Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
July-2022 Volume 61 Issue 1

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2022 Volume 61 Issue 1

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Biomarkers and 3D models predicting response to immune checkpoint blockade in head and neck cancer (Review)

  • Authors:
    • Annette Affolter
    • Johann Kern
    • Karen Bieback
    • Claudia Scherl
    • Nicole Rotter
    • Anne Lammert
  • View Affiliations / Copyright

    Affiliations: Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Medical Faculty Mannheim of Heidelberg University, D‑68167 Mannheim, Germany, Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden‑Württemberg‑Hessen, D‑68167 Mannheim, Germany
    Copyright: © Affolter et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 88
    |
    Published online on: June 1, 2022
       https://doi.org/10.3892/ijo.2022.5378
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Immunotherapy has evolved into a powerful tool in the fight against a number of types of cancer, including head and neck squamous cell carcinomas (HNSCC). Although checkpoint inhibition (CPI) has definitely enriched the treatment options for advanced stage HNSCC during the past decade, the percentage of patients responding to treatment is widely varying between 14‑32% in second‑line setting in recurrent or metastatic HNSCC with a sporadic durability. Clinical response and, consecutively, treatment success remain unpredictable in most of the cases. One potential factor is the expression of target molecules of the tumor allowing cancer cells to acquire therapy resistance mechanisms. Accordingly, analyzing and modeling the complexity of the tumor microenvironment (TME) is key to i) stratify subgroups of patients most likely to respond to CPI and ii) to define new combinatorial treatment regimens. Particularly in a heterogeneous disease such as HNSCC, thoroughly studying the interactions and crosstalking between tumor and TME cells is one of the biggest challenges. Sophisticated 3D models are therefore urgently needed to be able to validate such basic science hypotheses and to test novel immuno‑oncologic treatment regimens in consideration of the individual biology of each tumor. The present review will first summarize recent findings on immunotherapy, predictive biomarkers, the role of the TME and signaling cascades eliciting during CPI. Second, it will highlight the significance of current promising approaches to establish HNSCC 3D models for new immunotherapies. The results are encouraging and indicate that data obtained from patient‑specific tumors in a dish might be finally translated into personalized immuno‑oncology.
View Figures

Figure 1

Figure 2

View References

1 

Mandal R, Şenbabaoğlu Y, Desrichard A, Havel JJ, Dalin MG, Riaz N, Lee KW, Ganly I, Hakimi AA, Chan TA and Morris LG: The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight. 1:e898292016. View Article : Google Scholar : PubMed/NCBI

2 

Xu Q, Wang C, Yuan X, Feng Z and Han Z: Prognostic value of tumor-infiltrating lymphocytes for patients with head and neck squamous cell carcinoma. Transl Oncol. 10:10–16. 2017. View Article : Google Scholar

3 

Pardoll DM: The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Koeck S, Kern J, Zwierzina M, Gamerith G, Lorenz E, Sopper S, Zwierzina H and Amann A: The influence of stromal cells and tumor-microenvironment-derived cytokines and chemokines on CD3+CD8+ tumor infiltrating lymphocyte subpopulations. Oncoimmunology. 6:e13236172017. View Article : Google Scholar

5 

Szturz P and Vermorken JB: Translating KEYNOTE-048 into practice recommendations for head and neck cancer. Ann Transl Med. 8:9752020. View Article : Google Scholar : PubMed/NCBI

6 

Pai SI, Zandberg DP and Strome SE: The role of antagonists of the PD-1:PD-L1/PD-L2 axis in head and neck cancer treatment. Oral oncol. 61:152–158. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Sun C, Mezzadra R and Schumacher TN: Regulation and Function of the PD-L1 Checkpoint. Immunity. 48:434–452. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Keck MK, Zuo Z, Khattri A, Stricker TP, Brown CD, Imanguli M, Rieke D, Endhardt K, Fang P, Brägelmann J, et al: Integrative analysis of head and neck cancer identifies two biologically distinct HPV and three non-HPV subtypes. Clin Cancer Res. 21:870–881. 2015. View Article : Google Scholar

9 

Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, et al: Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 192:1027–1034. 2000. View Article : Google Scholar : PubMed/NCBI

10 

van Elsas A, Hurwitz AA and Allison JP: Combination immunotherapy of B16 melanoma using anti-cytotoxic T lympho-cyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med. 190:355–366. 1999. View Article : Google Scholar : PubMed/NCBI

11 

Krummel MF and Allison JP: CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 182:459–465. 1995. View Article : Google Scholar : PubMed/NCBI

12 

Chow LQM, Haddad R, Gupta S, Mahipal A, Mehra R, Tahara M, Berger R, Eder JP, Burtness B, Lee SH, et al: Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: Results from the phase ib KEYNOTE-012 expansion cohort. J Clin Oncol. 34:3838–3845. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, Harrington K, Kasper S, Vokes EE, Even C, et al: Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 375:1856–1867. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Seiwert TY, Burtness B, Mehra R, Weiss J, Berger R, Eder JP, Heath K, McClanahan T, Lunceford J, Gause C, et al: Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): An open-label, multicentre, phase 1b trial. Lancet Oncol. 17:956–965. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Soulieres D, Cohen E, Le Tourneau C, Dinis J, Licitra L, Ahn MJ, Soria A, Machiels JP, Mach N, Mehra R, et al: Abstract CT115: Updated survival results of the KEYNOTE-040 study of pembrolizumab vs standard-of-care chemotherapy for recurrent or metastatic head and neck squamous cell carcinoma. Cancer Res. 78:CT1152018.

16 

Economopoulou P, Agelaki S, Perisanidis C, Giotakis E and Psyrri A: The promise of immunotherapy in head and neck squamous cell carcinoma. Ann Oncol. 27:1675–1685. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Hsieh JC, Wang HM, Wu MH, Chang KP, Chang PH, Liao CT and Liau CT: Review of emerging biomarkers in head and neck squamous cell carcinoma in the era of immunotherapy and targeted therapy. Head Neck. 41(Suppl 1): S19–S45. 2019. View Article : Google Scholar

18 

Lee TW, Lai A, Harms JK, Singleton DC, Dickson BD, Macann AMJ, Hay MP and Jamieson SMF: Patient-Derived xenograft and organoid models for precision medicine targeting of the tumour microenvironment in head and neck cancer. Cancers (Basel). 12:37432020. View Article : Google Scholar

19 

Sailer V, Gevensleben H, Dietrich J, Goltz D, Kristiansen G, Bootz F and Dietrich D: Clinical performance validation of PITX2 DNA methylation as prognostic biomarker in patients with head and neck squamous cell carcinoma. PLoS One. 12:e01794122017. View Article : Google Scholar : PubMed/NCBI

20 

Prochnow S, Wilczak W, Bosch V, Clauditz TS and Muenscher A: ERCC1, XPF and XPA-locoregional differences and prognostic value of DNA repair protein expression in patients with head and neck squamous cell carcinoma. Clin Oral Investig. 23:3319–3329. 2019. View Article : Google Scholar

21 

Bauman JE, Austin MC, Schmidt R, Kurland BF, Vaezi A, Hayes DN, Mendez E, Parvathaneni U, Chai X, Sampath S and Martins RG: ERCC1 is a prognostic biomarker in locally advanced head and neck cancer: Results from a randomised, phase II trial. Br J Cancer. 109:2096–2105. 2013. View Article : Google Scholar : PubMed/NCBI

22 

da Costa AA, D'Almeida Costa F, Ribeiro AR, Guimarães AP, Chinen LT, Lopes CA and de Lima VC: Low PTEN expression is associated with worse overall survival in head and neck squamous cell carcinoma patients treated with chemotherapy and cetuximab. Int J Clin Oncol. 20:282–289. 2015. View Article : Google Scholar

23 

Slavik M, Shatokhina T, Sana J, Ahmad P, Kazda T, Selingerova I, Hermanova M, Cervena R, Novotny T, Burkon P, et al: Expression of CD44, EGFR, p16, and their mutual combinations in patients with head and neck cancer: Impact on outcomes of intensity-modulated radiation therapy. Head Neck. 41:940–949. 2019. View Article : Google Scholar

24 

Yi M, Jiao D, Xu H, Liu Q, Zhao W, Han X and Wu K: Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol Cancer. 17:129. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Li X, Shao C, Shi Y and Han W: Lessons learned from the blockade of immune checkpoints in cancer immunotherapy. J Hematol Oncol. 11:312018. View Article : Google Scholar : PubMed/NCBI

26 

Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, et al: PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 515:568–571. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Ribas A: Adaptive immune resistance: How cancer protects from immune attack. Cancer Discov. 5:915–919. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Leduc C, Adam J, Louvet E, Sourisseau T, Dorvault N, Bernard M, Maingot E, Faivre L, Cassin-Kuo MS, Boissier E, et al: TPF induction chemotherapy increases PD-L1 expression in tumour cells and immune cells in head and neck squamous cell carcinoma. ESMO Open. 3:e0002572018. View Article : Google Scholar : PubMed/NCBI

29 

Ling DC, Bakkenist CJ, Ferris RL and Clump DA: Role of immunotherapy in head and neck cancer. Semin Radiat Oncol. 28:12–16. 2018. View Article : Google Scholar

30 

Knocke S, Fleischmann-Mundt B, Saborowski M, Manns MP, Kühnel F, Wirth TC and Woller N: Tailored tumor immunogenicity reveals regulation of CD4 and CD8 T cell responses against cancer. Cell Rep. 17:2234–2246. 2016. View Article : Google Scholar : PubMed/NCBI

31 

de Ruiter EJ, Ooft ML, Devriese LA and Willems SM: The prognostic role of tumor infiltrating T-lymphocytes in squamous cell carcinoma of the head and neck: A systematic review and meta-analysis. Oncoimmunology. 6:e13561482017. View Article : Google Scholar : PubMed/NCBI

32 

Gooden MJ, de Bock GH, Leffers N, Daemen T and Nijman HW: The prognostic influence of tumour-infiltrating lymphocytes in cancer: A systematic review with meta-analysis. Br J Cancer. 105:93–103. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Noble F, Mellows T, McCormick Matthews LH, Bateman AC, Harris S, Underwood TJ, Byrne JP, Bailey IS, Sharland DM, Kelly JJ, et al: Tumour infiltrating lymphocytes correlate with improved survival in patients with oesophageal adenocarcinoma. Cancer Immunol Immunother. 65:651–662. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Xu P, Fan W, Zhang Z, Wang J, Wang P, Li Y and Yu M: The clinicopathological and prognostic implications of FoxP3+ Regulatory T cells in patients with colorectal cancer: A meta-analysis. Front Physiol. 8:9502017. View Article : Google Scholar

35 

Weller P, Bankfalvi A, Gu X, Dominas N, Lehnerdt GF, Zeidler R, Lang S, Brandau S and Dumitru CA: The role of tumour FoxP3 as prognostic marker in different subtypes of head and neck cancer. Eur J Cancer. 50:1291–1300. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Seminerio I, Descamps G, Dupont S, de Marrez L, Laigle JA, Lechien JR, Kindt N, Journe F and Saussez S: Infiltration of FoxP3+ Regulatory T cells is a strong and independent prognostic factor in head and neck squamous cell carcinoma. Cancers (Basel). 11:2272019. View Article : Google Scholar

37 

Echarti A, Hecht M, Büttner-Herold M, Haderlein M, Hartmann A, Fietkau R and Distel L: CD8+ and regulatory T cells differentiate tumor immune phenotypes and predict survival in locally advanced head and neck cancer. Cancers (Basel). 11:13982019. View Article : Google Scholar

38 

Cho JH and Lim YC: Prognostic impact of regulatory T cell in head and neck squamous cell carcinoma: A systematic review and meta-analysis. Oral Oncol. 112:1050842021. View Article : Google Scholar

39 

Lukesova E, Boucek J, Rotnaglova E, Salakova M, Koslabova E, Grega M, Eckschlager T, Rihova B, Prochazka B, Klozar J and Tachezy R: High level of tregs is a positive prognostic marker in patients with HPV-positive oral and oropharyngeal squamous cell carcinomas. Biomed Res Int. 2014:3039292014. View Article : Google Scholar : PubMed/NCBI

40 

Pedroza-Pacheco I, Madrigal A and Saudemont A: Interaction between natural killer cells and regulatory T cells: Perspectives for immunotherapy. Cell Mol Immunol. 10:222–229. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Renoux VM, Bisig B, Langers I, Dortu E, Clémenceau B, Thiry M, Deroanne C, Colige A, Boniver J, Delvenne P and Jacobs N: Human papillomavirus entry into NK cells requires CD16 expression and triggers cytotoxic activity and cytokine secretion. Eur J Immunol. 41:3240–3252. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Wolf GT, Chepeha DB, Bellile E, Nguyen A, Thomas D and McHugh J: University of Michigan Head and Neck SPORE Program: Tumor infiltrating lymphocytes (TIL) and prognosis in oral cavity squamous carcinoma: A preliminary study. Oral Oncol. 51:90–95. 2015. View Article : Google Scholar

43 

Desrichard A, Kuo F, Chowell D, Lee KW, Riaz N, Wong RJ, Chan TA and Morris LGT: Tobacco smoking-associated alterations in the immune microenvironment of squamous cell carcinomas. J Natl Cancer Inst. 110:1386–1392. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Choi Y, Shi Y, Haymaker CL, Naing A, Ciliberto G and Hajjar J: T-cell agonists in cancer immunotherapy. J Immunother Cancer. 8:e0009662020. View Article : Google Scholar : PubMed/NCBI

45 

Mahoney KM, Rennert PD and Freeman GJ: Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov. 14:561–584. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Stämpfli MR and Anderson GP: How cigarette smoke skews immune responses to promote infection, lung disease and cancer. Nat Rev Immunol. 9:377–384. 2009. View Article : Google Scholar : PubMed/NCBI

47 

Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, et al: Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 348:124–128. 2015. View Article : Google Scholar : PubMed/NCBI

48 

de la Iglesia JV, Slebos RJC, Martin-Gomez L, Wang X, Teer JK, Tan AC, Gerke TA, Aden-Buie G, van Veen T, Masannat J, et al: Effects of tobacco smoking on the tumor immune microenvironment in Head and Neck squamous cell carcinoma. Clin Cancer Res. 26:1474–1485. 2020. View Article : Google Scholar :

49 

Yarchoan M, Hopkins A and Jaffee EM: Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med. 377:2500–2501. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Seiwert TY, Haddad R, Bauml J, Weiss J, Pfister DG, Gupta S, Mehra R, Gluck I, Kang H, Worden F, et al: Abstract LB-339: Biomarkers predictive of response to pembrolizumab in head and neck cancer (HNSCC). Cancer Res. 78:LB-339. 2018.

51 

Hanna GJ, Lizotte P, Cavanaugh M, Kuo FC, Shivdasani P, Frieden A, Chau NG, Schoenfeld JD, Lorch JH, Uppaluri R, et al: Frameshift events predict anti-PD-1/L1 response in head and neck cancer. JCI Insight. 3:e988112018. View Article : Google Scholar

52 

Samstein RM, Lee C-H, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, Barron DA, Zehir A, Jordan EJ, Omuro A, et al: Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 51:202–206. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Li W, Wildsmith S, Ye J, Si H, Morsli N, He P, Shetty J, Yovine AJ, Holoweckyj N, Raja R, et al: Plasma-based tumor mutational burden (bTMB) as predictor for survival in phase III EAGLE study: Durvalumab (D) ± tremelimumab (T) versus chemotherapy (CT) in recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) after platinum failure. J Clin Oncol. 38:65112020. View Article : Google Scholar

54 

Alexandrov LB, Ju YS, Haase K, Van Loo P, Martincorena I, Nik-Zainal S, Totoki Y, Fujimoto A, Nakagawa H, Shibata T, et al: Mutational signatures associated with tobacco smoking in human cancer. Science. 354:618–622. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Gajewski TF: The next hurdle in cancer immunotherapy: Overcoming the Non-T-Cell-inflamed tumor microenvironment. Semin Oncol. 42:663–671. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Ribas A, Shin DS, Zaretsky J, Frederiksen J, Cornish A, Avramis E, Seja E, Kivork C, Siebert J, Kaplan-Lefko P, et al: PD-1 blockade expands intratumoral Memory T cells. Cancer Immunol Res. 4:194–203. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Gavrielatou N, Doumas S, Economopoulou P, Foukas PG and Psyrri A: Biomarkers for immunotherapy response in head and neck cancer. Cancer Treat Rev. 84:1019772020. View Article : Google Scholar : PubMed/NCBI

58 

Jia YQ, Yang B, Wen LL, Mu WX, Wang Z and Cheng B: Prognostic value of immune checkpoint molecules in head and neck cancer: A meta-analysis. Aging. 11:501–522. 2019. View Article : Google Scholar : PubMed/NCBI

59 

Botticelli A, Cerbelli B, Lionetto L, Zizzari I, Salati M, Pisano A, Federica M, Simmaco M, Nuti M and Marchetti P: Can IDO activity predict primary resistance to anti-PD-1 treatment in NSCLC? J Transl Med. 16:2192018. View Article : Google Scholar : PubMed/NCBI

60 

Lin DJ, Ng JCK, Huang L, Robinson M, O'Hara J, Wilson JA and Mellor AL: The immunotherapeutic role of indoleamine 2,3-dioxygenase in head and neck squamous cell carcinoma: A systematic review. Clin Otolaryngol. 46:919–934. 2021. View Article : Google Scholar : PubMed/NCBI

61 

Messerschmidt C, Obermayer B, Klinghammer K, Ochsenreither S, Treue D, Stenzinger A, Glimm H, Fröhling S, Kindler T, Brandts CH, et al: Distinct immune evasion in APOBEC-enriched, HPV-negative HNSCC. Int J Cancer. 147:2293–2302. 2020. View Article : Google Scholar : PubMed/NCBI

62 

Chen YP, Wang YQ, Lv JW, Li YQ, Chua MLK, Le QT, Lee N, Colevas AD, Seiwert T, Hayes DN, et al: Identification and validation of novel microenvironment-based immune molecular subgroups of head and neck squamous cell carcinoma: Implications for immunotherapy. Ann Oncol. 30:68–75. 2019. View Article : Google Scholar

63 

Brierley JD, Gospodarowicz MK and Wittekind C: TNM classification of malignant tumours. John Wiley & Sons; 2017

64 

Wondergem NE, Nijenhuis DNLM, Poell JB, Leemans CR, Brakenhoff RH and van de Ven R: At the crossroads of molecular biology and immunology: Molecular pathways for immunological targeting of head and neck squamous cell carcinoma. Front Oral Health. 2:6479802021. View Article : Google Scholar

65 

Spranger S and Gajewski TF: Impact of oncogenic pathways on evasion of antitumour immune responses. Nat Rev Cancer. 18:139–147. 2018. View Article : Google Scholar : PubMed/NCBI

66 

Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, Xu C, McKenzie JA, Zhang C, Liang X, et al: Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 6:202–216. 2016. View Article : Google Scholar :

67 

Sai J, Owens P, Novitskiy SV, Hawkins OE, Vilgelm AE, Yang J, Sobolik T, Lavender N, Johnson AC, McClain C, et al: PI3K inhibition reduces mammary tumor growth and facilitates anti-tumor immunity and Anti-PD1 responses. Clin Cancer Res. 23:3371–3384. 2017. View Article : Google Scholar :

68 

Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y and Hu LL: ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 19:1997–2007. 2020.PubMed/NCBI

69 

Ngan HL, Liu Y, Fong AY, Poon PHY, Yeung CK, Chan SSM, Lau A, Piao W, Li H, Tse JSW, et al: MAPK pathway mutations in head and neck cancer affect immune microenvironments and ErbB3 signaling. Life Sci Alliance. 3:e2019005452020. View Article : Google Scholar : PubMed/NCBI

70 

de Ruiter EJ, Ooft ML, Devriese LA and Willems SM: The prognostic role of tumor infiltrating T-lymphocytes in squamous cell carcinoma of the head and neck: A systematic review and meta-analysis. Oncoimmunology. 6:e13561482017. View Article : Google Scholar : PubMed/NCBI

71 

Takikita M, Xie R, Chung JY, Cho H, Ylaya K, Hong SM, Moskaluk CA and Hewitt SM: Membranous expression of Her3 is associated with a decreased survival in head and neck squamous cell carcinoma. J Transl Med. 9:1262011. View Article : Google Scholar : PubMed/NCBI

72 

Motedayen Aval L, Pease JE, Sharma R and Pinato DJ: Challenges and opportunities in the clinical development of STING agonists for cancer immunotherapy. J Clin Med. 9:33232020. View Article : Google Scholar :

73 

Zandberg D, Ferris R, Laux D, Mehra R, Nabell L, Kaczmar J, Gibson MK, Kim YJ, Neupane P, Bauman J, et al: 71P A phase II study of ADU-S100 in combination with pembrolizumab in adult patients with PD-L1+ recurrent or metastatic HNSCC: Preliminary safety, efficacy and PK/PD results. Ann Oncol. 31:S1446–S1447. 2020. View Article : Google Scholar

74 

Pan BS, Perera SA, Piesvaux JA, Presland JP, Schroeder GK, Cumming JN, Trotter BW, Altman MD, Buevich AV, Cash B, et al: An orally available non-nucleotide STING agonist with antitumor activity. Science. 369:eaba60982020. View Article : Google Scholar : PubMed/NCBI

75 

Chin EN, Yu C, Vartabedian VF, Jia Y, Kumar M, Gamo AM, Vernier W, Ali SH, Kissai M, Lazar DC, et al: Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic. Science. 369:993–999. 2020. View Article : Google Scholar : PubMed/NCBI

76 

Zander H, Müller-Egert S, Zwiewka M, Groß S, van Zandbergen G and Engelbergs J: Checkpoint inhibitors for cancer therapy. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 63:1322–1330. 2020.In German. View Article : Google Scholar : PubMed/NCBI

77 

Cohen EEW, Soulières D, Le Tourneau C, Dinis J, Licitra L, Ahn MJ, Soria A, Machiels JP, Mach N, Mehra R, et al: Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): A randomised, open-label, phase 3 study. Lancet. 393:156–167. 2019. View Article : Google Scholar

78 

Burtness B, Harrington KJ, Greil R, Soulières D, Tahara M, de Castro G Jr, Psyrri A, Basté N, Neupane P, Bratland Å, et al: Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): A randomised, open-label, phase 3 study. Lancet. 394:1915–1928. 2019. View Article : Google Scholar : PubMed/NCBI

79 

Prasad V and Kaestner V: Nivolumab and pembrolizumab: Monoclonal antibodies against programmed cell death-1 (PD-1) that are interchangeable. Semin Oncol. 44:132–135. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Fessas P, Lee H, Ikemizu S and Janowitz T: A molecular and preclinical comparison of the PD-1-targeted T-cell checkpoint inhibitors nivolumab and pembrolizumab. Semin Oncol. 44:136–140. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Bauml J, Seiwert TY, Pfister DG, Worden F, Liu SV, Gilbert J, Saba NF, Weiss J, Wirth L, Sukari A, et al: Pembrolizumab for Platinum-and Cetuximab-refractory head and neck cancer: Results from a single-arm, phase II study. J Clin Oncol. 35:1542–1549. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, Harrington KJ, Kasper S, Vokes EE, Even C, et al: Nivolumab vs investigator's choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2-year long-term survival update of CheckMate 141 with analyses by tumor PD-L1 expression. Oral Oncol. 81:45–51. 2018. View Article : Google Scholar : PubMed/NCBI

83 

Rasmussen JH, Lelkaitis G, Håkansson K, Vogelius IR, Johannesen HH, Fischer BM, Bentzen SM, Specht L, Kristensen CA, von Buchwald C, et al: Intratumor heterogeneity of PD-L1 expression in head and neck squamous cell carcinoma. Br J Cancer. 120:1003–1006. 2019. View Article : Google Scholar : PubMed/NCBI

84 

Moratin J, Metzger K, Safaltin A, Herpel E, Hoffmann J, Freier K, Hess J and Horn D: Upregulation of PD-L1 and PD-L2 in neck node metastases of head and neck squamous cell carcinoma. Head Neck. 41:2484–2491. 2019. View Article : Google Scholar : PubMed/NCBI

85 

Feng Y, Jin H, Guo K, Xiang Y, Zhang Y, Du W, Shen M and Ruan S: Results from a Meta-analysis of Combination of PD-1/PD-L1 and CTLA-4 inhibitors in malignant cancer patients: Does PD-L1 matter? Front Pharmacol. 12:572845. 2021. View Article : Google Scholar : PubMed/NCBI

86 

Tardy MP, Di Mauro I, Ebran N, Refae S, Bozec A, Benezery K, Peyrade F, Guigay J, Sudaka-Bahadoran A, Badoual C, et al: Microsatellite instability associated with durable complete response to PD-L1 inhibitor in head and neck squamous cell carcinoma. Oral Oncol. 80:104–107. 2018. View Article : Google Scholar : PubMed/NCBI

87 

Evrard D, Hourseau M, Couvelard A, Paradis V, Gauthier H, Raymond E, Halimi C, Barry B and Faivre S: PD-L1 expression in the microenvironment and the response to checkpoint inhibitors in head and neck squamous cell carcinoma. Oncoimmunology. 9:18444032020. View Article : Google Scholar : PubMed/NCBI

88 

Nielsen C, Ohm-Laursen L, Barington T, Husby S and Lillevang ST: Alternative splice variants of the human PD-1 gene. Cell Immunol. 235:109–116. 2005. View Article : Google Scholar : PubMed/NCBI

89 

Greisen SR, Rasmussen TK, Stengaard-Pedersen K, Hetland ML, Hørslev-Petersen K, Hvid M and Deleuran B: Increased soluble programmed death-1 (sPD-1) is associated with disease activity and radiographic progression in early rheumatoid arthritis. Scand J Rheumatol. 43:101–108. 2014. View Article : Google Scholar

90 

Zhu X and Lang J: Soluble PD-1 and PD-L1: Predictive and prognostic significance in cancer. Oncotarget. 8:97671–97682. 2017. View Article : Google Scholar : PubMed/NCBI

91 

Wei W, Xu B, Wang Y and Wu C, Jiang J and Wu C: Prognostic significance of circulating soluble programmed death ligand-1 in patients with solid tumors: A meta-analysis. Medicine (Baltimore). 97:e96172018. View Article : Google Scholar

92 

Wu P, Wu D, Li L, Chai Y and Huang J: PD-L1 and survival in solid tumors: A meta-analysis. PLoS One. 10:e01314032015. View Article : Google Scholar : PubMed/NCBI

93 

Gandini S, Massi D and Mandalà M: PD-L1 expression in cancer patients receiving anti PD-1/PD-L1 antibodies: A systematic review and meta-analysis. Crit Rev Oncol Hematol. 100:88–98. 2016. View Article : Google Scholar : PubMed/NCBI

94 

Strati A, Koutsodontis G, Papaxoinis G, Angelidis I, Zavridou M, Economopoulou P, Kotsantis I, Avgeris M, Mazel M, Perisanidis C, et al: Prognostic significance of PD-L1 expression on circulating tumor cells in patients with head and neck squamous cell carcinoma. Ann Oncol. 28:1923–1933. 2017. View Article : Google Scholar : PubMed/NCBI

95 

Mildner F, Sopper S, Amann A, Pircher A, Pall G, Köck S, Naismith E, Wolf D and Gamerith G: Systematic review: Soluble immunological biomarkers in advanced non-small-cell lung cancer (NSCLC). Crit Rev Oncol Hematol. 153:1029482020. View Article : Google Scholar : PubMed/NCBI

96 

Younis RH, Ghita I, Elnaggar M, Chaisuparat R, Theofilou VI, Dyalram D, Ord RA, Davila E, Tallon LJ, Papadimitriou JC, et al: Soluble Sema4D in plasma of head and neck squamous cell carcinoma patients is associated with underlying non-inflamed tumor profile. Front Immunol. 12:5966462021. View Article : Google Scholar : PubMed/NCBI

97 

Leonard JE, Fisher TL, Winter LA, Cornelius CA, Reilly C, Smith ES and Zauderer M: Nonclinical safety evaluation of VX15/2503, a humanized IgG4 Anti-SEMA4D antibody. Mol Cancer Ther. 14:964–972. 2015. View Article : Google Scholar : PubMed/NCBI

98 

Patnaik A, Weiss GJ, Leonard JE, Rasco DW, Sachdev JC, Fisher TL, Winter LA, Reilly C, Parker RB, Mutz D, et al: Safety, pharmacokinetics, and pharmacodynamics of a humanized anti-semaphorin 4D antibody, in a First-In-Human study of patients with advanced solid tumors. Clin Cancer Res. 22:827–836. 2016. View Article : Google Scholar

99 

Boschert V, Teusch J, Aljasem A, Schmucker P, Klenk N, Straub A, Bittrich M, Seher A, Linz C, Müller-Richter UDA and Hartmann S: HGF-Induced PD-L1 expression in head and neck cancer: Preclinical and clinical findings. Int J Mol Sci. 21:87702020. View Article : Google Scholar :

100 

Freeman GJ, Sharpe AH and Kuchroo VK: Protect the killer: CTLs need defenses against the tumor. Nat Med. 8:787–789. 2002. View Article : Google Scholar : PubMed/NCBI

101 

Merhi M, Raza A, Inchakalody V, Zar AR, Uddin S and Dermime S: Immunotherapeutic strategies in patients with advanced head and neck squamous cell carcinoma. Ann Transl Med. 7(Suppl 1): S222019. View Article : Google Scholar : PubMed/NCBI

102 

Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, et al: Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 24:541–550. 2018. View Article : Google Scholar : PubMed/NCBI

103 

Rodrigues J, Heinrich MA, Teixeira LM and Prakash J: 3D in vitro model (R)evolution: Unveiling tumor-stroma interactions. Trends Cancer. 7:249–264. 2021. View Article : Google Scholar

104 

Halfter K, Ditsch N, Kolberg HC, Fischer H, Hauzenberger T, von Koch FE, Bauerfeind I, von Minckwitz G, Funke I, Crispin A, et al: Prospective cohort study using the breast cancer spheroid model as a predictor for response to neoadjuvant therapy-the SpheroNEO study. BMC Cancer. 15:5192015. View Article : Google Scholar

105 

Bauml JM, Aggarwal C and Cohen RB: Immunotherapy for head and neck cancer: Where are we now and where are we going? Ann Transl Med. 7(Suppl 3): S752019. View Article : Google Scholar : PubMed/NCBI

106 

Hoarau-Véchot J, Rafii A, Touboul C and Pasquier J: Halfway between 2D and Animal Models: Are 3D Cultures the ideal tool to study cancer-microenvironment interactions? Int J Mol Sci. 19:1812018. View Article : Google Scholar :

107 

Marrella A, Dondero A, Aiello M, Casu B, Olive D, Regis S, Bottino C, Pende D, Meazza R, Caluori G, et al: Cell-laden hydrogel as a clinical-relevant 3D model for analyzing neuro-blastoma growth, immunophenotype, and susceptibility to therapies. Front Immunol. 10:18762019. View Article : Google Scholar

108 

Appleton KM, Elrod AK, Lassahn KA, Shuford S, Holmes LM and DesRochers TM: PD-1/PD-L1 checkpoint inhibitors in combination with olaparib display antitumor activity in ovarian cancer patient-derived three-dimensional spheroid cultures. Cancer Immunol Immunother. 70:843–856. 2021. View Article : Google Scholar : PubMed/NCBI

109 

Weiswald LB, Richon S, Massonnet G, Guinebretière JM, Vacher S, Laurendeau I, Cottu P, Marangoni E, Nemati F, Validire P, et al: A short-term colorectal cancer sphere culture as a relevant tool for human cancer biology investigation. Br J Cancer. 108:1720–1731. 2013. View Article : Google Scholar : PubMed/NCBI

110 

Weiswald LB, Richon S, Validire P, Briffod M, Lai-Kuen R, Cordelières FP, Bertrand F, Dargere D, Massonnet G, Marangoni E, et al: Newly characterised ex vivo colospheres as a three-dimensional colon cancer cell model of tumour aggressiveness. Br J Cancer. 101:473–482. 2009. View Article : Google Scholar : PubMed/NCBI

111 

Jiang X, Seo YD, Chang JH, Coveler A, Nigjeh EN, Pan S, Jalikis F, Yeung RS, Crispe IN and Pillarisetty VG: Long-lived pancreatic ductal adenocarcinoma slice cultures enable precise study of the immune microenvironment. Oncoimmunology. 6:e13332102017. View Article : Google Scholar : PubMed/NCBI

112 

Herter S, Morra L, Schlenker R, Sulcova J, Fahrni L, Waldhauer I, Lehmann S, Reisländer T, Agarkova I, Kelm JM, et al: A novel three-dimensional heterotypic spheroid model for the assessment of the activity of cancer immunotherapy agents. Cancer Immunol Immunother. 66:129–140. 2017. View Article : Google Scholar :

113 

Larkins E, Blumenthal GM, Yuan W, He K, Sridhara R, Subramaniam S, Zhao H, Liu C, Yu J, Goldberg KB, et al: FDA approval summary: Pembrolizumab for the treatment of recurrent or metastatic head and neck squamous cell carcinoma with disease progression on or after platinum-containing chemotherapy. Oncologist. 22:873–878. 2017. View Article : Google Scholar : PubMed/NCBI

114 

Collins A, Miles GJ, Wood J, MacFarlane M, Pritchard C and Moss E: Patient-derived explants, xenografts and organoids: 3-dimensional patient-relevant pre-clinical models in endometrial cancer. Gynecol Oncol. 156:251–259. 2020. View Article : Google Scholar

115 

Seo YD, Jiang X, Sullivan KM, Jalikis FG, Smythe KS, Abbasi A, Vignali M, Park JO, Daniel SK, Pollack SM, et al: Mobilization of CD8+ T cells via CXCR4 blockade facilitates PD-1 checkpoint therapy in human pancreatic cancer. Clin Cancer Res. 25:3934–3945. 2019. View Article : Google Scholar : PubMed/NCBI

116 

Muthuswamy R, Corman JM, Dahl K, Chatta GS and Kalinski P: Functional reprogramming of human prostate cancer to promote local attraction of effector CD8+ T cells. Prostate. 76:1095–1105. 2016. View Article : Google Scholar : PubMed/NCBI

117 

Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, van de Haar J, Fanchi LF, Slagter M, van der Velden DL, Kaing S, Kelderman S, et al: Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell. 174:1586–1598.e2. 2018. View Article : Google Scholar : PubMed/NCBI

118 

Jenkins RW, Aref AR, Lizotte PH, Ivanova E, Stinson S, Zhou CW, Bowden M, Deng J, Liu H, Miao D, et al: Ex vivo profiling of PD-1 blockade using organotypic tumor spheroids. Cancer Discov. 8:196–215. 2018. View Article : Google Scholar :

119 

Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, Ju J, Liu IH, Chiou SH, Salahudeen AA, Smith AR, et al: Organoid modeling of the tumor immune microenvironment. Cell. 175:1972–1988.e16. 2018. View Article : Google Scholar : PubMed/NCBI

120 

Augustine TN, Dix-Peek T, Duarte R and Candy GP: Establishment of a heterotypic 3D culture system to evaluate the interaction of TREG lymphocytes and NK cells with breast cancer. J Immunol Methods. 426:1–13. 2015. View Article : Google Scholar : PubMed/NCBI

121 

Majumder B, Baraneedharan U, Thiyagarajan S, Radhakrishnan P, Narasimhan H, Dhandapani M, Brijwani N, Pinto DD, Prasath A, Shanthappa BU, et al: Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity. Nat Commun. 6:61692015. View Article : Google Scholar : PubMed/NCBI

122 

Al-Samadi A, Poor B, Tuomainen K, Liu V, Hyytiäinen A, Suleymanova I, Mesimaki K, Wilkman T, Mäkitie A, Saavalainen P and Salo T: In vitro humanized 3D microfluidic chip for testing personalized immunotherapeutics for head and neck cancer patients. Exp Cell Res. 383:1115082019. View Article : Google Scholar : PubMed/NCBI

123 

Aref AR, Campisi M, Ivanova E, Portell A, Larios D, Piel BP, Mathur N, Zhou C, Coakley RV, Bartels A, et al: 3D microfluidic ex vivo culture of organotypic tumor spheroids to model immune checkpoint blockade. Lab Chip. 18:3129–3143. 2018. View Article : Google Scholar : PubMed/NCBI

124 

Engelmann L, Thierauf J, Koerich Laureano N, Stark HJ, Prigge ES, Horn D, Freier K, Grabe N, Rong C, Federspil P, et al: Organotypic Co-cultures as a Novel 3D model for head and neck squamous cell carcinoma. Cancers (Basel). 12:23302020. View Article : Google Scholar

125 

Kross KW, Heimdal JH, Olsnes C, Olofson J and Aarstad HJ: Tumour-associated macrophages secrete IL-6 and MCP-1 in head and neck squamous cell carcinoma tissue. Acta Otolaryngol. 127:532–539. 2007. View Article : Google Scholar : PubMed/NCBI

126 

Klöss S, Chambron N, Gardlowski T, Weil S, Koch J, Esser R, Pogge von Strandmann E, Morgan MA, Arseniev L, Seitz O and Köhl U: Cetuximab reconstitutes pro-inflammatory cytokine secretions and tumor-infiltrating capabilities of sMICA-inhibited NK cells in HNSCC tumor spheroids. Front Immunol. 6:5432015. View Article : Google Scholar : PubMed/NCBI

127 

Bougherara H, Mansuet-Lupo A, Alifano M, Ngô C, Damotte D, Le Frère-Belda MA, Donnadieu E and Peranzoni E: Real-time imaging of resident T cells in human lung and ovarian carcinomas reveals how different tumor microenvironments control T lymphocyte migration. Front Immunol. 6:5002015. View Article : Google Scholar : PubMed/NCBI

128 

Laudanski K, Stentz M, DiMeglio M, Furey W, Steinberg T and Patel A: Potential Pitfalls of the Humanized Mice in Modeling Sepsis. Int J Inflam. 2018:65634542018.PubMed/NCBI

129 

Osuchowski MF, Remick DG, Lederer JA, Lang CH, Aasen AO, Aibiki M, Azevedo LC, Bahrami S, Boros M, Cooney R, et al: Abandon the mouse research ship? Not just yet! Shock. 41:463–475. 2014. View Article : Google Scholar

130 

Mestas J and Hughes CW: Of mice and not men: Differences between mouse and human immunology. J Immunol. 172:2731–2738. 2004. View Article : Google Scholar : PubMed/NCBI

131 

Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HV, Xu W, Richards DR, McDonald-Smith GP, Gao H, Hennessy L, et al: Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA. 110:3507–3512. 2013. View Article : Google Scholar : PubMed/NCBI

132 

Mak IW, Evaniew N and Ghert M: Lost in translation: Animal models and clinical trials in cancer treatment. Am J Transl Res. 6:114–118. 2014.PubMed/NCBI

133 

Perel P, Roberts I, Sena E, Wheble P, Briscoe C, Sandercock P, Macleod M, Mignini LE, Jayaram P and Khan KS: Comparison of treatment effects between animal experiments and clinical trials: Systematic review. BMJ. 334:1972007. View Article : Google Scholar :

134 

Hackam DG and Redelmeier DA: Translation of research evidence from animals to humans. JAMA. 296:1731–1732. 2006. View Article : Google Scholar : PubMed/NCBI

135 

Nauseef WM: The proper study of mankind. J Clin Invest. 107:401–403. 2001. View Article : Google Scholar : PubMed/NCBI

136 

McGonigle P and Ruggeri B: Animal models of human disease: Challenges in enabling translation. Biochem Pharmacol. 87:162–171. 2014. View Article : Google Scholar

137 

Green SB: Can animal data translate to innovations necessary for a new era of patient-centred and individualised healthcare? Bias in preclinical animal research. BMC Med Ethics. 16:53. 2015. View Article : Google Scholar : PubMed/NCBI

138 

Hameed I and Gaudino M: Commentary: Do not kill (especially for nothing). J Thoracic Cardiovascular Surg. 158:1557–1558. 2019. View Article : Google Scholar

139 

Leenaars CHC, Kouwenaar C, Stafleu FR, Bleich A, Ritskes-Hoitinga M, De Vries RBM and Meijboom FLB: Animal to human translation: A systematic scoping review of reported concordance rates. J Transl Med. 17:2232019. View Article : Google Scholar : PubMed/NCBI

140 

Ruggeri BA, Camp F and Miknyoczki S: Animal models of disease: Pre-clinical animal models of cancer and their applications and utility in drug discovery. Biochem Pharmacol. 87:150–161. 2014. View Article : Google Scholar

141 

Van Norman GA: Limitations of animal studies for predicting toxicity in clinical trials: Is it time to rethink our current approach? JACC Basic Transl Sci. 4:845–854. 2019. View Article : Google Scholar

142 

Jüni P, Nartey L, Reichenbach S, Sterchi R, Dieppe PA and Egger M: Risk of cardiovascular events and rofecoxib: Cumulative meta-analysis. Lancet. 364:2021–2029. 2004. View Article : Google Scholar : PubMed/NCBI

143 

Knobloch J, Jungck D and Koch A: The molecular mechanisms of thalidomide teratogenicity and implications for modern medicine. Curr Mol Med. 17:108–117. 2017. View Article : Google Scholar : PubMed/NCBI

144 

O'Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH and Howells DW: 1,026 experimental treatments in acute stroke. Ann Neurol. 59:467–477. 2006. View Article : Google Scholar : PubMed/NCBI

145 

Akhtar A: The flaws and human harms of animal experimentation. Camb Q Healthc Ethics. 24:407–419. 2015. View Article : Google Scholar : PubMed/NCBI

146 

Pound P, Ebrahim S, Sandercock P, Bracken MB and Roberts I: Where is the evidence that animal research benefits humans? BMJ. 328:514–517. 2004. View Article : Google Scholar : PubMed/NCBI

147 

DeVita VT and Chu E: A history of cancer chemotherapy. Cancer Res. 68:8643–8653. 2008. View Article : Google Scholar : PubMed/NCBI

148 

Saito R, Kobayashi T, Kashima S, Matsumoto K and Ogawa O: Faithful preclinical mouse models for better translation to bedside in the field of immuno-oncology. Int J Clin Oncol. 25:831–841. 2020. View Article : Google Scholar

149 

Zheng D, Liwinski T and Elinav E: Interaction between microbiota and immunity in health and disease. Cell Res. 30:492–506. 2020. View Article : Google Scholar : PubMed/NCBI

150 

Affolter A, Lammert A, Kern J, Scherl C and Rotter N: Precision medicine gains momentum: Novel 3D models and stem cell-based approaches in head and neck cancer. Front Cell Dev Biol. 9:6665152021. View Article : Google Scholar : PubMed/NCBI

151 

Bauer H, Horowitz RE, Levenson SM and Popper H: The response of the lymphatic tissue to the microbial flora. Studies on germfree mice. Am J Pathol. 42:471–483. 1963.PubMed/NCBI

152 

Li J, Huang J, Jeong JH, Park SJ, Wei R, Peng J, Luo Z, Chen YT, Feng Y and Luo JL: Selective TBK1/IKKi dual inhibitors with anticancer potency. Int J Cancer. 134:1972–1980. 2014. View Article : Google Scholar

153 

Brand TM, Hartmann S, Bhola NE, Li H, Zeng Y, O'Keefe RA, Ranall MV, Bandyopadhyay S, Soucheray M, Krogan NJ, et al: Cross-talk signaling between HER3 and HPV16 E6 and E7 mediates resistance to PI3K inhibitors in head and neck cancer. Cancer Res. 78:2383–2395. 2018. View Article : Google Scholar : PubMed/NCBI

154 

Bais MV, Kukuruzinska M and Trackman PC: Orthotopic non-metastatic and metastatic oral cancer mouse models. Oral Oncol. 51:476–482. 2015. View Article : Google Scholar : PubMed/NCBI

155 

Brand TM, Hartmann S, Bhola NE, Peyser ND, Li H, Zeng Y, Isaacson Wechsler E, Ranall MV, Bandyopadhyay S, Duvvuri U, et al: Human papillomavirus regulates HER3 expression in head and neck cancer: Implications for targeted HER3 therapy in HPV(+) patients. Clin Cancer Res. 23:3072–3083. 2017. View Article : Google Scholar :

156 

Rossa C Jr and D'Silva NJ: Immune-relevant aspects of murine models of head and neck cancer. Oncogene. 38:3973–3988. 2019. View Article : Google Scholar : PubMed/NCBI

157 

Olson B, Li Y, Lin Y, Liu ET and Patnaik A: Mouse Models for Cancer Immunotherapy Research. Cancer Discov. 8:1358–1365. 2018. View Article : Google Scholar : PubMed/NCBI

158 

Li E, Lin L, Chen CW and Ou DL: Mouse models for immunotherapy in hepatocellular carcinoma. Cancers (Basel). 11:18002019. View Article : Google Scholar

159 

Jiao R, Allen KJH, Malo ME, Rickles D and Dadachova E: Evaluating the combination of radioimmunotherapy and immunotherapy in a melanoma mouse model. Int J Mol Sci. 21:7732020. View Article : Google Scholar :

160 

Kim SS, Harford JB, Moghe M, Slaughter T, Doherty C and Chang EH: A tumor-targeting nanomedicine carrying the p53 gene crosses the blood-brain barrier and enhances anti-PD-1 immunotherapy in mouse models of glioblastoma. Int J Cancer. 145:2535–2546. 2019. View Article : Google Scholar : PubMed/NCBI

161 

Chulpanova DS, Kitaeva KV, Rutland CS, Rizvanov AA and Solovyeva VV: Mouse tumor models for advanced cancer immunotherapy. Int J Mol Sci. 21:41182020. View Article : Google Scholar :

162 

Yu JW, Bhattacharya S, Yanamandra N, Kilian D, Shi H, Yadavilli S, Katlinskaya Y, Kaczynski H, Conner M, Benson W, et al: Tumor-immune profiling of murine syngeneic tumor models as a framework to guide mechanistic studies and predict therapy response in distinct tumor microenvironments. PLoS One. 13:e02062232018. View Article : Google Scholar : PubMed/NCBI

163 

Wang Z, Wu VH, Allevato MM, Gilardi M, He Y, Luis Callejas-Valera J, Vitale-Cross L, Martin D, Amornphimoltham P, Mcdermott J, et al: Syngeneic animal models of tobacco-associated oral cancer reveal the activity of in situ anti-CTLA-4. Nat Commun. 10:55462019. View Article : Google Scholar : PubMed/NCBI

164 

Rangarajan A and Weinberg RA: Opinion: Comparative biology of mouse versus human cells: Modelling human cancer in mice. Nat Rev Cancer. 3:952–959. 2003. View Article : Google Scholar

165 

O'Malley BW Jr, Cope KA, Johnson CS and Schwartz MR: A new immunocompetent murine model for oral cancer. Arch Otolaryngol Head Neck Surg. 123:20–24. 1997. View Article : Google Scholar : PubMed/NCBI

166 

Kim S: Animal models of cancer in the head and neck region. Clin Exp Otorhinolaryngol. 2:55–60. 2009. View Article : Google Scholar : PubMed/NCBI

167 

Vahle AK, Kerem A, Oztürk E, Bankfalvi A, Lang S and Brandau S: Optimization of an orthotopic murine model of head and neck squamous cell carcinoma in fully immunocompetent mice-role of toll-like-receptor 4 expressed on host cells. Cancer Lett. 317:199–206. 2012. View Article : Google Scholar

168 

Kersten K, de Visser KE, van Miltenburg MH and Jonkers J: Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med. 9:137–153. 2017. View Article : Google Scholar :

169 

Lute KD, May KF Jr, Lu P, Zhang H, Kocak E, Mosinger B, Wolford C, Phillips G, Caligiuri MA, Zheng P and Liu Y: Human CTLA4 knock-in mice unravel the quantitative link between tumor immunity and autoimmunity induced by anti-CTLA-4 antibodies. Blood. 106:3127–3133. 2005. View Article : Google Scholar : PubMed/NCBI

170 

Sanmamed MF, Chester C, Melero I and Kohrt H: Defining the optimal murine models to investigate immune checkpoint blockers and their combination with other immunotherapies. Ann Oncol. 27:1190–1198. 2016. View Article : Google Scholar : PubMed/NCBI

171 

Sánchez-Rivera FJ and Jacks T: Applications of the CRISPR-Cas9 system in cancer biology. Nat Rev Cancer. 15:387–393. 2015. View Article : Google Scholar : PubMed/NCBI

172 

Azangou-Khyavy M, Ghasemi M, Khanali J, Boroomand-Saboor M, Jamalkhah M, Soleimani M and Kiani J: CRISPR/Cas: From tumor gene editing to T Cell-based immunotherapy of cancer. Front Immunol. 11:20622020. View Article : Google Scholar : PubMed/NCBI

173 

Ren J, Liu X, Fang C, Jiang S, June CH and Zhao Y: Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res. 23:2255–2266. 2017. View Article : Google Scholar :

174 

Cyranoski D: CRISPR gene-editing tested in a person for the first time. Nature. 539:4792016. View Article : Google Scholar : PubMed/NCBI

175 

Kelland LR: Of mice and men: Values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer. 40:827–836. 2004. View Article : Google Scholar : PubMed/NCBI

176 

Pelleitier M and Montplaisir S: The nude mouse: A model of deficient T-cell function. Methods Achiev Exp Pathol. 7:149–166. 1975.PubMed/NCBI

177 

Dixon TC, Meselson M, Guillemin J and Hanna PC: Anthrax. N Engl J Med. 341:815–826. 1999. View Article : Google Scholar : PubMed/NCBI

178 

Watts CJ, Hahn BL and Sohnle PG: Resistance of athymic nude mice to experimental cutaneous Bacillus anthracis infection. J Infect Dis. 199:673–679. 2009. View Article : Google Scholar : PubMed/NCBI

179 

Kang Y: Analysis of cancer stem cell metastasis in xenograft animal models. Methods Mol Biol. 568:7–19. 2009. View Article : Google Scholar : PubMed/NCBI

180 

Nauta JM, Roodenburg JL, Nikkels PG, Witjes MJ and Vermey A: Comparison of epithelial dysplasia-the 4NQO rat palate model and human oral mucosa. Int J Oral Maxillofac Surg. 24:53–58. 1995. View Article : Google Scholar : PubMed/NCBI

181 

Aromando RF, Pérez MA, Heber EM, Trivillin VA, Tomasi VH, Schwint AE and Itoiz ME: Potential role of mast cells in hamster cheek pouch carcinogenesis. Oral Oncol. 44:1080–1087. 2008. View Article : Google Scholar : PubMed/NCBI

182 

Ghiabi M, Gallagher GT and Wong DT: Eosinophils, tissue eosinophilia, and eosinophil-derived transforming growth factor alpha in hamster oral carcinogenesis. Cancer Res. 52:389–393. 1992.PubMed/NCBI

183 

Barker CF and Billingham RE: The lymphatic status of hamster cheek pouch tissue in relation to its properties as a graft and as a graft site. J Exp Med. 133:620–639. 1971. View Article : Google Scholar : PubMed/NCBI

184 

Li Q, Dong H, Yang G, Song Y, Mou Y and Ni Y: Mouse tumor-bearing models as preclinical study platforms for oral squamous cell carcinoma. Front Oncol. 10:2122020. View Article : Google Scholar : PubMed/NCBI

185 

Liu YC, Ho HC, Lee MR, Lai KC, Yeh CM, Lin YM, Ho TY, Hsiang CY and Chung JG: Early induction of cytokines/cytokine receptors and Cox2, and activation of NF-κB in 4-nitroquino-line 1-oxide-induced murine oral cancer model. Toxicol Appl Pharmacol. 262:107–116. 2012. View Article : Google Scholar : PubMed/NCBI

186 

Eveson JW and MacDonald DG: Hamster tongue carcinogenesis. I. Characteristics of the experimental model. J Oral Pathol. 10:322–331. 1981. View Article : Google Scholar : PubMed/NCBI

187 

Chen YF, Chang KW, Yang IT, Tu HF and Lin SC: Establishment of syngeneic murine model for oral cancer therapy. Oral Oncol. 95:194–201. 2019. View Article : Google Scholar : PubMed/NCBI

188 

Bürtin F, Mullins CS and Linnebacher M: Mouse models of colorectal cancer: Past, present and future perspectives. World J Gastroenterol. 26:1394–1426. 2020. View Article : Google Scholar : PubMed/NCBI

189 

Durinikova E, Buzo K and Arena S: Preclinical models as patients' avatars for precision medicine in colorectal cancer: Past and future challenges. J Exp Clin Cancer Res. 40:1852021. View Article : Google Scholar : PubMed/NCBI

190 

Keysar SB, Astling DP, Anderson RT, Vogler BW, Bowles DW, Morton JJ, Paylor JJ, Glogowska MJ, Le PN, Eagles-Soukup JR, et al: A patient tumor transplant model of squamous cell cancer identifies PI3K inhibitors as candidate therapeutics in defined molecular bins. Mol Oncol. 7:776–790. 2013. View Article : Google Scholar : PubMed/NCBI

191 

Garrido-Laguna I, Uson M, Rajeshkumar NV, Tan AC, de Oliveira E, Karikari C, Villaroel MC, Salomon A, Taylor G, Sharma R, et al: Tumor engraftment in nude mice and enrichment in stroma-related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer. Clin Cancer Res. 17:5793–5800. 2011. View Article : Google Scholar : PubMed/NCBI

192 

Choi Y, Lee S, Kim K, Kim SH, Chung YJ and Lee C: Studying cancer immunotherapy using patient-derived xenografts (PDXs) in humanized mice. Exp Mol Med. 50:1–9. 2018. View Article : Google Scholar : PubMed/NCBI

193 

Choi SY, Lin D, Gout PW, Collins CC, Xu Y and Wang Y: Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Adv Drug Deliv Rev. 79-80:222–237. 2014. View Article : Google Scholar : PubMed/NCBI

194 

Facompre ND, Sahu V, Montone KT, Harmeyer KM, Nakagawa H, Rustgi AK, Weinstein GS, Gimotty PA and Basu D: Barriers to generating PDX models of HPV-related head and neck cancer. Laryngoscope. 127:2777–2783. 2017. View Article : Google Scholar : PubMed/NCBI

195 

Mosier DE, Gulizia RJ, Baird SM and Wilson DB: Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature. 335:256–259. 1988. View Article : Google Scholar : PubMed/NCBI

196 

Ali N, Flutter B, Sanchez Rodriguez R, Sharif-Paghaleh E, Barber LD, Lombardi G and Nestle FO: Xenogeneic graft-versus-host-disease in NOD-scid IL-2Rγ null mice display a T-effector memory phenotype. PLoS One. 7:e442192012. View Article : Google Scholar

197 

Lan P, Tonomura N, Shimizu A, Wang S and Yang YG: Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood. 108:487–492. 2006. View Article : Google Scholar : PubMed/NCBI

198 

Hidalgo M, Amant F, Biankin AV, Budinská E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Mælandsmo GM, et al: Patient-derived xenograft models: An emerging platform for translational cancer research. Cancer Discov. 4:998–1013. 2014. View Article : Google Scholar : PubMed/NCBI

199 

Matsumura T, Kametani Y, Ando K, Hirano Y, Katano I, Ito R, Shiina M, Tsukamoto H, Saito Y, Tokuda Y, et al: Functional CD5+ B cells develop predominantly in the spleen of NOD/SCID/gammac(null) (NOG) mice transplanted either with human umbilical cord blood, bone marrow, or mobilized peripheral blood CD34+ cells. Exp Hematol. 31:789–797. 2003. View Article : Google Scholar : PubMed/NCBI

200 

Hanazawa A, Ito R, Katano I, Kawai K, Goto M, Suemizu H, Kawakami Y, Ito M and Takahashi T: Generation of Human immunosuppressive myeloid cell populations in human Interleukin-6 transgenic NOG mice. Front Immunol. 9:1522018. View Article : Google Scholar : PubMed/NCBI

201 

Pan B, Wei X and Xu X: Patient-derived xenograft models in hepatopancreatobiliary cancer. Cancer Cell Int. 22:41. 2022. View Article : Google Scholar : PubMed/NCBI

202 

Stecklum M, Klinghammer K, Wulf-Goldenberg A, Brzezicha B, Jöhrens K and Hoffmann J: P0314 Preclinical case study: Patient-derived head and neck cancer xenograft on mice humanized with autologous immune cells, a model for personalized immuno-oncology research. J Immuno Ther Cancer. 8(Suppl 2): A27–A28. 2020.

203 

Morton JJ, Bird G, Keysar SB, Astling DP, Lyons TR, Anderson RT, Glogowska MJ, Estes P, Eagles JR, Le PN, et al: XactMice: Humanizing mouse bone marrow enables microenvironment reconstitution in a patient-derived xenograft model of head and neck cancer. Oncogene. 35:290–300. 2016. View Article : Google Scholar

204 

DeBord LC, Pathak RR, Villaneuva M, Liu HC, Harrington DA, Yu W, Lewis MT and Sikora AG: The chick chorioallantoic membrane (CAM) as a versatile patient-derived xenograft (PDX) platform for precision medicine and preclinical research. Am J Cancer Res. 8:1642–1660. 2018.PubMed/NCBI

205 

Mapanao AK, Che PP, Sarogni P, Sminia P, Giovannetti E and Voliani V: Tumor grafted-chick chorioallantoic membrane as an alternative model for biological cancer research and conventional/nanomaterial-based theranostics evaluation. Expert Opin Drug Metab Toxicol. 17:947–968. 2021. View Article : Google Scholar : PubMed/NCBI

206 

Garcia P, Wang Y, Viallet J and Macek Jilkova Z: The chicken embryo model: A novel and relevant model for immune-based studies. Front Immunol. 12:7910812021. View Article : Google Scholar : PubMed/NCBI

207 

Rousset X, Dosda E and Viallet J: Use of an egg grafted with tumor cells in order to study the anti-cancer effectiveness of immune therapies in the absence of immune effector cells other than those in the grafted egg. Google Patents. 2020.

208 

Moticka EJ: Development of immunological competence in chickens. Am Z. 15:135–146. 1975. View Article : Google Scholar

209 

Schmitd LB, Liu M, Scanlon CS, Banerjee R and D'Silva NJ: The chick chorioallantoic membrane in vivo model to assess perineural invasion in head and neck cancer. J Vis Exp. Jun 21–2019.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

210 

de Medeiros MC, Liu M, Banerjee R, Bellile E, D'Silva NJ and Rossa C Jr: Galanin mediates tumor-induced immunosuppression in head and neck squamous cell carcinoma. Cell Oncol (Dordr). 45:241–256. 2022. View Article : Google Scholar

211 

Gu L and Mooney DJ: Biomaterials and emerging anticancer therapeutics: Engineering the microenvironment. Nat Rev Cancer. 16:56–66. 2016. View Article : Google Scholar :

212 

Kamatar A, Gunay G and Acar H: Natural and synthetic biomaterials for engineering multicellular tumor spheroids. Polymers (Basel). 12:25062020. View Article : Google Scholar

213 

Park Y, Huh KM and Kang SW: Applications of biomaterials in 3D cell culture and contributions of 3D cell culture to drug development and basic biomedical research. Int J Mol Sci. 22:24912021. View Article : Google Scholar : PubMed/NCBI

214 

Li J, Luo Y, Li B, Xia Y, Wang H and Fu C: Implantable and injectable biomaterial scaffolds for cancer immunotherapy. Front Bioeng Biotechnol. 8:6129502020. View Article : Google Scholar : PubMed/NCBI

215 

Phuengkham H, Song C, Um SH and Lim YT: Implantable synthetic immune niche for spatiotemporal modulation of tumor-derived immunosuppression and systemic antitumor immunity: Postoperative immunotherapy. Adv Mater. 30:e17067192018. View Article : Google Scholar : PubMed/NCBI

216 

Sanmamed MF and Chen L: A Paradigm shift in cancer immunotherapy: From enhancement to normalization. Cell. 175:313–326. 2018. View Article : Google Scholar : PubMed/NCBI

217 

Datta P, Dey M, Ataie Z, Unutmaz D and Ozbolat IT: 3D bioprinting for reconstituting the cancer microenvironment. NPJ Precis Oncol. 4:182020. View Article : Google Scholar : PubMed/NCBI

218 

Asghar W, El Assal R, Shafiee H, Pitteri S, Paulmurugan R and Demirci U: Engineering cancer microenvironments for in vitro 3-D tumor models. Mater Today (Kidlington). 18:539–553. 2015. View Article : Google Scholar

219 

Oztan YC, Nawafleh N, Zhou Y, Liyanage PY, Hettiarachchi SD, Seven ES, Leblanc RM, Ouhtit A and Celik E: Recent advances on utilization of bioprinting for tumor modeling. Bioprinting. Jan 29–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

220 

Swaminathan S and Clyne AM: Direct bioprinting of 3D multicellular breast spheroids onto endothelial networks. J Vis Exp. Nov 2–2020.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

221 

Browning JR, Derr P, Derr K, Doudican N, Michael S, Lish SR, Taylor NA, Krueger JG, Ferrer M, Carucci JA and Gareau DS: A 3D biofabricated cutaneous squamous cell carcinoma tissue model with multi-channel confocal microscopy imaging biomarkers to quantify antitumor effects of chemotherapeutics in tissue. Oncotarget. 11:2587–2596. 2020. View Article : Google Scholar : PubMed/NCBI

222 

Almela T, Al-Sahaf S, Brook IM, Khoshroo K, Rasoulianboroujeni M, Fahimipour F, Tahriri M, Dashtimoghadam E, Bolt R, Tayebi L and Moharamzadeh K: 3D printed tissue engineered model for bone invasion of oral cancer. Tissue Cell. 52:71–77. 2018. View Article : Google Scholar : PubMed/NCBI

223 

Matthews JB, Mason GI, Scully CM and Prime SS: In situ characterisation of the oral mucosal inflammatory cell response of rats induced by 4-nitroquinoline-N-oxide. Carcinogenesis. 7:783–788. 1986. View Article : Google Scholar : PubMed/NCBI

224 

Thomas DW, Matthews JB, Patel V, Game SM and Prime SS: Inflammatory cell infiltrate associated with primary and transplanted tumours in an inbred model of oral carcinogenesis. J Oral Pathol Med. 24:23–31. 1995. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Affolter A, Kern J, Bieback K, Scherl C, Rotter N and Lammert A: Biomarkers and 3D models predicting response to immune checkpoint blockade in head and neck cancer (Review). Int J Oncol 61: 88, 2022.
APA
Affolter, A., Kern, J., Bieback, K., Scherl, C., Rotter, N., & Lammert, A. (2022). Biomarkers and 3D models predicting response to immune checkpoint blockade in head and neck cancer (Review). International Journal of Oncology, 61, 88. https://doi.org/10.3892/ijo.2022.5378
MLA
Affolter, A., Kern, J., Bieback, K., Scherl, C., Rotter, N., Lammert, A."Biomarkers and 3D models predicting response to immune checkpoint blockade in head and neck cancer (Review)". International Journal of Oncology 61.1 (2022): 88.
Chicago
Affolter, A., Kern, J., Bieback, K., Scherl, C., Rotter, N., Lammert, A."Biomarkers and 3D models predicting response to immune checkpoint blockade in head and neck cancer (Review)". International Journal of Oncology 61, no. 1 (2022): 88. https://doi.org/10.3892/ijo.2022.5378
Copy and paste a formatted citation
x
Spandidos Publications style
Affolter A, Kern J, Bieback K, Scherl C, Rotter N and Lammert A: Biomarkers and 3D models predicting response to immune checkpoint blockade in head and neck cancer (Review). Int J Oncol 61: 88, 2022.
APA
Affolter, A., Kern, J., Bieback, K., Scherl, C., Rotter, N., & Lammert, A. (2022). Biomarkers and 3D models predicting response to immune checkpoint blockade in head and neck cancer (Review). International Journal of Oncology, 61, 88. https://doi.org/10.3892/ijo.2022.5378
MLA
Affolter, A., Kern, J., Bieback, K., Scherl, C., Rotter, N., Lammert, A."Biomarkers and 3D models predicting response to immune checkpoint blockade in head and neck cancer (Review)". International Journal of Oncology 61.1 (2022): 88.
Chicago
Affolter, A., Kern, J., Bieback, K., Scherl, C., Rotter, N., Lammert, A."Biomarkers and 3D models predicting response to immune checkpoint blockade in head and neck cancer (Review)". International Journal of Oncology 61, no. 1 (2022): 88. https://doi.org/10.3892/ijo.2022.5378
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team