|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer. J Clin. 71:209–249. 2021.
|
|
2
|
Yang JD, Hainaut P, Gores GJ, Amadou A,
Plymoth A and Roberts LR: A global view of hepatocellular
carcinoma: Trends, risk, prevention and management. Nat Rev
Gastroenterol Hepatol. 16:589–604. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Foerster F, Gairing SJ, Müller L and Galle
PR: NAFLD-driven HCC: Safety and efficacy of current and emerging
treatment options. J Hepatol. 76:446–457. 2022. View Article : Google Scholar
|
|
4
|
Llovet JM, Kelley RK, Villanueva A, Singal
AG, Pikarsky E, Roayaie S, Lencioni R, Koike K, Zucman-Rossi J and
Finn RS: Hepatocellular carcinoma. Nat Rev Dis Primers. 7:62021.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Liu Y, Chen K, Li F, Gu Z, Liu Q, He L,
Shao T, Song Q, Zhu F, Zhang L, et al: Probiotic Lactobacillus
rhamnosus GG prevents liver fibrosis through inhibiting hepatic
bile acid synthesis and enhancing bile acid excretion in mice.
Hepatology. 71:2050–2066. 2020. View Article : Google Scholar
|
|
6
|
Li J and Dawson PA: Animal models to study
bile acid metabolism. Biochim Biophys Acta Mol Basis Dis.
1865:895–911. 2019. View Article : Google Scholar
|
|
7
|
Di Ciaula A, Garruti G, Lunardi Baccetto
R, Molina-Molina E, Bonfrate L, Wang DQ and Portincasa P: Bile acid
physiology. Ann Hepatol. 16(Suppl 1): s4–s14. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Shulpekova Y, Shirokova E, Zharkova M,
Tkachenko P, Tikhonov I, Stepanov A, Sinitsyna A, Izotov A, Butkova
T, Shulpekova N, et al: A recent ten-year perspective: Bile acid
metabolism and signaling. Molecules. 27:19832022. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Chiang JYL and Ferrell JM: Bile acid
metabolism in liver pathobiology. Gene Expr. 18:71–87. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wahlström A, Sayin SI, Marschall HU and
Bäckhed F: Intestinal crosstalk between bile acids and microbiota
and its impact on host metabolism. Cell Metab. 24:41–50. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhang B, Kuipers F, de Boer JF and
Kuivenhoven JA: Modulation of bile acid metabolism to improve
plasma lipid and lipoprotein profiles. J Clin Med. 11:42021.
View Article : Google Scholar
|
|
12
|
Perino A, Demagny H, Velazquez-Villegas L
and Schoonjans K: Molecular physiology of bile acid signaling in
health, disease, and aging. Physiol Rev. 101:683–731. 2021.
View Article : Google Scholar
|
|
13
|
Sohail MI, Dönmez-Cakil Y, Szöllősi D,
Stockner T and Chiba P: The bile salt export pump: Molecular
structure, study models and small-molecule drugs for the treatment
of inherited BSEP deficiencies. Int J Mol Sci. 22:7842021.
View Article : Google Scholar :
|
|
14
|
Jetter A and Kullak-Ublick GA: Pharmacol
Res. 154:1042342020. View Article : Google Scholar
|
|
15
|
Köck K, Ferslew BC, Netterberg I, Yang K,
Urban TJ, Swaan PW, Stewart PW and Brouwer KL: Risk factors for
development of cholestatic drug-induced liver injury: Inhibition of
hepatic basolateral bile acid transporters multidrug
resistance-associated proteins 3-4. Drug Metab Dispos. 42:665–674.
2014. View Article : Google Scholar
|
|
16
|
Xiao L and Pan G: An important intestinal
transporter that regulates the enterohepatic circulation of bile
acids and cholesterol homeostasis: The apical sodium-dependent bile
acid transporter (SLC10A2/ASBT). Clin Res Hepatol Gastroenterol.
41:509–515. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Deng F and Bae YH: Bile acid
transporter-mediated oral drug delivery. J Control Release.
327:100–116. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Suga T, Yamaguchi H, Ogura J and Mano N:
Characterization of conjugated and unconjugated bile acid transport
via human organic solute transporter α/β. Biochim Biophys Acta
Biomembr. 1861:1023–1029. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Vaz FM and Ferdinandusse S: Bile acid
analysis in human disorders of bile acid biosynthesis. Mol Aspects
Med. 56:10–24. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Trauner M, Fuchs CD, Halilbasic E and
Paumgartner G: New therapeutic concepts in bile acid transport and
signaling for management of cholestasis. Hepatology. 65:1393–1404.
2017. View Article : Google Scholar
|
|
21
|
Li T and Chiang JY: Bile acid signaling in
metabolic disease and drug therapy. Pharmacol Rev. 66:948–983.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Daruich A, Picard E, Boatright JH and
Behar-Cohen F: Review: The bile acids ursoand tauroursodeoxycholic
acid as neuroprotective therapies in retinal disease. Mol Vis.
25:610–624. 2019.
|
|
23
|
Sato R: Recent advances in regulating
cholesterol and bile acid metabolism. Biosci Biotechnol Biochem.
84:2185–2192. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ko CW, Qu J, Black DD and Tso P:
Regulation of intestinal lipid metabolism: Current concepts and
relevance to disease. Nat Rev Gastroenterol Hepatol. 17:169–183.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Blanchet M and Brunel JM: Bile acid
derivatives: From old molecules to a new potent therapeutic use: An
overview. Curr Med Chem. 25:3613–3636. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Forman BM, Goode E, Chen J, Oro AE,
Bradley DJ, Perlmann T, Noonan DJ, Burka LT, McMorris T, Lamph WW,
et al: Identification of a nuclear receptor that is activated by
farnesol metabolites. Cell. 81:687–693. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Massafra V, Pellicciari R, Gioiello A and
van Mil SWC: Progress and challenges of selective farnesoid X
receptor modulation. Pharmacol Ther. 191:162–177. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Schubert K, Olde Damink SWM, von Bergen M
and Schaap FG: Interactions between bile salts, gut microbiota, and
hepatic innate immunity. Immunol Rev. 279:23–35. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Sun L, Cai J and Gonzalez FJ: The role of
farnesoid X receptor in metabolic diseases, and gastrointestinal
and liver cancer. Nat Rev Gastroenterol Hepatol. 18:335–347. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Duboc H, Taché Y and Hofmann AF: The bile
acid TGR5 membrane receptor: From basic research to clinical
application. Dig Liver Dis. 46:302–312. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ticho AL, Malhotra P, Dudeja PK, Gill RK
and Alrefai WA: Bile acid receptors and gastrointestinal functions.
Liver Res. 3:31–39. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Portincasa P, Di Ciaula A, Garruti G,
Vacca M, De Angelis M and Wang DQ: Bile acids and GPBAR-1: Dynamic
interaction involving genes, environment and gut microbiome.
Nutrients. 12:37092020. View Article : Google Scholar :
|
|
33
|
Wang R, Sheps JA and Ling V: ABC
transporters, bile acids, and inflammatory stress in liver cancer.
Curr Pharm Biotechnol. 12:636–646. 2011. View Article : Google Scholar
|
|
34
|
Wang C, Yang M, Zhao J, Li X, Xiao X,
Zhang Y, Jin X and Liao M: Bile salt (glycochenodeoxycholate acid)
induces cell survival and chemoresistance in hepatocellular
carcinoma. J Cell Physiol. 234:10899–10906. 2019. View Article : Google Scholar
|
|
35
|
Wang H, Shang X, Wan X, Xiang X, Mao Q,
Deng G and Wu Y: Increased hepatocellular carcinoma risk in chronic
hepatitis B patients with persistently elevated serum total bile
acid: A retrospective cohort study. Sci Rep. 6:381802016.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Thomas CE, Luu HN, Wang R, Xie G,
Adams-Haduch J, Jin A, Koh WP, Jia W, Behari J and Yuan JM:
Association between pre-diagnostic serum bile acids and
hepatocellular carcinoma: The singapore Chinese health study.
Cancers (Basel). 13:26482021. View Article : Google Scholar
|
|
37
|
Zhang W, Zhou L, Yin P, Wang J, Lu X, Wang
X, Chen J, Lin X and Xu G: A weighted relative difference
accumulation algorithm for dynamic metabolomics data: Long-term
elevated bile acids are risk factors for hepatocellular carcinoma.
Sci Rep. 5:89842015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Sun L, Beggs K, Borude P, Edwards G,
Bhushan B, Walesky C, Roy N, Manley MW Jr, Gunewardena S, O'Neil M,
et al: Bile acids promote diethylnitrosamine-induced hepatocellular
carcinoma via increased inflammatory signaling. Am J Physiol
Gastrointest Liver Physiol. 311:G91–G104. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Xie G, Wang X, Huang F, Zhao A, Chen W,
Yan J, Zhang Y, Lei S, Ge K, Zheng X, et al: Dysregulated hepatic
bile acids collaboratively promote liver carcinogenesis. Int J
Cancer. 139:1764–1775. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ressom HW, Xiao JF, Tuli L, Varghese RS,
Zhou B, Tsai TH, Ranjbar MR, Zhao Y, Wang J, Di Poto C, et al:
Utilization of metabolomics to identify serum biomarkers for
hepatocellular carcinoma in patients with liver cirrhosis. Anal
Chim Acta. 743:90–100. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Rizzolo D, Buckley K, Kong B, Zhan L, Shen
J, Stofan M, Brinker A, Goedken M, Buckley B and Guo GL: Bile acid
homeostasis in a cholesterol 7α-hydroxylase and sterol
27-hydroxylase double knockout mouse model. Hepatology. 70:389–402.
2019.PubMed/NCBI
|
|
42
|
Huang XF, Zhao WY and Huang WD: FXR and
liver carcinogenesis. Acta Pharmacol Sin. 36:37–43. 2015.
View Article : Google Scholar :
|
|
43
|
Takahashi S, Tanaka N, Fukami T, Xie C,
Yagai T, Kim D, Velenosi TJ, Yan T, Krausz KW, Levi M and Gonzalez
FJ: Role of farnesoid X receptor and bile acids in hepatic tumor
development. Hepatol Commun. 2:1567–1582. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Zhao Q, Liu F, Cheng Y, Xiao XR, Hu DD,
Tang YM, Bao WM, Yang JH, Jiang T, Hu JP, et al: Celastrol protects
from cholestatic liver injury through modulation of SIRT1-FXR
signaling. Mol Cell Proteomics. 18:520–533. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Jia W, Xie G and Jia W: Bile
acid-microbiota crosstalk in gastrointestinal inflammation and
carcinogenesis. Nat Rev Gastroenterol Hepatol. 15:111–128. 2018.
View Article : Google Scholar
|
|
46
|
Liu X, Zhang X, Ji L, Gu J, Zhou M and
Chen S: Farnesoid X receptor associates with β-catenin and inhibits
its activity in hepatocellular carcinoma. Oncotarget. 6:4226–4238.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Qu A, Jiang C, Cai Y, Kim JH, Tanaka N,
Ward JM, Shah YM and Gonzalez FJ: Role of Myc in hepatocellular
proliferation and hepatocarcinogenesis. J Hepatol. 60:331–338.
2014. View Article : Google Scholar :
|
|
48
|
Chen J, Du F, Dang Y, Li X, Qian M, Feng
W, Qiao C, Fan D, Nie Y, Wu K and Xia L: Fibroblast growth factor
19-mediated up-regulation of SYR-related high-mobility group box 18
promotes hepatocellular carcinoma metastasis by transactivating
fibroblast growth factor receptor 4 and fms-related tyrosine kinase
4. Hepatology. 71:1712–1731. 2020. View Article : Google Scholar
|
|
49
|
Režen T, Rozman D, Kovács T, Kovács P,
Sipos A, Bai P and Mikó E: The role of bile acids in
carcinogenesis. Cell Mol Life Sci. 79:2432022. View Article : Google Scholar
|
|
50
|
van Nierop FS, Scheltema MJ, Eggink HM,
Pols TW, Sonne DP, Knop FK and Soeters MR: Clinical relevance of
the bile acid receptor TGR5 in metabolism. Lancet Diabetes
Endocrinol. 5:224–233. 2017. View Article : Google Scholar
|
|
51
|
Pathak P, Xie C, Nichols RG, Ferrell JM,
Boehme S, Krausz KW, Patterson AD, Gonzalez FJ and Chiang JYL:
Intestine farnesoid X receptor agonist and the gut microbiota
activate G-protein bile acid receptor-1 signaling to improve
metabolism. Hepatology. 68:1574–1588. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Fuchs CD and Trauner M: Role of bile acids
and their receptors in gastrointestinal and hepatic
pathophysiology. Nat Rev Gastroenterol Hepatol. 19:432–450. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Pols TW, Noriega LG, Nomura M, Auwerx J
and Schoonjans K: The bile acid membrane receptor TGR5 as an
emerging target in metabolism and inflammation. J Hepatol.
54:1263–1272. 2011. View Article : Google Scholar
|
|
54
|
Li CL, Lin YK, Chen HA, Huang CY, Huang MT
and Chang YJ: Smoking as an independent risk factor for
hepatocellular carcinoma due to the α7-nachr modulating the
JAK2/STAT3 signaling axis. J Clin Med. 8:13912019. View Article : Google Scholar
|
|
55
|
Han LY, Fan YC, Mu NN, Gao S, Li F, Ji XF,
Dou CY and Wang K: Aberrant DNA methylation of G-protein-coupled
bile acid receptor Gpbar1 (TGR5) is a potential biomarker for
hepatitis B virus associated hepatocellular carcinoma. Int J Med
Sci. 11:164–171. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Xu J, Lin H, Wu G, Zhu M and Li M:
IL-6/STAT3 is a promising therapeutic target for hepatocellular
carcinoma. Front Oncol. 11:7609712021. View Article : Google Scholar :
|
|
57
|
Wang J, Zhou M, Jin X, Li B, Wang C, Zhang
Q, Liao M, Hu X and Yang M: Glycochenodeoxycholate induces cell
survival and chemoresistance via phosphorylation of STAT3 at Ser727
site in HCC. J Cell Physiol. 235:2557–2568. 2020. View Article : Google Scholar
|
|
58
|
Zhang WJ, Chen SJ, Zhou SC, Wu SZ and Wang
H: Inflammasomes and fibrosis. Front Immunol. 12:6431492021.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Liu T, Yang H, Fan W, Tu J, Li TWH, Wang
J, Shen H, Yang J, Xiong T, Steggerda J, et al: Mechanisms of MAFG
dysregulation in cholestatic liver injury and development of liver
cancer. Gastroenterology. 155:557–571.e14. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Cai J, Zhang N, Zheng Y, de Wilde RF,
Maitra A and Pan D: The Hippo signaling pathway restricts the
oncogenic potential of an intestinal regeneration program. Genes
Dev. 24:2383–2388. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhang S and Zhou D: Role of the
transcriptional coactivators YAP/TAZ in liver cancer. Curr Opin
Cell Biol. 61:64–71. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Anakk S, Bhosale M, Schmidt VA, Johnson
RL, Finegold MJ and Moore DD: Bile acids activate YAP to promote
liver carcinogenesis. Cell Rep. 5:1060–1069. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Russell JO and Camargo FD: Hippo
signalling in the liver: Role in development, regeneration and
disease. Nat Rev Gastroenterol Hepatol. 19:297–312. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Hohenester S, Gates A, Wimmer R, Beuers U,
Anwer MS, Rust C and Webster CR: Phosphatidylinositol-3-kinase
p110γ contributes to bile salt-induced apoptosis in primary rat
hepatocytes and human hepatoma cells. J Hepatol. 53:918–926. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ma C, Han M, Heinrich B, Fu Q, Zhang Q,
Sandhu M, Agdashian D, Terabe M, Berzofsky JA, Fako V, et al: Gut
microbiome-mediated bile acid metabolism regulates liver cancer via
NKT cells. Science. 360:eaan59312018. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Friedman SL: Hepatic stellate cells:
Protean, multifunctional, and enigmatic cells of the liver. Physiol
Rev. 88:125–172. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Matsuda M and Seki E: Hepatic stellate
cell-macrophage crosstalk in liver fibrosis and carcinogenesis.
Semin Liver Dis. 40:307–320. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Yoshimoto S, Loo TM, Atarashi K, Kanda H,
Sato S, Oyadomari S, Iwakura Y, Oshima K, Morita H, Hattori M, et
al: Obesity-induced gut microbial metabolite promotes liver cancer
through senescence secretome. Nature. 499:97–101. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Ohtani N: The roles and mechanisms of
senescence-associated secretory phenotype (SASP): Can it be
controlled by senolysis? Inflamm Regen. 42:112022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Orabi D, Berger NA and Brown JM: Abnormal
metabolism in the progression of nonalcoholic fatty liver disease
to hepatocellular carcinoma: Mechanistic insights to
chemoprevention. Cancers (Basel). 13:34732021. View Article : Google Scholar
|
|
71
|
Attia YM, Tawfiq RA, Gibriel AA, Ali AA,
Kassem DH, Hammam OA and Elmazar MM: Activation of FXR modulates
SOCS3/Jak2/STAT3 signaling axis in a NASH-dependent hepatocellular
carcinoma animal model. Biochem Pharmacol. 186:1144972021.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Attia YM, Tawfiq RA, Ali AA and Elmazar
MM: The FXR agonist, obeticholic acid, suppresses HCC proliferation
& metastasis: Role of IL-6/STAT3 signalling pathway. Sci Rep.
7:125022017. View Article : Google Scholar :
|
|
73
|
Zhou J, Cui S, He Q, Guo Y, Pan X, Zhang
P, Huang N, Ge C, Wang G, Gonzalez FJ, et al: SUMOylation
inhibitors synergize with FXR agonists in combating liver fibrosis.
Nat Commun. 11:2402020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Chow MD, Lee YH and Guo GL: The role of
bile acids in nonalcoholic fatty liver disease and nonalcoholic
steatohepatitis. Mol Aspects Med. 56:34–44. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Ji G, Si X, Dong S, Xu Y, Li M, Yang B,
Tang Z, Fang X, Huang L, Song W and Chen X: Manipulating liver bile
acid signaling by nanodelivery of bile acid receptor modulators for
liver cancer immunotherapy. Nano Lett. 21:6781–6791. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Jiang M, Li F, Liu Y, Gu Z, Zhang L, Lee
J, He L, Vatsalya V, Zhang HG, Deng Z, et al: Probiotic-derived
nanoparticles inhibit ALD through intestinal miR194 suppression and
subsequent FXR activation. Hepatology. Jun;112022.Epub ahead of
print.
|
|
77
|
van de Peppel IP, Verkade HJ and Jonker
JW: Metabolic consequences of ileal interruption of the
enterohepatic circulation of bile acids. Am J Physiol Gastrointest
Liver Physiol. 319:G619–G625. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Jang ES, Yoon JH, Lee SH, Lee SM, Lee JH,
Yu SJ, Kim YJ, Lee HS and Kim CY: Sodium taurocholate
cotransporting polypeptide mediates dual actions of deoxycholic
acid in human hepatocellular carcinoma cells: Enhanced apoptosis
versus growth stimulation. J Cancer Res Clin Oncol. 140:133–144.
2014. View Article : Google Scholar
|
|
79
|
Yang N, Dong YQ, Jia GX, Fan SM, Li SZ,
Yang SS and Li YB: ASBT(SLC10A2): A promising target for treatment
of diseases and drug discovery. Biomed Pharmacother.
132:1108352020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Cabrera D, Arab JP and Arrese M: UDCA,
NorUDCA, and TUDCA in liver diseases: A review of their mechanisms
of action and clinical applications. Handb Exp Pharmacol.
256:237–264. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Kusaczuk M: Tauroursodeoxycholate-bile
acid with chaperoning activity: Molecular and cellular effects and
therapeutic perspectives. Cells. 8:14712019. View Article : Google Scholar
|
|
82
|
Castro RE, Solá S, Ma X, Ramalho RM, Kren
BT, Steer CJ and Rodrigues CM: A distinct microarray gene
expression profile in primary rat hepatocytes incubated with
ursodeoxycholic acid. J Hepatol. 42:897–906. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Solá S, Amaral JD, Castro RE, Ramalho RM,
Borralho PM, Kren BT, Tanaka H, Steer CJ and Rodrigues CM: Nuclear
translocation of UDCA by the glucocorticoid receptor is required to
reduce TGF-beta1-induced apoptosis in rat hepatocytes. Hepatology.
42:925–934. 2005. View Article : Google Scholar
|
|
84
|
Huang TE, Deng YN, Hsu JL, Leu WJ,
Marchesi E, Capobianco ML, Marchetti P, Navacchia ML, Guh JH,
Perrone D and Hsu LC: Evaluation of the anticancer activity of a
bile acid-dihydroartemisinin hybrid
ursodeoxycholic-dihydroartemisinin in hepatocellular carcinoma
cells. Front Pharmacol. 11:5990672020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Goossens JF and Bailly C: Ursodeoxycholic
acid and cancer: From chemoprevention to chemotherapy. Pharmacol
Ther. 203:1073962019. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Lee S, Cho YY, Cho EJ, Yu SJ, Lee JH, Yoon
JH and Kim YJ: Synergistic effect of ursodeoxycholic acid on the
antitumor activity of sorafenib in hepatocellular carcinoma cells
via modulation of STAT3 and ERK. Int J Mol Med. 42:2551–2559.
2018.PubMed/NCBI
|
|
87
|
Sangro B, Sarobe P, Hervás-Stubbs S and
Melero I: Advances in immunotherapy for hepatocellular carcinoma.
Nat Rev Gastroenterol Hepatol. 18:525–543. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Ji G, Ma L, Yao H, Ma S, Si X, Wang Y, Bao
X, Ma L, Chen F, Ma C, et al: Precise delivery of obeticholic acid
via nanoapproach for triggering natural killer T cell-mediated
liver cancer immunotherapy. Acta Pharm Sin B. 10:2171–2182. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Cariello M, Peres C, Zerlotin R, Porru E,
Sabbà C, Roda A and Moschetta A: Long-term administration of
nuclear bile acid receptor FXR agonist prevents spontaneous
hepatocarcinogenesis in Abcb4-/mice. Sci Rep.
7:112032017. View Article : Google Scholar
|
|
90
|
Shen Y, Lu C, Song Z, Qiao C, Wang J, Chen
J, Zhang C, Zeng Z, Ma Z, Chen J, et al: Ursodeoxycholic acid
reduces antitumor immunosuppression by inducing CHIP-mediated TGF-β
degradation. Nat Commun. 13:34192022. View Article : Google Scholar
|
|
91
|
Zhao MX, Cai ZC, Zhu BJ and Zhang ZQ: The
apoptosis effect on liver cancer cells of gold nanoparticles
modified with lithocholic acid. Nanoscale Res Lett. 13:3042018.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Liu T, Song X, Khan S, Li Y, Guo Z, Li C,
Wang S, Dong W, Liu W, Wang B and Cao H: The gut microbiota at the
intersection of bile acids and intestinal carcinogenesis: An old
story, yet mesmerizing. Int J Cancer. 146:1780–1790. 2020.
View Article : Google Scholar
|
|
93
|
Degirolamo C, Rainaldi S, Bovenga F,
Murzilli S and Moschetta A: Microbiota modification with probiotics
induces hepatic bile acid synthesis via downregulation of the
Fxr-Fgf15 axis in mice. Cell Rep. 7:12–18. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Jones ML, Tomaro-Duchesneau C and Prakash
S: The gut microbiome, probiotics, bile acids axis, and human
health. Trends Microbiol. 22:306–308. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Polyzos SA, Kountouras J and Mantzoros CS:
Obeticholic acid for the treatment of nonalcoholic steatohepatitis:
Expectations and concerns. Metabolism. 104:1541442020. View Article : Google Scholar : PubMed/NCBI
|