Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
August-2022 Volume 61 Issue 2

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2022 Volume 61 Issue 2

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Molecular targets of primary cilia defects in cancer (Review)

  • Authors:
    • Fengying Yin
    • Zihao Wei
    • Fangman Chen
    • Chuan Xin
    • Qianming Chen
  • View Affiliations / Copyright

    Affiliations: Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
  • Article Number: 98
    |
    Published online on: July 4, 2022
       https://doi.org/10.3892/ijo.2022.5388
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Primary cilia are hair‑like organelles that are present on the majority of mammalian cells. They are regarded as the regulatory ‘hub’ of cell functions due to their indispensable roles for several signaling pathways, such as Hh and Wnt pathways. Originally, cilia defects were found to cause a panoply of human diseases commonly referred to as ‘ciliopathies’. Evidence is accumulating that cilia defects are involved in the onset and development of cancer. Some proteins that cause cilia defects have been identified as oncogenes in multiple cancer types. Hence, understanding the pathways that cause cilia defects in cancer is of utmost importance for the development of novel cancer therapeutic targets. The present review article provides a critical overview of the molecular targets of primary cilia defects in cancer, and highlights their vast potential as therapeutic targets and novel biomarkers.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Mitchison HM and Valente EM: Motile and non-motile cilia in human pathology: From function to phenotypes. J Pathol. 241:294–309. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Ansley SJ, Badano JL, Blacque OE, Hill J, Hoskins BE, Leitch CC, Kim JC, Ross AJ, Eichers ER, Teslovich TM, et al: Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature. 425:628–633. 2003. View Article : Google Scholar : PubMed/NCBI

3 

Sattar S and Gleeson JG: The ciliopathies in neuronal development: A clinical approach to investigation of Joubert syndrome and Joubert syndrome-related disorders. Dev Med Child Neurol. 53:793–798. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Franco B and Thauvin-Robinet C: Update on oral-facial-digital syndromes (OFDS). Cilia. 5:122016. View Article : Google Scholar : PubMed/NCBI

5 

Ruiz-Perez VL, Blair HJ, Rodriguez-Andres ME, Blanco MJ, Wilson A, Liu YN, Miles C, Peters H and Goodship JA: Evc is a positive mediator of Ihh-regulated bone growth that localises at the base of chondrocyte cilia. Development. 134:2903–2912. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Singla V and Reiter JF: The primary cilium as the cell's antenna: Signaling at a sensory organelle. Science. 313:629–633. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Pala R, Alomari N and Nauli SM: Primary cilium-dependent signaling mechanisms. Int J Mol Sci. 18:22722017. View Article : Google Scholar : PubMed/NCBI

8 

Wong SY, Seol AD, So PL, Ermilov AN, Bichakjian CK, Epstein EH Jr, Dlugosz AA and Reiter JF: Primary cilia can both mediate and suppress Hedgehog pathway-dependent tumorigenesis. Nat Med. 15:1055–1061. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Han YG, Kim HJ, Dlugosz AA, Ellison DW, Gilbertson RJ and Alvarez-Buylla A: Dual and opposing roles of primary cilia in medulloblastoma development. Nat Med. 15:1062–1065. 2009. View Article : Google Scholar : PubMed/NCBI

10 

Kim J, Dabiri S and Seeley ES: Primary cilium depletion typifies cutaneous melanoma in situ and malignant melanoma. PLoS One. 6:e274102011. View Article : Google Scholar : PubMed/NCBI

11 

Seeley ES, Carriere C, Goetze T, Longnecker DS and Korc M: Pancreatic cancer and precursor pancreatic intraepithelial neoplasia lesions are devoid of primary cilia. Cancer Res. 69:422–430. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Menzl I, Lebeau L, Pandey R, Hassounah NB, Li FW, Nagle R, Weihs K and McDermott KM: Loss of primary cilia occurs early in breast cancer development. Cilia. 3:72014. View Article : Google Scholar : PubMed/NCBI

13 

Mansini AP, Lorenzo Pisarello MJ, Thelen KM, Cruz-Reyes M, Peixoto E, Jin S, Howard BN, Trussoni CE, Gajdos GB, LaRusso NF, et al: MicroRNA (miR)-433 and miR-22 dysregulations induce histone-deacetylase-6 overexpression and ciliary loss in cholangiocarcinoma. Hepatology. 68:561–573. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Hassounah NB, Nagle R, Saboda K, Roe DJ, Dalkin BL and McDermott KM: Primary cilia are lost in preinvasive and invasive prostate cancer. PLoS One. 8:e685212013. View Article : Google Scholar : PubMed/NCBI

15 

Basten SG, Willekers S, Vermaat JS, Slaats GG, Voest EE, van Diest PJ and Giles RH: Reduced cilia frequencies in human renal cell carcinomas versus neighboring parenchymal tissue. Cilia. 2:22013. View Article : Google Scholar : PubMed/NCBI

16 

Yin F, Chen Q, Shi Y, Xu H, Huang J, Qing M, Zhong L, Li J, Xie L and Zeng X: Activation of EGFR-Aurora A induces loss of primary cilia in oral squamous cell carcinoma. Oral Dis. 28:621–630. 2022. View Article : Google Scholar : PubMed/NCBI

17 

Yin F, Chen Q, Shi Y, Xu H, Huang J, Qing M, Zhong L, Li J, Xie L and Zeng X: Activation of EGFR-Aurora A induces loss of primary cilia in oral squamous cell carcinoma. Oral Dis. 28:621–630. 2022. View Article : Google Scholar : PubMed/NCBI

18 

Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI

19 

Sorokin S: Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J Cell Biol. 15:363–377. 1962. View Article : Google Scholar : PubMed/NCBI

20 

Sorokin SP: Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci. 3:207–230. 1968. View Article : Google Scholar : PubMed/NCBI

21 

Reiter JF, Blacque OE and Leroux MR: The base of the cilium: Roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep. 13:608–618. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Bernabe-Rubio M and Alonso MA: Routes and machinery of primary cilium biogenesis. Cell Mol Life Sci. 74:4077–4095. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Sanchez I and Dynlacht BD: Cilium assembly and disassembly. Nat Cell Biol. 18:711–717. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Pugacheva EN, Jablonski SA, Hartman TR, Henske EP and Golemis EA: HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell. 129:1351–1363. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Inoko A, Matsuyama M, Goto H, Ohmuro-Matsuyama Y, Hayashi Y, Enomoto M, Ibi M, Urano T, Yonemura S, Kiyono T, et al: Trichoplein and Aurora A block aberrant primary cilia assembly in proliferating cells. J Cell Biol. 197:391–405. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Kinzel D, Boldt K, Davis EE, Burtscher I, Trümbach D, Diplas B, Attié-Bitach T, Wurst W, Katsanis N, Ueffing M and Lickert H: Pitchfork regulates primary cilia disassembly and left-right asymmetry. Dev Cell. 19:66–77. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Kobayashi T, Tsang WY, Li J, Lane W and Dynlacht BD: Centriolar kinesin Kif24 interacts with CP110 to remodel microtubules and regulate ciliogenesis. Cell. 145:914–925. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Miyamoto T, Hosoba K, Ochiai H, Royba E, Izumi H, Sakuma T, Yamamoto T, Dynlacht BD and Matsuura S: The Microtubule-depolymerizing activity of a mitotic kinesin protein KIF2A drives primary cilia disassembly coupled with cell proliferation. Cell Rep. 10:664–673. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Kim S, Zaghloul NA, Bubenshchikova E, Oh EC, Rankin S, Katsanis N, Obara T and Tsiokas L: Nde1-mediated inhibition of ciliogenesis affects cell cycle Re-entry. Nat Cell Biol. 13:351–360. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Li A, Saito M, Chuang JZ, Tseng YY, Dedesma C, Tomizawa K, Kaitsuka T and Sung CH: Ciliary transition zone activation of phosphorylated Tctex-1 controls ciliary resorption, S-phase entry and fate of neural progenitors. Nat Cell Biol. 13:402–411. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Hanahan D: Hallmarks of cancer: New dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI

32 

Nobutani K, Shimono Y, Yoshida M, Mizutani K, Minami A, Kono S, Mukohara T, Yamasaki T, Itoh T, Takao S, et al: Absence of primary cilia in cell cycle-arrested human breast cancer cells. Genes Cells. 19:141–152. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Yang N, Leung EL, Liu C, Li L, Eguether T, Jun Yao XJ, Jones EC, Norris DA, Liu A, Clark RA, et al: INTU is essential for oncogenic Hh signaling through regulating primary cilia formation in basal cell carcinoma. Oncogene. 36:4997–5005. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Frett B, Brown RV, Ma M, Hu W, Han H and Li HY: Therapeutic melting pot of never in mitosis gene a related kinase 2 (Nek2): A perspective on Nek2 as an oncology target and recent advancements in Nek2 small molecule inhibition. J Med Chem. 57:5835–5844. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Yang PH, Zhang L, Zhang YJ, Zhang J and Xu WF: HDAC6: Physiological function and its selective inhibitors for cancer treatment. Drug Discov Ther. 7:233–242. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Tam LW, Wilson NF and Lefebvre PA: A CDK-related kinase regulates the length and assembly of flagella in Chlamydomonas. J Cell Biol. 176:819–829. 2007. View Article : Google Scholar : PubMed/NCBI

37 

Maurya AK, Rogers T and Sengupta P: A CCRK and a MAK kinase modulate cilia branching and length via regulation of axonemal microtubule dynamics in caenorhabditis elegans. Curr Biol. 29:1286–1300.e4. 2019. View Article : Google Scholar : PubMed/NCBI

38 

Ko HW, Norman RX, Tran J, Fuller KP, Fukuda M and Eggenschwiler JT: Broad-minded links cell cycle-related kinase to cilia assembly and hedgehog signal transduction. Dev Cell. 18:237–247. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Snouffer A, Brown D, Lee H, Walsh J, Lupu F, Norman R, Lechtreck K, Ko HW and Eggenschwiler J: Cell Cycle-related kinase (CCRK) regulates ciliogenesis and Hedgehog signaling in mice. PLoS Genet. 13:e10069122017. View Article : Google Scholar : PubMed/NCBI

40 

Moser JJ, Fritzler MJ and Rattner JB: Ultrastructural characterization of primary cilia in pathologically characterized human glioblastoma multiforme (GBM) tumors. BMC Clin Pathol. 14:402014. View Article : Google Scholar : PubMed/NCBI

41 

Yang Y, Roine N and Makela TP: CCRK depletion inhibits glioblastoma cell proliferation in a cilium-dependent manner. EMBO Rep. 14:741–747. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Hori A, Barnouin K, Snijders AP and Toda T: A non-canonical function of Plk4 in centriolar satellite integrity and ciliogenesis through PCM1 phosphorylation. EMBO Rep. 17:326–337. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Shinmura K, Kurabe N, Goto M, Yamada H, Natsume H, Konno H and Sugimura H: PLK4 overexpression and its effect on centrosome regulation and chromosome stability in human gastric cancer. Mol Biol Rep. 41:6635–6644. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Coelho PA, Bury L, Shahbazi MN, Liakath-Ali K, Tate PH, Wormald S, Hindley CJ, Huch M, Archer J, Skarnes WC, et al: Over-expression of Plk4 induces centrosome amplification, loss of primary cilia and associated tissue hyperplasia in the mouse. Open Biol. 5:1502092015. View Article : Google Scholar : PubMed/NCBI

45 

Goldstein AL, Hannappel E, Sosne G and Kleinman HK: Thymosin β4: A multi-functional regenerative peptide. Basic properties and clinical applications. Expert Opin Biol Ther. 12:37–51. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Safer D, Elzinga M and Nachmias VT: Thymosin beta 4 and Fx, an actin-sequestering peptide, are indistinguishable. J Biol Chem. 266:4029–4032. 1991. View Article : Google Scholar : PubMed/NCBI

47 

Cha HJ, Jeong MJ and Kleinman HK: Role of thymosin beta4 in tumor metastasis and angiogenesis. J Natl Cancer Inst. 95:1674–1680. 2003. View Article : Google Scholar : PubMed/NCBI

48 

Wang ZY, Zhang W, Yang JJ, Song DK, Wei JX and Gao S: Association of thymosin beta4 expression with clinicopathological parameters and clinical outcomes of bladder cancer patients. Neoplasma. 63:991–998. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Chi LH, Chang WM, Chang YC, Chan YC, Tai CC, Leung KW, Chen CL, Wu AT, Lai TC, Li YJ and Hsiao M: Global Proteomics-based identification and validation of thymosin beta-4 X-Linked as a prognostic marker for head and neck squamous cell carcinoma. Sci Rep. 7:90312017. View Article : Google Scholar : PubMed/NCBI

50 

Lee JW, Kim HS and Moon EY: Thymosin beta-4 is a novel regulator for primary cilium formation by nephronophthisis 3 in HeLa human cervical cancer cells. Sci Rep. 9:68492019. View Article : Google Scholar : PubMed/NCBI

51 

Lee JW, Thuy PX, Han HK and Moon EY: Di-(2-ethylhexyl) phthalate-induced tumor growth is regulated by primary cilium formation via the axis of H2O2 production-thymosin beta-4 gene expression. Int J Med Sci. 18:1247–1258. 2021. View Article : Google Scholar : PubMed/NCBI

52 

Alieva IB, Gorgidze LA, Komarova YA, Chernobelskaya OA and Vorobjev IA: Experimental model for studying the primary cilia in tissue culture cells. Membr Cell Biol. 12:895–905. 1999.PubMed/NCBI

53 

Kowal TJ and Falk MM: Primary cilia found on HeLa and other cancer cells. Cell Biol Int. 39:1341–1347. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Vorobyeva AG and Saunders AJ: Amyloid-beta interrupts canonical Sonic hedgehog signaling by distorting primary cilia structure. Cilia. 7:52018. View Article : Google Scholar : PubMed/NCBI

55 

Garcia-Gonzalo FR, Corbit KC, Sirerol-Piquer MS, Ramaswami G, Otto EA, Noriega TR, Seol AD, Robinson JF, Bennett CL, Josifova DJ, et al: A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat Genet. 43:776–784. 2011. View Article : Google Scholar : PubMed/NCBI

56 

Sang L, Miller JJ, Corbit KC, Giles RH, Brauer MJ, Otto EA, Baye LM, Wen X, Scales SJ, Kwong M, et al: Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell. 145:513–528. 2011. View Article : Google Scholar : PubMed/NCBI

57 

Meng D, Chen Y, Zhao Y, Wang J, Yun D, Yang S, Chen J, Chen H and Lu D: Expression and prognostic significance of TCTN1 in human glioblastoma. J Transl Med. 12:2882014. View Article : Google Scholar : PubMed/NCBI

58 

Zhao S, Chen X, Wan M, Jiang X, Li C, Cui Y and Kang P: Tectonic 1 is a key regulator of cell proliferation in pancreatic cancer. Cancer Biother Radiopharm. 31:7–13. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Cano-Rodriguez D, Campagnoli S, Grandi A, Parri M, Camilli E, Song C, Jin B, Lacombe A, Pierleoni A, Bombaci M, et al: TCTN2: A novel tumor marker with oncogenic properties. Oncotarget. 8:95256–95269. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Yasar B, Linton K, Slater C and Byers R: Primary cilia are increased in number and demonstrate structural abnormalities in human cancer. J Clin Pathol. 70:571–574. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Rocha C, Papon L, Cacheux W, Marques Sousa P, Lascano V, Tort O, Giordano T, Vacher S, Lemmers B, Mariani P, et al: Tubulin glycylases are required for primary cilia, control of cell proliferation and tumor development in colon. EMBO J. 33:2247–2260. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Wang Z, Tseng CP, Pong RC, Chen H, McConnell JD, Navone N and Hsieh JT: The mechanism of growth-inhibitory effect of DOC-2/DAB2 in prostate cancer. Characterization of a novel GTPase-activating protein associated with N-terminal domain of DOC-2/DAB2. J Biol Chem. 277:12622–12631. 2002. View Article : Google Scholar : PubMed/NCBI

63 

Shen YJ, Kong ZL, Wan FN, Wang HK, Bian XJ, Gan HL, Wang CF and Ye DW: Downregulation of DAB2IP results in cell proliferation and invasion and contributes to unfavorable outcomes in bladder cancer. Cancer Sci. 105:704–712. 2014. View Article : Google Scholar : PubMed/NCBI

64 

Wang ZR, Wei JH, Zhou JC, Haddad A, Zhao LY, Kapur P, Wu KJ, Wang B, Yu YH, Liao B, et al: Validation of DAB2IP methylation and its relative significance in predicting outcome in renal cell carcinoma. Oncotarget. 7:31508–31519. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Lin CJ, Dang A, Hernandez E and Hsieh JT: DAB2IP modulates primary cilia formation associated with renal tumorigenesis. Neoplasia. 23:169–180. 2021. View Article : Google Scholar : PubMed/NCBI

66 

Schneider L, Essmann F, Kletke A, Rio P, Hanenberg H, Wetzel W, Schulze-Osthoff K, Nürnberg B and Piekorz RP: The transforming acidic coiled coil 3 protein is essential for spindle-dependent chromosome alignment and mitotic survival. J Biol Chem. 282:29273–29283. 2007. View Article : Google Scholar : PubMed/NCBI

67 

Campo L and Breuer EK: Inhibition of TACC3 by a small molecule inhibitor in breast cancer. Biochem Biophys Res Commun. 498:1085–1092. 2018. View Article : Google Scholar : PubMed/NCBI

68 

Jiang F, Kuang B, Que Y, Lin Z, Yuan L, Xiao W, Peng R and Zhang X and Zhang X: The clinical significance of transforming acidic coiled-coil protein 3 expression in non-small cell lung cancer. Oncol Rep. 35:436–446. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Qie Y, Wang L, Du E, Chen S, Lu C, Ding N, Yang K and Xu Y: TACC3 promotes prostate cancer cell proliferation and restrains primary cilium formation. Exp Cell Res. 390:1119522020. View Article : Google Scholar : PubMed/NCBI

70 

Adams M, Simms RJ, Abdelhamed Z, Dawe HR, Szymanska K, Logan CV, Wheway G, Pitt E, Gull K, Knowles MA, et al: A meckelin-filamin A interaction mediates ciliogenesis. Hum Mol Genet. 21:1272–1286. 2012. View Article : Google Scholar : PubMed/NCBI

71 

Goepfert TM, Adigun YE, Zhong L, Gay J, Medina D and Brinkley WR: Centrosome amplification and overexpression of aurora A are early events in rat mammary carcinogenesis. Cancer Res. 62:4115–4122. 2002.PubMed/NCBI

72 

Gritsko TM, Coppola D, Paciga JE, Yang L, Sun M, Shelley SA, Fiorica JV, Nicosia SV and Cheng JQ: Activation and overexpression of centrosome kinase BTAK/Aurora-A in human ovarian cancer. Clin Cancer Res. 9:1420–1426. 2003.PubMed/NCBI

73 

Kobayashi T, Nakazono K, Tokuda M, Mashima Y, Dynlacht BD and Itoh H: HDAC2 promotes loss of primary cilia in pancreatic ductal adenocarcinoma. EMBO Rep. 18:334–343. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Dere R, Perkins AL, Bawa-Khalfe T, Jonasch D and Walker CL: β-catenin links von Hippel-Lindau to aurora kinase A and loss of primary cilia in renal cell carcinoma. J Am Soc Nephrol. 26:553–564. 2015. View Article : Google Scholar : PubMed/NCBI

75 

Egeberg DL, Lethan M, Manguso R, Schneider L, Awan A, Jørgensen TS, Byskov AG, Pedersen LB and Christensen ST: Primary cilia and aberrant cell signaling in epithelial ovarian cancer. Cilia. 1:152012. View Article : Google Scholar : PubMed/NCBI

76 

O'Toole SM, Watson DS, Novoselova TV, Romano LEL, King PJ, Bradshaw TY, Thompson CL, Knight MM, Sharp TV, Barnes MR, et al: Oncometabolite induced primary cilia loss in pheochromocytoma. Endocr Relat Cancer. 26:165–180. 2019. View Article : Google Scholar : PubMed/NCBI

77 

Chen Q, Li J, Yang X, Ma J, Gong F and Liu Y: Prdx1 promotes the loss of primary cilia in esophageal squamous cell carcinoma. BMC Cancer. 20:3722020. View Article : Google Scholar : PubMed/NCBI

78 

Xu J, Li H, Wang B, Xu Y, Yang J, Zhang X, Harten SK, Shukla D, Maxwell PH, Pei D and Esteban MA: VHL inactivation induces HEF1 and Aurora kinase A. J Am Soc Nephrol. 21:2041–2046. 2010. View Article : Google Scholar : PubMed/NCBI

79 

Plotnikova OV, Seo S, Cottle DL, Conduit S, Hakim S, Dyson JM, Mitchell CA and Smyth IM: INPP5E interacts with AURKA, linking phosphoinositide signaling to primary cilium stability. J Cell Sci. 128:364–372. 2015.PubMed/NCBI

80 

Conduit SE, Ramaswamy V, Remke M, Watkins DN, Wainwright BJ, Taylor MD, Mitchell CA and Dyson JM: A compartmentalized phosphoinositide signaling axis at cilia is regulated by INPP5E to maintain cilia and promote Sonic Hedgehog medulloblastoma. Oncogene. 36:5969–5984. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Gradilone SA, Radtke BN, Bogert PS, Huang BQ, Gajdos GB and LaRusso NF: HDAC6 inhibition restores ciliary expression and decreases tumor growth. Cancer Res. 73:2259–2270. 2013. View Article : Google Scholar : PubMed/NCBI

82 

Peixoto E, Jin S, Thelen K, Biswas A, Richard S, Morleo M, Mansini A, Holtorf S, Carbone F, Pastore N, et al: HDAC6-dependent ciliophagy is involved in ciliary loss and cholangiocarcinoma growth in human cells and murine models. Am J Physiol Gastrointest Liver Physiol. 318:G1022–G1033. 2020. View Article : Google Scholar : PubMed/NCBI

83 

Kim S, Lee K, Choi JH, Ringstad N and Dynlacht BD: Nek2 activation of Kif24 ensures cilium disassembly during the cell cycle. Nat Commun. 6:80872015. View Article : Google Scholar : PubMed/NCBI

84 

Cappello P, Blaser H, Gorrini C, Lin DC, Elia AJ, Wakeham A, Haider S, Boutros PC, Mason JM, Miller NA, et al: Role of Nek2 on centrosome duplication and aneuploidy in breast cancer cells. Oncogene. 33:2375–2384. 2014. View Article : Google Scholar : PubMed/NCBI

85 

Zhou W, Yang Y, Xia J, Wang H, Salama ME, Xiong W, Xu H, Shetty S, Chen T, Zeng Z, et al: NEK2 induces drug resistance mainly through activation of efflux drug pumps and is associated with poor prognosis in myeloma and other cancers. Cancer Cell. 23:48–62. 2013. View Article : Google Scholar : PubMed/NCBI

86 

Hayward DG, Clarke RB, Faragher AJ, Pillai MR, Hagan IM and Fry AM: The centrosomal kinase Nek2 displays elevated levels of protein expression in human breast cancer. Cancer Res. 64:7370–7376. 2004. View Article : Google Scholar : PubMed/NCBI

87 

Hassounah NB, Nunez M, Fordyce C, Roe D, Nagle R, Bunch T and McDermott KM: Inhibition of ciliogenesis promotes hedgehog signaling, tumorigenesis, and metastasis in breast cancer. Mol Cancer Res. 15:1421–1430. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Rogowski K, Juge F, van Dijk J, Wloga D, Strub JM, Levilliers N, Thomas D, Bré MH, Van Dorsselaer A, Gaertig J and Janke C: Evolutionary divergence of enzymatic mechanisms for posttranslational polyglycylation. Cell. 137:1076–1087. 2009. View Article : Google Scholar : PubMed/NCBI

89 

Bosch Grau M, Masson C, Gadadhar S, Rocha C, Tort O, Marques Sousa P, Vacher S, Bieche I and Janke C: Alterations in the balance of tubulin glycylation and glutamylation in photoreceptors leads to retinal degeneration. J Cell Sci. 130:938–949. 2017.PubMed/NCBI

90 

Pathak N, Austin CA and Drummond IA: Tubulin tyrosine ligase-like genes ttll3 and ttll6 maintain zebrafish cilia structure and motility. J Biol Chem. 286:11685–11695. 2011. View Article : Google Scholar : PubMed/NCBI

91 

Curatolo P, Bombardieri R and Jozwiak S: Tuberous sclerosis. Lancet. 372:657–668. 2008. View Article : Google Scholar : PubMed/NCBI

92 

Jozwiak J: Hamartin and tuberin: Working together for tumour suppression. Int J Cancer. 118:1–5. 2006. View Article : Google Scholar : PubMed/NCBI

93 

Hartman TR, Liu D, Zilfou JT, Robb V, Morrison T, Watnick T and Henske EP: The tuberous sclerosis proteins regulate formation of the primary cilium via a rapamycin-insensitive and polycystin 1-independent pathway. Hum Mol Genet. 18:151–163. 2009. View Article : Google Scholar : PubMed/NCBI

94 

Wilson C, Bonnet C, Guy C, Idziaszczyk S, Colley J, Humphreys V, Maynard J, Sampson JR and Cheadle JP: Tsc1 haploinsufficiency without mammalian target of rapamycin activation is sufficient for renal cyst formation in Tsc1+/- mice. Cancer Res. 66:7934–7938. 2006. View Article : Google Scholar : PubMed/NCBI

95 

DiBella LM, Park A and Sun Z: Zebrafish Tsc1 reveals functional interactions between the cilium and the TOR pathway. Hum Mol Genet. 18:595–606. 2009. View Article : Google Scholar : PubMed/NCBI

96 

Armour EA, Carson RP and Ess KC: Cystogenesis and elongated primary cilia in Tsc1-deficient distal convoluted tubules. Am J Physiol Renal Physiol. 303:F584–F592. 2012. View Article : Google Scholar : PubMed/NCBI

97 

Rosengren T, Larsen LJ, Pedersen LB, Christensen ST and Moller LB: TSC1 and TSC2 regulate cilia length and canonical Hedgehog signaling via different mechanisms. Cell Mol Life Sci. 75:2663–2680. 2018. View Article : Google Scholar : PubMed/NCBI

98 

Sherpa RT, Atkinson KF, Ferreira VP and Nauli SM: Rapamycin increases length and mechanosensory function of primary cilia in renal epithelial and vascular endothelial cells. Int Educ Res J. 2:91–97. 2016.PubMed/NCBI

99 

Takahashi K, Nagai T, Chiba S, Nakayama K and Mizuno K: Glucose deprivation induces primary cilium formation through mTORC1 inactivation. J Cell Sci. 131:jcs2087692018.PubMed/NCBI

100 

Huber TB, Walz G and Kuehn EW: mTOR and rapamycin in the kidney: Signaling and therapeutic implications beyond immunosuppression. Kidney Int. 79:502–511. 2011. View Article : Google Scholar : PubMed/NCBI

101 

Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, Brown N, Flask CA, Novick AC, Goldfarb DA, Kramer-Zucker A, et al: The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci USA. 103:5466–5471. 2006. View Article : Google Scholar : PubMed/NCBI

102 

Zhang T and George DJ: Immunotherapy and targeted-therapy combinations mark a new era of kidney cancer treatment. Nat Med. 27:586–588. 2021. View Article : Google Scholar : PubMed/NCBI

103 

Fan Y, Sun T, Shao Z, Zhang Q, Ouyang Q, Tong Z, Wang S, Luo Y, Teng Y, Wang X, et al: Effectiveness of adding everolimus to the First-line treatment of advanced breast cancer in premenopausal women who experienced disease progression while receiving selective estrogen receptor modulators: A phase 2 randomized clinical trial. JAMA Oncol. 7:e2134282021. View Article : Google Scholar : PubMed/NCBI

104 

Ferrante MI, Giorgio G, Feather SA, Bulfone A, Wright V, Ghiani M, Selicorni A, Gammaro L, Scolari F, Woolf AS, et al: Identification of the gene for oral-facial-digital type I syndrome. Am J Hum Genet. 68:569–576. 2001. View Article : Google Scholar : PubMed/NCBI

105 

Wang J, Chen X, Wang F, Zhang J, Li P, Li Z, Xu J, Gao F, Jin C, Tian H, et al: OFD1, as a ciliary protein, exhibits neuroprotective function in photoreceptor degeneration models. PLoS One. 11:e01558602016. View Article : Google Scholar : PubMed/NCBI

106 

Singla V, Romaguera-Ros M, Garcia-Verdugo JM and Reiter JF: Ofd1, a human disease gene, regulates the length and distal structure of centrioles. Dev Cell. 18:410–424. 2010. View Article : Google Scholar : PubMed/NCBI

107 

Lopes CA, Prosser SL, Romio L, Hirst RA, O'Callaghan C, Woolf AS and Fry AM: Centriolar satellites are assembly points for proteins implicated in human ciliopathies, including oral-facial-digital syndrome 1. J Cell Sci. 124:600–612. 2011. View Article : Google Scholar : PubMed/NCBI

108 

Tang Z, Lin MG, Stowe TR, Chen S, Zhu M, Stearns T, Franco B and Zhong Q: Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature. 502:254–257. 2013. View Article : Google Scholar : PubMed/NCBI

109 

Lee J, Yi S, Kang YE, Chang JY, Kim JT, Sul HJ, Kim JO, Kim JM, Kim J, Porcelli AM, et al: Defective ciliogenesis in thyroid hurthle cell tumors is associated with increased autophagy. Oncotarget. 7:79117–79130. 2016. View Article : Google Scholar : PubMed/NCBI

110 

Pampliega O, Orhon I, Patel B, Sridhar S, Díaz-Carretero A, Beau I, Codogno P, Satir BH, Satir P and Cuervo AM: Functional interaction between autophagy and ciliogenesis. Nature. 502:194–200. 2013. View Article : Google Scholar : PubMed/NCBI

111 

Maharjan Y, Lee JN, Kwak S, Lim H, Dutta RK, Liu ZQ, So HS and Park R: Autophagy alteration prevents primary cilium disassembly in RPE1 cells. Biochem Biophys Res Commun. 500:242–248. 2018. View Article : Google Scholar : PubMed/NCBI

112 

Ko JY, Lee EJ and Park JH: Interplay between primary cilia and autophagy and its controversial roles in cancer. Biomol Ther (Seoul). 27:337–341. 2019. View Article : Google Scholar : PubMed/NCBI

113 

Kaelin WG Jr and Ratcliffe PJ: Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Mol Cell. 30:393–402. 2008. View Article : Google Scholar : PubMed/NCBI

114 

Maher ER and Kaelin WG Jr: von Hippel-Lindau disease. Medicine (Baltimore). 76:381–391. 1997. View Article : Google Scholar : PubMed/NCBI

115 

Arjumand W and Sultana S: Role of VHL gene mutation in human renal cell carcinoma. Tumour Biol. 33:9–16. 2012. View Article : Google Scholar : PubMed/NCBI

116 

Schermer B, Ghenoiu C, Bartram M, Müller RU, Kotsis F, Höhne M, Kühn W, Rapka M, Nitschke R, Zentgraf H, et al: The von Hippel-Lindau tumor suppressor protein controls ciliogenesis by orienting microtubule growth. J Cell Biol. 175:547–554. 2006. View Article : Google Scholar : PubMed/NCBI

117 

Noonan HR, Metelo AM, Kamei CN, Peterson RT, Drummond IA and Iliopoulos O: Loss of vhl in the zebrafish pronephros recapitulates early stages of human clear cell renal cell carcinoma. Dis Model Mech. 9:873–884. 2016. View Article : Google Scholar : PubMed/NCBI

118 

Frew IJ and Moch H: A clearer view of the molecular complexity of clear cell renal cell carcinoma. Annu Rev Pathol. 10:263–289. 2015. View Article : Google Scholar : PubMed/NCBI

119 

Albers J, Rajski M, Schonenberger D, Harlander S, Schraml P, von Teichman A, Georgiev S, Wild PJ, Moch H, Krek W and Frew IJ: Combined mutation of Vhl and Trp53 causes renal cysts and tumours in mice. EMBO Mol Med. 5:949–964. 2013. View Article : Google Scholar : PubMed/NCBI

120 

Frew IJ, Thoma CR, Georgiev S, Minola A, Hitz M, Montani M, Moch H and Krek W: pVHL and PTEN tumour suppressor proteins cooperatively suppress kidney cyst formation. EMBO J. 27:1747–1757. 2008. View Article : Google Scholar : PubMed/NCBI

121 

Harlander S, Schonenberger D, Toussaint NC, Prummer M, Catalano A, Brandt L, Moch H, Wild PJ and Frew IJ: Combined mutation in Vhl, Trp53 and Rb1 causes clear cell renal cell carcinoma in mice. Nat Med. 23:869–877. 2017. View Article : Google Scholar : PubMed/NCBI

122 

Esteban MA, Harten SK, Tran MG and Maxwell PH: Formation of primary cilia in the renal epithelium is regulated by the von Hippel-Lindau tumor suppressor protein. J Am Soc Nephrol. 17:1801–1806. 2006. View Article : Google Scholar : PubMed/NCBI

123 

Ding XF, Zhou J, Hu QY, Liu SC and Chen G: The tumor suppressor pVHL down-regulates never-in-mitosis A-related kinase 8 via hypoxia-inducible factors to maintain cilia in human renal cancer cells. J Biol Chem. 290:1389–1394. 2015. View Article : Google Scholar : PubMed/NCBI

124 

Oswald F, Kostezka U, Astrahantseff K, Bourteele S, Dillinger K, Zechner U, Ludwig L, Wilda M, Hameister H, Knöchel W, et al: SHARP is a novel component of the Notch/RBP-Jkappa signalling pathway. EMBO J. 21:5417–5426. 2002. View Article : Google Scholar : PubMed/NCBI

125 

Ariyoshi M and Schwabe JW: A conserved structural motif reveals the essential transcriptional repression function of Spen proteins and their role in developmental signaling. Genes Dev. 17:1909–1920. 2003. View Article : Google Scholar : PubMed/NCBI

126 

Legare S, Cavallone L, Mamo A, Chabot C, Sirois I, Magliocco A, Klimowicz A, Tonin PN, Buchanan M, Keilty D, et al: The estrogen receptor cofactor SPEN functions as a tumor suppressor and candidate biomarker of drug responsiveness in hormone-dependent breast cancers. Cancer Res. 75:4351–4363. 2015. View Article : Google Scholar : PubMed/NCBI

127 

Legare S, Chabot C and Basik M: SPEN, a new player in primary cilia formation and cell migration in breast cancer. Breast Cancer Res. 19:1042017. View Article : Google Scholar : PubMed/NCBI

128 

Margueron R and Reinberg D: The Polycomb complex PRC2 and its mark in life. Nature. 469:343–349. 2011. View Article : Google Scholar : PubMed/NCBI

129 

Wang X, Brea LT and Yu J: Immune modulatory functions of EZH2 in the tumor microenvironment: Implications in cancer immunotherapy. Am J Clin Exp Urol. 7:85–91. 2019.PubMed/NCBI

130 

Zingg D, Debbache J, Peña-Hernández R, Antunes AT, Schaefer SM, Cheng PF, Zimmerli D, Haeusel J, Calçada RR, Tuncer E, et al: EZH2-mediated primary cilium deconstruction drives metastatic melanoma formation. Cancer Cell. 34:69–84.e14. 2018. View Article : Google Scholar : PubMed/NCBI

131 

Denhez F, Wilcox-Adelman SA, Baciu PC, Saoncella S, Lee S, French B, Neveu W and Goetinck PF: Syndesmos, a syndecan-4 cytoplasmic domain interactor, binds to the focal adhesion adaptor proteins paxillin and Hic-5. J Biol Chem. 277:12270–12274. 2002. View Article : Google Scholar : PubMed/NCBI

132 

Avolio R, Jarvelin AI, Mohammed S, Agliarulo I, Condelli V, Zoppoli P, Calice G, Sarnataro D, Bechara E, Tartaglia GG, et al: Protein syndesmos is a novel RNA-binding protein that regulates primary cilia formation. Nucleic Acids Res. 46:12067–12086. 2018.PubMed/NCBI

133 

Haigis KM: KRAS alleles: The devil is in the detail. Trends Cancer. 3:686–697. 2017. View Article : Google Scholar : PubMed/NCBI

134 

Kempf E, Rousseau B, Besse B and Paz-Ares L: KRAS oncogene in lung cancer: Focus on molecularly driven clinical trials. Eur Respir Rev. 25:71–76. 2016. View Article : Google Scholar : PubMed/NCBI

135 

Pupo E, Avanzato D, Middonti E, Bussolino F and Lanzetti L: KRAS-driven metabolic rewiring reveals novel actionable targets in cancer. Front Oncol. 9:8482019. View Article : Google Scholar : PubMed/NCBI

136 

Eser S, Schnieke A, Schneider G and Saur D: Oncogenic KRAS signalling in pancreatic cancer. Br J Cancer. 111:817–822. 2014. View Article : Google Scholar : PubMed/NCBI

137 

Raleigh DR, Choksi PK, Krup AL, Mayer W, Santos N and Reiter JF: Hedgehog signaling drives medulloblastoma growth via CDK6. J Clin Invest. 128:120–124. 2018. View Article : Google Scholar : PubMed/NCBI

138 

Farooqi AA, de la Roche M, Djamgoz MBA and Siddik ZH: Overview of the oncogenic signaling pathways in colorectal cancer: Mechanistic insights. Semin Cancer Biol. 58:65–79. 2019. View Article : Google Scholar : PubMed/NCBI

139 

Palicelli A, Croci S, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, et al: What do we have to know about PD-L1 expression in prostate cancer? a systematic literature review. Part 3: PD-L1, intracellular signaling pathways and tumor microenvironment. Int J Mol Sci. 22:123302021. View Article : Google Scholar : PubMed/NCBI

140 

Eguether T, Cordelieres FP and Pazour GJ: Intraflagellar transport is deeply integrated in hedgehog signaling. Mol Biol Cell. 29:1178–1189. 2018. View Article : Google Scholar : PubMed/NCBI

141 

Deng YZ, Cai Z, Shi S, Jiang H, Shang YR, Ma N, Wang JJ, Guan DX, Chen TW, Rong YF, et al: Cilia loss sensitizes cells to transformation by activating the mevalonate pathway. J Exp Med. 215:177–195. 2018. View Article : Google Scholar : PubMed/NCBI

142 

Jenks AD, Vyse S, Wong JP, Kostaras E, Keller D, Burgoyne T, Shoemark A, Tsalikis A, de la Roche M, Michaelis M, et al: Primary cilia mediate diverse kinase inhibitor resistance mechanisms in cancer. Cell Rep. 23:3042–3055. 2018. View Article : Google Scholar : PubMed/NCBI

143 

Khan NA, Willemarck N, Talebi A, Marchand A, Binda MM, Dehairs J, Rueda-Rincon N, Daniels VW, Bagadi M, Thimiri Govinda Raj DB, et al: Identification of drugs that restore primary cilium expression in cancer cells. Oncotarget. 7:9975–9992. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yin F, Wei Z, Chen F, Xin C and Chen Q: Molecular targets of primary cilia defects in cancer (Review). Int J Oncol 61: 98, 2022.
APA
Yin, F., Wei, Z., Chen, F., Xin, C., & Chen, Q. (2022). Molecular targets of primary cilia defects in cancer (Review). International Journal of Oncology, 61, 98. https://doi.org/10.3892/ijo.2022.5388
MLA
Yin, F., Wei, Z., Chen, F., Xin, C., Chen, Q."Molecular targets of primary cilia defects in cancer (Review)". International Journal of Oncology 61.2 (2022): 98.
Chicago
Yin, F., Wei, Z., Chen, F., Xin, C., Chen, Q."Molecular targets of primary cilia defects in cancer (Review)". International Journal of Oncology 61, no. 2 (2022): 98. https://doi.org/10.3892/ijo.2022.5388
Copy and paste a formatted citation
x
Spandidos Publications style
Yin F, Wei Z, Chen F, Xin C and Chen Q: Molecular targets of primary cilia defects in cancer (Review). Int J Oncol 61: 98, 2022.
APA
Yin, F., Wei, Z., Chen, F., Xin, C., & Chen, Q. (2022). Molecular targets of primary cilia defects in cancer (Review). International Journal of Oncology, 61, 98. https://doi.org/10.3892/ijo.2022.5388
MLA
Yin, F., Wei, Z., Chen, F., Xin, C., Chen, Q."Molecular targets of primary cilia defects in cancer (Review)". International Journal of Oncology 61.2 (2022): 98.
Chicago
Yin, F., Wei, Z., Chen, F., Xin, C., Chen, Q."Molecular targets of primary cilia defects in cancer (Review)". International Journal of Oncology 61, no. 2 (2022): 98. https://doi.org/10.3892/ijo.2022.5388
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team