|
1
|
Mitchison HM and Valente EM: Motile and
non-motile cilia in human pathology: From function to phenotypes. J
Pathol. 241:294–309. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ansley SJ, Badano JL, Blacque OE, Hill J,
Hoskins BE, Leitch CC, Kim JC, Ross AJ, Eichers ER, Teslovich TM,
et al: Basal body dysfunction is a likely cause of pleiotropic
Bardet-Biedl syndrome. Nature. 425:628–633. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Sattar S and Gleeson JG: The ciliopathies
in neuronal development: A clinical approach to investigation of
Joubert syndrome and Joubert syndrome-related disorders. Dev Med
Child Neurol. 53:793–798. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Franco B and Thauvin-Robinet C: Update on
oral-facial-digital syndromes (OFDS). Cilia. 5:122016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Ruiz-Perez VL, Blair HJ, Rodriguez-Andres
ME, Blanco MJ, Wilson A, Liu YN, Miles C, Peters H and Goodship JA:
Evc is a positive mediator of Ihh-regulated bone growth that
localises at the base of chondrocyte cilia. Development.
134:2903–2912. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Singla V and Reiter JF: The primary cilium
as the cell's antenna: Signaling at a sensory organelle. Science.
313:629–633. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Pala R, Alomari N and Nauli SM: Primary
cilium-dependent signaling mechanisms. Int J Mol Sci. 18:22722017.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wong SY, Seol AD, So PL, Ermilov AN,
Bichakjian CK, Epstein EH Jr, Dlugosz AA and Reiter JF: Primary
cilia can both mediate and suppress Hedgehog pathway-dependent
tumorigenesis. Nat Med. 15:1055–1061. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Han YG, Kim HJ, Dlugosz AA, Ellison DW,
Gilbertson RJ and Alvarez-Buylla A: Dual and opposing roles of
primary cilia in medulloblastoma development. Nat Med.
15:1062–1065. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Kim J, Dabiri S and Seeley ES: Primary
cilium depletion typifies cutaneous melanoma in situ and malignant
melanoma. PLoS One. 6:e274102011. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Seeley ES, Carriere C, Goetze T,
Longnecker DS and Korc M: Pancreatic cancer and precursor
pancreatic intraepithelial neoplasia lesions are devoid of primary
cilia. Cancer Res. 69:422–430. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Menzl I, Lebeau L, Pandey R, Hassounah NB,
Li FW, Nagle R, Weihs K and McDermott KM: Loss of primary cilia
occurs early in breast cancer development. Cilia. 3:72014.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Mansini AP, Lorenzo Pisarello MJ, Thelen
KM, Cruz-Reyes M, Peixoto E, Jin S, Howard BN, Trussoni CE, Gajdos
GB, LaRusso NF, et al: MicroRNA (miR)-433 and miR-22 dysregulations
induce histone-deacetylase-6 overexpression and ciliary loss in
cholangiocarcinoma. Hepatology. 68:561–573. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hassounah NB, Nagle R, Saboda K, Roe DJ,
Dalkin BL and McDermott KM: Primary cilia are lost in preinvasive
and invasive prostate cancer. PLoS One. 8:e685212013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Basten SG, Willekers S, Vermaat JS, Slaats
GG, Voest EE, van Diest PJ and Giles RH: Reduced cilia frequencies
in human renal cell carcinomas versus neighboring parenchymal
tissue. Cilia. 2:22013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yin F, Chen Q, Shi Y, Xu H, Huang J, Qing
M, Zhong L, Li J, Xie L and Zeng X: Activation of EGFR-Aurora A
induces loss of primary cilia in oral squamous cell carcinoma. Oral
Dis. 28:621–630. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Yin F, Chen Q, Shi Y, Xu H, Huang J, Qing
M, Zhong L, Li J, Xie L and Zeng X: Activation of EGFR-Aurora A
induces loss of primary cilia in oral squamous cell carcinoma. Oral
Dis. 28:621–630. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Hanahan D and Weinberg RA: The hallmarks
of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Sorokin S: Centrioles and the formation of
rudimentary cilia by fibroblasts and smooth muscle cells. J Cell
Biol. 15:363–377. 1962. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Sorokin SP: Reconstructions of centriole
formation and ciliogenesis in mammalian lungs. J Cell Sci.
3:207–230. 1968. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Reiter JF, Blacque OE and Leroux MR: The
base of the cilium: Roles for transition fibres and the transition
zone in ciliary formation, maintenance and compartmentalization.
EMBO Rep. 13:608–618. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Bernabe-Rubio M and Alonso MA: Routes and
machinery of primary cilium biogenesis. Cell Mol Life Sci.
74:4077–4095. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Sanchez I and Dynlacht BD: Cilium assembly
and disassembly. Nat Cell Biol. 18:711–717. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Pugacheva EN, Jablonski SA, Hartman TR,
Henske EP and Golemis EA: HEF1-dependent Aurora A activation
induces disassembly of the primary cilium. Cell. 129:1351–1363.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Inoko A, Matsuyama M, Goto H,
Ohmuro-Matsuyama Y, Hayashi Y, Enomoto M, Ibi M, Urano T, Yonemura
S, Kiyono T, et al: Trichoplein and Aurora A block aberrant primary
cilia assembly in proliferating cells. J Cell Biol. 197:391–405.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kinzel D, Boldt K, Davis EE, Burtscher I,
Trümbach D, Diplas B, Attié-Bitach T, Wurst W, Katsanis N, Ueffing
M and Lickert H: Pitchfork regulates primary cilia disassembly and
left-right asymmetry. Dev Cell. 19:66–77. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Kobayashi T, Tsang WY, Li J, Lane W and
Dynlacht BD: Centriolar kinesin Kif24 interacts with CP110 to
remodel microtubules and regulate ciliogenesis. Cell. 145:914–925.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Miyamoto T, Hosoba K, Ochiai H, Royba E,
Izumi H, Sakuma T, Yamamoto T, Dynlacht BD and Matsuura S: The
Microtubule-depolymerizing activity of a mitotic kinesin protein
KIF2A drives primary cilia disassembly coupled with cell
proliferation. Cell Rep. 10:664–673. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kim S, Zaghloul NA, Bubenshchikova E, Oh
EC, Rankin S, Katsanis N, Obara T and Tsiokas L: Nde1-mediated
inhibition of ciliogenesis affects cell cycle Re-entry. Nat Cell
Biol. 13:351–360. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Li A, Saito M, Chuang JZ, Tseng YY,
Dedesma C, Tomizawa K, Kaitsuka T and Sung CH: Ciliary transition
zone activation of phosphorylated Tctex-1 controls ciliary
resorption, S-phase entry and fate of neural progenitors. Nat Cell
Biol. 13:402–411. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Hanahan D: Hallmarks of cancer: New
dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Nobutani K, Shimono Y, Yoshida M, Mizutani
K, Minami A, Kono S, Mukohara T, Yamasaki T, Itoh T, Takao S, et
al: Absence of primary cilia in cell cycle-arrested human breast
cancer cells. Genes Cells. 19:141–152. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Yang N, Leung EL, Liu C, Li L, Eguether T,
Jun Yao XJ, Jones EC, Norris DA, Liu A, Clark RA, et al: INTU is
essential for oncogenic Hh signaling through regulating primary
cilia formation in basal cell carcinoma. Oncogene. 36:4997–5005.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Frett B, Brown RV, Ma M, Hu W, Han H and
Li HY: Therapeutic melting pot of never in mitosis gene a related
kinase 2 (Nek2): A perspective on Nek2 as an oncology target and
recent advancements in Nek2 small molecule inhibition. J Med Chem.
57:5835–5844. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Yang PH, Zhang L, Zhang YJ, Zhang J and Xu
WF: HDAC6: Physiological function and its selective inhibitors for
cancer treatment. Drug Discov Ther. 7:233–242. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Tam LW, Wilson NF and Lefebvre PA: A
CDK-related kinase regulates the length and assembly of flagella in
Chlamydomonas. J Cell Biol. 176:819–829. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Maurya AK, Rogers T and Sengupta P: A CCRK
and a MAK kinase modulate cilia branching and length via regulation
of axonemal microtubule dynamics in caenorhabditis elegans. Curr
Biol. 29:1286–1300.e4. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ko HW, Norman RX, Tran J, Fuller KP,
Fukuda M and Eggenschwiler JT: Broad-minded links cell
cycle-related kinase to cilia assembly and hedgehog signal
transduction. Dev Cell. 18:237–247. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Snouffer A, Brown D, Lee H, Walsh J, Lupu
F, Norman R, Lechtreck K, Ko HW and Eggenschwiler J: Cell
Cycle-related kinase (CCRK) regulates ciliogenesis and Hedgehog
signaling in mice. PLoS Genet. 13:e10069122017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Moser JJ, Fritzler MJ and Rattner JB:
Ultrastructural characterization of primary cilia in pathologically
characterized human glioblastoma multiforme (GBM) tumors. BMC Clin
Pathol. 14:402014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Yang Y, Roine N and Makela TP: CCRK
depletion inhibits glioblastoma cell proliferation in a
cilium-dependent manner. EMBO Rep. 14:741–747. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hori A, Barnouin K, Snijders AP and Toda
T: A non-canonical function of Plk4 in centriolar satellite
integrity and ciliogenesis through PCM1 phosphorylation. EMBO Rep.
17:326–337. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Shinmura K, Kurabe N, Goto M, Yamada H,
Natsume H, Konno H and Sugimura H: PLK4 overexpression and its
effect on centrosome regulation and chromosome stability in human
gastric cancer. Mol Biol Rep. 41:6635–6644. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Coelho PA, Bury L, Shahbazi MN,
Liakath-Ali K, Tate PH, Wormald S, Hindley CJ, Huch M, Archer J,
Skarnes WC, et al: Over-expression of Plk4 induces centrosome
amplification, loss of primary cilia and associated tissue
hyperplasia in the mouse. Open Biol. 5:1502092015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Goldstein AL, Hannappel E, Sosne G and
Kleinman HK: Thymosin β4: A multi-functional regenerative peptide.
Basic properties and clinical applications. Expert Opin Biol Ther.
12:37–51. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Safer D, Elzinga M and Nachmias VT:
Thymosin beta 4 and Fx, an actin-sequestering peptide, are
indistinguishable. J Biol Chem. 266:4029–4032. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Cha HJ, Jeong MJ and Kleinman HK: Role of
thymosin beta4 in tumor metastasis and angiogenesis. J Natl Cancer
Inst. 95:1674–1680. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wang ZY, Zhang W, Yang JJ, Song DK, Wei JX
and Gao S: Association of thymosin beta4 expression with
clinicopathological parameters and clinical outcomes of bladder
cancer patients. Neoplasma. 63:991–998. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Chi LH, Chang WM, Chang YC, Chan YC, Tai
CC, Leung KW, Chen CL, Wu AT, Lai TC, Li YJ and Hsiao M: Global
Proteomics-based identification and validation of thymosin beta-4
X-Linked as a prognostic marker for head and neck squamous cell
carcinoma. Sci Rep. 7:90312017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Lee JW, Kim HS and Moon EY: Thymosin
beta-4 is a novel regulator for primary cilium formation by
nephronophthisis 3 in HeLa human cervical cancer cells. Sci Rep.
9:68492019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Lee JW, Thuy PX, Han HK and Moon EY:
Di-(2-ethylhexyl) phthalate-induced tumor growth is regulated by
primary cilium formation via the axis of H2O2
production-thymosin beta-4 gene expression. Int J Med Sci.
18:1247–1258. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Alieva IB, Gorgidze LA, Komarova YA,
Chernobelskaya OA and Vorobjev IA: Experimental model for studying
the primary cilia in tissue culture cells. Membr Cell Biol.
12:895–905. 1999.PubMed/NCBI
|
|
53
|
Kowal TJ and Falk MM: Primary cilia found
on HeLa and other cancer cells. Cell Biol Int. 39:1341–1347. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Vorobyeva AG and Saunders AJ: Amyloid-beta
interrupts canonical Sonic hedgehog signaling by distorting primary
cilia structure. Cilia. 7:52018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Garcia-Gonzalo FR, Corbit KC,
Sirerol-Piquer MS, Ramaswami G, Otto EA, Noriega TR, Seol AD,
Robinson JF, Bennett CL, Josifova DJ, et al: A transition zone
complex regulates mammalian ciliogenesis and ciliary membrane
composition. Nat Genet. 43:776–784. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Sang L, Miller JJ, Corbit KC, Giles RH,
Brauer MJ, Otto EA, Baye LM, Wen X, Scales SJ, Kwong M, et al:
Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy
disease genes and pathways. Cell. 145:513–528. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Meng D, Chen Y, Zhao Y, Wang J, Yun D,
Yang S, Chen J, Chen H and Lu D: Expression and prognostic
significance of TCTN1 in human glioblastoma. J Transl Med.
12:2882014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhao S, Chen X, Wan M, Jiang X, Li C, Cui
Y and Kang P: Tectonic 1 is a key regulator of cell proliferation
in pancreatic cancer. Cancer Biother Radiopharm. 31:7–13. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Cano-Rodriguez D, Campagnoli S, Grandi A,
Parri M, Camilli E, Song C, Jin B, Lacombe A, Pierleoni A, Bombaci
M, et al: TCTN2: A novel tumor marker with oncogenic properties.
Oncotarget. 8:95256–95269. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yasar B, Linton K, Slater C and Byers R:
Primary cilia are increased in number and demonstrate structural
abnormalities in human cancer. J Clin Pathol. 70:571–574. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Rocha C, Papon L, Cacheux W, Marques Sousa
P, Lascano V, Tort O, Giordano T, Vacher S, Lemmers B, Mariani P,
et al: Tubulin glycylases are required for primary cilia, control
of cell proliferation and tumor development in colon. EMBO J.
33:2247–2260. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wang Z, Tseng CP, Pong RC, Chen H,
McConnell JD, Navone N and Hsieh JT: The mechanism of
growth-inhibitory effect of DOC-2/DAB2 in prostate cancer.
Characterization of a novel GTPase-activating protein associated
with N-terminal domain of DOC-2/DAB2. J Biol Chem. 277:12622–12631.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Shen YJ, Kong ZL, Wan FN, Wang HK, Bian
XJ, Gan HL, Wang CF and Ye DW: Downregulation of DAB2IP results in
cell proliferation and invasion and contributes to unfavorable
outcomes in bladder cancer. Cancer Sci. 105:704–712. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wang ZR, Wei JH, Zhou JC, Haddad A, Zhao
LY, Kapur P, Wu KJ, Wang B, Yu YH, Liao B, et al: Validation of
DAB2IP methylation and its relative significance in predicting
outcome in renal cell carcinoma. Oncotarget. 7:31508–31519. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Lin CJ, Dang A, Hernandez E and Hsieh JT:
DAB2IP modulates primary cilia formation associated with renal
tumorigenesis. Neoplasia. 23:169–180. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Schneider L, Essmann F, Kletke A, Rio P,
Hanenberg H, Wetzel W, Schulze-Osthoff K, Nürnberg B and Piekorz
RP: The transforming acidic coiled coil 3 protein is essential for
spindle-dependent chromosome alignment and mitotic survival. J Biol
Chem. 282:29273–29283. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Campo L and Breuer EK: Inhibition of TACC3
by a small molecule inhibitor in breast cancer. Biochem Biophys Res
Commun. 498:1085–1092. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Jiang F, Kuang B, Que Y, Lin Z, Yuan L,
Xiao W, Peng R and Zhang X and Zhang X: The clinical significance
of transforming acidic coiled-coil protein 3 expression in
non-small cell lung cancer. Oncol Rep. 35:436–446. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Qie Y, Wang L, Du E, Chen S, Lu C, Ding N,
Yang K and Xu Y: TACC3 promotes prostate cancer cell proliferation
and restrains primary cilium formation. Exp Cell Res.
390:1119522020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Adams M, Simms RJ, Abdelhamed Z, Dawe HR,
Szymanska K, Logan CV, Wheway G, Pitt E, Gull K, Knowles MA, et al:
A meckelin-filamin A interaction mediates ciliogenesis. Hum Mol
Genet. 21:1272–1286. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Goepfert TM, Adigun YE, Zhong L, Gay J,
Medina D and Brinkley WR: Centrosome amplification and
overexpression of aurora A are early events in rat mammary
carcinogenesis. Cancer Res. 62:4115–4122. 2002.PubMed/NCBI
|
|
72
|
Gritsko TM, Coppola D, Paciga JE, Yang L,
Sun M, Shelley SA, Fiorica JV, Nicosia SV and Cheng JQ: Activation
and overexpression of centrosome kinase BTAK/Aurora-A in human
ovarian cancer. Clin Cancer Res. 9:1420–1426. 2003.PubMed/NCBI
|
|
73
|
Kobayashi T, Nakazono K, Tokuda M, Mashima
Y, Dynlacht BD and Itoh H: HDAC2 promotes loss of primary cilia in
pancreatic ductal adenocarcinoma. EMBO Rep. 18:334–343. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Dere R, Perkins AL, Bawa-Khalfe T, Jonasch
D and Walker CL: β-catenin links von Hippel-Lindau to aurora kinase
A and loss of primary cilia in renal cell carcinoma. J Am Soc
Nephrol. 26:553–564. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Egeberg DL, Lethan M, Manguso R, Schneider
L, Awan A, Jørgensen TS, Byskov AG, Pedersen LB and Christensen ST:
Primary cilia and aberrant cell signaling in epithelial ovarian
cancer. Cilia. 1:152012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
O'Toole SM, Watson DS, Novoselova TV,
Romano LEL, King PJ, Bradshaw TY, Thompson CL, Knight MM, Sharp TV,
Barnes MR, et al: Oncometabolite induced primary cilia loss in
pheochromocytoma. Endocr Relat Cancer. 26:165–180. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chen Q, Li J, Yang X, Ma J, Gong F and Liu
Y: Prdx1 promotes the loss of primary cilia in esophageal squamous
cell carcinoma. BMC Cancer. 20:3722020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Xu J, Li H, Wang B, Xu Y, Yang J, Zhang X,
Harten SK, Shukla D, Maxwell PH, Pei D and Esteban MA: VHL
inactivation induces HEF1 and Aurora kinase A. J Am Soc Nephrol.
21:2041–2046. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Plotnikova OV, Seo S, Cottle DL, Conduit
S, Hakim S, Dyson JM, Mitchell CA and Smyth IM: INPP5E interacts
with AURKA, linking phosphoinositide signaling to primary cilium
stability. J Cell Sci. 128:364–372. 2015.PubMed/NCBI
|
|
80
|
Conduit SE, Ramaswamy V, Remke M, Watkins
DN, Wainwright BJ, Taylor MD, Mitchell CA and Dyson JM: A
compartmentalized phosphoinositide signaling axis at cilia is
regulated by INPP5E to maintain cilia and promote Sonic Hedgehog
medulloblastoma. Oncogene. 36:5969–5984. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Gradilone SA, Radtke BN, Bogert PS, Huang
BQ, Gajdos GB and LaRusso NF: HDAC6 inhibition restores ciliary
expression and decreases tumor growth. Cancer Res. 73:2259–2270.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Peixoto E, Jin S, Thelen K, Biswas A,
Richard S, Morleo M, Mansini A, Holtorf S, Carbone F, Pastore N, et
al: HDAC6-dependent ciliophagy is involved in ciliary loss and
cholangiocarcinoma growth in human cells and murine models. Am J
Physiol Gastrointest Liver Physiol. 318:G1022–G1033. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Kim S, Lee K, Choi JH, Ringstad N and
Dynlacht BD: Nek2 activation of Kif24 ensures cilium disassembly
during the cell cycle. Nat Commun. 6:80872015. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Cappello P, Blaser H, Gorrini C, Lin DC,
Elia AJ, Wakeham A, Haider S, Boutros PC, Mason JM, Miller NA, et
al: Role of Nek2 on centrosome duplication and aneuploidy in breast
cancer cells. Oncogene. 33:2375–2384. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zhou W, Yang Y, Xia J, Wang H, Salama ME,
Xiong W, Xu H, Shetty S, Chen T, Zeng Z, et al: NEK2 induces drug
resistance mainly through activation of efflux drug pumps and is
associated with poor prognosis in myeloma and other cancers. Cancer
Cell. 23:48–62. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Hayward DG, Clarke RB, Faragher AJ, Pillai
MR, Hagan IM and Fry AM: The centrosomal kinase Nek2 displays
elevated levels of protein expression in human breast cancer.
Cancer Res. 64:7370–7376. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Hassounah NB, Nunez M, Fordyce C, Roe D,
Nagle R, Bunch T and McDermott KM: Inhibition of ciliogenesis
promotes hedgehog signaling, tumorigenesis, and metastasis in
breast cancer. Mol Cancer Res. 15:1421–1430. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Rogowski K, Juge F, van Dijk J, Wloga D,
Strub JM, Levilliers N, Thomas D, Bré MH, Van Dorsselaer A, Gaertig
J and Janke C: Evolutionary divergence of enzymatic mechanisms for
posttranslational polyglycylation. Cell. 137:1076–1087. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Bosch Grau M, Masson C, Gadadhar S, Rocha
C, Tort O, Marques Sousa P, Vacher S, Bieche I and Janke C:
Alterations in the balance of tubulin glycylation and glutamylation
in photoreceptors leads to retinal degeneration. J Cell Sci.
130:938–949. 2017.PubMed/NCBI
|
|
90
|
Pathak N, Austin CA and Drummond IA:
Tubulin tyrosine ligase-like genes ttll3 and ttll6 maintain
zebrafish cilia structure and motility. J Biol Chem.
286:11685–11695. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Curatolo P, Bombardieri R and Jozwiak S:
Tuberous sclerosis. Lancet. 372:657–668. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Jozwiak J: Hamartin and tuberin: Working
together for tumour suppression. Int J Cancer. 118:1–5. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Hartman TR, Liu D, Zilfou JT, Robb V,
Morrison T, Watnick T and Henske EP: The tuberous sclerosis
proteins regulate formation of the primary cilium via a
rapamycin-insensitive and polycystin 1-independent pathway. Hum Mol
Genet. 18:151–163. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wilson C, Bonnet C, Guy C, Idziaszczyk S,
Colley J, Humphreys V, Maynard J, Sampson JR and Cheadle JP: Tsc1
haploinsufficiency without mammalian target of rapamycin activation
is sufficient for renal cyst formation in Tsc1+/- mice. Cancer Res.
66:7934–7938. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
DiBella LM, Park A and Sun Z: Zebrafish
Tsc1 reveals functional interactions between the cilium and the TOR
pathway. Hum Mol Genet. 18:595–606. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Armour EA, Carson RP and Ess KC:
Cystogenesis and elongated primary cilia in Tsc1-deficient distal
convoluted tubules. Am J Physiol Renal Physiol. 303:F584–F592.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Rosengren T, Larsen LJ, Pedersen LB,
Christensen ST and Moller LB: TSC1 and TSC2 regulate cilia length
and canonical Hedgehog signaling via different mechanisms. Cell Mol
Life Sci. 75:2663–2680. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Sherpa RT, Atkinson KF, Ferreira VP and
Nauli SM: Rapamycin increases length and mechanosensory function of
primary cilia in renal epithelial and vascular endothelial cells.
Int Educ Res J. 2:91–97. 2016.PubMed/NCBI
|
|
99
|
Takahashi K, Nagai T, Chiba S, Nakayama K
and Mizuno K: Glucose deprivation induces primary cilium formation
through mTORC1 inactivation. J Cell Sci.
131:jcs2087692018.PubMed/NCBI
|
|
100
|
Huber TB, Walz G and Kuehn EW: mTOR and
rapamycin in the kidney: Signaling and therapeutic implications
beyond immunosuppression. Kidney Int. 79:502–511. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Shillingford JM, Murcia NS, Larson CH, Low
SH, Hedgepeth R, Brown N, Flask CA, Novick AC, Goldfarb DA,
Kramer-Zucker A, et al: The mTOR pathway is regulated by
polycystin-1, and its inhibition reverses renal cystogenesis in
polycystic kidney disease. Proc Natl Acad Sci USA. 103:5466–5471.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Zhang T and George DJ: Immunotherapy and
targeted-therapy combinations mark a new era of kidney cancer
treatment. Nat Med. 27:586–588. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Fan Y, Sun T, Shao Z, Zhang Q, Ouyang Q,
Tong Z, Wang S, Luo Y, Teng Y, Wang X, et al: Effectiveness of
adding everolimus to the First-line treatment of advanced breast
cancer in premenopausal women who experienced disease progression
while receiving selective estrogen receptor modulators: A phase 2
randomized clinical trial. JAMA Oncol. 7:e2134282021. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Ferrante MI, Giorgio G, Feather SA,
Bulfone A, Wright V, Ghiani M, Selicorni A, Gammaro L, Scolari F,
Woolf AS, et al: Identification of the gene for oral-facial-digital
type I syndrome. Am J Hum Genet. 68:569–576. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Wang J, Chen X, Wang F, Zhang J, Li P, Li
Z, Xu J, Gao F, Jin C, Tian H, et al: OFD1, as a ciliary protein,
exhibits neuroprotective function in photoreceptor degeneration
models. PLoS One. 11:e01558602016. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Singla V, Romaguera-Ros M, Garcia-Verdugo
JM and Reiter JF: Ofd1, a human disease gene, regulates the length
and distal structure of centrioles. Dev Cell. 18:410–424. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Lopes CA, Prosser SL, Romio L, Hirst RA,
O'Callaghan C, Woolf AS and Fry AM: Centriolar satellites are
assembly points for proteins implicated in human ciliopathies,
including oral-facial-digital syndrome 1. J Cell Sci. 124:600–612.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Tang Z, Lin MG, Stowe TR, Chen S, Zhu M,
Stearns T, Franco B and Zhong Q: Autophagy promotes primary
ciliogenesis by removing OFD1 from centriolar satellites. Nature.
502:254–257. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Lee J, Yi S, Kang YE, Chang JY, Kim JT,
Sul HJ, Kim JO, Kim JM, Kim J, Porcelli AM, et al: Defective
ciliogenesis in thyroid hurthle cell tumors is associated with
increased autophagy. Oncotarget. 7:79117–79130. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Pampliega O, Orhon I, Patel B, Sridhar S,
Díaz-Carretero A, Beau I, Codogno P, Satir BH, Satir P and Cuervo
AM: Functional interaction between autophagy and ciliogenesis.
Nature. 502:194–200. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Maharjan Y, Lee JN, Kwak S, Lim H, Dutta
RK, Liu ZQ, So HS and Park R: Autophagy alteration prevents primary
cilium disassembly in RPE1 cells. Biochem Biophys Res Commun.
500:242–248. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Ko JY, Lee EJ and Park JH: Interplay
between primary cilia and autophagy and its controversial roles in
cancer. Biomol Ther (Seoul). 27:337–341. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Kaelin WG Jr and Ratcliffe PJ: Oxygen
sensing by metazoans: The central role of the HIF hydroxylase
pathway. Mol Cell. 30:393–402. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Maher ER and Kaelin WG Jr: von
Hippel-Lindau disease. Medicine (Baltimore). 76:381–391. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Arjumand W and Sultana S: Role of VHL gene
mutation in human renal cell carcinoma. Tumour Biol. 33:9–16. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Schermer B, Ghenoiu C, Bartram M, Müller
RU, Kotsis F, Höhne M, Kühn W, Rapka M, Nitschke R, Zentgraf H, et
al: The von Hippel-Lindau tumor suppressor protein controls
ciliogenesis by orienting microtubule growth. J Cell Biol.
175:547–554. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Noonan HR, Metelo AM, Kamei CN, Peterson
RT, Drummond IA and Iliopoulos O: Loss of vhl in the zebrafish
pronephros recapitulates early stages of human clear cell renal
cell carcinoma. Dis Model Mech. 9:873–884. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Frew IJ and Moch H: A clearer view of the
molecular complexity of clear cell renal cell carcinoma. Annu Rev
Pathol. 10:263–289. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Albers J, Rajski M, Schonenberger D,
Harlander S, Schraml P, von Teichman A, Georgiev S, Wild PJ, Moch
H, Krek W and Frew IJ: Combined mutation of Vhl and Trp53 causes
renal cysts and tumours in mice. EMBO Mol Med. 5:949–964. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Frew IJ, Thoma CR, Georgiev S, Minola A,
Hitz M, Montani M, Moch H and Krek W: pVHL and PTEN tumour
suppressor proteins cooperatively suppress kidney cyst formation.
EMBO J. 27:1747–1757. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Harlander S, Schonenberger D, Toussaint
NC, Prummer M, Catalano A, Brandt L, Moch H, Wild PJ and Frew IJ:
Combined mutation in Vhl, Trp53 and Rb1 causes clear cell renal
cell carcinoma in mice. Nat Med. 23:869–877. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Esteban MA, Harten SK, Tran MG and Maxwell
PH: Formation of primary cilia in the renal epithelium is regulated
by the von Hippel-Lindau tumor suppressor protein. J Am Soc
Nephrol. 17:1801–1806. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Ding XF, Zhou J, Hu QY, Liu SC and Chen G:
The tumor suppressor pVHL down-regulates never-in-mitosis A-related
kinase 8 via hypoxia-inducible factors to maintain cilia in human
renal cancer cells. J Biol Chem. 290:1389–1394. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Oswald F, Kostezka U, Astrahantseff K,
Bourteele S, Dillinger K, Zechner U, Ludwig L, Wilda M, Hameister
H, Knöchel W, et al: SHARP is a novel component of the
Notch/RBP-Jkappa signalling pathway. EMBO J. 21:5417–5426. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Ariyoshi M and Schwabe JW: A conserved
structural motif reveals the essential transcriptional repression
function of Spen proteins and their role in developmental
signaling. Genes Dev. 17:1909–1920. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Legare S, Cavallone L, Mamo A, Chabot C,
Sirois I, Magliocco A, Klimowicz A, Tonin PN, Buchanan M, Keilty D,
et al: The estrogen receptor cofactor SPEN functions as a tumor
suppressor and candidate biomarker of drug responsiveness in
hormone-dependent breast cancers. Cancer Res. 75:4351–4363. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Legare S, Chabot C and Basik M: SPEN, a
new player in primary cilia formation and cell migration in breast
cancer. Breast Cancer Res. 19:1042017. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Margueron R and Reinberg D: The Polycomb
complex PRC2 and its mark in life. Nature. 469:343–349. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Wang X, Brea LT and Yu J: Immune
modulatory functions of EZH2 in the tumor microenvironment:
Implications in cancer immunotherapy. Am J Clin Exp Urol. 7:85–91.
2019.PubMed/NCBI
|
|
130
|
Zingg D, Debbache J, Peña-Hernández R,
Antunes AT, Schaefer SM, Cheng PF, Zimmerli D, Haeusel J, Calçada
RR, Tuncer E, et al: EZH2-mediated primary cilium deconstruction
drives metastatic melanoma formation. Cancer Cell. 34:69–84.e14.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Denhez F, Wilcox-Adelman SA, Baciu PC,
Saoncella S, Lee S, French B, Neveu W and Goetinck PF: Syndesmos, a
syndecan-4 cytoplasmic domain interactor, binds to the focal
adhesion adaptor proteins paxillin and Hic-5. J Biol Chem.
277:12270–12274. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Avolio R, Jarvelin AI, Mohammed S,
Agliarulo I, Condelli V, Zoppoli P, Calice G, Sarnataro D, Bechara
E, Tartaglia GG, et al: Protein syndesmos is a novel RNA-binding
protein that regulates primary cilia formation. Nucleic Acids Res.
46:12067–12086. 2018.PubMed/NCBI
|
|
133
|
Haigis KM: KRAS alleles: The devil is in
the detail. Trends Cancer. 3:686–697. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Kempf E, Rousseau B, Besse B and Paz-Ares
L: KRAS oncogene in lung cancer: Focus on molecularly driven
clinical trials. Eur Respir Rev. 25:71–76. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Pupo E, Avanzato D, Middonti E, Bussolino
F and Lanzetti L: KRAS-driven metabolic rewiring reveals novel
actionable targets in cancer. Front Oncol. 9:8482019. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Eser S, Schnieke A, Schneider G and Saur
D: Oncogenic KRAS signalling in pancreatic cancer. Br J Cancer.
111:817–822. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Raleigh DR, Choksi PK, Krup AL, Mayer W,
Santos N and Reiter JF: Hedgehog signaling drives medulloblastoma
growth via CDK6. J Clin Invest. 128:120–124. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Farooqi AA, de la Roche M, Djamgoz MBA and
Siddik ZH: Overview of the oncogenic signaling pathways in
colorectal cancer: Mechanistic insights. Semin Cancer Biol.
58:65–79. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Palicelli A, Croci S, Bisagni A, Zanetti
E, De Biase D, Melli B, Sanguedolce F, Ragazzi M, Zanelli M, Chaux
A, et al: What do we have to know about PD-L1 expression in
prostate cancer? a systematic literature review. Part 3: PD-L1,
intracellular signaling pathways and tumor microenvironment. Int J
Mol Sci. 22:123302021. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Eguether T, Cordelieres FP and Pazour GJ:
Intraflagellar transport is deeply integrated in hedgehog
signaling. Mol Biol Cell. 29:1178–1189. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Deng YZ, Cai Z, Shi S, Jiang H, Shang YR,
Ma N, Wang JJ, Guan DX, Chen TW, Rong YF, et al: Cilia loss
sensitizes cells to transformation by activating the mevalonate
pathway. J Exp Med. 215:177–195. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Jenks AD, Vyse S, Wong JP, Kostaras E,
Keller D, Burgoyne T, Shoemark A, Tsalikis A, de la Roche M,
Michaelis M, et al: Primary cilia mediate diverse kinase inhibitor
resistance mechanisms in cancer. Cell Rep. 23:3042–3055. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Khan NA, Willemarck N, Talebi A, Marchand
A, Binda MM, Dehairs J, Rueda-Rincon N, Daniels VW, Bagadi M,
Thimiri Govinda Raj DB, et al: Identification of drugs that restore
primary cilium expression in cancer cells. Oncotarget. 7:9975–9992.
2016. View Article : Google Scholar : PubMed/NCBI
|