|
1
|
Liu J and Jia G: Methylation modifications
in eukaryotic messenger RNA. J Genet Genomics. 41:21–33. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Boccaletto P, Machnicka MA, Purta E,
Piatkowski P, Baginski B, Wirecki TK, de Crécy-Lagard V, Ross R,
Limbach PA, Kotter A, et al: MODOMICS: A database of RNA
modification pathways. 2017 update. Nucleic Acids Res.
46:D303–D307. 2018. View Article : Google Scholar :
|
|
3
|
Li J, Yang X, Qi Z, Sang Y, Liu Y, Xu B,
Liu W, Xu Z and Deng Y: The role of mRNA m6A methylation
in the nervous system. Cell Biosci. 9:662019. View Article : Google Scholar
|
|
4
|
Dominissini D, Nachtergaele S,
Moshitch-Moshkovitz S, Peer E, Kol N, Ben-Haim MS, Dai Q, Di Segni
A, Salmon-Divon M, Clark WC, et al: The dynamic
N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature.
530:441–446. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
You C, Dai X and Wang Y:
Position-dependent effects of regioisomeric methylated adenine and
guanine ribonucleosides on translation. Nucleic Acids Res.
45:9059–9067. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Desrosiers R, Friderici K and Rottman F:
Identification of methylated nucleosides in messenger RNA from
Novikoff hepatoma cells. Proc Natl Acad Sci USA. 71:3971–3975.
1974. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Bartosovic M, Molares HC, Gregorova P,
Hrossova D, Kudla G and Vanacova S: N6-methyladenosine demethylase
FTO targets pre-mRNAs and regulates alternative splicing and 3'-end
processing. Nucleic Acids Res. 45:11356–11370. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Roundtree IA and He C: Nuclear m(6)A
reader YTHDC1 regulates mRNA splicing. Trends Genet. 32:320–321.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Xiao W, Adhikari S, Dahal U, Chen YS, Hao
YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, et al: Nuclear m(6)A
reader YTHDC1 regulates mRNA splicing. Mol Cell. 61:507–519. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han
D, Fu Y, Parisien M, Dai Q, Jia G, et al:
N6-methyladenosine-dependent regulation of messenger RNA stability.
Nature. 505:117–120. 2014. View Article : Google Scholar
|
|
11
|
Fustin JM, Doi M, Yamaguchi Y, Hida H,
Nishimura S, Yoshida M, Isagawa T, Morioka MS, Kakeya H, Manabe I
and Okamura H: RNA-methylation-dependent RNA processing controls
the speed of the circadian clock. Cell. 155:793–806. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Chen J, Zhang YC, Huang C, Shen H, Sun B,
Cheng X, Zhang YJ, Yang YG, Shu Q, Yang Y and Li X: m6A
regulates neurogenesis and neuronal development by modulating
histone methyltransferase Ezh2. Genomics Proteomics Bioinformatics.
17:154–168. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Xu J, Bai J, Zhang X, Lv Y, Gong Y, Liu L,
Zhao H, Yu F, Ping Y, Zhang G, et al: A comprehensive overview of
lncRNA annotation resources. Brief Bioinform. 18:236–249. 2017.
|
|
14
|
Peng WX, Koirala P and Mo YY:
LncRNA-mediated regulation of cell signaling in cancer. Oncogene.
36:5661–5667. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Bhat SA, Ahmad SM, Mumtaz PT, Malik AA,
Dar MA, Urwat U, Shah RA and Ganai NA: Long non-coding RNAs:
Mechanism of action and functional utility. Noncoding RNA Res.
1:43–50. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Chen F, Li Z, Deng C and Yan H:
Integration analysis for novel lncRNA markers predicting tumor
recurrence in human colon adenocarcinoma. J Transl Med. 17:2992019.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zimmer-Bensch G: Emerging roles of long
non-coding RNAs as drivers of brain evolution. Cells. 8:13992019.
View Article : Google Scholar
|
|
18
|
Robinson EK, Covarrubias S and Carpenter
S: The how and why of lncRNA function: An innate immune
perspective. Biochim Biophys Acta Gene Regul Mech. 1863:1944192020.
View Article : Google Scholar :
|
|
19
|
Ma S, Chen C, Ji X, Liu J, Zhou Q, Wang G,
Yuan W, Kan Q and Sun Z: The interplay between m6A RNA methylation
and noncoding RNA in cancer. J Hematol Oncol. 12:1212019.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Meyer KD, Saletore Y, Zumbo P, Elemento O,
Mason CE and Jaffrey SR: Comprehensive analysis of mRNA methylation
reveals enrichment in 3'UTRs and near stop codons. Cell.
149:1635–1646. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Liu N, Dai Q, Zheng G, He C, Parisien M
and Pan T: N(6)-methyladenosine-dependent RNA structural switches
regulate RNA-protein interactions. Nature. 518:560–564. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Patil DP, Chen CK, Pickering BF, Chow A,
Jackson C, Guttman M and Jaffrey SR: m(6)A RNA methylation promotes
XIST-mediated transcriptional repression. Nature. 537:369–373.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zheng G, Dahl JA, Niu Y, Fedorcsak P,
Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, et al: ALKBH5
is a mammalian RNA demethylase that impacts RNA metabolism and
mouse fertility. Mol Cell. 49:18–29. 2013. View Article : Google Scholar :
|
|
24
|
Lan Q, Liu PY, Haase J, Bell JL,
Huttelmaier S and Liu T: The critical role of RNA m6A
methylation in cancer. Cancer Res. 79:1285–1292. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yang Y, Hsu PJ, Chen YS and Yang YG:
Dynamic transcriptomic m6A decoration: Writers, erasers,
readers and functions in RNA metabolism. Cell Res. 28:616–624.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Yao L, Man CF, He R, He L, Huang JB, Xiang
SY, Dai Z, Wang XY and Fan Y: The Interaction between
N6-Methyladenosine modification and non-coding RNAs in
gastrointestinal tract cancers. Front Oncol. 11:7841272021.
View Article : Google Scholar
|
|
27
|
Deng X, Su R, Weng H, Huang H, Li Z and
Chen J: RNA N6-methyladenosine modification in cancers:
Current status and perspectives. Cell Res. 28:507–517. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Schwartz S, Mumbach MR, Jovanovic M, Wang
T, Maciag K, Bushkin GG, Mertins P, Ter-Ovanesyan D, Habib N,
Cacchiarelli D, et al: Perturbation of m6A writers reveals two
distinct classes of mRNA methylation at internal and 5'sites. Cell
Rep. 8:284–296. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wen J, Lv R, Ma H, Shen H, He C, Wang J,
Jiao F, Liu H, Yang P, Tan L, et al: Zc3h13 regulates nuclear RNA
m6A methylation and mouse embryonic stem cell
self-renewal. Mol Cell. 69:1028–1038.e6. 2018. View Article : Google Scholar
|
|
30
|
Bokar JA, Shambaugh ME, Polayes D, Matera
AG and Rottman FM: Purification and cDNA cloning of the
AdoMet-binding subunit of the human mRNA
(N6-adenosine)-methyltransferase. RNA. 3:1233–1247. 1997.PubMed/NCBI
|
|
31
|
Wang X, Feng J, Xue Y, Guan Z, Zhang D,
Liu Z, Gong Z, Wang Q, Huang J, Tang C, et al: Structural basis of
N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature.
534:575–578. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang
L, Jia G, Yu M, Lu Z, Deng X, et al: A METTL3-METTL14 complex
mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem
Biol. 10:93–95. 2014. View Article : Google Scholar :
|
|
33
|
Horiuchi K, Kawamura T, Iwanari H, Ohashi
R, Naito M, Kodama T and Hamakubo T: Identification of Wilms' tumor
1-associating protein complex and its role in alternative splicing
and the cell cycle. J Biol Chem. 288:33292–33302. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Warda AS, Kretschmer J, Hackert P, Lenz C,
Urlaub H, Höbartner C, Sloan KE and Bohnsack MT: Human METTL16 is a
N6-methyladenosine (m6A) methyltransferase
that targets pre-mRNAs and various non-coding RNAs. EMBO Rep.
18:2004–2014. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ruszkowska A: METTL16,
Methyltransferase-like protein 16: Current insights into structure
and function. Int J Mol Sci. 22:21762021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zuo X, Chen Z, Gao W, Zhang Y, Wang J,
Wang J, Cao M, Cai J, Wu J and Wang X: M6A-mediated upregulation of
LINC00958 increases lipogenesis and acts as a nanotherapeutic
target in hepatocellular carcinoma. J Hematol Oncol. 13:52020.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Jin D, Guo J, Wu Y, Du J, Yang L, Wang X,
Di W, Hu B, An J, Kong L, et al: m6A mRNA methylation
initiated by METTL3 directly promotes YAP translation and increases
YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to
induce NSCLC drug resistance and metastasis. J Hematol Oncol.
14:322021. View Article : Google Scholar
|
|
38
|
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang
Y, Yi C, Lindahl T, Pan T, Yang YG and He C: N6-methyladenosine in
nuclear RNA is a major substrate of the obesity-associated FTO. Nat
Chem Biol. 7:885–887. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Sun T, Wu R and Ming L: The role of m6A
RNA methylation in cancer. Biomed Pharmacother. 112:1086132019.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Wang T, Kong S, Tao M and Ju S: The
potential role of RNA N6-methyladenosine in Cancer progression. Mol
Cancer. 19:882020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Shi H, Wei J and He C: Where, When, and
How: Context-dependent functions of RNA methylation writers,
readers, and eras. Mol Cell. 74:640–650. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Frye M, Harada BT, Behm M and He C: RNA
modifications modulate gene expression during development. Science.
361:1346–1349. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wang X, Zhao BS, Roundtree IA, Lu Z, Han
D, Ma H, Weng X, Chen K, Shi H and He C: N(6)-methyladenosine
modulates messenger RNA translation efficiency. Cell.
161:1388–1399. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yan J, Huang X, Zhang X, Chen Z, Ye C,
Xiang W and Huang Z: LncRNA LINC00470 promotes the degradation of
PTEN mRNA to facilitate malignant behavior in gastric cancer cells.
Biochem Biophys Res Commun. 521:887–893. 2020. View Article : Google Scholar
|
|
45
|
Hu Y, Tang J, Xu F, Chen J, Zeng Z, Han S,
Wang F, Wang D, Huang M, Zhao Y, et al: A reciprocal feedback
between N6-methyladenosine reader YTHDF3 and lncRNA DICER1-AS1
promotes glycolysis of pancreatic cancer through inhibiting
maturation of miR-5586-5p. J Exp Clin Cancer Res. 41:692022.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu
PJ, Liu C and He C: YTHDF3 facilitates translation and decay of
N6-methyladenosine-modified RNA. Cell Res. 27:315–328.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Luxton HJ, Simpson BS, Mills IG, Brindle
NR, Ahmed Z, Stavrinides V, Heavey S, Stamm S and Whitaker HC: The
oncogene metadherin interacts with the known splicing proteins
YTHDC1, Sam68 and T-STAR and plays a novel role in alternative mRNA
splicing. Cancers (Basel). 11:12332019. View Article : Google Scholar
|
|
48
|
Ding Y, Wang M and Yang J: Circular RNA
midline-1 (circMID1) promotes proliferation, migration, invasion
and glycolysis in prostate cancer. Bioengineered. 13:6293–6308.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Alarcón CR, Goodarzi H, Lee H, Liu X,
Tavazoie S and Tavazoie SF: HNRNPA2B1 Is a mediator of
m(6)A-dependent nuclear RNA processing events. Cell. 162:1299–1308.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Liu N, Zhou KI, Parisien M, Dai Q,
Diatchenko L and Pan T: N6-methyladenosine alters RNA structure to
regulate binding of a low-complexity protein. Nucleic Acids Res.
45:6051–6063. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Huang H, Weng H, Sun W, Qin X, Shi H, Wu
H, Zhao BS, Mesquita A, Liu C, Yuan CL, et al: Recognition of RNA
N6-methyladenosine by IGF2BP proteins enhances mRNA
stability and translation. Nat Cell Biol. 20:285–295. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhu P, He F, Hou Y, Tu G, Li Q, Jin T,
Zeng H, Qin Y, Wan X, Qiao Y, et al: A novel hypoxic long noncoding
RNA KB-1980E6.3 maintains breast cancer stem cell stemness via
interacting with IGF2BP1 to facilitate c-Myc mRNA stability.
Oncogene. 40:1609–1627. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Roost C, Lynch SR, Batista PJ, Qu K, Chang
HY and Kool ET: Structure and thermodynamics of N6-methyladenosine
in RNA: A spring-loaded base modification. J Am Chem Soc.
137:2107–2115. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhou KI, Parisien M, Dai Q, Liu N,
Diatchenko L, Sachleben JR and Pan T: N(6)-Methyladenosine
modification in a long noncoding RNA hairpin predisposes its
conformation to protein binding. J Mol Biol. 428:822–833. 2016.
View Article : Google Scholar
|
|
55
|
Dong S, Wu Y, Liu Y, Weng H and Huang H:
N6-methyladenosine steers RNA metabolism and regulation
in cancer. Cancer Commun (Lond). 41:538–559. 2021. View Article : Google Scholar
|
|
56
|
Dominissini D, Moshitch-Moshkovitz S,
Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K,
Jacob-Hirsch J, Amariglio N, Kupiec M, et al: Topology of the human
and mouse m6A RNA methylomes revealed by m6A-seq. Nature.
485:201–206. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ninomiya K, Iwakiri J, Aly MK, Sakaguchi
Y, Adachi S, Natsume T, Terai G, Asai K, Suzuki T and Hirose T:
m6 A modification of HSATIII lncRNAs regulates
temperature-dependent splicing. EMBO J. 40:e1079762021. View Article : Google Scholar
|
|
58
|
Xue L, Li J, Lin Y, Liu D, Yang Q, Jian J
and Peng J: m6 A transferase METTL3-induced lncRNA
ABHD11-AS1 promotes the Warburg effect of non-small-cell lung
cancer. J Cell Physiol. 236:2649–2658. 2021. View Article : Google Scholar
|
|
59
|
Guo T, Liu DF, Peng SH and Xu AM: ALKBH5
promotes colon cancer progression by decreasing methylation of the
lncRNA NEAT1. Am J Transl Res. 12:4542–4549. 2020.PubMed/NCBI
|
|
60
|
Bhan A, Soleimani M and Mandal SS: Long
noncoding RNA and cancer: A new paradigm. Cancer Res. 77:3965–3981.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Okazaki Y, Furuno M, Kasukawa T, Adachi J,
Bono H, Kondo S, Nikaido I, Osato N, Saito R, Suzuki H, et al:
Analysis of the mouse transcriptome based on functional annotation
of 60,770 full-length cDNAs. Nature. 420:563–573. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wu Q, Wright M, Gogol MM, Bradford WD,
Zhang N and Bazzini AA: Translation of small downstream ORFs
enhances translation of canonical main open reading frames. EMBO J.
39. pp. e1047632020, View Article : Google Scholar
|
|
63
|
Wu S, Zhang L, Deng J, Guo B, Li F, Wang
Y, Wu R, Zhang S, Lu J and Zhou Y: A novel micropeptide encoded by
Y-linked LINC00278 links cigarette smoking and AR signaling in male
esophageal squamous cell carcinoma. Cancer Res. 80:2790–2803. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Chen J, Brunner AD, Cogan JZ, Nuñez JK,
Fields AP, Adamson B, Itzhak DN, Li JY, Mann M, Leonetti MD and
Weissman JS: Pervasive functional translation of noncanonical human
open reading frames. Science. 367:1140–1146. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Wu Y, Yang X, Chen Z, Tian L, Jiang G,
Chen F, Li J, An P, Lu L, Luo N, et al: m6A-induced
lncRNA RP11 triggers the dissemination of colorectal cancer cells
via upregulation of Zeb1. Mol Cancer. 18:872019. View Article : Google Scholar
|
|
66
|
Biazzo A and De Paolis M:
Multidisciplinary approach to osteosarcoma. Acta Orthop Belg.
82:690–698. 2016.
|
|
67
|
Chen S, Zhou L and Wang Y: ALKBH5-mediated
m6A demethylation of lncRNA PVT1 plays an oncogenic role
in osteosarcoma. Cancer Cell Int. 20:342020. View Article : Google Scholar
|
|
68
|
Chen J, Tian Y, Zhang Q, Ren D, Zhang Q,
Yan X, Wang L, He Z, Zhang W, Zhang T and Yuan X: Novel insights
into the role of N6-Methyladenosine RNA modification in bone
pathophysiology. Stem Cells Dev. 30:17–28. 2021. View Article : Google Scholar
|
|
69
|
Li D, Yang C, Yin C, Zhao F, Chen Z, Tian
Y, Dang K, Jiang S, Zhang W, Zhang G and Qian A: LncRNA, important
player in bone development and disease. Endocr Metab Immune Disord
Drug Targets. 20:50–66. 2020. View Article : Google Scholar
|
|
70
|
Abnet CC, Arnold M and Wei WQ:
Epidemiology of esophageal squamous cell carcinoma.
Gastroenterology. 154:360–373. 2018. View Article : Google Scholar
|
|
71
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global Cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhang J, Guo S, Piao HY, Wang Y, Wu Y,
Meng XY, Yang D, Zheng ZC and Zhao Y: ALKBH5 promotes invasion and
metastasis of gastric cancer by decreasing methylation of the
lncRNA NEAT1. J Physiol Biochem. 75:379–389. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yang D, Chang S, Li F, Ma M, Yang J, Lv X,
Huangfu L and Jia C: m6 A transferase
KIAA1429-stabilized LINC00958 accelerates gastric cancer aerobic
glycolysis through targeting GLUT1. IUBMB Life. 73:1325–1333. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Hu N and Ji H: N6-methyladenosine
(m6A)-mediated up-regulation of long noncoding RNA LINC01320
promotes the proliferation, migration, and invasion of gastric
cancer via miR495-5p/RAB19 axis. Bioengineered. 12:4081–4091. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Ni W, Yao S, Zhou Y, Liu Y, Huang P, Zhou
A, Liu J, Che L and Li J: Long noncoding RNA GAS5 inhibits
progression of colorectal cancer by interacting with and triggering
YAP phosphorylation and degradation and is negatively regulated by
the m6A reader YTHDF3. Mol Cancer. 18:1432019.
View Article : Google Scholar
|
|
77
|
Yang X, Zhang S, He C, Xue P, Zhang L, He
Z, Zang L, Feng B, Sun J and Zheng M: METTL14 suppresses
proliferation and metastasis of colorectal cancer by
down-regulating oncogenic long non-coding RNA XIST. Mol Cancer.
19:462020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wu J, Pang R, Li M, Chen B, Huang J and
Zhu Y: m6A-induced LncRNA MEG3 suppresses the proliferation,
migration and invasion of hepatocellular carcinoma cell through
miR-544b/BTG2 signaling. Onco Targets Ther. 14:3745–3755. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Chen MH, Fu LS, Zhang F, Yang Y and Wu XZ:
LncAY controls BMI1 expression and activates BMI1/Wnt/beta-catenin
signaling axis in hepatocellular carcinoma. Life Sci.
280:1197482021. View Article : Google Scholar
|
|
80
|
Chen YT, Xiang D, Zhao XY and Chu XY:
Upregulation of lncRNA NIFK-AS1 in hepatocellular carcinoma by
m6A methylation promotes disease progression and
sorafenib resistance. Hum Cell. 34:1800–1811. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Mizrahi JD, Surana R, Valle JW and Shroff
RT: Pancreatic cancer. Lancet. 395:2008–2020. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Yin MY, Xi LT, Liu L, Zhu JZ, Qian LJ and
Xu CF: Pancreatic cancer incidence and mortality patterns in
2006-2015 and prediction of the epidemiological trend to 2025 in
China. World J Clin Cases. 10:4404–4413. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
He Y, Hu H, Wang Y, Yuan H, Lu Z, Wu P,
Liu D, Tian L, Yin J, Jiang K and Miao Y: ALKBH5 inhibits
pancreatic cancer motility by decreasing long non-coding RNA
KCNK15-AS1 methylation. Cell Physiol Biochem. 48:838–846. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Hu X, Peng WX, Zhou H, Jiang J, Zhou X,
Huang D, Mo YY and Yang L: IGF2BP2 regulates DANCR by serving as an
N6-methyladenosine reader. Cell Death Differ. 27:1782–1794. 2020.
View Article : Google Scholar :
|
|
85
|
Chen Y, Zitello E, Guo R and Deng Y: The
function of LncRNAs and their role in the prediction, diagnosis,
and prognosis of lung cancer. Clin Transl Med. 11:e3672021.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Song H, Li H, Ding X, Li M, Shen H, Li Y,
Zhang X and Xing L: Long noncoding RNA FEZF1AS1 facilitates
nonsmall cell lung cancer progression via the ITGA11/miR516b5p
axis. Int J Oncol. 57:1333–1347. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Qian X, Yang J, Qiu Q, Li X, Jiang C, Li
J, Dong L, Ying K, Lu B, Chen E, et al: LCAT3, a novel
m6A-regulated long non-coding RNA, plays an oncogenic role in lung
cancer via binding with FUBP1 to activate c-MYC. J Hematol Oncol.
14:1122021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Yu H and Zhang Z: ALKBH5-mediated m6A
demethylation of lncRNA RMRP plays an oncogenic role in lung
adenocarcinoma. Mamm Genome. 32:195–203. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Hsieh JJ, Purdue MP, Signoretti S, Swanton
C, Albiges L, Schmidinger M, Heng DY, Larkin J and Ficarra V: Renal
cell carcinoma. Nat Rev Dis Primers. 3:170092017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Tan L, Tang Y, Li H, Li P, Ye Y, Cen J,
Gui C, Luo J, Cao J and Wei J: N6-Methyladenosine modification of
LncRNA DUXAP9 promotes renal cancer cells proliferation and
motility by activating the PI3K/AKT signaling pathway. Front Oncol.
11:6418332021. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer Statistics, 2021. CA Cancer J Clin. 71:7–33. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Barros-Silva D, Lobo J, Guimarães-Teixeira
C, Carneiro I, Oliveira J, Martens-Uzunova ES, Henrique R and
Jerónimo C: VIRMA-dependent N6-Methyladenosine modifications
regulate the expression of long non-coding RNAs CCAT1 and CCAT2 in
prostate cancer. Cancers (Basel). 12:7712020. View Article : Google Scholar
|
|
93
|
Sun T, Wu Z, Wang X, Wang Y, Hu X, Qin W,
Lu S, Xu D, Wu Y, Chen Q, et al: LNC942 promoting METTL14-mediated
m6A methylation in breast cancer cell proliferation and
progression. Oncogene. 39:5358–5372. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Rong D, Dong Q, Qu H, Deng X, Gao F, Li Q
and Sun P: m6A-induced LINC00958 promotes breast cancer
tumorigenesis via the miR-378a-3p/YY1 axis. Cell Death Dis.
7:272021. View Article : Google Scholar
|
|
95
|
Zhao C, Ling X, Xia Y, Yan B and Guan Q:
The m6A methyltransferase METTL3 controls epithelial-mesenchymal
transition, migration and invasion of breast cancer through the
MALAT1/miR-26b/HMGA2 axis. Cancer Cell Int. 21:4412021. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Di Fiore R, Suleiman S, Drago-Ferrante R,
Felix A, O'Toole SA, O'Leary JJ, Ward MP, Beirne J, Yordanov A,
Vasileva-Slaveva M, et al: LncRNA MORT (ZNF667-AS1) in cancer-is
there a possible role in gynecological malignancies? Int J Mol Sci.
22:78292021. View Article : Google Scholar
|
|
97
|
Shen J, Feng XP, Hu RB, Wang H, Wang YL,
Qian JH and Zhou YX: N-methyladenosine reader YTHDF2-mediated long
noncoding RNA FENDRR degradation promotes cell proliferation in
endometrioid endometrial carcinoma. Lab Invest. 101:775–784. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wang J, Ding W, Xu Y, Tao E, Mo M, Xu W,
Cai X, Chen X, Yuan J and Wu X: Long non-coding RNA RHPN1-AS1
promotes tumorigenesis and metastasis of ovarian cancer by acting
as a ceRNA against miR-596 and upregulating LETM1. Aging (Albany
NY). 12:4558–4572. 2020. View Article : Google Scholar
|
|
99
|
Yang Z, Ma J, Han S, Li X, Guo H and Liu
D: ZFAS1 exerts an oncogenic role via suppressing miR-647 in an
m6A-dependent manner in cervical cancer. Onco Targets
Ther. 13:11795–11806. 2020. View Article : Google Scholar :
|
|
100
|
Zhang Y, Wang D, Wu D, Zhang D and Sun M:
Long noncoding RNA KCNMB2-AS1 stabilized by
N6-Methyladenosine modification promotes cervical cancer
growth through acting as a competing endogenous RNA. Cell
Transplant. 29:9636897209643822020.
|
|
101
|
Ghafouri-Fard S, Esmaeili M and Taheri M:
Expression of non-coding RNAs in hematological malignancies. Eur J
Pharmacol. 875:1729762020. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Chen ZH, Chen TQ, Zeng ZC, Wang D, Han C,
Sun YM, Huang W, Sun LY, Fang K, Chen YQ, et al: Nuclear export of
chimeric mRNAs depends on an lncRNA-triggered autoregulatory loop
in blood malignancies. Cell Death Dis. 11:5662020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Yao FY, Zhao C, Zhong FM, Qin TY, Wen F,
Li MY, Liu J, Huang B and Wang XZ: m6A Modification of
lncRNA NEAT1 regulates chronic myelocytic leukemia progression via
miR-766-5p/CDKN1A axis. Front Oncol. 11:6796342021. View Article : Google Scholar
|
|
104
|
Song W, Fei F, Qiao F, Weng Z, Yang Y, Cao
B, Yue J, Xu J, Zheng M and Li J: ALKBH5-mediated
N6-methyladenosine modification of TRERNA1 promotes DLBCL
proliferation via p21 downregulation. Cell Death Discov. 8:252022.
View Article : Google Scholar :
|
|
105
|
Ban Y, Tan P, Cai J, Li J, Hu M, Zhou Y,
Mei Y, Tan Y, Li X, Zeng Z, et al: LNCAROD is stabilized by m6A
methylation and promotes cancer progression via forming a ternary
complex with HSPA1A and YBX1 in head and neck squamous cell
carcinoma. Mol Oncol. 14:1282–1296. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Lee AW, Ma BB, Ng WT and Chan AT:
Management of nasopharyngeal carcinoma: Current practice and future
perspective. J Clin Oncol. 33:3356–3364. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Zheng ZQ, Li ZX, Zhou GQ, Lin L, Zhang LL,
Lv JW, Huang XD, Liu RQ, Chen F, He XJ, et al: Long noncoding RNA
FAM225A promotes nasopharyngeal carcinoma tumorigenesis and
metastasis by acting as ceRNA to sponge miR-590-3p/miR-1275 and
Upregulate ITGB3. Cancer Res. 79:4612–4626. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Dong Z and Cui H: The emerging roles of
RNA modifications in Glioblastoma. Cancers (Basel). 12:7362020.
View Article : Google Scholar
|
|
109
|
Chang YZ, Chai RC, Pang B, Chang X, An SY,
Zhang KN, Jiang T and Wang YZ: METTL3 enhances the stability of
MALAT1 with the assistance of HuR via m6A modification and
activates NF-kB to promote the malignant progression of
IDH-wildtype glioma. Cancer Lett. 511:36–46. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Roman BR, Morris LG and Davies L: The
thyroid cancer epidemic, 2017 perspective. Curr Opin Endocrinol
Diabetes Obes. 24:332–336. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Dong L, Geng Z, Liu Z, Tao M, Pan M and Lu
X: IGF2BP2 knockdown suppresses thyroid cancer progression by
reducing the expression of long non-coding RNA HAGLR. Pathol Res
Pract. 225:1535502021. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Yuan C, Liu C, Zhao S, Zhang X, Jia H,
Chen B, Zhang M, Zheng Y, Zhou J and Bo Y: The role of
N6-Methyladenosine-associated lncRNAs in the immune
microenvironment and prognosis of colorectal cancer. J Oncol.
2022:46893962022. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Zhang M, Zhang J and Liu Y: Comprehensive
analysis of molecular features, prognostic values, and immune
landscape association of m6A-regulated immune-related lncRNAs in
smoking-associated lung squamous cell carcinoma. Front Genet.
13:8874772022. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Du QY, Huo FC, Du WQ, Sun XL, Jiang X,
Zhang LS and Pei DS: METTL3 potentiates progression of cervical
cancer by suppressing ER stress via regulating m6A modification of
TXNDC5 mRNA. Oncogene. 41:4420–4432. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Li HB, Huang G, Tu J, Lv DM, Jin QL, Chen
JK, Zou YT, Lee DF, Shen JN and Xie XB: METTL14-mediated
epitranscriptome modification of MN1 mRNA promote tumorigenicity
and all-trans-retinoic acid resistance in osteosarcoma.
EBioMedicine. 82:1041422022. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Zhao Q, Zhao Y, Hu W, Zhang Y, Wu X, Lu J,
Li M, Li W, Wu W, Wang J, et al: m6A RNA modification
modulates PI3K/Akt/mTOR signal pathway in gastrointestinal cancer.
Theranostics. 10:9528–9543. 2020. View Article : Google Scholar :
|
|
117
|
Lu M, Zhan H, Liu B, Li D, Li W, Chen X
and Zhou X: N6-methyladenosine-related non-coding RNAs are
potential prognostic and immunotherapeutic responsiveness
biomarkers for bladder cancer. EPMA J. 12:589–604. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Liu L, Lei X, Fang Z, Tang Y, Meng J and
Wei Z: LITHOPHONE: Improving lncRNA methylation site prediction
using an ensemble predictor. Front Genet. 11:5452020. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Wu P, Mo Y, Peng M, Tang T, Zhong Y, Deng
X, Xiong F, Guo C, Wu X, Li Y, et al: Emerging role of
tumor-related functional peptides encoded by lncRNA and circRNA.
Mol Cancer. 19:222020. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Kong S, Tao M, Shen X and Ju S:
Translatable circRNAs and lncRNAs: Driving mechanisms and functions
of their translation products. Cancer Lett. 483:59–65. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Park EG, Pyo SJ, Cui Y, Yoon SH and Nam
JW: Tumor immune microenvironment lncRNAs. Brief Bioinform.
23:bbab5042022. View Article : Google Scholar :
|
|
122
|
Zhang Z, Chen LQ, Zhao YL, Yang CG,
Roundtree IA, Zhang Z, Ren J, Xie W, He C and Luo GZ: Single-base
mapping of m6A by an antibody-independent method. Sci
Adv. 5:eaax02502019. View Article : Google Scholar
|
|
123
|
Chen K, Lu Z, Wang X, Fu Y, Luo GZ, Liu N,
Han D, Dominissini D, Dai Q, Pan T and He C: High-resolution
N(6)-methyladenosine (m(6) A) map using
photo-cross-linking-assisted m(6) A sequencing. Angew Chem Int Ed
Engl. 54:1587–1590. 2015. View Article : Google Scholar
|
|
124
|
Linder B, Grozhik AV, Olarerin-George AO,
Meydan C, Mason CE and Jaffrey SR: Single-nucleotide-resolution
mapping of m6A and m6Am throughout the transcriptome. Nat Methods.
12:767–772. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Meyer KD: DART-seq: An antibody-free
method for global m6A detection. Nat Methods.
16:1275–1280. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Shu X, Cao J, Cheng M, Xiang S, Gao M, Li
T, Ying X, Wang F, Yue Y, Lu Z, et al: A metabolic labeling method
detects m6A transcriptome-wide at single base
resolution. Nat Chem Biol. 16:887–895. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Wang Y, Xiao Y, Dong S, Yu Q and Jia G:
Antibody-free enzyme-assisted chemical approach for detection of
N6-methyladenosine. Nat Chem Biol. 16:896–903. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Zhou Y, Zeng P, Li YH, Zhang Z and Cui Q:
SRAMP: Prediction of mammalian N6-methyladenosine (m6A) sites based
on sequence-derived features. Nucleic Acids Res. 44:e912016.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Jia CZ, Zhang JJ and Gu WZ:
RNA-MethylPred: A high-accuracy predictor to identify
N6-methyladenosine in RNA. Anal Biochem. 510:72–75. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Li GQ, Liu Z, Shen HB and Yu DJ:
TargetM6A: Identifying N6-Methyladenosine Sites from RNA
sequences via Position-specific nucleotide propensities and a
support vector machine. IEEE Trans Nanobioscience. 15:674–682.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Xuan JJ, Sun WJ, Lin PH, Zhou KR, Liu S,
Zheng LL, Qu LH and Yang JH: RMBase v2.0: Deciphering the map of
RNA modifications from epitranscriptome sequencing data. Nucleic
Acids Res. 46:D327–D334. 2018. View Article : Google Scholar :
|
|
132
|
Zheng Y, Nie P, Peng D, He Z, Liu M, Xie
Y, Miao Y, Zuo Z and Ren J: m6AVar: A database of functional
variants involved in m6A modification. Nucleic Acids Res.
46:D139–D145. 2018. View Article : Google Scholar :
|
|
133
|
Zhang Y and Hamada M: DeepM6ASeq:
Prediction and characterization of m6A-containing sequences using
deep learning. BMC Bioinformatics. 19:5242018. View Article : Google Scholar
|
|
134
|
Han Y, Feng J, Xia L, Dong X, Zhang X,
Zhang S, Miao Y, Xu Q, Xiao S, Zuo Z, et al: CVm6A: A visualization
and exploration database for m6As in cell lines. Cells.
8:1682019. View Article : Google Scholar
|
|
135
|
Liu K, Cao L, Du P and Chen W:
im6A-TS-CNN: Identifying the N6-Methyladenine site in
multiple tissues by using the convolutional neural network. Mol
Ther Nucleic Acids. 21:1044–1049. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Deng S, Zhang H, Zhu K, Li X, Ye Y, Li R,
Liu X, Lin D, Zuo Z and Zheng J: M6A2Target: A comprehensive
database for targets of m6A writers, erasers and readers. Brief
Bioinform. 22:bbaa0552021. View Article : Google Scholar
|