Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
December-2022 Volume 61 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2022 Volume 61 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Novel insight into the functions of N6‑methyladenosine modified lncRNAs in cancers (Review)

  • Authors:
    • Yingjie He
    • Xuezhi Du
    • Ming Chen
    • Lei Han
    • Jinjin Sun
  • View Affiliations / Copyright

    Affiliations: Key Laboratory of Post‑Neuroinjury Neuro‑Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China, Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
    Copyright: © He et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 152
    |
    Published online on: October 19, 2022
       https://doi.org/10.3892/ijo.2022.5442
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Emerging evidence has suggested that N6‑methyladenosine (m6A) modification, a typical RNA methylation modification, controls the fate of modified transcripts and is involved in the pathogenesis of various human diseases, such as metabolic disorders, nephropathology, osteoarthritis and malignant tumours. Long noncoding RNAs (lncRNAs), transcripts of >200 nt in length, have also been indicated to be involved in various diseases by participating in processes such as epigenetic modifications, transcriptional alternations and posttranslational regulation. Recent studies revealed that lncRNAs were widely modified by m6A, which has a critical role in various cellular processes that are associated with numerous disorders, particularly human cancers. The present review first examined functions of m6A modification of lncRNAs, including changing the lncRNA structure, mediating transcriptional regulation, affecting mRNA precursor splicing, and regulating lncRNA stability and translation. Furthermore, the regulatory mechanisms of m6A‑modified lncRNAs in cancers were summarized and the up‑to‑date detection methods and prediction tools for identifying m6A sites on lncRNAs were presented. In addition, viewpoints on potential future directions in the field were discussed, including more accurate detection methods, roles of lncRNAs‑encoded micropeptides in cancers, the relationship between m6A‑modified lncRNAs and the tumour microenvironment, and m6A‑modified lncRNAs as potential biomarkers and therapeutic targets in human cancer.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Liu J and Jia G: Methylation modifications in eukaryotic messenger RNA. J Genet Genomics. 41:21–33. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Boccaletto P, Machnicka MA, Purta E, Piatkowski P, Baginski B, Wirecki TK, de Crécy-Lagard V, Ross R, Limbach PA, Kotter A, et al: MODOMICS: A database of RNA modification pathways. 2017 update. Nucleic Acids Res. 46:D303–D307. 2018. View Article : Google Scholar :

3 

Li J, Yang X, Qi Z, Sang Y, Liu Y, Xu B, Liu W, Xu Z and Deng Y: The role of mRNA m6A methylation in the nervous system. Cell Biosci. 9:662019. View Article : Google Scholar

4 

Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N, Ben-Haim MS, Dai Q, Di Segni A, Salmon-Divon M, Clark WC, et al: The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature. 530:441–446. 2016. View Article : Google Scholar : PubMed/NCBI

5 

You C, Dai X and Wang Y: Position-dependent effects of regioisomeric methylated adenine and guanine ribonucleosides on translation. Nucleic Acids Res. 45:9059–9067. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Desrosiers R, Friderici K and Rottman F: Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA. 71:3971–3975. 1974. View Article : Google Scholar : PubMed/NCBI

7 

Bartosovic M, Molares HC, Gregorova P, Hrossova D, Kudla G and Vanacova S: N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3'-end processing. Nucleic Acids Res. 45:11356–11370. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Roundtree IA and He C: Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Trends Genet. 32:320–321. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, et al: Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell. 61:507–519. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, et al: N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 505:117–120. 2014. View Article : Google Scholar

11 

Fustin JM, Doi M, Yamaguchi Y, Hida H, Nishimura S, Yoshida M, Isagawa T, Morioka MS, Kakeya H, Manabe I and Okamura H: RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell. 155:793–806. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Chen J, Zhang YC, Huang C, Shen H, Sun B, Cheng X, Zhang YJ, Yang YG, Shu Q, Yang Y and Li X: m6A regulates neurogenesis and neuronal development by modulating histone methyltransferase Ezh2. Genomics Proteomics Bioinformatics. 17:154–168. 2019. View Article : Google Scholar : PubMed/NCBI

13 

Xu J, Bai J, Zhang X, Lv Y, Gong Y, Liu L, Zhao H, Yu F, Ping Y, Zhang G, et al: A comprehensive overview of lncRNA annotation resources. Brief Bioinform. 18:236–249. 2017.

14 

Peng WX, Koirala P and Mo YY: LncRNA-mediated regulation of cell signaling in cancer. Oncogene. 36:5661–5667. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Bhat SA, Ahmad SM, Mumtaz PT, Malik AA, Dar MA, Urwat U, Shah RA and Ganai NA: Long non-coding RNAs: Mechanism of action and functional utility. Noncoding RNA Res. 1:43–50. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Chen F, Li Z, Deng C and Yan H: Integration analysis for novel lncRNA markers predicting tumor recurrence in human colon adenocarcinoma. J Transl Med. 17:2992019. View Article : Google Scholar : PubMed/NCBI

17 

Zimmer-Bensch G: Emerging roles of long non-coding RNAs as drivers of brain evolution. Cells. 8:13992019. View Article : Google Scholar

18 

Robinson EK, Covarrubias S and Carpenter S: The how and why of lncRNA function: An innate immune perspective. Biochim Biophys Acta Gene Regul Mech. 1863:1944192020. View Article : Google Scholar :

19 

Ma S, Chen C, Ji X, Liu J, Zhou Q, Wang G, Yuan W, Kan Q and Sun Z: The interplay between m6A RNA methylation and noncoding RNA in cancer. J Hematol Oncol. 12:1212019. View Article : Google Scholar : PubMed/NCBI

20 

Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE and Jaffrey SR: Comprehensive analysis of mRNA methylation reveals enrichment in 3'UTRs and near stop codons. Cell. 149:1635–1646. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Liu N, Dai Q, Zheng G, He C, Parisien M and Pan T: N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. 518:560–564. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M and Jaffrey SR: m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 537:369–373. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, et al: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 49:18–29. 2013. View Article : Google Scholar :

24 

Lan Q, Liu PY, Haase J, Bell JL, Huttelmaier S and Liu T: The critical role of RNA m6A methylation in cancer. Cancer Res. 79:1285–1292. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Yang Y, Hsu PJ, Chen YS and Yang YG: Dynamic transcriptomic m6A decoration: Writers, erasers, readers and functions in RNA metabolism. Cell Res. 28:616–624. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Yao L, Man CF, He R, He L, Huang JB, Xiang SY, Dai Z, Wang XY and Fan Y: The Interaction between N6-Methyladenosine modification and non-coding RNAs in gastrointestinal tract cancers. Front Oncol. 11:7841272021. View Article : Google Scholar

27 

Deng X, Su R, Weng H, Huang H, Li Z and Chen J: RNA N6-methyladenosine modification in cancers: Current status and perspectives. Cell Res. 28:507–517. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K, Bushkin GG, Mertins P, Ter-Ovanesyan D, Habib N, Cacchiarelli D, et al: Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5'sites. Cell Rep. 8:284–296. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Wen J, Lv R, Ma H, Shen H, He C, Wang J, Jiao F, Liu H, Yang P, Tan L, et al: Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self-renewal. Mol Cell. 69:1028–1038.e6. 2018. View Article : Google Scholar

30 

Bokar JA, Shambaugh ME, Polayes D, Matera AG and Rottman FM: Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 3:1233–1247. 1997.PubMed/NCBI

31 

Wang X, Feng J, Xue Y, Guan Z, Zhang D, Liu Z, Gong Z, Wang Q, Huang J, Tang C, et al: Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature. 534:575–578. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, et al: A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 10:93–95. 2014. View Article : Google Scholar :

33 

Horiuchi K, Kawamura T, Iwanari H, Ohashi R, Naito M, Kodama T and Hamakubo T: Identification of Wilms' tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J Biol Chem. 288:33292–33302. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Warda AS, Kretschmer J, Hackert P, Lenz C, Urlaub H, Höbartner C, Sloan KE and Bohnsack MT: Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep. 18:2004–2014. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Ruszkowska A: METTL16, Methyltransferase-like protein 16: Current insights into structure and function. Int J Mol Sci. 22:21762021. View Article : Google Scholar : PubMed/NCBI

36 

Zuo X, Chen Z, Gao W, Zhang Y, Wang J, Wang J, Cao M, Cai J, Wu J and Wang X: M6A-mediated upregulation of LINC00958 increases lipogenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. J Hematol Oncol. 13:52020. View Article : Google Scholar : PubMed/NCBI

37 

Jin D, Guo J, Wu Y, Du J, Yang L, Wang X, Di W, Hu B, An J, Kong L, et al: m6A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J Hematol Oncol. 14:322021. View Article : Google Scholar

38 

Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG and He C: N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 7:885–887. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Sun T, Wu R and Ming L: The role of m6A RNA methylation in cancer. Biomed Pharmacother. 112:1086132019. View Article : Google Scholar : PubMed/NCBI

40 

Wang T, Kong S, Tao M and Ju S: The potential role of RNA N6-methyladenosine in Cancer progression. Mol Cancer. 19:882020. View Article : Google Scholar : PubMed/NCBI

41 

Shi H, Wei J and He C: Where, When, and How: Context-dependent functions of RNA methylation writers, readers, and eras. Mol Cell. 74:640–650. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Frye M, Harada BT, Behm M and He C: RNA modifications modulate gene expression during development. Science. 361:1346–1349. 2018. View Article : Google Scholar : PubMed/NCBI

43 

Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H and He C: N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 161:1388–1399. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Yan J, Huang X, Zhang X, Chen Z, Ye C, Xiang W and Huang Z: LncRNA LINC00470 promotes the degradation of PTEN mRNA to facilitate malignant behavior in gastric cancer cells. Biochem Biophys Res Commun. 521:887–893. 2020. View Article : Google Scholar

45 

Hu Y, Tang J, Xu F, Chen J, Zeng Z, Han S, Wang F, Wang D, Huang M, Zhao Y, et al: A reciprocal feedback between N6-methyladenosine reader YTHDF3 and lncRNA DICER1-AS1 promotes glycolysis of pancreatic cancer through inhibiting maturation of miR-5586-5p. J Exp Clin Cancer Res. 41:692022. View Article : Google Scholar : PubMed/NCBI

46 

Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C and He C: YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 27:315–328. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Luxton HJ, Simpson BS, Mills IG, Brindle NR, Ahmed Z, Stavrinides V, Heavey S, Stamm S and Whitaker HC: The oncogene metadherin interacts with the known splicing proteins YTHDC1, Sam68 and T-STAR and plays a novel role in alternative mRNA splicing. Cancers (Basel). 11:12332019. View Article : Google Scholar

48 

Ding Y, Wang M and Yang J: Circular RNA midline-1 (circMID1) promotes proliferation, migration, invasion and glycolysis in prostate cancer. Bioengineered. 13:6293–6308. 2022. View Article : Google Scholar : PubMed/NCBI

49 

Alarcón CR, Goodarzi H, Lee H, Liu X, Tavazoie S and Tavazoie SF: HNRNPA2B1 Is a mediator of m(6)A-dependent nuclear RNA processing events. Cell. 162:1299–1308. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Liu N, Zhou KI, Parisien M, Dai Q, Diatchenko L and Pan T: N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 45:6051–6063. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL, et al: Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 20:285–295. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Zhu P, He F, Hou Y, Tu G, Li Q, Jin T, Zeng H, Qin Y, Wan X, Qiao Y, et al: A novel hypoxic long noncoding RNA KB-1980E6.3 maintains breast cancer stem cell stemness via interacting with IGF2BP1 to facilitate c-Myc mRNA stability. Oncogene. 40:1609–1627. 2021. View Article : Google Scholar : PubMed/NCBI

53 

Roost C, Lynch SR, Batista PJ, Qu K, Chang HY and Kool ET: Structure and thermodynamics of N6-methyladenosine in RNA: A spring-loaded base modification. J Am Chem Soc. 137:2107–2115. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Zhou KI, Parisien M, Dai Q, Liu N, Diatchenko L, Sachleben JR and Pan T: N(6)-Methyladenosine modification in a long noncoding RNA hairpin predisposes its conformation to protein binding. J Mol Biol. 428:822–833. 2016. View Article : Google Scholar

55 

Dong S, Wu Y, Liu Y, Weng H and Huang H: N6-methyladenosine steers RNA metabolism and regulation in cancer. Cancer Commun (Lond). 41:538–559. 2021. View Article : Google Scholar

56 

Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, et al: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 485:201–206. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Ninomiya K, Iwakiri J, Aly MK, Sakaguchi Y, Adachi S, Natsume T, Terai G, Asai K, Suzuki T and Hirose T: m6 A modification of HSATIII lncRNAs regulates temperature-dependent splicing. EMBO J. 40:e1079762021. View Article : Google Scholar

58 

Xue L, Li J, Lin Y, Liu D, Yang Q, Jian J and Peng J: m6 A transferase METTL3-induced lncRNA ABHD11-AS1 promotes the Warburg effect of non-small-cell lung cancer. J Cell Physiol. 236:2649–2658. 2021. View Article : Google Scholar

59 

Guo T, Liu DF, Peng SH and Xu AM: ALKBH5 promotes colon cancer progression by decreasing methylation of the lncRNA NEAT1. Am J Transl Res. 12:4542–4549. 2020.PubMed/NCBI

60 

Bhan A, Soleimani M and Mandal SS: Long noncoding RNA and cancer: A new paradigm. Cancer Res. 77:3965–3981. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H, Kondo S, Nikaido I, Osato N, Saito R, Suzuki H, et al: Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature. 420:563–573. 2002. View Article : Google Scholar : PubMed/NCBI

62 

Wu Q, Wright M, Gogol MM, Bradford WD, Zhang N and Bazzini AA: Translation of small downstream ORFs enhances translation of canonical main open reading frames. EMBO J. 39. pp. e1047632020, View Article : Google Scholar

63 

Wu S, Zhang L, Deng J, Guo B, Li F, Wang Y, Wu R, Zhang S, Lu J and Zhou Y: A novel micropeptide encoded by Y-linked LINC00278 links cigarette smoking and AR signaling in male esophageal squamous cell carcinoma. Cancer Res. 80:2790–2803. 2020. View Article : Google Scholar : PubMed/NCBI

64 

Chen J, Brunner AD, Cogan JZ, Nuñez JK, Fields AP, Adamson B, Itzhak DN, Li JY, Mann M, Leonetti MD and Weissman JS: Pervasive functional translation of noncanonical human open reading frames. Science. 367:1140–1146. 2020. View Article : Google Scholar : PubMed/NCBI

65 

Wu Y, Yang X, Chen Z, Tian L, Jiang G, Chen F, Li J, An P, Lu L, Luo N, et al: m6A-induced lncRNA RP11 triggers the dissemination of colorectal cancer cells via upregulation of Zeb1. Mol Cancer. 18:872019. View Article : Google Scholar

66 

Biazzo A and De Paolis M: Multidisciplinary approach to osteosarcoma. Acta Orthop Belg. 82:690–698. 2016.

67 

Chen S, Zhou L and Wang Y: ALKBH5-mediated m6A demethylation of lncRNA PVT1 plays an oncogenic role in osteosarcoma. Cancer Cell Int. 20:342020. View Article : Google Scholar

68 

Chen J, Tian Y, Zhang Q, Ren D, Zhang Q, Yan X, Wang L, He Z, Zhang W, Zhang T and Yuan X: Novel insights into the role of N6-Methyladenosine RNA modification in bone pathophysiology. Stem Cells Dev. 30:17–28. 2021. View Article : Google Scholar

69 

Li D, Yang C, Yin C, Zhao F, Chen Z, Tian Y, Dang K, Jiang S, Zhang W, Zhang G and Qian A: LncRNA, important player in bone development and disease. Endocr Metab Immune Disord Drug Targets. 20:50–66. 2020. View Article : Google Scholar

70 

Abnet CC, Arnold M and Wei WQ: Epidemiology of esophageal squamous cell carcinoma. Gastroenterology. 154:360–373. 2018. View Article : Google Scholar

71 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global Cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

72 

Zhang J, Guo S, Piao HY, Wang Y, Wu Y, Meng XY, Yang D, Zheng ZC and Zhao Y: ALKBH5 promotes invasion and metastasis of gastric cancer by decreasing methylation of the lncRNA NEAT1. J Physiol Biochem. 75:379–389. 2019. View Article : Google Scholar : PubMed/NCBI

73 

Yang D, Chang S, Li F, Ma M, Yang J, Lv X, Huangfu L and Jia C: m6 A transferase KIAA1429-stabilized LINC00958 accelerates gastric cancer aerobic glycolysis through targeting GLUT1. IUBMB Life. 73:1325–1333. 2021. View Article : Google Scholar : PubMed/NCBI

74 

Hu N and Ji H: N6-methyladenosine (m6A)-mediated up-regulation of long noncoding RNA LINC01320 promotes the proliferation, migration, and invasion of gastric cancer via miR495-5p/RAB19 axis. Bioengineered. 12:4081–4091. 2021. View Article : Google Scholar : PubMed/NCBI

75 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI

76 

Ni W, Yao S, Zhou Y, Liu Y, Huang P, Zhou A, Liu J, Che L and Li J: Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m6A reader YTHDF3. Mol Cancer. 18:1432019. View Article : Google Scholar

77 

Yang X, Zhang S, He C, Xue P, Zhang L, He Z, Zang L, Feng B, Sun J and Zheng M: METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST. Mol Cancer. 19:462020. View Article : Google Scholar : PubMed/NCBI

78 

Wu J, Pang R, Li M, Chen B, Huang J and Zhu Y: m6A-induced LncRNA MEG3 suppresses the proliferation, migration and invasion of hepatocellular carcinoma cell through miR-544b/BTG2 signaling. Onco Targets Ther. 14:3745–3755. 2021. View Article : Google Scholar : PubMed/NCBI

79 

Chen MH, Fu LS, Zhang F, Yang Y and Wu XZ: LncAY controls BMI1 expression and activates BMI1/Wnt/beta-catenin signaling axis in hepatocellular carcinoma. Life Sci. 280:1197482021. View Article : Google Scholar

80 

Chen YT, Xiang D, Zhao XY and Chu XY: Upregulation of lncRNA NIFK-AS1 in hepatocellular carcinoma by m6A methylation promotes disease progression and sorafenib resistance. Hum Cell. 34:1800–1811. 2021. View Article : Google Scholar : PubMed/NCBI

81 

Mizrahi JD, Surana R, Valle JW and Shroff RT: Pancreatic cancer. Lancet. 395:2008–2020. 2020. View Article : Google Scholar : PubMed/NCBI

82 

Yin MY, Xi LT, Liu L, Zhu JZ, Qian LJ and Xu CF: Pancreatic cancer incidence and mortality patterns in 2006-2015 and prediction of the epidemiological trend to 2025 in China. World J Clin Cases. 10:4404–4413. 2022. View Article : Google Scholar : PubMed/NCBI

83 

He Y, Hu H, Wang Y, Yuan H, Lu Z, Wu P, Liu D, Tian L, Yin J, Jiang K and Miao Y: ALKBH5 inhibits pancreatic cancer motility by decreasing long non-coding RNA KCNK15-AS1 methylation. Cell Physiol Biochem. 48:838–846. 2018. View Article : Google Scholar : PubMed/NCBI

84 

Hu X, Peng WX, Zhou H, Jiang J, Zhou X, Huang D, Mo YY and Yang L: IGF2BP2 regulates DANCR by serving as an N6-methyladenosine reader. Cell Death Differ. 27:1782–1794. 2020. View Article : Google Scholar :

85 

Chen Y, Zitello E, Guo R and Deng Y: The function of LncRNAs and their role in the prediction, diagnosis, and prognosis of lung cancer. Clin Transl Med. 11:e3672021. View Article : Google Scholar : PubMed/NCBI

86 

Song H, Li H, Ding X, Li M, Shen H, Li Y, Zhang X and Xing L: Long noncoding RNA FEZF1AS1 facilitates nonsmall cell lung cancer progression via the ITGA11/miR516b5p axis. Int J Oncol. 57:1333–1347. 2020. View Article : Google Scholar : PubMed/NCBI

87 

Qian X, Yang J, Qiu Q, Li X, Jiang C, Li J, Dong L, Ying K, Lu B, Chen E, et al: LCAT3, a novel m6A-regulated long non-coding RNA, plays an oncogenic role in lung cancer via binding with FUBP1 to activate c-MYC. J Hematol Oncol. 14:1122021. View Article : Google Scholar : PubMed/NCBI

88 

Yu H and Zhang Z: ALKBH5-mediated m6A demethylation of lncRNA RMRP plays an oncogenic role in lung adenocarcinoma. Mamm Genome. 32:195–203. 2021. View Article : Google Scholar : PubMed/NCBI

89 

Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, Heng DY, Larkin J and Ficarra V: Renal cell carcinoma. Nat Rev Dis Primers. 3:170092017. View Article : Google Scholar : PubMed/NCBI

90 

Tan L, Tang Y, Li H, Li P, Ye Y, Cen J, Gui C, Luo J, Cao J and Wei J: N6-Methyladenosine modification of LncRNA DUXAP9 promotes renal cancer cells proliferation and motility by activating the PI3K/AKT signaling pathway. Front Oncol. 11:6418332021. View Article : Google Scholar : PubMed/NCBI

91 

Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer Statistics, 2021. CA Cancer J Clin. 71:7–33. 2021. View Article : Google Scholar : PubMed/NCBI

92 

Barros-Silva D, Lobo J, Guimarães-Teixeira C, Carneiro I, Oliveira J, Martens-Uzunova ES, Henrique R and Jerónimo C: VIRMA-dependent N6-Methyladenosine modifications regulate the expression of long non-coding RNAs CCAT1 and CCAT2 in prostate cancer. Cancers (Basel). 12:7712020. View Article : Google Scholar

93 

Sun T, Wu Z, Wang X, Wang Y, Hu X, Qin W, Lu S, Xu D, Wu Y, Chen Q, et al: LNC942 promoting METTL14-mediated m6A methylation in breast cancer cell proliferation and progression. Oncogene. 39:5358–5372. 2020. View Article : Google Scholar : PubMed/NCBI

94 

Rong D, Dong Q, Qu H, Deng X, Gao F, Li Q and Sun P: m6A-induced LINC00958 promotes breast cancer tumorigenesis via the miR-378a-3p/YY1 axis. Cell Death Dis. 7:272021. View Article : Google Scholar

95 

Zhao C, Ling X, Xia Y, Yan B and Guan Q: The m6A methyltransferase METTL3 controls epithelial-mesenchymal transition, migration and invasion of breast cancer through the MALAT1/miR-26b/HMGA2 axis. Cancer Cell Int. 21:4412021. View Article : Google Scholar : PubMed/NCBI

96 

Di Fiore R, Suleiman S, Drago-Ferrante R, Felix A, O'Toole SA, O'Leary JJ, Ward MP, Beirne J, Yordanov A, Vasileva-Slaveva M, et al: LncRNA MORT (ZNF667-AS1) in cancer-is there a possible role in gynecological malignancies? Int J Mol Sci. 22:78292021. View Article : Google Scholar

97 

Shen J, Feng XP, Hu RB, Wang H, Wang YL, Qian JH and Zhou YX: N-methyladenosine reader YTHDF2-mediated long noncoding RNA FENDRR degradation promotes cell proliferation in endometrioid endometrial carcinoma. Lab Invest. 101:775–784. 2021. View Article : Google Scholar : PubMed/NCBI

98 

Wang J, Ding W, Xu Y, Tao E, Mo M, Xu W, Cai X, Chen X, Yuan J and Wu X: Long non-coding RNA RHPN1-AS1 promotes tumorigenesis and metastasis of ovarian cancer by acting as a ceRNA against miR-596 and upregulating LETM1. Aging (Albany NY). 12:4558–4572. 2020. View Article : Google Scholar

99 

Yang Z, Ma J, Han S, Li X, Guo H and Liu D: ZFAS1 exerts an oncogenic role via suppressing miR-647 in an m6A-dependent manner in cervical cancer. Onco Targets Ther. 13:11795–11806. 2020. View Article : Google Scholar :

100 

Zhang Y, Wang D, Wu D, Zhang D and Sun M: Long noncoding RNA KCNMB2-AS1 stabilized by N6-Methyladenosine modification promotes cervical cancer growth through acting as a competing endogenous RNA. Cell Transplant. 29:9636897209643822020.

101 

Ghafouri-Fard S, Esmaeili M and Taheri M: Expression of non-coding RNAs in hematological malignancies. Eur J Pharmacol. 875:1729762020. View Article : Google Scholar : PubMed/NCBI

102 

Chen ZH, Chen TQ, Zeng ZC, Wang D, Han C, Sun YM, Huang W, Sun LY, Fang K, Chen YQ, et al: Nuclear export of chimeric mRNAs depends on an lncRNA-triggered autoregulatory loop in blood malignancies. Cell Death Dis. 11:5662020. View Article : Google Scholar : PubMed/NCBI

103 

Yao FY, Zhao C, Zhong FM, Qin TY, Wen F, Li MY, Liu J, Huang B and Wang XZ: m6A Modification of lncRNA NEAT1 regulates chronic myelocytic leukemia progression via miR-766-5p/CDKN1A axis. Front Oncol. 11:6796342021. View Article : Google Scholar

104 

Song W, Fei F, Qiao F, Weng Z, Yang Y, Cao B, Yue J, Xu J, Zheng M and Li J: ALKBH5-mediated N6-methyladenosine modification of TRERNA1 promotes DLBCL proliferation via p21 downregulation. Cell Death Discov. 8:252022. View Article : Google Scholar :

105 

Ban Y, Tan P, Cai J, Li J, Hu M, Zhou Y, Mei Y, Tan Y, Li X, Zeng Z, et al: LNCAROD is stabilized by m6A methylation and promotes cancer progression via forming a ternary complex with HSPA1A and YBX1 in head and neck squamous cell carcinoma. Mol Oncol. 14:1282–1296. 2020. View Article : Google Scholar : PubMed/NCBI

106 

Lee AW, Ma BB, Ng WT and Chan AT: Management of nasopharyngeal carcinoma: Current practice and future perspective. J Clin Oncol. 33:3356–3364. 2015. View Article : Google Scholar : PubMed/NCBI

107 

Zheng ZQ, Li ZX, Zhou GQ, Lin L, Zhang LL, Lv JW, Huang XD, Liu RQ, Chen F, He XJ, et al: Long noncoding RNA FAM225A promotes nasopharyngeal carcinoma tumorigenesis and metastasis by acting as ceRNA to sponge miR-590-3p/miR-1275 and Upregulate ITGB3. Cancer Res. 79:4612–4626. 2019. View Article : Google Scholar : PubMed/NCBI

108 

Dong Z and Cui H: The emerging roles of RNA modifications in Glioblastoma. Cancers (Basel). 12:7362020. View Article : Google Scholar

109 

Chang YZ, Chai RC, Pang B, Chang X, An SY, Zhang KN, Jiang T and Wang YZ: METTL3 enhances the stability of MALAT1 with the assistance of HuR via m6A modification and activates NF-kB to promote the malignant progression of IDH-wildtype glioma. Cancer Lett. 511:36–46. 2021. View Article : Google Scholar : PubMed/NCBI

110 

Roman BR, Morris LG and Davies L: The thyroid cancer epidemic, 2017 perspective. Curr Opin Endocrinol Diabetes Obes. 24:332–336. 2017. View Article : Google Scholar : PubMed/NCBI

111 

Dong L, Geng Z, Liu Z, Tao M, Pan M and Lu X: IGF2BP2 knockdown suppresses thyroid cancer progression by reducing the expression of long non-coding RNA HAGLR. Pathol Res Pract. 225:1535502021. View Article : Google Scholar : PubMed/NCBI

112 

Yuan C, Liu C, Zhao S, Zhang X, Jia H, Chen B, Zhang M, Zheng Y, Zhou J and Bo Y: The role of N6-Methyladenosine-associated lncRNAs in the immune microenvironment and prognosis of colorectal cancer. J Oncol. 2022:46893962022. View Article : Google Scholar : PubMed/NCBI

113 

Zhang M, Zhang J and Liu Y: Comprehensive analysis of molecular features, prognostic values, and immune landscape association of m6A-regulated immune-related lncRNAs in smoking-associated lung squamous cell carcinoma. Front Genet. 13:8874772022. View Article : Google Scholar : PubMed/NCBI

114 

Du QY, Huo FC, Du WQ, Sun XL, Jiang X, Zhang LS and Pei DS: METTL3 potentiates progression of cervical cancer by suppressing ER stress via regulating m6A modification of TXNDC5 mRNA. Oncogene. 41:4420–4432. 2022. View Article : Google Scholar : PubMed/NCBI

115 

Li HB, Huang G, Tu J, Lv DM, Jin QL, Chen JK, Zou YT, Lee DF, Shen JN and Xie XB: METTL14-mediated epitranscriptome modification of MN1 mRNA promote tumorigenicity and all-trans-retinoic acid resistance in osteosarcoma. EBioMedicine. 82:1041422022. View Article : Google Scholar : PubMed/NCBI

116 

Zhao Q, Zhao Y, Hu W, Zhang Y, Wu X, Lu J, Li M, Li W, Wu W, Wang J, et al: m6A RNA modification modulates PI3K/Akt/mTOR signal pathway in gastrointestinal cancer. Theranostics. 10:9528–9543. 2020. View Article : Google Scholar :

117 

Lu M, Zhan H, Liu B, Li D, Li W, Chen X and Zhou X: N6-methyladenosine-related non-coding RNAs are potential prognostic and immunotherapeutic responsiveness biomarkers for bladder cancer. EPMA J. 12:589–604. 2021. View Article : Google Scholar : PubMed/NCBI

118 

Liu L, Lei X, Fang Z, Tang Y, Meng J and Wei Z: LITHOPHONE: Improving lncRNA methylation site prediction using an ensemble predictor. Front Genet. 11:5452020. View Article : Google Scholar : PubMed/NCBI

119 

Wu P, Mo Y, Peng M, Tang T, Zhong Y, Deng X, Xiong F, Guo C, Wu X, Li Y, et al: Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Mol Cancer. 19:222020. View Article : Google Scholar : PubMed/NCBI

120 

Kong S, Tao M, Shen X and Ju S: Translatable circRNAs and lncRNAs: Driving mechanisms and functions of their translation products. Cancer Lett. 483:59–65. 2020. View Article : Google Scholar : PubMed/NCBI

121 

Park EG, Pyo SJ, Cui Y, Yoon SH and Nam JW: Tumor immune microenvironment lncRNAs. Brief Bioinform. 23:bbab5042022. View Article : Google Scholar :

122 

Zhang Z, Chen LQ, Zhao YL, Yang CG, Roundtree IA, Zhang Z, Ren J, Xie W, He C and Luo GZ: Single-base mapping of m6A by an antibody-independent method. Sci Adv. 5:eaax02502019. View Article : Google Scholar

123 

Chen K, Lu Z, Wang X, Fu Y, Luo GZ, Liu N, Han D, Dominissini D, Dai Q, Pan T and He C: High-resolution N(6)-methyladenosine (m(6) A) map using photo-cross-linking-assisted m(6) A sequencing. Angew Chem Int Ed Engl. 54:1587–1590. 2015. View Article : Google Scholar

124 

Linder B, Grozhik AV, Olarerin-George AO, Meydan C, Mason CE and Jaffrey SR: Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 12:767–772. 2015. View Article : Google Scholar : PubMed/NCBI

125 

Meyer KD: DART-seq: An antibody-free method for global m6A detection. Nat Methods. 16:1275–1280. 2019. View Article : Google Scholar : PubMed/NCBI

126 

Shu X, Cao J, Cheng M, Xiang S, Gao M, Li T, Ying X, Wang F, Yue Y, Lu Z, et al: A metabolic labeling method detects m6A transcriptome-wide at single base resolution. Nat Chem Biol. 16:887–895. 2020. View Article : Google Scholar : PubMed/NCBI

127 

Wang Y, Xiao Y, Dong S, Yu Q and Jia G: Antibody-free enzyme-assisted chemical approach for detection of N6-methyladenosine. Nat Chem Biol. 16:896–903. 2020. View Article : Google Scholar : PubMed/NCBI

128 

Zhou Y, Zeng P, Li YH, Zhang Z and Cui Q: SRAMP: Prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features. Nucleic Acids Res. 44:e912016. View Article : Google Scholar : PubMed/NCBI

129 

Jia CZ, Zhang JJ and Gu WZ: RNA-MethylPred: A high-accuracy predictor to identify N6-methyladenosine in RNA. Anal Biochem. 510:72–75. 2016. View Article : Google Scholar : PubMed/NCBI

130 

Li GQ, Liu Z, Shen HB and Yu DJ: TargetM6A: Identifying N6-Methyladenosine Sites from RNA sequences via Position-specific nucleotide propensities and a support vector machine. IEEE Trans Nanobioscience. 15:674–682. 2016. View Article : Google Scholar : PubMed/NCBI

131 

Xuan JJ, Sun WJ, Lin PH, Zhou KR, Liu S, Zheng LL, Qu LH and Yang JH: RMBase v2.0: Deciphering the map of RNA modifications from epitranscriptome sequencing data. Nucleic Acids Res. 46:D327–D334. 2018. View Article : Google Scholar :

132 

Zheng Y, Nie P, Peng D, He Z, Liu M, Xie Y, Miao Y, Zuo Z and Ren J: m6AVar: A database of functional variants involved in m6A modification. Nucleic Acids Res. 46:D139–D145. 2018. View Article : Google Scholar :

133 

Zhang Y and Hamada M: DeepM6ASeq: Prediction and characterization of m6A-containing sequences using deep learning. BMC Bioinformatics. 19:5242018. View Article : Google Scholar

134 

Han Y, Feng J, Xia L, Dong X, Zhang X, Zhang S, Miao Y, Xu Q, Xiao S, Zuo Z, et al: CVm6A: A visualization and exploration database for m6As in cell lines. Cells. 8:1682019. View Article : Google Scholar

135 

Liu K, Cao L, Du P and Chen W: im6A-TS-CNN: Identifying the N6-Methyladenine site in multiple tissues by using the convolutional neural network. Mol Ther Nucleic Acids. 21:1044–1049. 2020. View Article : Google Scholar : PubMed/NCBI

136 

Deng S, Zhang H, Zhu K, Li X, Ye Y, Li R, Liu X, Lin D, Zuo Z and Zheng J: M6A2Target: A comprehensive database for targets of m6A writers, erasers and readers. Brief Bioinform. 22:bbaa0552021. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
He Y, Du X, Chen M, Han L and Sun J: Novel insight into the functions of N<sup>6</sup>‑methyladenosine modified lncRNAs in cancers (Review). Int J Oncol 61: 152, 2022.
APA
He, Y., Du, X., Chen, M., Han, L., & Sun, J. (2022). Novel insight into the functions of N<sup>6</sup>‑methyladenosine modified lncRNAs in cancers (Review). International Journal of Oncology, 61, 152. https://doi.org/10.3892/ijo.2022.5442
MLA
He, Y., Du, X., Chen, M., Han, L., Sun, J."Novel insight into the functions of N<sup>6</sup>‑methyladenosine modified lncRNAs in cancers (Review)". International Journal of Oncology 61.6 (2022): 152.
Chicago
He, Y., Du, X., Chen, M., Han, L., Sun, J."Novel insight into the functions of N<sup>6</sup>‑methyladenosine modified lncRNAs in cancers (Review)". International Journal of Oncology 61, no. 6 (2022): 152. https://doi.org/10.3892/ijo.2022.5442
Copy and paste a formatted citation
x
Spandidos Publications style
He Y, Du X, Chen M, Han L and Sun J: Novel insight into the functions of N<sup>6</sup>‑methyladenosine modified lncRNAs in cancers (Review). Int J Oncol 61: 152, 2022.
APA
He, Y., Du, X., Chen, M., Han, L., & Sun, J. (2022). Novel insight into the functions of N<sup>6</sup>‑methyladenosine modified lncRNAs in cancers (Review). International Journal of Oncology, 61, 152. https://doi.org/10.3892/ijo.2022.5442
MLA
He, Y., Du, X., Chen, M., Han, L., Sun, J."Novel insight into the functions of N<sup>6</sup>‑methyladenosine modified lncRNAs in cancers (Review)". International Journal of Oncology 61.6 (2022): 152.
Chicago
He, Y., Du, X., Chen, M., Han, L., Sun, J."Novel insight into the functions of N<sup>6</sup>‑methyladenosine modified lncRNAs in cancers (Review)". International Journal of Oncology 61, no. 6 (2022): 152. https://doi.org/10.3892/ijo.2022.5442
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team