : Google Scholar

99 

Yin XK, Wang YL, Wang F, Feng WX, Bai SM, Zhao WW, Feng LL, Wei MB, Qin CL, Wang F, et al: PRMT1 enhances oncogenic arginine methylation of NONO in colorectal cancer. Oncogene. 40:1375–1389. 2021. View Article : Google Scholar

100 

Yao R, Jiang H, Ma Y, Wang L, Wang L, Du J, Hou P, Gao Y, Zhao L, Wang G, et al: PRMT7 induces epithelial-to-mesenchymal transition and promotes metastasis in breast cancer. Cancer Res. 74:5656–5667. 2014. View Article : Google Scholar

101 

Bao X, Zhao S, Liu T, Liu Y, Liu Y and Yang X: Overexpression of PRMT5 promotes tumor cell growth and is associated with poor disease prognosis in epithelial ovarian cancer. J Histochem Cytochem. 61:206–217. 2013. View Article : Google Scholar

102 

Tang J, Meng Q, Shi R and Xu Y: PRMT6 serves an oncogenic role in lung adenocarcinoma via regulating p18. Mol Med Rep. 22:3161–3172. 2020.

103 

Allis CD, Berger SL, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Reinberg D, Shi Y, Shiekhattar R, et al: New nomenclature for chromatin-modifying enzymes. Cell. 131:633–636. 2007. View Article : Google Scholar

104 

Schneider J and Shilatifard A: Histone demethylation by hydroxylation: Chemistry in action. ACS Chem Biol. 1:75–81. 2006. View Article : Google Scholar

105 

Varier RA and Timmers HT: Histone lysine methylation and demethylation pathways in cancer. Biochim Biophys Acta. 1815:75–89. 2011.

106 

Hong Y, Li X and Zhu J: LSD1-mediated stabilization of SEPT6 protein activates the TGF-β1 pathway and regulates non-small-cell lung cancer metastasis. Cancer Gene Ther. 29:189–201. 2022. View Article : Google Scholar

107 

Liu J, Feng J, Li L, Lin L, Ji J, Lin C, Liu L, Zhang N, Duan D, Li Z, et al: Arginine methylation-dependent LSD1 stability promotes invasion and metastasis of breast cancer. EMBO Rep. 21:e485972020. View Article : Google Scholar

108 

Pan HM, Lang WY, Yao LJ, Wang Y and Li XL: shRNA-interfering LSD1 inhibits proliferation and invasion of gastric cancer cells via VEGF-C/PI3K/AKT signaling pathway. World J Gastrointest Oncol. 11:622–633. 2019. View Article : Google Scholar

109 

Huang Y, Liu Y, Yu L, Chen J, Hou J, Cui L, Ma D and Lu W: Histone demethylase KDM2A promotes tumor cell growth and migration in gastric cancer. Tumour Biol. 36:271–278. 2015. View Article : Google Scholar

110 

Wanna-Udom S, Terashima M, Suphakhong K, Ishimura A, Takino T and Suzuki T: KDM2B is involved in the epigenetic regulation of TGF-β-induced epithelial-mesenchymal transition in lung and pancreatic cancer cell lines. J Biol Chem. 296:1002132021. View Article : Google Scholar

111 

Lu DH, Yang J, Gao LK, Min J, Tang JM, Hu M, Li Y, Li ST, Chen J and Hong L: Lysine demethylase 2A promotes the progression of ovarian cancer by regulating the PI3K pathway and reversing epithelial-mesenchymal transition. Oncol Rep. 41:917–927. 2019.

112 

Tee AE, Ling D, Nelson C, Atmadibrata B, Dinger ME, Xu N, Mizukami T, Liu PY, Liu B, Cheung B, et al: The histone demethylase JMJD1A induces cell migration and invasion by up-regulating the expression of the long noncoding RNA MALAT1. Oncotarget. 5:1793–1804. 2014. View Article : Google Scholar

113 

Sechler M, Parrish JK, Birks DK and Jedlicka P: The histone demethylase KDM3A, and its downstream target MCAM, promote Ewing Sarcoma cell migration and metastasis. Oncogene. 36:4150–4160. 2017. View Article : Google Scholar

114 

Sun S, Yang F, Zhu Y and Zhang S: KDM4A promotes the growth of non-small cell lung cancer by mediating the expression of Myc via DLX5 through the Wnt/β-catenin signaling pathway. Life Sci. 262:1185082020. View Article : Google Scholar

115 

Li S, Wu L, Wang Q, Li Y and Wang X: KDM4B promotes epithelial-mesenchymal transition through up-regulation of ZEB1 in pancreatic cancer. Acta Biochim Biophys Sin (Shanghai). 47:997–1004. 2015.

116 

Shen Y, Wei W and Zhou DX: Histone acetylation enzymes coordinate metabolism and gene expression. Trends Plant Sci. 20:614–621. 2015. View Article : Google Scholar

117 

Wang Y, Miao X, Liu Y, Li F, Liu Q, Sun J and Cai L: Dysregulation of histone acetyltransferases and deacetylases in cardiovascular diseases. Oxid Med Cell Longev. 2014:6419792014. View Article : Google Scholar

118 

Gujral P, Mahajan V, Lissaman AC and Ponnampalam AP: Histone acetylation and the role of histone deacetylases in normal cyclic endometrium. Reprod Biol Endocrinol. 18:842020. View Article : Google Scholar

119 

Liu W, Zhan Z, Zhang M, Sun B, Shi Q, Luo F, Zhang M, Zhang W, Hou Y, Xiao X, et al: KAT6A, a novel regulator of β-catenin, promotes tumorigenicity and chemoresistance in ovarian cancer by acetylating COP1. Theranostics. 11:6278–6292. 2021. View Article : Google Scholar

120 

Santos GC Jr, da Silva AP, Feldman L, Ventura GM, Vassetzky Y and de Moura Gallo CV: Epigenetic modifications, chromatin distribution and TP53 transcription in a model of breast cancer progression. J Cell Biochem. 116:533–541. 2015. View Article : Google Scholar

121 

Legube G and Trouche D: Regulating histone acetyltransferases and deacetylases. EMBO Rep. 4:944–947. 2003. View Article : Google Scholar

122 

Parra M and Verdin E: Regulatory signal transduction pathways for class IIa histone deacetylases. Curr Opin Pharmacol. 10:454–460. 2010. View Article : Google Scholar

123 

Liu J, Gu J, Feng Z, Yang Y, Zhu N, Lu W and Qi F: Both HDAC5 and HDAC6 are required for the proliferation and metastasis of melanoma cells. J Transl Med. 14:72016. View Article : Google Scholar

124 

Dong L, Dong Q, Chen Y, Li Y, Zhang B, Zhou F, Lyu X, Chen GG, Lai P, Kung HF and He ML: Novel HDAC5-interacting motifs of Tbx3 are essential for the suppression of E-cadherin expression and for the promotion of metastasis in hepatocellular carcinoma. Signal Transduct Target Ther. 3:222018. View Article : Google Scholar

125 

von Burstin J, Eser S, Paul MC, Seidler B, Brandl M, Messer M, von Werder A, Schmidt A, Mages J, Pagel P, et al: E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex. Gastroenterology. 137:361–371. e1–e5. 2009. View Article : Google Scholar

126 

Cheng C, Yang J, Li SW, Huang G, Li C, Min WP and Sang Y: HDAC4 promotes nasopharyngeal carcinoma progression and serves as a therapeutic target. Cell Death Dis. 12:1372021. View Article : Google Scholar

127 

Tang X, Li G, Su F, Cai Y, Shi L, Meng Y, Liu Z, Sun J, Wang M, Qian M, et al: HDAC8 cooperates with SMAD3/4 complex to suppress SIRT7 and promote cell survival and migration. Nucleic Acids Res. 48:2912–2923. 2020. View Article : Google Scholar

128 

Yu XJ, Guo XZ, Li C, Chong Y, Song TN, Pang JF and Shao M: SIRT1-ZEB1-positive feedback promotes epithelial-mesenchymal transition process and metastasis of osteosarcoma. J Cell Biochem. 120:3727–3735. 2019. View Article : Google Scholar

129 

Bai L, Lin G, Sun L, Liu Y, Huang X, Cao C, Guo Y and Xie C: Upregulation of SIRT6 predicts poor prognosis and promotes metastasis of non-small cell lung cancer via the ERK1/2/MMP9 pathway. Oncotarget. 7:40377–40386. 2016. View Article : Google Scholar

130 

Kugel S, Sebastián C, Fitamant J, Ross KN, Saha SK, Jain E, Gladden A, Arora KS, Kato Y, Rivera MN, et al: SIRT6 suppresses pancreatic cancer through control of Lin28b. Cell. 165:1401–1415. 2016. View Article : Google Scholar

131 

Li R, Quan Y and Xia W: SIRT3 inhibits prostate cancer metastasis through regulation of FOXO3A by suppressing Wnt/β-catenin pathway. Exp Cell Res. 364:143–151. 2018. View Article : Google Scholar

132 

Fu L, Dong Q, He J, Wang X, Xing J, Wang E, Qiu X and Li Q: SIRT4 inhibits malignancy progression of NSCLCs, through mitochondrial dynamics mediated by the ERK-Drp1 pathway. Oncogene. 36:2724–2736. 2017. View Article : Google Scholar

133 

Tang X, Shi L, Xie N, Liu Z, Qian M, Meng F, Xu Q, Zhou M, Cao X, Zhu WG and Liu B: SIRT7 antagonizes TGF-β signaling and inhibits breast cancer metastasis. Nat Commun. 8:3182017. View Article : Google Scholar

134 

Sun Y, Sun Y, Yue S, Wang Y and Lu F: Histone deacetylase inhibitors in cancer therapy. Curr Top Med Chem. 18:2420–2428. 2018. View Article : Google Scholar

135 

Kelly WK and Marks PA: Drug insight: Histone deacetylase inhibitors-development of the new targeted anticancer agent suberoylanilide hydroxamic acid. Nat Clin Pract Oncol. 2:150–157. 2005. View Article : Google Scholar

136 

Greenberg VL, Williams JM, Cogswell JP, Mendenhall M and Zimmer SG: Histone deacetylase inhibitors promote apoptosis and differential cell cycle arrest in anaplastic thyroid cancer cells. Thyroid. 11:315–325. 2001. View Article : Google Scholar

137 

Nishida K, Komiyama T, Miyazawa S, Shen ZN, Furumatsu T, Doi H, Yoshida A, Yamana J, Yamamura M, Ninomiya Y, et al: Histone deacetylase inhibitor suppression of autoanti-body-mediated arthritis in mice via regulation of p16INK4a and p21(WAF1/Cip1) expression. Arthritis Rheum. 50:3365–3376. 2004. View Article : Google Scholar

138 

Deroanne CF, Bonjean K, Servotte S, Devy L, Colige A, Clausse N, Blacher S, Verdin E, Foidart JM, Nusgens BV and Castronovo V: Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene. 21:427–436. 2002. View Article : Google Scholar

139 

Dikic I: Proteasomal and autophagic degradation systems. Ann Rev Biochem. 86:193–224. 2017. View Article : Google Scholar

140 

Nandi D, Tahiliani P, Kumar A and Chandu D: The ubiq-uitin-proteasome system. J Biosci. 31:137–155. 2006. View Article : Google Scholar

141 

Ikeda F and Dikic I: Atypical ubiquitin chains: New molecular signals. 'Protein Modifications: Beyond the Usual Suspects' review series. EMBO Rep. 9:536–542. 2008. View Article : Google Scholar

142 

Mevissen TET and Komander D: Mechanisms of deubiquitinase specificity and regulation. Ann Rev Biochem. 86:159–192. 2017. View Article : Google Scholar

143 

Snyder NA and Silva GM: Deubiquitinating enzymes (DUBs): Regulation, homeostasis, and oxidative stress response. J Biol Chem. 297:1010772021. View Article : Google Scholar

144 

van Wijk SJ, Fulda S, Dikic I and Heilemann M: Visualizing ubiquitination in mammalian cells. EMBO Rep. 20:e465202019. View Article : Google Scholar

145 

Xu H, Ju L, Xiong Y, Yu M, Zhou F, Qian K, Wang G, Xiao Y and Wang X: E3 ubiquitin ligase RNF126 affects bladder cancer progression through regulation of PTEN stability. Cell Death Dis. 12:2392021. View Article : Google Scholar

146 

Xu H, Yang X, Xuan X, Wu D, Zhang J, Xu X, Zhao Y, Ma C and Li D: STAMBP promotes lung adenocarcinoma metastasis by regulating the EGFR/MAPK signaling pathway. Neoplasia. 23:607–623. 2021. View Article : Google Scholar

147 

Xiao C, Wu G, Zhou Z, Zhang X, Wang Y, Song G, Ding E, Sun X, Zhong L, Li S, et al: RBBP6, a RING finger-domain E3 ubiquitin ligase, induces epithelial-mesenchymal transition and promotes metastasis of colorectal cancer. Cell Death Dis. 10:8332019. View Article : Google Scholar

148 

Xue S, Wu W, Wang Z, Lu G, Sun J, Jin X, Xie L, Wang X, Tan C, Wang Z, et al: USP5 Promotes metastasis in non-small cell lung cancer by inducing epithelial-mesenchymal transition via Wnt/β-catenin pathway. Front Pharmacol. 11:6682020. View Article : Google Scholar

149 

Yuan T, Chen Z, Yan F, Qian M, Luo H, Ye S, Cao J, Ying M, Dai X, Gai R, et al: Deubiquitinating enzyme USP10 promotes hepatocellular carcinoma metastasis through deubiquitinating and stabilizing Smad4 protein. Mol Oncol. 14:197–210. 2020. View Article : Google Scholar

150 

Chen Y, Zhou B and Chen D: USP21 promotes cell proliferation and metastasis through suppressing EZH2 ubiquitination in bladder carcinoma. Onco Targets Ther. 10:681–689. 2017. View Article : Google Scholar

151 

Sun H, Ou B, Zhao S, Liu X, Song L, Liu X, Wang R and Peng Z: USP11 promotes growth and metastasis of colorectal cancer via PPP1CA-mediated activation of ERK/MAPK signaling pathway. EBioMedicine. 48:236–247. 2019. View Article : Google Scholar

152 

Zhang C, Xie C, Wang X, Huang Y, Gao S, Lu J, Lu Y and Zhang S: Aberrant USP11 expression regulates NF90 to promote proliferation and metastasis in hepatocellular carcinoma. Am J Cancer Res. 10:1416–1428. 2020.

153 

Xie P, Chen Y, Zhang H, Zhou G, Chao Q, Wang J, Liu Y, Fang J, Xie J, Zhen J, et al: The deubiquitinase OTUD3 stabilizes ACTN4 to drive growth and metastasis of hepatocellular carcinoma. Aging. 13:19317–19338. 2021. View Article : Google Scholar

154 

Zhu R, Liu Y, Zhou H, Li L, Li Y, Ding F, Cao X and Liu Z: Deubiquitinating enzyme PSMD14 promotes tumor metastasis through stabilizing SNAIL in human esophageal squamous cell carcinoma. Cancer Lett. 418:125–134. 2018. View Article : Google Scholar

155 

Chen D, Wang Y, Lu R, Jiang X, Chen X, Meng N, Chen M, Xie S and Yan GR: E3 ligase ZFP91 inhibits Hepatocellular Carcinoma Metabolism Reprogramming by regulating PKM splicing. Theranostics. 10:8558–8572. 2020. View Article : Google Scholar

156 

Yu L, Dong L, Li H, Liu Z, Luo Z, Duan G, Dai X and Lin Z: Ubiquitination-mediated degradation of SIRT1 by SMURF2 suppresses CRC cell proliferation and tumorigenesis. Oncogene. 39:4450–4464. 2020. View Article : Google Scholar

157 

Shen T, Cai LD, Liu YH, Li S, Gan WJ, Li XM, Wang JR, Guo PD, Zhou Q, Lu XX, et al: Ube2v1-mediated ubiquitination and degradation of Sirt1 promotes metastasis of colorectal cancer by epigenetically suppressing autophagy. J Hematol Oncol. 11:952018. View Article : Google Scholar

158 

Guo W, You X, Xu D, Zhang Y, Wang Z, Man K, Wang Z and Chen Y: PAQR3 enhances Twist1 degradation to suppress epithelial-mesenchymal transition and metastasis of gastric cancer cells. Carcinogenesis. 37:397–407. 2016. View Article : Google Scholar

159 

Ye P, Chi X, Cha JH, Luo S, Yang G, Yan X and Yang WH: Potential of E3 ubiquitin ligases in cancer immunity: Opportunities and challenges. Cells. 10:33092021. View Article : Google Scholar

160 

Wei R, Liu X, Yu W, Yang T, Cai W, Liu J, Huang X, Xu GT, Zhao S, Yang J and Liu S: Deubiquitinases in cancer. Oncotarget. 6:12872–12889. 2015. View Article : Google Scholar

161 

Lee BH, Lee MJ, Park S, Oh DC, Elsasser S, Chen PC, Gartner C, Dimova N, Hanna J, Gygi SP, et al: Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature. 467:179–184. 2010. View Article : Google Scholar

162 

Chauhan D, Tian Z, Nicholson B, Kumar KG, Zhou B, Carrasco R, McDermott JL, Leach CA, Fulcinniti M, Kodrasov MP, et al: A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell. 22:345–358. 2012. View Article : Google Scholar

163 

Reiner T, Parrondo R, de Las Pozas A, Palenzuela D and Perez-Stable C: Betulinic acid selectively increases protein degradation and enhances prostate cancer-specific apoptosis: Possible role for inhibition of deubiquitinase activity. PLoS One. 8:e562342013. View Article : Google Scholar

164 

Stowell SR, Ju T and Cummings RD: Protein glycosylation in cancer. Ann Rev Pathol. 10:473–510. 2015. View Article : Google Scholar

165 

Eichler J: Protein glycosylation. Curr Bio. 29:R229–R231. 2019. View Article : Google Scholar

166 

Mammadova-Bach E, Jaeken J, Gudermann T and Braun A: Platelets and defective N-glycosylation. Int J Mol Sci. 21:56302020. View Article : Google Scholar

167 

Clerc F, Reiding KR, Jansen BC, Kammeijer GS, Bondt A and Wuhrer M: Human plasma protein N-glycosylation. Glycoconj J. 33:309–343. 2016. View Article : Google Scholar

168 

Shajahan A, Supekar NT, Gleinich AS and Azadi P: Deducing the N-and O-glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2. Glycobiology. 30:981–988. 2020. View Article : Google Scholar

169 

Magalhães A, Duarte HO and Reis CA: The role of O-glycosylation in human disease. Mol Aspects Med. 79:10096420210. View Article : Google Scholar

170 

Van den Steen P, Rudd PM, Dwek RA and Opdenakker G: Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol. 33:151–208. 1998. View Article : Google Scholar

171 

Chiang AC and Massagué J: Molecular basis of metastasis. N Engl J Med. 359:2814–2823. 2008. View Article : Google Scholar

172 

Läubli H and Borsig L: Altered cell adhesion and glycosylation promote cancer immune suppression and metastasis. Front Immunol. 10:21202019. View Article : Google Scholar

173 

Oliveira-Ferrer L, Legler K and Milde-Langosch K: Role of protein glycosylation in cancer metastasis. Semin Cancer Biol. 44:141–152. 2017. View Article : Google Scholar

174 

Sengupta PK, Bouchie MP, Nita-Lazar M, Yang HY and Kukuruzinska MA: Coordinate regulation of N-glycosylation gene DPAGT1, canonical Wnt signaling and E-cadherin adhesion. J Cell Sci. 126:484–496. 2013. View Article : Google Scholar

175 

Zhao H, Liang Y, Xu Z, Wang L, Zhou F, Li Z, Jin J, Yang Y, Fang Z, Hu Y, et al: N-glycosylation affects the adhesive function of E-Cadherin through modifying the composition of adherens junctions (AJs) in human breast carcinoma cell line MDA-MB-435. J Cell Biochem. 104:162–175. 2008. View Article : Google Scholar

176 

Pinho SS, Reis CA, Paredes J, Magalhães AM, Ferreira AC, Figueiredo J, Xiaogang W, Carneiro F, Gärtner F and Seruca R: The role of N-acetylglucosaminyltransferase III and V in the post-transcriptional modifications of E-cadherin. Hum Mol Genet. 18:2599–2608. 2009. View Article : Google Scholar

177 

Xu Y, Chang R, Xu F, Gao Y, Yang F, Wang C, Xiao J, Su Z, Bi Y, Wang L and Zha X: N-Glycosylation at Asn 402 Stabilizes N-cadherin and promotes cell-cell adhesion of glioma cells. J Cell Biochem. 118:1423–1431. 2017. View Article : Google Scholar

178 

Binder MJ, McCoombe S, Williams ED, McCulloch DR and Ward AC: The extracellular matrix in cancer progression: Role of hyalectan proteoglycans and ADAMTS enzymes. Cancer Lett. 385:55–64. 2017. View Article : Google Scholar

179 

Lagana A, Goetz JG, Cheung P, Raz A, Dennis JW and Nabi IR: Galectin binding to Mgat5-modified N-glycans regulates fibronectin matrix remodeling in tumor cells. Mol Cell Biol. 26:3181–3193. 2006. View Article : Google Scholar

180 

Park JJ and Lee M: Increasing the α 2,6 sialylation of glyco-proteins may contribute to metastatic spread and therapeutic resistance in colorectal cancer. Gut Liver. 7:629–641. 2013. View Article : Google Scholar

181 

Suzuki O, Abe M and Hashimoto Y: Sialylation by β-galactoside α-2,6-sialyltransferase and N-glycans regulate cell adhesion and invasion in human anaplastic large cell lymphoma. Int J Oncol. 46:973–980. 2015. View Article : Google Scholar

182 

Cui J, Huang W, Wu B, Jin J, Jing L, Shi WP, Liu ZY, Yuan L, Luo D, Li L, et al: N-glycosylation by N-acetylglucosaminyltra nsferase V enhances the interaction of CD147/basigin with integrin β1 and promotes HCC metastasis. J Pathol. 245:41–52. 2018. View Article : Google Scholar

183 

Li JH, Huang W, Lin P, Wu B, Fu ZG, Shen HM, Jing L, Liu ZY, Zhou Y, Meng Y, et al: N-linked glycosylation at Asn152 on CD147 affects protein folding and stability: Promoting tumour metastasis in hepatocellular carcinoma. Sci Rep. 6:352102016. View Article : Google Scholar

184 

Jiang K, Li W, Zhang Q, Yan G, Guo K, Zhang S and Liu Y: GP73 N-glycosylation at Asn144 reduces hepatocellular carcinoma cell motility and invasiveness. Oncotarget. 7:23530–23541. 2016. View Article : Google Scholar

185 

Lin TC, Chen ST, Huang MC, Huang J, Hsu CL, Juan HF, Lin HH and Chen CH: GALNT6 expression enhances aggressive phenotypes of ovarian cancer cells by regulating EGFR activity. Oncotarget. 8:42588–42601. 2017. View Article : Google Scholar

186 

Liu C, Li Z, Xu L, Shi Y, Zhang X, Shi S, Hou K, Fan Y, Li C, Wang X, et al: GALNT6 promotes breast cancer metastasis by increasing mucin-type O-glycosylation of α2M. Aging. 12:11794–11811. 2020. View Article : Google Scholar

187 

Hu WT, Yeh CC, Liu SY, Huang MC and Lai IR: The O-glycosylating enzyme GALNT2 suppresses the malignancy of gastric adenocarcinoma by reducing EGFR activities. Am J Cancer Res. 8:1739–1751. 2018.

188 

Kariya Y, Kanno M, Matsumoto-Morita K, Konno M, Yamaguchi Y and Hashimoto Y: Osteopontin O-glycosylation contributes to its phosphorylation and cell-adhesion properties. Biochem J. 463:93–102. 2014. View Article : Google Scholar

189 

Ponath P, Menezes D, Pan C, Chen B, Oyasu M, Strachan D, LeBlanc H, Sun H, Wang XT, Rangan VS, et al: A novel, fully human Anti-fucosyl-GM1 antibody demonstrates potent in vitro and in vivo antitumor activity in preclinical models of small cell lung cancer. Clin Cancer Res. 24:5178–5189. 2018. View Article : Google Scholar

190 

Festuccia C, Mancini A, Gravina GL, Colapietro A, Vetuschi A, Pompili S, Ventura L, Delle Monache S, Iorio R, Del Fattore A, et al: Dual CXCR4 and E-selectin inhibitor, GMI-1359, shows Anti-bone metastatic effects and synergizes with docetaxel in prostate cancer cell intraosseous growth. Cells. 9:322019. View Article : Google Scholar

191 

Taracha A, Kotarba G and Wilanowski T: Methods of analysis of protein phosphorylation. Postepy Biochem. 63:137–142. 2017.In Polish.

192 

Tokuda M and Hatase O: Regulation of neuronal plasticity in the central nervous system by phosphorylation and dephosphorylation. Mol Neurobiol. 17:137–156. 1998. View Article : Google Scholar

193 

Csolle MP, Ooms LM, Papa A and Mitchell CA: PTEN and other PtdIns(3,4,5)P3 lipid phosphatases in breast cancer. Int J Mol Sci. 21:91892020. View Article : Google Scholar

194 

Zeng J, Li X, Liang L, Duan H, Xie S and Wang C: Phosphorylation of CAP1 regulates lung cancer proliferation, migration, and invasion. J Cancer Res Clin Oncol. 148:137–153. 2022. View Article : Google Scholar

195 

Zhang K, Wu R, Mei F, Zhou Y, He L, Liu Y, Zhao X, You J, Liu B, Meng Q and Pei F: Phosphorylated LASS2 inhibits prostate carcinogenesis via negative regulation of Wnt/β-catenin signaling. J Cell Biochem. Apr 14–2021.Epub ahead of print. View Article : Google Scholar

196 

Li J, Enomoto A, Weng L, Sun L and Takahashi M: Dephosphorylation of Girdin by PP2A inhibits breast cancer metastasis. Biochem Biophys Res Commun. 513:28–34. 2019. View Article : Google Scholar

197 

Hainaut P and Plymoth A: Targeting the hallmarks of cancer: Towards a rational approach to next-generation cancer therapy. Curr Opin Oncol. 25:50–51. 2013. View Article : Google Scholar

198 

Elkabets M, Vora S, Juric D, Morse N, Mino-Kenudson M, Muranen T, Tao J, Campos AB, Rodon J, Ibrahim YH, et al: mTORC1 inhibition is required for sensitivity to PI3K p110α inhibitors in PIK3CA-mutant breast cancer. Sci Transl Med. 5:196ra992013. View Article : Google Scholar

199 

Druker BJ: Imatinib mesylate in the treatment of chronic myeloid leukaemia. Expert Opin Pharmacother. 4:963–971. 2003. View Article : Google Scholar

200 

Ulivi P, Chiadini E, Dazzi C, Dubini A, Costantini M, Medri L, Puccetti M, Capelli L, Calistri D, Verlicchi A, et al: Nonsquamous, non-small-cell lung cancer patients who carry a double mutation of EGFR, EML4-ALK or KRAS: Frequency, clinical-pathological characteristics, and response to therapy. Clin Lung Cancer. 17:384–390. 2016. View Article : Google Scholar

201 

Larkin J, Ascierto PA, Dréno B, Atkinson V, Liszkay G, Maio M, Mandalà M, Demidov L, Stroyakovskiy D, Thomas L, et al: Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 371:1867–1876. 2014. View Article : Google Scholar

202 

Murray BW and Miller N: Durability of Kinase-directed therapies-A Network perspective on response and resistance. Mol Cancer Ther. 14:1975–1984. 2015. View Article : Google Scholar

203 

Bagert JD, Mitchener MM, Patriotis AL, Dul BE, Wojcik F, Nacev BA, Feng L, Allis CD and Muir TW: Oncohistone mutations enhance chromatin remodeling and alter cell fates. Nat Chem Biol. 17:403–411. 2021. View Article : Google Scholar

204 

Dawson MA and Kouzarides T: Cancer epigenetics: From mechanism to therapy. Cell. 150:12–27. 2012. View Article : Google Scholar

205 

Clapier CR and Cairns BR: The biology of chromatin remodeling complexes. Ann Rev Biochem. 78:273–304. 2009. View Article : Google Scholar

206 

Becker PB and Workman JL: Nucleosome remodeling and epigenetics. Cold Spring Harbor Perspect Biol. 5:a0179052013. View Article : Google Scholar

207 

Wang W, Côté J, Xue Y, Zhou S, Khavari PA, Biggar SR, Muchardt C, Kalpana GV, Goff SP, Yaniv M, et al: Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J. 15:5370–5382. 1996. View Article : Google Scholar

208 

Morrison AJ and Shen X: Chromatin remodelling beyond transcription: The INO80 and SWR1 complexes. Nat Rev Mol Cell Biol. 10:373–384. 2009. View Article : Google Scholar

209 

Gévry N, Chan HM, Laflamme L, Livingston DM and Gaudreau L: p21 transcription is regulated by differential localization of histone H2A.Z. Genes Dev. 21:1869–1881. 2007. View Article : Google Scholar

210 

Wong MM, Cox LK and Chrivia JC: The chromatin remodeling protein, SRCAP, is critical for deposition of the histone variant H2A.Z at promoters. J Biol Chem. 282:26132–26139. 2007. View Article : Google Scholar

211 

Tong JK, Hassig CA, Schnitzler GR, Kingston RE and Schreiber SL: Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature. 395:917–921. 1998. View Article : Google Scholar

212 

Hendrich B and Bird A: Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol. 18:6538–6547. 1998. View Article : Google Scholar

213 

Günther K, Rust M, Leers J, Boettger T, Scharfe M, Jarek M, Bartkuhn M and Renkawitz R: Differential roles for MBD2 and MBD3 at methylated CpG islands, active promoters and binding to exon sequences. Nucleic Acids Res. 41:3010–3021. 2013. View Article : Google Scholar

214 

Poot RA, Bozhenok L, van den Berg DL, Steffensen S, Ferreira F, Grimaldi M, Gilbert N, Ferreira J and Varga-Weisz PD: The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci. Nat Cell Biol. 6:1236–1244. 2004. View Article : Google Scholar

215 

Cavellán E, Asp P, Percipalle P and Farrants AK: The WSTF-SNF2h chromatin remodeling complex interacts with several nuclear proteins in transcription. J Biol Chem. 281:16264–16271. 2006. View Article : Google Scholar

216 

Centore RC, Sandoval GJ, Soares LMM, Kadoch C and Chan HM: Mammalian SWI/SNF chromatin remodeling complexes: Emerging mechanisms and therapeutic strategies. Trends Genet. 36:936–950. 2020. View Article : Google Scholar

217 

Yang Y, Liu L, Li M, Cheng X, Fang M, Zeng Q and Xu Y: The chromatin remodeling protein BRG1 links ELOVL3 transactivation to prostate cancer metastasis. Biochim Biophys Acta Gene Regul Mech. 1862:834–845. 2019. View Article : Google Scholar

218 

Liao XH, Zhang Y, Dong WJ, Shao ZM and Li DQ: Chromatin remodeling protein MORC2 promotes breast cancer invasion and metastasis through a PRD domain-mediated interaction with CTNND1. Oncotarget. 8:97941–97954. 2017. View Article : Google Scholar

219 

Wang J, Yan HB, Zhang Q, Liu WY, Jiang YH, Peng G, Wu FZ, Liu X, Yang PY and Liu F: Enhancement of E-cadherin expression and processing and driving of cancer cell metastasis by ARID1A deficiency. Oncogene. 40:5468–5481. 2021. View Article : Google Scholar

220 

Hombach S and Kretz M: Non-coding RNAs: Classification, biology and functioning. Adv Exp Med Biol. 937:3–17. 2016. View Article : Google Scholar

221 

Zhang P, Wu W, Chen Q and Chen M: Non-coding RNAs and their integrated networks. J Integr Bioinform. 16:201900272019. View Article : Google Scholar

222 

Lu TX and Rothenberg ME: MicroRNA. J Allergy Clin Immunol. 141:1202–1207. 2018. View Article : Google Scholar

223 

Ro-Choi TS: Nuclear snRNA and nuclear function (discovery of 5'cap structures in RNA). Crit Rev Eukaryot Gene Expr. 9:107–158. 1999. View Article : Google Scholar

224 

Deryusheva S, Talross GJS and Gall JG: SnoRNA guide activities: Real and ambiguous. RNA. 27:1363–1373. 2021. View Article : Google Scholar

225 

Ali T and Grote P: Beyond the RNA-dependent function of lncRNA genes. Elife. 9:e605832020. View Article : Google Scholar

226 

Bridges MC, Daulagala AC and Kourtidis A: LNCcation: lncRNA localization and function. J Cell Biol. 220:e2020090452021. View Article : Google Scholar

227 

Yang Q, Li F, He AT and Yang BB: Circular RNAs: Expression, localization, and therapeutic potentials. Mol Ther. 29:1683–1702. 2021. View Article : Google Scholar

228 

Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019. View Article : Google Scholar

229 

Chen B, Li Q, Zhou Y, Wang X, Zhang Q, Wang Y, Zhuang H, Jiang X and Xiong W: The long coding RNA AFAP1-AS1 promotes tumor cell growth and invasion in pancreatic cancer through upregulating the IGF1R oncogene via sequestration of miR-133a. Cell Cycle. 17:1949–1966. 2018. View Article : Google Scholar

230 

Petri BJ and Klinge CM: Regulation of breast cancer metastasis signaling by miRNAs. Cancer Metastasis Rev. 39:837–886. 2020. View Article : Google Scholar

231 

Aigner A: MicroRNAs (miRNAs) in cancer invasion and metastasis: Therapeutic approaches based on metastasis-related miRNAs. J Mol Med. 89:445–457. 2011. View Article : Google Scholar

232 

Feng X, Wang Z, Fillmore R and Xi Y: MiR-200, a new star miRNA in human cancer. Cancer Lett. 344:166–173. 2014. View Article : Google Scholar

233 

Krupa A, Jenkins R, Luo DD, Lewis A, Phillips A and Fraser D: Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am So Nephrol. 21:438–447. 2010. View Article : Google Scholar

234 

Li J, Meng H, Bai Y and Wang K: Regulation of lncRNA and its role in cancer metastasis. Oncol Res. 23:205–217. 2016. View Article : Google Scholar

235 

Hao Y, Baker D and Ten Dijke P: TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci. 20:27672019. View Article : Google Scholar

236 

Bray SJ: Notch signalling in context. Nat Rev Mol Cell Biol. 17:722–735. 2016. View Article : Google Scholar

237 

Browning L, Patel MR, Horvath EB, Tawara K and Jorcyk CL: IL-6 and ovarian cancer: Inflammatory cytokines in promotion of metastasis. Cancer Manage Res. 10:6685–6693. 2018. View Article : Google Scholar

238 

Yang S, Liu Y, Li MY, Ng CSH, Yang SL, Wang S, Zou C, Dong Y, Du J, Long X, et al: FOXP3 promotes tumor growth and metastasis by activating Wnt/β-catenin signaling pathway and EMT in non-small cell lung cancer. Mol Cancer. 16:1242017. View Article : Google Scholar

239 

Li Y, Egranov SD, Yang L and Lin C: Molecular mechanisms of long noncoding RNAs-mediated cancer metastasis. Genes Chromosomes Cancer. 58:200–207. 2019. View Article : Google Scholar

240 

Fang C, Wang L, Gong C, Wu W, Yao C and Zhu S: Long non-coding RNAs: How to regulate the metastasis of non-small-cell lung cancer. J Cell Mol Med. 24:3282–3291. 2020. View Article : Google Scholar

241 

Roe JS, Hwang CI, Somerville TDD, Milazzo JP, Lee EJ, Da Silva B, Maiorino L, Tiriac H, Young CM, Miyabayashi K, et al: Enhancer reprogramming promotes pancreatic cancer metastasis. Cell. 170:875–888.e20. 2017. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Tan T, Shi P, Abbas MN, Wang Y, Xu J, Chen Y and Cui H: Epigenetic modification regulates tumor progression and metastasis through EMT (Review). Int J Oncol 60: 70, 2022.
APA
Tan, T., Shi, P., Abbas, M.N., Wang, Y., Xu, J., Chen, Y., & Cui, H. (2022). Epigenetic modification regulates tumor progression and metastasis through EMT (Review). International Journal of Oncology, 60, 70. https://doi.org/10.3892/ijo.2022.5360
MLA
Tan, T., Shi, P., Abbas, M. N., Wang, Y., Xu, J., Chen, Y., Cui, H."Epigenetic modification regulates tumor progression and metastasis through EMT (Review)". International Journal of Oncology 60.6 (2022): 70.
Chicago
Tan, T., Shi, P., Abbas, M. N., Wang, Y., Xu, J., Chen, Y., Cui, H."Epigenetic modification regulates tumor progression and metastasis through EMT (Review)". International Journal of Oncology 60, no. 6 (2022): 70. https://doi.org/10.3892/ijo.2022.5360
Copy and paste a formatted citation
x
Spandidos Publications style
Tan T, Shi P, Abbas MN, Wang Y, Xu J, Chen Y and Cui H: Epigenetic modification regulates tumor progression and metastasis through EMT (Review). Int J Oncol 60: 70, 2022.
APA
Tan, T., Shi, P., Abbas, M.N., Wang, Y., Xu, J., Chen, Y., & Cui, H. (2022). Epigenetic modification regulates tumor progression and metastasis through EMT (Review). International Journal of Oncology, 60, 70. https://doi.org/10.3892/ijo.2022.5360
MLA
Tan, T., Shi, P., Abbas, M. N., Wang, Y., Xu, J., Chen, Y., Cui, H."Epigenetic modification regulates tumor progression and metastasis through EMT (Review)". International Journal of Oncology 60.6 (2022): 70.
Chicago
Tan, T., Shi, P., Abbas, M. N., Wang, Y., Xu, J., Chen, Y., Cui, H."Epigenetic modification regulates tumor progression and metastasis through EMT (Review)". International Journal of Oncology 60, no. 6 (2022): 70. https://doi.org/10.3892/ijo.2022.5360
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team