Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
September-2022 Volume 61 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2022 Volume 61 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Molecular mechanism, regulation, and therapeutic targeting of the STAT3 signaling pathway in esophageal cancer (Review)

  • Authors:
    • Rui-Jie Ma
    • Chao Ma
    • Kang Hu
    • Meng-Meng Zhao
    • Nan Zhang
    • Zhi-Gang Sun
  • View Affiliations / Copyright

    Affiliations: Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China, Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China, Department of Breast Disease Center, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
    Copyright: © Ma et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 105
    |
    Published online on: July 13, 2022
       https://doi.org/10.3892/ijo.2022.5395
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Esophageal cancer (EC) is the seventh most common cancer globally, and the overall 5‑year survival rate is only 20%. Signal transducer and activator of transcription 3 (STAT3) is aberrantly activated in EC, and its activation is associated with a poor prognosis. STAT3 can be activated by canonical pathways such as the JAK/STAT3 pathway as well as non‑canonical pathways including the Wnt/STAT3 and COX2/PGE2/STAT3 pathways. Activated STAT3, present as phosphorylated STAT3 (p‑STAT3), can be transported into the nucleus to regulate downstream genes, including VEGF, cyclin D1, Bcl‑xL, and matrix metalloproteinases (MMPs), to promote cancer cell proliferation and induce resistance to therapy. Non‑coding RNAs, including microRNAs (miRNAs/miRs), circular RNAs (circRNAs), and long non‑coding RNAs (lncRNAs), play a vital role in regulating the STAT3 signaling pathway in EC. Several miRNAs promote or suppress the function of STAT3 in EC, while lncRNAs and circRNAs primarily promote the effects of STAT3 and the progression of cancer. Additionally, various drugs and natural compounds can target STAT3 to suppress the malignant behavior of EC cells, providing novel insights into potential EC therapies.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Malhotra GK, Yanala U, Ravipati A, Follet M, Vijayakumar M and Are C: Global trends in esophageal cancer. J Surg Oncol. 115:564–579. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Huang FL and Yu SJ: Esophageal cancer: Risk factors, genetic association, and treatment. Asian J Surg. 41:210–215. 2018. View Article : Google Scholar

4 

Arnold M, Ferlay J, van Berge Henegouwen MI and Soerjomataram I: Global burden of oesophageal and gastric cancer by histology and subsite in 2018. Gut. 69:1564–1571. 2020. View Article : Google Scholar : PubMed/NCBI

5 

Maret-Ouda J, Markar SR and Lagergren J: Gastroesophageal reflux disease: A review. JAMA. 324:2536–2547. 2020. View Article : Google Scholar : PubMed/NCBI

6 

Schlottmann F, Molena D and Patti MG: Gastroesophageal reflux and Barrett's esophagus: A pathway to esophageal adenocarcinoma. Updates Surg. 70:339–342. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Thrift AP, Shaheen NJ, Gammon MD, Bernstein L, Reid BJ, Onstad L, Risch HA, Liu G, Bird NC, Wu AH, et al: Obesity and risk of esophageal adenocarcinoma and Barrett's esophagus: A Mendelian randomization study. J Natl Cancer Inst. 106:dju2522014. View Article : Google Scholar : PubMed/NCBI

8 

Oze I, Matsuo K, Ito H, Wakai K, Nagata C, Mizoue T, Tanaka K, Tsuji I, Tamakoshi A, Sasazuki S, et al: Cigarette smoking and esophageal cancer risk: An evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Jpn J Clin Oncol. 42:63–73. 2012. View Article : Google Scholar

9 

Katada C, Yokoyama T, Yano T, Kaneko K, Oda I, Shimizu Y, Doyama H, Koike T, Takizawa K, Hirao M, et al: Alcohol consumption and multiple dysplastic lesions increase risk of squamous cell carcinoma in the esophagus, head, and neck. Gastroenterology. 151:860–869.e7. 2016. View Article : Google Scholar

10 

Mönig S, Chevallay M, Niclauss N, Zilli T, Fang W, Bansal A and Hoeppner J: Early esophageal cancer: The significance of surgery, endoscopy, and chemoradiation. Ann N Y Acad Sci. 1434:115–123. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Horn SR, Stoltzfus KC, Lehrer EJ, Dawson LA, Tchelebi L, Gusani NJ, Sharma NK, Chen H, Trifiletti DM and Zaorsky NG: Epidemiology of liver metastases. Cancer Epidemiol. 67:1017602020. View Article : Google Scholar : PubMed/NCBI

12 

Kobayashi N, Kohno T, Haruta S, Fujimori S, Shinohara H, Ueno M and Udagawa H: Pulmonary metastasectomy secondary to esophageal carcinoma: Long-term survival and prognostic factors. Ann Surg Oncol. 21(Suppl 3): S365–S369. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Zhang J, Ma W, Wu H, Wang J, Lin Y, Wang X and Zhang C: Analysis of homogeneous and heterogeneous factors for bone metastasis in esophageal cancer. Med Sci Monit. 25:9416–9425. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Carballo GB, Honorato JR, de Lopes GPF and Spohr TCLSE: A highlight on Sonic hedgehog pathway. Cell Commun Signal. 16:112018. View Article : Google Scholar : PubMed/NCBI

15 

Vaillant C and Monard D: SHH pathway and cerebellar development. Cerebellum. 8:291–301. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Skoda AM, Simovic D, Karin V, Kardum V, Vranic S and Serman L: The role of the hedgehog signaling pathway in cancer: A comprehensive review. Bosn J Basic Med Sci. 18:8–20. 2018. View Article : Google Scholar :

17 

Wang L, Jin JQ, Zhou Y, Tian Z, Jablons DM and He B: Gli is activated and promotes epithelial-mesenchymal transition in human esophageal adenocarcinoma. Oncotarget. 9:853–865. 2017. View Article : Google Scholar

18 

Najafi M, Abbaszadegan MR, Rad A, Dastpak M, Boroumand-Noughabi S and Forghanifard MM: Crosstalk between SHH and stemness state signaling pathways in esophageal squamous cell carcinoma. J Cell Commun Signal. 11:147–153. 2017. View Article : Google Scholar :

19 

Zhan T, Rindtorff N and Boutros M: Wnt signaling in cancer. Oncogene. 36:1461–1473. 2017. View Article : Google Scholar :

20 

Moghbeli M, Abbaszadegan MR, Golmakani E and Forghanifard MM: Correlation of Wnt and NOTCH pathways in esophageal squamous cell carcinoma. J Cell Commun Signal. 10:129–135. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Zhao D, Wang B and Chen H: RAB11A mediates the proliferation and motility of esophageal cancer cells via WNT signaling pathway. Acta Biochim Pol. 67:531–538. 2020.PubMed/NCBI

22 

Feng AL, Han X, Meng X, Chen Z, Li Q, Shu W, Dai H, Zhu J and Yang Z: PRDX2 plays an oncogenic role in esophageal squamous cell carcinoma via Wnt/β-catenin and AKT pathways. Clin Transl Oncol. 22:1838–1848. 2020. View Article : Google Scholar : PubMed/NCBI

23 

Wang X and Wang X: Long non-coding RNA colon cancer-associated transcript 2 may promote esophageal cancer growth and metastasis by regulating the Wnt signaling pathway. Oncol Lett. 18:1745–1754. 2019.PubMed/NCBI

24 

Li Y, Li Y and Chen X: NOTCH and esophageal squamous cell carcinoma. Adv Exp Med Biol. 1287:59–68. 2021. View Article : Google Scholar :

25 

Natsuizaka M, Whelan KA, Kagawa S, Tanaka K, Giroux V, Chandramouleeswaran PM, Long A, Sahu V, Darling DS, Que J, et al: Interplay between Notch1 and Notch3 promotes EMT and tumor initiation in squamous cell carcinoma. Nat Commun. 8:17582017. View Article : Google Scholar : PubMed/NCBI

26 

Zhang T, Kee WH, Seow KT, Fung W and Cao X: The coiled-coil domain of Stat3 is essential for its SH2 domain-mediated receptor binding and subsequent activation induced by epidermal growth factor and interleukin-6. Mol Cell Biol. 20:7132–7139. 2000. View Article : Google Scholar : PubMed/NCBI

27 

Ma J, Zhang T, Novotny-Diermayr V, Tan AL and Cao X: A novel sequence in the coiled-coil domain of Stat3 essential for its nuclear translocation. J Biol Chem. 278:29252–29260. 2003. View Article : Google Scholar : PubMed/NCBI

28 

Hu T, Yeh JE, Pinello L, Jacob J, Chakravarthy S, Yuan GC, Chopra R and Frank DA: Impact of the N-terminal domain of STAT3 in STAT3-dependent transcriptional activity. Mol Cell Biol. 35:3284–3300. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Verhoeven Y, Tilborghs S, Jacobs J, De Waele J, Quatannens D, Deben C, Prenen H, Pauwels P, Trinh XB, Wouters A, et al: The potential and controversy of targeting STAT family members in cancer. Semin Cancer Biol. 60:41–56. 2020. View Article : Google Scholar

30 

Yu H, Lee H, Herrmann A, Buettner R and Jove R: Revisiting STAT3 signalling in cancer: New and unexpected biological functions. Nat Rev Cancer. 14:736–746. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Guanizo AC, Fernando CD, Garama DJ and Gough DJ: STAT3: A multifaceted oncoprotein. Growth Factors. 36:1–14. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Lim CP and Cao X: Structure, function, and regulation of STAT proteins. Mol Biosyst. 2:536–550. 2006. View Article : Google Scholar

33 

Sgrignani J, Garofalo M, Matkovic M, Merulla J, Catapano CV and Cavalli A: Structural biology of STAT3 and Its implications for anticancer therapies development. Int J Mol Sci. 19:15912018. View Article : Google Scholar :

34 

Hevehan DL, Miller WM and Papoutsakis ET: Differential expression and phosphorylation of distinct STAT3 proteins during granulocytic differentiation. Blood. 99:1627–1637. 2002. View Article : Google Scholar : PubMed/NCBI

35 

Kato T, Sakamoto E, Kutsuna H, Kimura-Eto A, Hato F and Kitagawa S: Proteolytic conversion of STAT3alpha to STAT3gamma in human neutrophils: role of granule-derived serine proteases. J Biol Chem. 279:31076–31080. 2004. View Article : Google Scholar : PubMed/NCBI

36 

Johnson DE, O'Keefe RA and Grandis JR: Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 15:234–248. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Chen M, Chen P, Lu MS, Lin PY, Chen W and Lee K: IL-6 expression predicts treatment response and outcome in squamous cell carcinoma of the esophagus. Mol Cancer. 12:262013. View Article : Google Scholar : PubMed/NCBI

38 

Karakasheva TA, Lin EW, Tang Q, Qiao E, Waldron TJ, Soni M, Klein-Szanto AJ, Sahu V, Basu D, Ohashi S, et al: IL-6 mediates cross-talk between tumor cells and activated fibroblasts in the tumor microenvironment. Cancer Res. 78:4957–4970. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Somasundar P, Yu AK, Vona-Davis L and McFadden DW: Differential effects of leptin on cancer in vitro. J Surg Res. 113:50–55. 2003. View Article : Google Scholar : PubMed/NCBI

40 

Beales ILP, Garcia-Morales C, Ogunwobi OO and Mutungi G: Adiponectin inhibits leptin-induced oncogenic signalling in oesophageal cancer cells by activation of PTP1B. Mol Cell Endocrinol. 382:150–158. 2014. View Article : Google Scholar

41 

Murata T, Asanuma K, Ara N, Iijima K, Hatta W, Hamada S, Asano N, Koike T, Imatani A, Masamune A and Shimosegawa T: Leptin aggravates reflux esophagitis by increasing tissue levels of macrophage migration inhibitory factor in rats. Tohoku J Exp Med. 245:45–53. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Andl CD, Mizushima T, Oyama K, Bowser M, Nakagawa H and Rustgi AK: EGFR-induced cell migration is mediated predominantly by the JAK-STAT pathway in primary esophageal keratinocytes. Am J Physiol Gastrointest Liver Physiol. 287:G1227–G1237. 2004. View Article : Google Scholar : PubMed/NCBI

43 

Bhat AA, Lu H, Soutto M, Capobianco A, Rai P, Zaika A and El-Rifai W: Exposure of Barrett's and esophageal adenocarcinoma cells to bile acids activates EGFR-STAT3 signaling axis via induction of APE1. Oncogene. 37:6011–6024. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Vij N, Sharma A, Thakkar M, Sinha S and Mohan RR: PDGF-driven proliferation, migration, and IL8 chemokine secretion in human corneal fibroblasts involve JAK2-STAT3 signaling pathway. Mol Vis. 14:1020–1027. 2008.PubMed/NCBI

45 

Wang Y, Liu S, Jiang G, Zhai W, Yang L, Li M, Chang Z and Zhu B: NOK associates with c-Src and promotes c-Src-induced STAT3 activation and cell proliferation. Cell Signal. 75:1097622020. View Article : Google Scholar : PubMed/NCBI

46 

Jiang Y, Zhang J, Zhao J, Li Z, Chen H, Qiao Y, Chen X, Liu K and Dong Z: TOPK promotes metastasis of esophageal squamous cell carcinoma by activating the Src/GSK3β/STAT3 signaling pathway via γ-catenin. BMC Cancer. 19:12642019. View Article : Google Scholar

47 

Zhu J, Luo L, Tian L, Yin S, Ma X, Cheng S, Tang W, Yu J, Ma W, Zhou X, et al: Aryl hydrocarbon receptor promotes IL-10 expression in inflammatory macrophages through Src-STAT3 signaling pathway. Front Immunol. 9:20332018. View Article : Google Scholar : PubMed/NCBI

48 

Kim H, Suh JM, Hwang ES, Kim DW, Chung HK, Song JH, Hwang JH, Park KC, Ro HK and Jo EK: Thyrotropin-mediated repression of class II trans-activator expression in thyroid cells: Involvement of STAT3 and suppressor of cytokine signaling. J Immunol. 171:616–627. 2003. View Article : Google Scholar : PubMed/NCBI

49 

Zhang Y, Jia Y, Li P, Li H, Xiao D, Wang Y and Ma X: Reciprocal activation of α5-nAChR and STAT3 in nicotine-induced human lung cancer cell proliferation. J Genet Genomics. 44:355–362. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Lu R, Zhang YG and Sun J: STAT3 activation in infection and infection-associated cancer. Mol Cell Endocrinol. 451:80–87. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Gao X, Cao Q, Cheng Y, Zhao D, Wang Z, Yang H, Wu Q, You L, Wang Y and Lin Y: Chronic stress promotes colitis by disturbing the gut microbiota and triggering immune system response. Proc Natl Acad Sci USA. 115:E2960–E2969. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Kisseleva T, Bhattacharya S, Braunstein J and Schindler CW: Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene. 285:1–24. 2002. View Article : Google Scholar : PubMed/NCBI

53 

Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C and Darnell JE Jr: Stat3 as an oncogene. Cell. 98:295–303. 1999. View Article : Google Scholar : PubMed/NCBI

54 

Xu ZS, Zhang HX, Zhang YL, Liu TT, Ran Y, Chen LT, Wang YY and Shu HB: PASD1 promotes STAT3 activity and tumor growth by inhibiting TC45-mediated dephosphorylation of STAT3 in the nucleus. J Mol Cell Biol. 8:221–231. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Zhu P, Zhou K, Lu S, Bai Y, Qi R and Zhang S: Modulation of aryl hydrocarbon receptor inhibits esophageal squamous cell carcinoma progression by repressing COX2/PGE2/STAT3 axis. J Cell Commun Signal. 14:175–192. 2020. View Article : Google Scholar : PubMed/NCBI

56 

Tong D, Liu Q, Liu G, Xu J, Lan W, Jiang Y, Xiao H, Zhang D and Jiang J: Metformin inhibits castration-induced EMT in prostate cancer by repressing COX2/PGE2/STAT3 axis. Cancer Lett. 389:23–32. 2017. View Article : Google Scholar : PubMed/NCBI

57 

Colozza G and Koo BK: Wnt/β-catenin signaling: Structure, assembly and endocytosis of the signalosome. Dev Growth Differ. 63:199–218. 2021. View Article : Google Scholar : PubMed/NCBI

58 

Mizushima T, Nakagawa H, Kamberov YG, Wilder EL, Klein PS and Rustgi AK: Wnt-1 but not epidermal growth factor induces beta-catenin/T-cell factor-dependent transcription in esophageal cancer cells. Cancer Res. 62:277–282. 2002.PubMed/NCBI

59 

Yan S, Zhou C, Zhang W, Zhang G, Zhao X, Yang S, Wang Y, Lu N, Zhu H and Xu N: beta-Catenin/TCF pathway upregulates STAT3 expression in human esophageal squamous cell carcinoma. Cancer Lett. 271:85–97. 2008. View Article : Google Scholar : PubMed/NCBI

60 

Tuluhong D, Chen T, Wang J, Zeng H, Li H, Dunzhu W, Li Q and Wang S: FZD2 promotes TGF-β-induced epithelial-to-mesenchymal transition in breast cancer via activating notch signaling pathway. Cancer Cell Int. 21:1992021. View Article : Google Scholar

61 

Fu Y, Zheng Q, Mao Y, Jiang X, Chen X, Liu P, Lv B, Huang T, Yang J, Cheng Y, et al: WNT2-Mediated FZD2 stabilization regulates esophageal cancer metastasis via STAT3 signaling. Front Oncol. 10:11682020. View Article : Google Scholar : PubMed/NCBI

62 

Zhang Y, Du XL, Wang CJ, Lin DC, Ruan X, Feng YB, Huo YQ, Peng H, Cui JL, Zhang TT, et al: Reciprocal activation between PLK1 and Stat3 contributes to survival and proliferation of esophageal cancer cells. Gastroenterology. 142:521–530.e3. 2012. View Article : Google Scholar

63 

Fang Y, Zhang S, Yin J, Shen YX, Wang H, Chen XS and Tang H: LINC01535 promotes proliferation and inhibits apoptosis in esophageal squamous cell cancer by activating the JAK/STAT3 pathway. Eur Rev Med Pharmacol Sci. 24:3694–3700. 2020.PubMed/NCBI

64 

Gao J, Xia R, Chen J, Gao J, Luo X, Ke C, Ren C, Li J and Mi Y: Inhibition of esophageal-carcinoma cell proliferation by genistein via suppression of JAK1/2STAT3 and AKT/MDM2/p53 signaling pathways. Aging (Albany NY). 12:6240–6259. 2020. View Article : Google Scholar

65 

Zhang R, Hao J, Guo K, Liu W, Yao F, Wu Q, Liu C, Wang Q and Yang X: Germacrone inhibits cell proliferation and induces apoptosis in human esophageal squamous cell carcinoma cells. Biomed Res Int. 2020:76432482020.PubMed/NCBI

66 

Cao Y, Yin X, Jia Y, Liu B, Wu S and Shang M: Plumbagin, a natural naphthoquinone, inhibits the growth of esophageal squamous cell carcinoma cells through inactivation of STAT3. Int J Mol Med. 42:1569–1576. 2018.PubMed/NCBI

67 

Cao YY, Yu J, Liu TT, Yang KX, Yang LY, Chen Q, Shi F, Hao JJ, Cai Y and Wang MR: Plumbagin inhibits the proliferation and survival of esophageal cancer cells by blocking STAT3-PLK1-AKT signaling. Cell Death Dis. 9:172018. View Article : Google Scholar : PubMed/NCBI

68 

Chen M, Ye A, Wei J, Wang R and Poon K: Deoxycholic acid upregulates the reprogramming factors KFL4 and OCT4 through the IL-6/STAT3 pathway in esophageal adenocarcinoma cells. Technol Cancer Res Treat. 19:15330338209453022020. View Article : Google Scholar : PubMed/NCBI

69 

Xu YY, Wang WW, Huang J and Zhu WG: Ellagic acid induces esophageal squamous cell carcinoma cell apoptosis by modulating SHP-1/STAT3 signaling. Kaohsiung J Med Sci. 36:699–704. 2020. View Article : Google Scholar : PubMed/NCBI

70 

Huang Q, Li F, Liu X, Li W, Shi W, Liu FF, O'Sullivan B, He Z, Peng Y, Tan AC, et al: Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med. 17:860–866. 2011. View Article : Google Scholar : PubMed/NCBI

71 

Bernard A, Chevrier S, Beltjens F, Dosset M, Viltard E, Lagrange A, Derangère V, Oudot A, Ghiringhelli F, Collin B, et al: Cleaved caspase-3 transcriptionally regulates angiogenesis-promoting chemotherapy resistance. Cancer Res. 79:5958–5970. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Silva KA, Dong J, Dong Y, Dong Y, Schor N, Tweardy DJ, Zhang L and Mitch WE: Inhibition of Stat3 activation suppresses caspase-3 and the ubiquitin-proteasome system, leading to preservation of muscle mass in cancer cachexia. J Biol Chem. 290:11177–11187. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Liu JR, Wu WJ, Liu SX, Zuo LF, Wang Y, Yang JZ and Nan YM: Nimesulide inhibits the growth of human esophageal carcinoma cells by inactivating the JAK2/STAT3 pathway. Pathol Res Pract. 211:426–434. 2015. View Article : Google Scholar : PubMed/NCBI

74 

Mills JN, Rutkovsky AC and Giordano A: Mechanisms of resistance in estrogen receptor positive breast cancer: Overcoming resistance to tamoxifen/aromatase inhibitors. Curr Opin Pharmacol. 41:59–65. 2018. View Article : Google Scholar : PubMed/NCBI

75 

Itami A, Shimada Y, Watanabe G and Imamura M: Prognostic value of p27(Kip1) and CyclinD1 expression in esophageal cancer. Oncology. 57:311–317. 1999. View Article : Google Scholar : PubMed/NCBI

76 

Zhang N, Zhang M, Wang Z, Gao W and Sun Z: Activated STAT3 could reduce survival in patients with esophageal squamous cell carcinoma by up-regulating VEGF and cyclin D1 expression. J Cancer. 11:1859–1868. 2020. View Article : Google Scholar : PubMed/NCBI

77 

Li H, Xiao W, Ma J, Zhang Y, Li R, Ye J, Wang X, Zhong X and Wang S: Dual high expression of STAT3 and cyclinD1 is associated with poor prognosis after curative resection of esophageal squamous cell carcinoma. Int J Clin Exp Pathol. 7:7989–7998. 2014.

78 

Yang Y, Jin G, Liu H, Liu K, Zhao J, Chen X, Wang D, Bai R, Li X, Jang Y, et al: Metformin inhibits esophageal squamous cell carcinoma-induced angiogenesis by suppressing JAK/STAT3 signaling pathway. Oncotarget. 8:74673–74687. 2017. View Article : Google Scholar : PubMed/NCBI

79 

Zhu Y, Yuan T, Zhang Y, Shi J, Bai L, Duan X, Tong R and Zhong L: AR-42: A Pan-HDAC inhibitor with antitumor and antiangiogenic activities in esophageal squamous cell carcinoma. Drug Des Devel Ther. 13:4321–4330. 2019. View Article : Google Scholar

80 

Lei YY, Feng YF, Zeng B, Zhang W, Xu Q, Cheng F, Lan J, Luo HH, Zou JY, Chen ZG, et al: Exogenous H2S promotes cancer progression by activating JAK2/STAT3 signaling pathway in esophageal EC109 cells. Int J Clin Exp Pathol. 11:3247–3256. 2018.

81 

Li Y, Ma J, Guo Q, Duan F, Tang F, Zheng P, Zhao Z and Lu G: Overexpression of MMP-2 and MMP-9 in esophageal squamous cell carcinoma. Dis Esophagus. 22:664–667. 2009. View Article : Google Scholar : PubMed/NCBI

82 

Xuan X, Li S, Lou X, Zheng X, Li Y, Wang F, Gao Y, Zhang H, He H and Zeng Q: Stat3 promotes invasion of esophageal squamous cell carcinoma through up-regulation of MMP2. Mol Biol Rep. 42:907–915. 2015. View Article : Google Scholar

83 

Ou Y, Liu L, Xue L, Zhou W, Zhao Z, Xu B, Song Y and Zhan Q: TRAP1 shows clinical significance and promotes cellular migration and invasion through STAT3/MMP2 pathway in human esophageal squamous cell cancer. J Genet Genomics. 41:529–537. 2014. View Article : Google Scholar : PubMed/NCBI

84 

Huang LSM, Snyder EY and Schooley RT: Strategies and progress in CXCR4-targeted anti-human immunodeficiency virus (HIV) therapeutic development. Clin Infect Dis. 73:919–924. 2021. View Article : Google Scholar : PubMed/NCBI

85 

Yue D, Zhang D, Shi X, Liu S, Li A, Wang D, Qin G, Ping Y, Qiao Y and Chen X: Chloroquine inhibits stemness of esophageal squamous cell carcinoma cells through targeting CXCR4-STAT3 pathway. Front Oncol. 10:3112020. View Article : Google Scholar : PubMed/NCBI

86 

Wu J, Gao FX, Wang C, Qin M, Han F, Xu T, Hu Z, Long Y, He XM and Deng X: IL-6 and IL-8 secreted by tumour cells impair the function of NK cells via the STAT3 pathway in oesophageal squamous cell carcinoma. J Exp Clin Cancer Res. 38:3212019. View Article : Google Scholar : PubMed/NCBI

87 

Zhu H, Chen X, Chen B, Chen B, Fan J, Song W, Xie Z, Jiang D, Li Q and Zhou M: Activating transcription factor 4 mediates a multidrug resistance phenotype of esophageal squamous cell carcinoma cells through transactivation of STAT3 expression. Cancer Lett. 354:142–152. 2014. View Article : Google Scholar : PubMed/NCBI

88 

Zhao Y, Ma K, Yang S, Zhang X, Wang F, Zhang X, Liu H and Fan Q: MicroRNA-125a-5p enhances the sensitivity of esophageal squamous cell carcinoma cells to cisplatin by suppressing the activation of the STAT3 signaling pathway. Int J Oncol. 53:644–658. 2018.PubMed/NCBI

89 

Lee MC, Chen YK, Hsu YJ and Lin BR: Niclosamide inhibits the cell proliferation and enhances the responsiveness of esophageal cancer cells to chemotherapeutic agents. Oncol Rep. 43:549–561. 2020.PubMed/NCBI

90 

Zang C, Liu X, Li B, He Y, Jing S, He Y, Wu W, Zhang B, Ma S and Dai W: IL-6/STAT3/TWIST inhibition reverses ionizing radiation-induced EMT and radioresistance in esophageal squamous carcinoma. Oncotarget. 8:11228–11238. 2017. View Article : Google Scholar : PubMed/NCBI

91 

Zhang Q, Zhang C, He J, Guo Q, Hu D, Yang X, Wang J, Kang Y, She R, Wang Z, et al: STAT3 inhibitor stattic enhances radiosensitivity in esophageal squamous cell carcinoma. Tumour Biol. 36:2135–2142. 2015. View Article : Google Scholar

92 

Liu Z, Wang Y, Shu S, Cai J, Tang C and Dong Z: Non-coding RNAs in kidney injury and repair. Am J Physiol Cell Physiol. 317:C177–C188. 2019. View Article : Google Scholar : PubMed/NCBI

93 

Anastasiadou E, Jacob LS and Slack FJ: Non-coding RNA networks in cancer. Nat Rev Cancer. 18:5–18. 2018. View Article : Google Scholar

94 

Romano G, Veneziano D, Acunzo M and Croce CM: Small non-coding RNA and cancer. Carcinogenesis. 38:485–491. 2017. View Article : Google Scholar : PubMed/NCBI

95 

Klingenberg M, Matsuda A, Diederichs S and Patel T: Non-coding RNA in hepatocellular carcinoma: Mechanisms, biomarkers and therapeutic targets. J Hepatol. 67:603–618. 2017. View Article : Google Scholar : PubMed/NCBI

96 

Ambros V: The functions of animal microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI

97 

Simonson B and Das S: MicroRNA therapeutics: The next magic bullet? Mini Rev Med Chem. 15:467–474. 2015. View Article : Google Scholar : PubMed/NCBI

98 

Bushati N and Cohen SM: microRNA functions. Annu Rev Cell Dev Biol. 23:175–205. 2007. View Article : Google Scholar : PubMed/NCBI

99 

Luo X, Zhang L, Li M, Zhang W, Leng X, Zhang F, Zhao Y and Zeng X: The role of miR-125b in T lymphocytes in the pathogenesis of systemic lupus erythematosus. Clin Exp Rheumatol. 31:263–271. 2013.PubMed/NCBI

100 

Liu LH, Li H, Li JP, Zhong H, Zhang HC, Chen J and Xiao T: miR-125b suppresses the proliferation and migration of osteosarcoma cells through down-regulation of STAT3. Biochem Biophys Res Commun. 416:31–38. 2011. View Article : Google Scholar : PubMed/NCBI

101 

Zhu L, Deng H, Hu J, Huang S, Xiong J and Deng J: The promising role of miR-296 in human cancer. Pathol Res Pract. 214:1915–1922. 2018. View Article : Google Scholar : PubMed/NCBI

102 

Wang L, Bo X, Zheng Q, Xiao X, Wu L and Li B: miR-296 inhibits proliferation and induces apoptosis by targeting FGFR1 in human hepatocellular carcinoma. FEBS Lett. 590:4252–4262. 2016. View Article : Google Scholar : PubMed/NCBI

103 

He Z, Yu L, Luo S, Li M, Li J, Li Q, Sun Y and Wang C: miR-296 inhibits the metastasis and epithelial-mesenchymal transition of colorectal cancer by targeting S100A4. BMC Cancer. 17:1402017. View Article : Google Scholar : PubMed/NCBI

104 

Wang ZZ, Luo YR, Du J, Yu Y, Yang XZ, Cui YJ and Jin XF: MiR-296-5p inhibits cell invasion and migration of esophageal squamous cell carcinoma by downregulating STAT3 signaling. Eur Rev Med Pharmacol Sci. 23:5206–5214. 2019.PubMed/NCBI

105 

Lui WO, Pourmand N, Patterson BK and Fire A: Patterns of known and novel small RNAs in human cervical cancer. Cancer Res. 67:6031–6043. 2007. View Article : Google Scholar : PubMed/NCBI

106 

Sun QH, Yin ZX, Li Z, Tian SB, Wang HC, Zhang FX, Li LP, Zheng CN and Kong S: miR-874 inhibits gastric cancer cell proliferation by targeting SPAG9. BMC Cancer. 20:5222020. View Article : Google Scholar : PubMed/NCBI

107 

Liu WG, Zhuo L, Lu Y, Wang L, Ji YX and Guo Q: miR-8743p inhibits cell migration through targeting RGS4 in osteosarcoma. J Gene Med. 22:e32132020. View Article : Google Scholar

108 

Dong D, Gong Y, Zhang D, Bao H and Gu G: miR-874 suppresses the proliferation and metastasis of osteosarcoma by targeting E2F3. Tumour Biol. 37:6447–6455. 2016. View Article : Google Scholar

109 

Li Y, Chen X, Xue W, Liang J and Wang L: MiR-874 inhibits cell proliferation, migration, and invasion of glioma cells and correlates with prognosis of glioma patients. Neuromolecular Med. 23:247–255. 2021. View Article : Google Scholar

110 

Xia B, Lin M, Dong W, Chen H, Li B, Zhang X, Hou Y and Lou G: Upregulation of miR-874-3p and miR-874-5p inhibits epithelial ovarian cancer malignancy via SIK2. J Biochem Mol Toxicol. 32:e221682018. View Article : Google Scholar : PubMed/NCBI

111 

Feng X, Xue H, Guo S, Chen Y, Zhang X and Tang X: MiR-874-3p suppresses cell proliferation and invasion by targeting ADAM19 in nasopharyngeal carcinoma. Panminerva Med. 63:238–239. 2021. View Article : Google Scholar

112 

Jiang B, Li Z, Zhang W, Wang H, Zhi X, Feng J, Chen Z, Zhu Y, Yang L, Xu H and Xu Z: miR-874 Inhibits cell proliferation, migration and invasion through targeting aquaporin-3 in gastric cancer. J Gastroenterol. 49:1011–1025. 2014. View Article : Google Scholar

113 

Zhao B and Dong AS: MiR-874 inhibits cell growth and induces apoptosis by targeting STAT3 in human colorectal cancer cells. Eur Rev Med Pharmacol Sci. 20:269–277. 2016.PubMed/NCBI

114 

Bu L, Zhang L, Tian M, Zheng Z, Tang H and Yang Q: LncRNA MIR210HG facilitates non-small cell lung cancer progression through directly regulation of miR-874/STAT3 axis. Dose Response. 18:15593258209180522020. View Article : Google Scholar : PubMed/NCBI

115 

Zhang X, Tang J, Zhi X, Xie K, Wang W, Li Z, Zhu Y, Yang L, Xu H and Xu Z: miR-874 functions as a tumor suppressor by inhibiting angiogenesis through STAT3/VEGF-A pathway in gastric cancer. Oncotarget. 6:1605–1617. 2015. View Article : Google Scholar : PubMed/NCBI

116 

Yuan RB, Zhang SH, He Y, Zhang XY and Zhang YB: MiR-874-3p is an independent prognostic factor and functions as an anti-oncomir in esophageal squamous cell carcinoma via targeting STAT3. Eur Rev Med Pharmacol Sci. 22:7265–7273. 2018.PubMed/NCBI

117 

Zhang Q, Liu S, Zhang J, Ma X, Dong M, Sun B and Xin Y: Roles and regulatory mechanisms of miR-30b in cancer, cardiovascular disease, and metabolic disorders (Review). Exp Ther Med. 21:442021. View Article : Google Scholar

118 

Meng L, Wang F, Sun S, Zheng Y, Ding Z, Sun Y, Li B, Meng Q and Xu M: MicroRNA-30b targets CBX3 and regulates cell proliferation, apoptosis, and migration in esophageal squamous cell carcinoma via the JAK2/STAT3 signaling pathway. Int J Clin Exp Pathol. 10:11828–11837. 2017.PubMed/NCBI

119 

van Wijnen AJ, Bagheri L, Badreldin AA, Larson AN, Dudakovic A, Thaler R, Paradise CR and Wu Z: Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. Bone. 143:1156592021. View Article : Google Scholar

120 

Xu J, Lv H, Zhang B, Xu F, Zhu H, Chen B, Zhu C and Shen J: miR-30b-5p acts as a tumor suppressor microRNA in esophageal squamous cell carcinoma. J Thorac Dis. 11:3015–3029. 2019. View Article : Google Scholar : PubMed/NCBI

121 

Li B, Xie Z, Li Z, Chen S and Li B: MicroRNA-613 targets FMNL2 and suppresses progression of colorectal cancer. Am J Transl Res. 8:5475–5484. 2016.

122 

Lu Y, Tang L, Zhang Q, Zhang Z and Wei W: MicroRNA-613 inhibits the progression of gastric cancer by targeting CDK9. Artif Cells Nanomed Biotechnol. 46:980–984. 2018. View Article : Google Scholar

123 

Luo J, Jin Y, Li M and Dong L: Tumor suppressor miR-613 induces cisplatin sensitivity in non-small cell lung cancer cells by targeting GJA1. Mol Med Rep. 23:3852021.

124 

Jiang X, Wu J, Zhang Y, Wang S, Yu X, Li R and Huang X: MiR-613 functions as tumor suppressor in hepatocellular carcinoma by targeting YWHAZ. Gene. 659:168–174. 2018. View Article : Google Scholar : PubMed/NCBI

125 

Wang W, Zhang H, Wang L, Zhang S and Tang M: miR-613 inhibits the growth and invasiveness of human hepatocellular carcinoma via targeting DCLK1. Biochem Biophys Res Commun. 473:987–992. 2016. View Article : Google Scholar : PubMed/NCBI

126 

Wang J, Yang S, Ge W, Wang Y, Han C and Li M: MiR-613 suppressed the laryngeal squamous cell carcinoma progression through regulating PDK1. J Cell Biochem. 119:5118–5125. 2018. View Article : Google Scholar

127 

Yang HC, Wu YH, Yen WC, Liu HY, Hwang TL, Stern A and Chiu DT: The redox role of G6PD in cell growth, cell death, and cancer. Cells. 8:10552019. View Article : Google Scholar :

128 

Su X, Gao C, Feng X and Jiang M: miR-613 suppresses migration and invasion in esophageal squamous cell carcinoma via the targeting of G6PD. Exp Ther Med. 19:3081–3089. 2020.PubMed/NCBI

129 

Li Z, Zhao S, Wang H, Zhang B and Zhang P: miR-4286 promotes prostate cancer progression via targeting the expression of SALL1. J Gene Med. e31272019.Epub ahead of print. PubMed/NCBI

130 

Tsai CC, Chen TY, Tsai KJ, Lin MW, Hsu CY, Wu DC, Tsai EM and Hsieh TH: NF-κB/miR-18a-3p and miR-4286/BZRAP1 axis may mediate carcinogenesis in Helicobacter pylori-Associated gastric cancer. Biomed Pharmacother. 132:1108692020. View Article : Google Scholar

131 

An X, Ge J, Guo H, Mi H, Zhou J, Liu Y, Weiyue and Wu Z: Overexpression of miR-4286 is an unfavorable prognostic marker in individuals with non-small cell lung cancer. J Cell Biochem. 120:17573–17583. 2019. View Article : Google Scholar : PubMed/NCBI

132 

Ho KH, Chen PH, Shih CM, Lee YT, Cheng CH, Liu AJ, Lee CC and Chen KC: miR-4286 is involved in connections between IGF-1 and TGF-β signaling for the mesenchymal transition and invasion by glioblastomas. Cell Mol Neurobiol. 42:791–806. 2020. View Article : Google Scholar

133 

Rynkiewicz NK, Liu HJ, Balamatsias D and Mitchell CA: INPP4A/INPP4B and P-Rex proteins: Related but different? Adv Biol Regul. 52:265–279. 2012. View Article : Google Scholar

134 

Zhang M, Tian H, Li R, Yan W and Xu R: MicroRNA-4286 promotes esophageal carcinoma development by targeting INPP4A to evoke the JAK2/STAT3 pathway activation. Pharmazie. 73:342–348. 2018.PubMed/NCBI

135 

Ebrahimi F, Gopalan V, Smith RA and Lam AK: miR-126 in human cancers: Clinical roles and current perspectives. Exp Mol Pathol. 96:98–107. 2014. View Article : Google Scholar

136 

Zhang Z, Wang J, Cheng J and Yu X: Effects of miR-126 on the STAT3 signaling pathway and the regulation of malignant behavior in lung cancer cells. Oncol Lett. 15:8412–8416. 2018.PubMed/NCBI

137 

Xu J, Wang H, Wang H, Chen Q, Zhang L, Song C, Zhou Q and Hong Y: The inhibition of miR-126 in cell migration and invasion of cervical cancer through regulating ZEB1. Hereditas. 156:112019. View Article : Google Scholar : PubMed/NCBI

138 

Jiang R, Zhang C, Liu G, Gu R and Wu H: MicroRNA-126 inhibits proliferation, migration, invasion, and EMT in osteosarcoma by targeting ZEB1. J Cell Biochem. 118:3765–3774. 2017. View Article : Google Scholar : PubMed/NCBI

139 

Li M, Meng X and Li M: MiR-126 promotes esophageal squamous cell carcinoma via inhibition of apoptosis and autophagy. Aging (Albany NY). 12:12107–12118. 2020. View Article : Google Scholar

140 

Indrieri A, Carrella S, Carotenuto P, Banfi S and Franco B: The pervasive role of the miR-181 family in development, neurodegeneration, and cancer. Int J Mol Sci. 21:20922020. View Article : Google Scholar :

141 

He Y, Yang Y, Xu J, Liao Y, Liu L, Deng L and Xiong X: IL22 drives cutaneous melanoma cell proliferation, migration and invasion through activation of miR-181/STAT3/AKT axis. J Cancer. 11:2679–2687. 2020. View Article : Google Scholar : PubMed/NCBI

142 

Xu DD, Zhou PJ, Wang Y, Zhang L, Fu WY, Ruan BB, Xu HP, Hu CZ, Tian L, Qin JH, et al: Reciprocal activation between STAT3 and miR-181b regulates the proliferation of esophageal cancer stem-like cells via the CYLD pathway. Mol Cancer. 15:402016. View Article : Google Scholar : PubMed/NCBI

143 

Qian X, Zhao J, Yeung PY, Zhang QC and Kwok CK: Revealing lncRNA structures and interactions by sequencing-based approaches. Trends Biochem Sci. 44:33–52. 2019. View Article : Google Scholar

144 

Yao X, Wu L, Gu Z and Li J: LINC01535 promotes the development of osteosarcoma through modulating miR-214-3p/KCNC4 axis. Cancer Manag Res. 12:5575–5585. 2020. View Article : Google Scholar : PubMed/NCBI

145 

Song H, Liu Y, Jin X, Liu Y, Yang Y, Li L, Wang X and Li G: Long non-coding RNA LINC01535 promotes cervical cancer progression via targeting the miR-214/EZH2 feedback loop. J Cell Mol Med. 23:6098–6111. 2019. View Article : Google Scholar : PubMed/NCBI

146 

Zhao C, Jiang Q, Chen L and Chen W: LncRNA LINC01535 promotes colorectal cancer development and chemoresistance by sponging miR-761. Exp Ther Med. 22:6852021. View Article : Google Scholar : PubMed/NCBI

147 

Wang L, Cao L, Wen C, Li J, Yu G and Liu C: LncRNA LINC00857 regulates lung adenocarcinoma progression, apoptosis and glycolysis by targeting miR-1179/SPAG5 axis. Hum Cell. 33:195–204. 2020. View Article : Google Scholar

148 

Lin X, Feng D, Li P and Lv Y: LncRNA LINC00857 regulates the progression and glycolysis in ovarian cancer by modulating the Hippo signaling pathway. Cancer Med. 9:8122–8132. 2020. View Article : Google Scholar : PubMed/NCBI

149 

Xia C, Zhang XY, Liu W, Ju M, Ju Y, Bu YZ, Wang W and Shao H: LINC00857 contributes to hepatocellular carcinoma malignancy via enhancing epithelial-mesenchymal transition. J Cell Biochem. Dec 3–2018.Epub ahead of print.

150 

Su W, Wang L, Niu F, Zou L, Guo C, Wang Z, Yang X, Wu J, Lu Y and Zhang J: LINC00857 knockdown inhibits cell proliferation and induces apoptosis via involving STAT3 and MET oncogenic proteins in esophageal adenocarcinoma. Aging (Albany NY). 11:2812–2821. 2019. View Article : Google Scholar

151 

Liu J, Yao L, Zhang M, Jiang J, Yang M and Wang Y: Downregulation of LncRNA-XIST inhibited development of non-small cell lung cancer by activating miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death. Aging (Albany NY). 11:7830–7846. 2019. View Article : Google Scholar

152 

Liu H, Deng H, Zhao Y, Li C and Liang Y: LncRNA XIST/miR-34a axis modulates the cell proliferation and tumor growth of thyroid cancer through MET-PI3K-AKT signaling. J Exp Clin Cancer Res. 37:2792018. View Article : Google Scholar : PubMed/NCBI

153 

Du YL, Liang Y, Cao Y, Liu L, Li J and Shi GQ: LncRNA XIST promotes migration and invasion of papillary thyroid cancer cell by modulating MiR-101-3p/CLDN1 axis. Biochem Genet. 59:437–452. 2021. View Article : Google Scholar

154 

Zheng H, Zhang M, Ke X, Deng X, Li D and Wang Q, Yan S, Xue Y and Wang Q: LncRNA XIST/miR-137 axis strengthens chemo-resistance and glycolysis of colorectal cancer cells by hindering transformation from PKM2 to PKM1. Cancer Biomark. 30:395–406. 2021. View Article : Google Scholar : PubMed/NCBI

155 

Chen Z, Hu X, Wu Y, Cong L, He X, Lu J, Feng J and Liu D: Long non-coding RNA XIST promotes the development of esophageal cancer by sponging miR-494 to regulate CDK6 expression. Biomed Pharmacother. 109:2228–2236. 2019. View Article : Google Scholar

156 

Jiang H, Deng W, Zhu K, Zeng Z, Hu B, Zhou Z, Xie A, Zhang C, Fu B, Zhou X and Wang G: LINC00467 promotes prostate cancer progression via M2 macrophage polarization and the miR-494-3p/STAT3 axis. Front Oncol. 11:6614312021. View Article : Google Scholar :

157 

Pan L, Liang W, Fu M, Huang ZH, Li X, Zhang W, Zhang P, Qian H, Jiang PC, Xu WR and Zhang X: Exosomes-mediated transfer of long noncoding RNA ZFAS1 promotes gastric cancer progression. J Cancer Res Clin Oncol. 143:991–1004. 2017. View Article : Google Scholar : PubMed/NCBI

158 

Li Z, Qin X, Bian W, Li Y, Shan B, Yao Z and Li S: Exosomal lncRNA ZFAS1 regulates esophageal squamous cell carcinoma cell proliferation, invasion, migration and apoptosis via microRNA-124/STAT3 axis. J Exp Clin Canc Res. 38:4772019. View Article : Google Scholar

159 

Shi H, Liu Z, Pei D, Jiang Y, Zhu H and Chen B: Development and validation of nomogram based on lncRNA ZFAS1 for predicting survival in lymph node-negative esophageal squamous cell carcinoma patients. Oncotarget. 8:59048–59057. 2017. View Article : Google Scholar : PubMed/NCBI

160 

Zhang L, Li C and Su X: Emerging impact of the long noncoding RNA MIR22HG on proliferation and apoptosis in multiple human cancers. J Exp Clin Cancer Res. 39:2712020. View Article : Google Scholar : PubMed/NCBI

161 

Su W, Guo C, Wang L, Wang Z, Yang X, Niu F, Tzou D, Yang X, Huang X, Wu J, et al: LncRNA MIR22HG abrogation inhibits proliferation and induces apoptosis in esophageal adenocarcinoma cells via activation of the STAT3/c-Myc/FAK signaling. Aging (Albany NY). 11:4587–4596. 2019. View Article : Google Scholar

162 

Li F, Zhang L and Sun Q: CircAKT3 promotes cell proliferation, survival and glutamine metabolism of gastric cancer by activating SLC1A5 expression via targeting miR-515-5p. Histol Histopathol. 37:227–241. 2022.

163 

Huang X, Li Z, Zhang Q, Wang W, Li B, Wang L, Xu Z, Zeng A, Zhang X, Zhang X, et al: Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol Cancer. 18:712019. View Article : Google Scholar : PubMed/NCBI

164 

Guan X, Chen S and Zhao Y: The role of RhoC in malignant tumor invasion, metastasis and targeted therapy. Histol Histopathol. 33:255–260. 2018.

165 

Zang HL, Ji FJ, Ju HY and Tian XF: Circular RNA AKT3 governs malignant behaviors of esophageal cancer cells by sponging miR-17-5p. World J Gastroentero. 27:240–254. 2021. View Article : Google Scholar

166 

Xu Z, Tie X, Li N, Yi Z, Shen F and Zhang Y: Circular RNA hsa_circ_0000654 promotes esophageal squamous cell carcinoma progression by regulating the miR-149-5p/IL-6/STAT3 pathway. IUBMB Life. 72:426–439. 2020. View Article : Google Scholar

167 

Dilruba S and Kalayda GV: Platinum-based drugs: Past, present and future. Cancer Chemother Pharmacol. 77:1103–1124. 2016. View Article : Google Scholar : PubMed/NCBI

168 

Ghosh S: Cisplatin: The first metal based anticancer drug. Bioorg Chem. 88:1029252019. View Article : Google Scholar : PubMed/NCBI

169 

Kato H and Nakajima M: Treatments for esophageal cancer: A review. Gen Thorac Cardiovasc Surg. 61:330–335. 2013. View Article : Google Scholar : PubMed/NCBI

170 

Ngan CY, Yamamoto H, Takagi A, Fujie Y, Takemasa I, Ikeda M, Takahashi-Yanaga F, Sasaguri T, Sekimoto M, Matsuura N and Monden M: Oxaliplatin induces mitotic catastrophe and apoptosis in esophageal cancer cells. Cancer Sci. 99:129–139. 2008.

171 

Kato J, Kuwabara Y, Mitani M, Shinoda N, Sato A, Toyama T, Mitsui A, Nishiwaki T, Moriyama S, Kudo J and Fujii Y: Expression of survivin in esophageal cancer: Correlation with the prognosis and response to chemotherapy. Int J Cancer. 95:92–95. 2001. View Article : Google Scholar : PubMed/NCBI

172 

Gritsko T, Williams A, Turkson J, Kaneko S, Bowman T, Huang M, Nam S, Eweis I, Diaz N, Sullivan D, et al: Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clin Cancer Res. 12:11–19. 2006. View Article : Google Scholar : PubMed/NCBI

173 

Zhu L and Chen L: Progress in research on paclitaxel and tumor immunotherapy. Cell Mol Biol Lett. 24:402019. View Article : Google Scholar : PubMed/NCBI

174 

Mayanagi S, Irino T, Kawakubo H and Kitagawa Y: Neoadjuvant treatment strategy for locally advanced thoracic esophageal cancer. Ann Gastroenterol Surg. 3:269–275. 2019. View Article : Google Scholar : PubMed/NCBI

175 

Zhang X, Wu X, Zhang F, Mo S, Lu Y, Wei W, Chen X, Lan L, Lu B and Liu Y: Paclitaxel induces apoptosis of esophageal squamous cell carcinoma cells by downregulating STAT3 phosphorylation at Ser727. Oncol Rep. 37:2237–2244. 2017. View Article : Google Scholar : PubMed/NCBI

176 

Miura M: Therapeutic drug monitoring of imatinib, nilotinib, and dasatinib for patients with chronic myeloid leukemia. Biol Pharm Bull. 38:645–654. 2015. View Article : Google Scholar : PubMed/NCBI

177 

Lue HW, Cole B, Rao SA, Podolak J, Van Gaest A, King C, Eide CA, Wilmot B, Xue C, Spellman PT, et al: Src and STAT3 inhibitors synergize to promote tumor inhibition in renal cell carcinoma. Oncotarget. 6:44675–44687. 2015. View Article : Google Scholar : PubMed/NCBI

178 

Ma L, Wei J, Su GH and Lin J: Dasatinib can enhance paclitaxel and gemcitabine inhibitory activity in human pancreatic cancer cells. Cancer Biol Ther. 20:855–865. 2019. View Article : Google Scholar : PubMed/NCBI

179 

Wang M and Yuang-Chi Chang A: Molecular mechanism of action and potential biomarkers of growth inhibition of synergistic combination of afatinib and dasatinib against gefitinib-resistant non-small cell lung cancer cells. Oncotarget. 9:16533–16546. 2018. View Article : Google Scholar : PubMed/NCBI

180 

Chen J, Lan T, Zhang W, Dong L, Kang N, Fu M, Liu B, Liu K, Zhang C, Hou J and Zhan Q: Dasatinib enhances cisplatin sensitivity in human esophageal squamous cell carcinoma (ESCC) cells via suppression of PI3K/AKT and Stat3 pathways. Arch Biochem Biophys. 575:38–45. 2015. View Article : Google Scholar : PubMed/NCBI

181 

Gambacorti-Passerini C, le Coutre P and Piazza R: The role of bosutinib in the treatment of chronic myeloid leukemia. Future Oncol. 16:4395–4408. 2020. View Article : Google Scholar

182 

Deng B, Jiang XL, Tan ZB, Cai M, Deng SH, Ding WJ, Xu YC, Wu YT, Zhang SW, Chen RX, et al: Dauricine inhibits proliferation and promotes death of melanoma cells via inhibition of Src/STAT3 signaling. Phytother Res. 35:3836–3847. 2021. View Article : Google Scholar : PubMed/NCBI

183 

Ha YNE, Dai Y, Wufuer D, Pidayi M, Anasihan G and Chen L: Second-generation Src/Abl inhibitor bosutinib effectively induces apoptosis in human esophageal squamous cell carcinoma (ESCC) cells via inhibiting Src/Abl signaling. Neoplasma. 67:54–60. 2020. View Article : Google Scholar

184 

Sanchez-Rangel E and Inzucchi SE: Metformin: Clinical use in type 2 diabetes. Diabetologia. 60:1586–1593. 2017. View Article : Google Scholar : PubMed/NCBI

185 

Lv Z and Guo Y: Metformin and its benefits for various diseases. Front Endocrinol (Lausanne). 11:1912020. View Article : Google Scholar

186 

Feng Y, Ke C, Tang Q, Dong H, Zheng X, Lin W, Ke J, Huang J, Yeung SC and Zhang H: Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling. Cell Death Dis. 5:e10882014. View Article : Google Scholar : PubMed/NCBI

187 

Chen W, Mook RJ Jr, Premont RT and Wang J: Niclosamide: Beyond an antihelminthic drug. Cell Signal. 41:89–96. 2018. View Article : Google Scholar

188 

Barbosa EJ, Löbenberg R, de Araujo GLB and Bou-Chacra NA: Niclosamide repositioning for treating cancer: Challenges and nano-based drug delivery opportunities. Eur J Pharm Biopharm. 141:58–69. 2019. View Article : Google Scholar : PubMed/NCBI

189 

Wei W, Liu H, Yuan J and Yao Y: Targeting Wnt/β-catenin by anthelmintic drug niclosamide overcomes paclitaxel resistance in esophageal cancer. Fund Clin Pharmacol. 35:165–173. 2021. View Article : Google Scholar

190 

Ferreira PMP, Sousa RWR, Ferreira JRO, Militão GCG and Bezerra DP: Chloroquine and hydroxychloroquine in antitumor therapies based on autophagy-related mechanisms. Pharmacol Res. 168:1055822021. View Article : Google Scholar : PubMed/NCBI

191 

Tomeh MA, Hadianamrei R and Zhao X: A review of curcumin and its derivatives as anticancer agents. Int J Mol Sci. 20:10332019. View Article : Google Scholar :

192 

Zheng BZ, Liu TD, Chen G, Zhang JX and Kang X: The effect of curcumin on cell adhesion of human esophageal cancer cell. Eur Rev Med Pharmacol Sci. 22:551–560. 2018.PubMed/NCBI

193 

Liu Y, Wang X, Zeng S, Zhang X, Zhao J, Zhang X, Chen X, Yang W, Yang Y, Dong Z, et al: The natural polyphenol curcumin induces apoptosis by suppressing STAT3 signaling in esophageal squamous cell carcinoma. J Exp Clin Canc Res. 37:3032018. View Article : Google Scholar

194 

Wang Y, Zhou P, Qin S, Xu D, Liu Y, Fu W, Ruan B, Zhang L, Zhang Y, Wang X, et al: The curcumin analogs 2-Pyridyl cyclohexanone induce apoptosis via inhibition of the JAK2-STAT3 pathway in human esophageal squamous cell carcinoma cells. Front Pharmacol. 9:8202018. View Article : Google Scholar : PubMed/NCBI

195 

Cao Y, Xu W, Huang Y and Zeng X: Licochalcone B, a chalcone derivative from Glycyrrhiza inflata, as a multifunctional agent for the treatment of Alzheimer's disease. Nat Prod Res. 34:736–739. 2020. View Article : Google Scholar

196 

Song M, Yoon G, Choi JS, Kim E, Liu X, Oh HN, Chae JI, Lee MH and Shim JH: Janus kinase 2 inhibition by licochalcone B suppresses esophageal squamous cell carcinoma growth. Phytother Res. 34:2032–2043. 2020. View Article : Google Scholar : PubMed/NCBI

197 

Wu YH, Wu YR, Li B and Yan ZY: Cryptotanshinone: A review of its pharmacology activities and molecular mechanisms. Fitoterapia. 145:1046332020. View Article : Google Scholar : PubMed/NCBI

198 

Ji Y, Liu Y, Xue N, Du T, Wang L, Huang R, Li L, Yan C and Chen X: Cryptotanshinone inhibits esophageal squamous-cell carcinoma in vitro and in vivo through the suppression of STAT3 activation. Onco Targets Ther. 12:883–896. 2019. View Article : Google Scholar : PubMed/NCBI

199 

Imran M, Rauf A, Khan IA, Shahbaz M, Qaisrani TB, Fatmawati S, Abu-Izneid T, Imran A, Rahman KU and Gondal TA: Thymoquinone: A novel strategy to combat cancer: A review. Biomed Pharmacother. 106:390–402. 2018. View Article : Google Scholar : PubMed/NCBI

200 

Hu X, Ma J, Vikash V, Li J, Wu D, Liu Y, Zhang J and Dong W: Thymoquinone augments cisplatin-induced apoptosis on esophageal carcinoma through mitigating the activation of JAK2/STAT3 pathway. Digest Dis Sci. 63:126–134. 2018. View Article : Google Scholar

201 

Luo YH, Li JQ, Zhang Y, Wang JR, Xu WT, Zhang Y, Feng YC, Li SZ and Jin CH: Quinalizarin induces cycle arrest and apoptosis via reactive oxygen species-mediated signaling pathways in human melanoma A375 cells. Drug Dev Res. 80:1040–1050. 2019. View Article : Google Scholar : PubMed/NCBI

202 

Zang YQ, Zhai YQ, Feng YY, Ju XY and Zuo F: Molecular mechanisms of quinalizarin induces apoptosis and G0/G1 cell cycle of human esophageal cancer HCE-4 cells depends on MAPK, STAT3, and NF-κB signaling pathways. Environ Toxicol. 36:276–286. 2021. View Article : Google Scholar

203 

Yin Z, Zhang J, Chen L, Guo Q, Yang B, Zhang W and Kang W: Anticancer effects and mechanisms of action of plumbagin: Review of research advances. Biomed Res Int. 2020:69409532020. View Article : Google Scholar : PubMed/NCBI

204 

Thangavel P, Puga-Olguín A, Rodríguez-Landa JF and Zepeda RC: Genistein as potential therapeutic candidate for menopausal symptoms and other related diseases. Molecules. 24:38922019. View Article : Google Scholar :

205 

Riaz A, Rasul A, Kanwal N, Hussain G, Shah MA, Sarfraz I, Ishfaq R, Batool R, Rukhsar F and Adem Ş: Germacrone: A potent secondary metabolite with therapeutic potential in metabolic diseases, cancer and viral infections. Curr Drug Metab. 21:1079–1090. 2020. View Article : Google Scholar : PubMed/NCBI

206 

He C, Wang Z and Shi J: Pharmacological effects of icariin. Adv Pharmacol. 87:179–203. 2020. View Article : Google Scholar : PubMed/NCBI

207 

Gu ZF, Zhang ZT, Wang JY and Xu BB: Icariin exerts inhibitory effects on the growth and metastasis of KYSE70 human esophageal carcinoma cells via PI3K/AKT and STAT3 pathways. Environ Toxicol Phar. 54:7–13. 2017. View Article : Google Scholar

208 

Derosa G, Maffioli P and Sahebkar A: Ellagic acid and its role in chronic diseases. Adv Exp Med Biol. 928:473–479. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ma R, Ma C, Hu K, Zhao M, Zhang N and Sun Z: Molecular mechanism, regulation, and therapeutic targeting of the STAT3 signaling pathway in esophageal cancer (Review). Int J Oncol 61: 105, 2022.
APA
Ma, R., Ma, C., Hu, K., Zhao, M., Zhang, N., & Sun, Z. (2022). Molecular mechanism, regulation, and therapeutic targeting of the STAT3 signaling pathway in esophageal cancer (Review). International Journal of Oncology, 61, 105. https://doi.org/10.3892/ijo.2022.5395
MLA
Ma, R., Ma, C., Hu, K., Zhao, M., Zhang, N., Sun, Z."Molecular mechanism, regulation, and therapeutic targeting of the STAT3 signaling pathway in esophageal cancer (Review)". International Journal of Oncology 61.3 (2022): 105.
Chicago
Ma, R., Ma, C., Hu, K., Zhao, M., Zhang, N., Sun, Z."Molecular mechanism, regulation, and therapeutic targeting of the STAT3 signaling pathway in esophageal cancer (Review)". International Journal of Oncology 61, no. 3 (2022): 105. https://doi.org/10.3892/ijo.2022.5395
Copy and paste a formatted citation
x
Spandidos Publications style
Ma R, Ma C, Hu K, Zhao M, Zhang N and Sun Z: Molecular mechanism, regulation, and therapeutic targeting of the STAT3 signaling pathway in esophageal cancer (Review). Int J Oncol 61: 105, 2022.
APA
Ma, R., Ma, C., Hu, K., Zhao, M., Zhang, N., & Sun, Z. (2022). Molecular mechanism, regulation, and therapeutic targeting of the STAT3 signaling pathway in esophageal cancer (Review). International Journal of Oncology, 61, 105. https://doi.org/10.3892/ijo.2022.5395
MLA
Ma, R., Ma, C., Hu, K., Zhao, M., Zhang, N., Sun, Z."Molecular mechanism, regulation, and therapeutic targeting of the STAT3 signaling pathway in esophageal cancer (Review)". International Journal of Oncology 61.3 (2022): 105.
Chicago
Ma, R., Ma, C., Hu, K., Zhao, M., Zhang, N., Sun, Z."Molecular mechanism, regulation, and therapeutic targeting of the STAT3 signaling pathway in esophageal cancer (Review)". International Journal of Oncology 61, no. 3 (2022): 105. https://doi.org/10.3892/ijo.2022.5395
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team