|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Luo YH, Luo L, Wampfler JA, Wang Y, Liu D,
Chen YM, Adjei AA, Midthun DE and Yang P: 5-year overall survival
in patients with lung cancer eligible or ineligible for screening
according to US Preventive Services Task Force criteria: A
prospective, observational cohort study. Lancet Oncol.
20:1098–1108. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Bilfinger TV, Albano D, Perwaiz M,
Keresztes R and Nemesure B: Survival outcomes among lung cancer
patients treated using a multidisciplinary team approach. Clin Lung
Cancer. 19:346–351. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
de Groot PM, Wu CC, Carter BW and Munden
RF: The epidemiology of lung cancer. Transl Lung Cancer Res.
7:220–233. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Mustafa M, Azizi ARJ, IIIzam EL, Nazirah
A, Sharifa AM and Abbas SA: Lung Cancer: Risk Factors, Management,
And Prognosis. IOSR J Dent Med Sci. 15:94–101. 2016. View Article : Google Scholar
|
|
6
|
Brambilla E and Gazdar A: Pathogenesis of
lung cancer signalling pathways: Roadmap for therapies. Eur Respir
J. 33:1485–1497. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Reitsma M, Kendrick P, Anderson J, Arian
N, Feldman R, Gakidou E and Gupta V: Reexamining rates of decline
in lung cancer risk after smoking cessation. A meta-analysis. Ann
Am Thorac Soc. 17:1126–1132. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Weber MF, Sarich PEA, Vaneckova P, Wade S,
Egger S, Ngo P, Joshy G, Goldsbury DE, Yap S, Feletto E, et al:
Cancer incidence and cancer death in relation to tobacco smoking in
a population-based Australian cohort study. Int J Cancer.
149:1076–1088. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Barta JA, Powell CA and Wisnivesky JP:
Global epidemiology of lung cancer. Ann Glob Health. 85:82019.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Houston KA, Mitchell KA, King J, White A
and Ryan BM: Histologic lung cancer incidence rates and trends vary
by race/ethnicity and residential county. J Thorac Oncol.
13:497–509. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Provencio M, Carcereny E, Rodríguez-Abreu
D, López-Castro R, Guirado M, Camps C, Bosch-Barrera J,
García-Campelo R, Ortega-Granados AL, González-Larriba JL, et al:
Lung cancer in Spain: Information from the thoracic tumors registry
(TTR study). Transl Lung Cancer Res. 8:461–475. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Navani N and Spiro SG: The Presentation
and Diagnosis of Lung Cancer and Mesothelioma. Lung Cancer. John
Wiley & Sons, Ltd; Hoboken, NJ: pp. 15–47. 2013, View Article : Google Scholar
|
|
13
|
Nicholson AG, Tsao MS, Beasley MB, Borczuk
AC, Brambilla E, Cooper WA, Dacic S, Jain D, Kerr KM, Lantuejoul S,
et al: The 2021 WHO classification of lung tumors: Impact of
advances since 2015. J Thorac Oncol. 17:362–387. 2022. View Article : Google Scholar
|
|
14
|
Ruano-Ravina A, Provencio-Pulla M and
Casan Clarà P: Cribado de cáncer de pulmón con tomografía
computarizada de baja dosis. No es cuestión de logística. Arch
Bronconeumol. 53:593–594. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Nooreldeen R and Bach H: Current and
future development in lung cancer diagnosis. Int J Mol Sci.
22:86612021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Zusman I and Ben-Hur H: Serological
markers for detection of cancer (Review). Int J Mol Med. 7:547–56.
2001.PubMed/NCBI
|
|
17
|
Kim HC, Jung CY, Cho DG, Jeon JH, Lee JE,
Ahn JS, Kim SJ, Kim Y, Kim YC, Kim JE, et al: Clinical
characteristics and prognostic factors of lung cancer in Korea: A
pilot study of data from the Korean nationwide lung cancer
registry. Tuberc Respir Dis (Seoul). 82:118–125. 2019. View Article : Google Scholar
|
|
18
|
Kanaji N, Watanabe N, Kita N, Bandoh S,
Tadokoro A, Ishii T, Dobashi H and Matsunaga T: Paraneoplastic
syndromes associated with lung cancer. World J Clin Oncol.
5:197–223. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Herbst RS, Morgensztern D and Boshoff C:
The biology and management of non-small cell lung cancer. Nature.
553:446–454. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Steven A, Fisher SA and Robinson BW:
Immunotherapy for lung cancer. Respirology. 21:821–833. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Simmons CP, Koinis F, Fallon MT, Fearon
KC, Bowden J, Solheim TS, Gronberg BH, McMillan DC, Gioulbasanis I
and Laird BJ: Prognosis in advanced lung cancer-A prospective study
examining key clinicopathological factors. Lung Cancer. 88:304–309.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Thai AA, Solomon BJ, Sequist LV, Gainor JF
and Heist RS: Lung cancer. Lancet. 398:535–554. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Tarro G, Paolini M and Rossi A: Molecular
Biology of Lung Cancer and Future Perspectives for Screening. Mass
Spectrometry-Future Perceptions and Applications. Kamble G:
IntechOpen; London: 2019, http://dx.doi.org/10.5772/intechopen.85334.
View Article : Google Scholar
|
|
24
|
Lee SH: Chemotherapy for Lung Cancer in
the Era of Personalized Medicine. Tuberc Respir Dis (Seoul).
82:179–189. 2019. View Article : Google Scholar
|
|
25
|
Brown AL, Li M, Goncearenco A and
Panchenko AR: Finding driver mutations in cancer: Elucidating the
role of background mutational processes. PLoS Comput Biol.
15:e10069812019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wodarz D, Newell AC and Komarova NL:
Passenger mutations can accelerate tumour suppressor gene
inactivation in cancer evolution. J R Soc Interface.
15:201709672018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Kris MG, Johnson BE, Berry LD, Kwiatkowski
DJ, Iafrate AJ, Wistuba II, Varella-Garcia M, Franklin WA, Aronson
SL, Su PF, et al: Using multiplexed assays of oncogenic drivers in
lung cancers to select targeted drugs. JAMA. 311:1998–2006. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
VanderLaan PA, Rangachari D and Costa DB:
The rapidly evolving landscape of biomarker testing in non-small
cell lung cancer. Cancer Cytopathol. 129:179–181. 2021. View Article : Google Scholar :
|
|
29
|
Rodríguez-Lescure A, de la Peña FA, Aranda
E, Calvo A, Felip E, Garrido P and Vera R: Study of the Spanish
Society of Medical Oncology (SEOM) on the access to oncology drugs
and predictive biomarkers in Spain. Clin Transl Oncol.
22:2253–2263. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Salas C, Martín-López J, Martínez-Pozo A,
Hernández-Iglesias T, Carcedo D, Ruiz de Alda L, García JF and
Rojo F: Real-world biomarker testing rate and positivity rate in
NSCLC in Spain: Prospective central lung cancer biomarker testing
registry (LungPath) from the Spanish Society of Pathology (SEAP). J
Clin Pathol. 75:193–200. 2022. View Article : Google Scholar
|
|
31
|
Normanno N, Barberis M, De Marinis F and
Gridelli C; On The Behalf Of The Aiot Expert Panel: Molecular and
genomic profiling of lung cancer in the Era of precision medicine:
A position paper from the Italian association of thoracic oncology
(AIOT). Cancers (Basel). 12:16272020. View Article : Google Scholar
|
|
32
|
Cainap C, Balacescu O, Cainap SS and Pop
LA: Next generation sequencing technology in lung cancer diagnosis.
Biology (Basel). 10:8642021.
|
|
33
|
Oxnard GR, Thress KS, Alden RS, Lawrance
R, Paweletz CP, Cantarini M, Yang JC, Barrett JC and Jänne PA:
Association between plasma genotyping and outcomes of treatment
with osimertinib (AZD9291) in advanced non-small-cell lung cancer.
J Clin Oncol. 34:3375–3382. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
da Cunha Santos G, Shepherd FA and Tsao
MS: EGFR mutations and lung cancer. Annu Rev Pathol. 6:49–69. 2011.
View Article : Google Scholar
|
|
35
|
Shi Y, Li J, Zhang S, Wang M, Yang S, Li
N, Wu G, Liu W, Liao G, Cai K, et al: Molecular Epidemiology of
EGFR Mutations in Asian patients with advanced non-small-cell lung
cancer of adenocarcinoma histology-Mainland China subset analysis
of the PIONEER study. PLoS One. 10:e01435152015. View Article : Google Scholar
|
|
36
|
Lohinai Z, Hoda MA, Fabian K, Ostoros G,
Raso E, Barbai T, Timar J, Kovalszky I, Cserepes M, Rozsas A, et
al: Distinct epidemiology and clinical consequence of classic
versus rare EGFR mutations in lung adenocarcinoma. J Thorac Oncol.
10:738–746. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yoon HY, Ryu JS, Sim YS, Kim D, Lee SY,
Choi J, Park S, Ryu YJ, Lee JH and Chang JH: Clinical significance
of EGFR mutation types in lung adenocarcinoma: A multi-centre
Korean study. PLoS One. 15:e02289252020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhang Y, Sheng J, Kang S, Fang W, Yan Y,
Hu Z, Hong S, Wu X, Qin T, Liang W and Zhang L: Patients with Exon
19 deletion were associated with longer progression-free survival
compared to those with L858R Mutation after First-Line EGFR-TKIs
for advanced non-small cell lung cancer: A Meta-Analysis. PLoS One.
9:e1071612014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wu YL, Tsuboi M, He J, John T, Grohe C,
Majem M, Goldman JW, Laktionov K, Kim SW, Kato T, et al:
Osimertinib in Resected EGFR-Mutated Non-Small-Cell Lung Cancer. N
Engl J Med. 383:1711–1723. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Mok TS, Wu Y-L, Ahn M-J, Garassino MC, Kim
HR, Ramalingam SS, Shepherd FA, He Y, Akamatsu H, Theelen WS, et
al: Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung
Cancer. N Engl J Med. 376:629–640. 2017. View Article : Google Scholar
|
|
41
|
Chia PL, Mitchell P, Dobrovic A and John
T: Prevalence and natural history of ALK positive non-small-cell
lung cancer and the clinical impact of targeted therapy with ALK
inhibitors. Clin Epidemiol. 6:423–432. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Selinger CI, Rogers TM, Russell PA,
O'Toole S, Yip P, Wright GM, Wainer Z, Horvath LG, Boyer M,
McCaughan B, et al: Testing for ALK rearrangement in lung
adenocarcinoma: A multicenter comparison of immunohistochemistry
and fluorescent in situ hybridization. Mod Pathol. 26:1545–1553.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Griesinger F, Roeper J, Pöttgen C,
Willborn KC and Eberhardt WEE: Brain metastases in ALK-positive
NSCLC-time to adjust current treatment algorithms. Oncotarget.
9:35181–35194. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Shaw AT, Yeap BY, Mino-Kenudson M,
Digumarthy SR, Costa DB, Heist RS, Solomon B, Stubbs H, Admane S,
McDermott U, et al: Clinical features and outcome of patients with
non-small-cell lung cancer who Harbor EML4-ALK. J Clin Oncol.
27:4247–4253. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Britschgi C, Addeo A, Rechsteiner M,
Delaloye R, Früh M, Metro G, Banini M, Gautschi O, Rothschild SI,
Wild PJ, et al: Real-World treatment patterns and survival outcome
in advanced anaplastic lymphoma kinase (ALK) rearranged
non-small-cell lung cancer patients. Front Oncol. 10:12992020.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Liang H and Wang M: MET oncogene in
non-small cell lung cancer: Mechanism of MET dysregulation and
agents targeting the HGF/c-Met axis. Onco Targets Ther.
13:2491–2510. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Salgia R: MET in lung cancer: Biomarker
selection based on scientific rationale. Mol Cancer Ther.
16:555–565. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Drusbosky LM, Rodriguez E, Dawar R and
Ikpeazu CV: Therapeutic strategies in RET gene rearranged non-small
cell lung cancer. J Hematol Oncol. 14:502021. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Bronte G, Ulivi P, Verlicchi A, Cravero P,
Delmonte A and Crinò L: Targeting RET-rearranged non-small-cell
lung cancer: Future prospects. Lung Cancer (Auckl). 10:27–36.
2019.
|
|
50
|
Minchom A, Tan AC, Massarelli E, Subbiah
V, Boni V, Robinson B, Wirth LJ, Hess LM, Jen MH, Kherani J, et al:
Patient-Reported outcomes with selpercatinib among patients with
RET fusion-positive non-small cell lung cancer in the Phase I/II
LIBRETTO-001 Trial. Oncologist. 27:22–29. 2022. View Article : Google Scholar
|
|
51
|
Gainor JF, Curigliano G, Kim DW, Lee DH,
Besse B, Baik CS, Doebele RC, Cassier PA, Lopes G, Tan DSW, et al:
Pralsetinib for RET fusion-positive non-small-cell lung cancer
(ARROW): A multi-cohort, open-label, phase 1/2 study. Lancet Oncol.
22:959–969. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Bustamante JGB and Otterson GA: Agents to
treat BRAF-mutant lung cancer. Drugs in Context. Drugs Context.
8:2125662019. View Article : Google Scholar
|
|
53
|
Roviello G, D'Angelo A, Sirico M,
Pittacolo M, Conter FU and Sobhani N: Advances in anti-BRAF
therapies for lung cancer. Invest New Drugs. 39:879–890. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Briggs A, Paracha N, Rosettie K, et al:
Estimating Long-Term Survival Outcomes for Tumor-Agnostic
Therapies: Larotrectinib Case Study. Oncol. 100:124–129. 2022.
View Article : Google Scholar
|
|
55
|
Rikova K, Guo A, Zeng Q, Possemato A, Yu
J, Haack H, Nardone J, Lee K, Reeves C, Li Y, et al: Global Survey
of Phosphotyrosine Signaling Identifies Oncogenic Kinases in Lung
Cancer. Cell. 131:1190–1203. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Joshi A, Pande N, Noronha V, Patil V,
Kumar R, Chougule A, Trivedi V, Janu A, Mahajan A and Prabhash K:
ROS1 mutation non-small cell lung cancer-access to optimal
treatment and outcomes. Ecancermedicalscience. 13:9002019.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Shaw AT, Riely GJ, Bang YJ, Kim DW,
Camidge DR, Solomon BJ, Varella-Garcia M, Iafrate AJ, Shapiro GI,
Usari T, et al: Crizotinib in ROS1-rearranged advanced
non-small-cell lung cancer (NSCLC): Updated results, including
overall survival, from PROFILE 1001. Ann Oncol. 30:1121–1126. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Michels S, Massutí B, Schildhaus HU,
Franklin J, Sebastian M, Felip E, Grohé C, Rodriguez-Abreu D,
Abdulla DSY, Bischoff H, et al: Safety and Efficacy of Crizotinib
in Patients With Advanced or Metastatic ROS1-Rearranged Lung Cancer
(EUCROSS): A European Phase II Clinical Trial. J Thorac Oncol.
14:1266–1276. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Dziadziuszko R, Krebs MG, De Braud F,
Siena S, Drilon A, Doebele RC, Patel MR, Cho BC, Liu SV, Ahn MJ, et
al: Updated Integrated Analysis of the Efficacy and Safety of
Entrectinib in Locally Advanced or Metastatic ROS1 Fusion-Positive
Non-Small-Cell Lung Cancer. J Clin Oncol. 39:1253–1263. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Shaw AT, Solomon BJ, Chiari R, Riely GJ,
Besse B, Soo RA, Kao S, Lin CC, Bauer TM, Clancy JS, et al:
Lorlatinib in advanced ROS1-positive non-small-cell lung cancer: A
multicentre, open-label, single-arm, phase 1-2 trial. Lancet Oncol.
20:1691–1701. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Yu H, Boyle TA, Zhou C, Rimm DL and Hirsch
FR: PD-L1 expression in lung cancer. J Thorac Oncol. 11:964–975.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Aggarwal C, Abreu DR, Felip E, et al:
Prevalence of PD-L1 expression in patients with non-small cell lung
cancer screened for enrollment in KEYNOTE-001, -010, and -024.
Annals Oncol. 27:vi3632016. View Article : Google Scholar
|
|
63
|
Gandhi L, Rodríguez-Abreu D, Gadgeel S,
Esteban E, Felip E, De Angelis F, Domine M, Clingan P, Hochmair MJ,
Powell SF, et al: Pembrolizumab plus chemotherapy in metastatic
non-small-cell lung cancer. N Engl J Med. 378:2078–2092. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Paz-Ares L, Luft A, Vicente D, Tafreshi A,
Gümüş M, Mazières J, Hermes B, Çay Şenler F, Csőszi T, Fülöp A, et
al: Pembrolizumab plus chemotherapy for squamous non-small-cell
lung cancer. N Engl J Med. 379:2040–2051. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Reck M, Rodríguez-Abreu D, Robinson AG,
Hui R, Csőszi T, Fülöp A, Gottfried M, Peled N, Tafreshi A, Cuffe
S, et al: Pembrolizumab versus Chemotherapy for PD-L1-positive
non-small-cell lung cancer. N Engl J Med. 375:1823–1833. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Herbst RS, Giaccone G, de Marinis F,
Reinmuth N, Vergnenegre A, Barrios CH, Morise M, Felip E, Andric Z,
Geater S, et al: Atezolizumab for First-Line Treatment of
PD-L1-Selected Patients with NSCLC. N Engl J Med. 383:1328–1339.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhou Y, Lin Z, Zhang X, Chen C, Zhao H,
Hong S and Zhang L: First-line treatment for patients with advanced
non-small cell lung carcinoma and high PD-L1 expression:
Pembrolizumab or pembrolizumab plus chemotherapy. J Immunother
Cancer. 7:1202019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Shanzhi W, Yiping H, Ling H, Jianming Z
and Qiang L: The Relationship between TTF-1 Expression and EGFR
mutations in lung adenocarcinomas. PLoS One. 9:e954792014.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Yatabe Y, Dacic S, Borczuk AC, Warth A,
Russell PA, Lantuejoul S, Beasley MB, Thunnissen E, Pelosi G,
Rekhtman N, et al: Best practices recommendations for diagnostic
immunohistochemistry in lung cancer. J Thorac Oncol. 14:377–407.
2019. View Article : Google Scholar :
|
|
70
|
Potter AL, Bajaj SS and Yang CJ: The 2021
USPSTF lung cancer screening guidelines: A new frontier. Lancet
Respir Med. 9:689–691. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wyker A and Henderson WW: Solitary
Pulmonary Nodule. StatPearls [Internet]. StatPearls Publishing;
Treasure Island, FL: 2022
|
|
72
|
Grunnet M and Sorensen JB:
Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung
Cancer. 76:138–143. 2012. View Article : Google Scholar
|
|
73
|
Xu L, Lina W and Xuejun Y: The diagnostic
value of serum CEA, NSE and MMP-9 for on-small cell lung cancer.
Open Med (Wars). 11:59–62. 2016. View Article : Google Scholar
|
|
74
|
Yang Q, Zhang P, Wu R, Lu K and Zhou H:
Identifying the Best Marker Combination in CEA, CA125, CY211, NSE,
and SCC for lung cancer screening by combining ROC curve and
logistic regression analyses: Is it feasible? Dis Markers.
2018:1–12. 2018. View Article : Google Scholar
|
|
75
|
Gao Y, Song P, Li H, Jia H and Zhang B:
Elevated serum CEA levels are associated with the explosive
progression of lung adenocarcinoma harboring EGFR mutations. BMC
Cancer. 17:4842017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Molina R, Marrades RM, Augé JM, Escudero
JM, Viñolas N, Reguart N, Ramirez J, Filella X, Molins L and Agustí
A: Assessment of a combined panel of six serum tumor markers for
lung cancer. Am J Respir Crit Care Med. 193:427–437. 2016.
View Article : Google Scholar
|
|
77
|
Chen H, Fu F, Zhao Y, Wu H, Hu H, Sun Y
and Zhang Y, Xiang J and Zhang Y: The Prognostic Value of
Preoperative Serum Tumor Markers in Non-Small Cell Lung Cancer
Varies With Radiological Features and Histological Types. Front
Oncol. 11:6451592021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Bes-Scartezini F and Saad Junior R:
Prognostic assessment of tumor markers in lung carcinomas. Rev
Assoc Med Bras (1992). 68:313–317. 2022. View Article : Google Scholar
|
|
79
|
Lin D, Shen L, Luo M, Zhang K, Li J, Yang
Q, Zhu F, Zhou D, Zheng S, Chen Y and Zhou J: Circulating tumor
cells: Biology and clinical significance. Signal Transduct Target
Ther. 6:4042021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Yang C, Xia BR, Jin WL and Lou G:
Circulating tumor cells in precision oncology: Clinical
applications in liquid biopsy and 3D organoid model. Cancer Cell
Int. 19:3412019. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Scharpenseel H, Hanssen A, Loges S, Mohme
M, Bernreuther C, Peine S, Lamszus K, Goy Y, Petersen C, Westphal
M, et al: EGFR and HER3 expression in circulating tumor cells and
tumor tissue from non-small cell lung cancer patients. Sci Rep.
9:74062019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kloten V, Lampignano R, Krahn T and
Schlange T: Circulating Tumor Cell PD-L1 expression as biomarker
for therapeutic efficacy of immune checkpoint inhibition in NSCLC.
Cells. 8:8092019. View Article : Google Scholar :
|
|
83
|
Maly V, Maly O, Kolostova K and Bobek V:
Circulating tumor cells in diagnosis and treatment of lung cancer.
In Vivo. 33:1027–1037. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhang H, Lin X, Huang Y, Wang M, Cen C,
Tang S, Dique MR, Cai L, Luis MA, Smollar J, et al: Detection
methods and clinical applications of circulating tumor cells in
breast cancer. Front Oncol. 11:6522532021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Galletti G, Portella L, Tagawa ST, Kirby
BJ, Giannakakou P and Nanus DM: Circulating tumor cells in prostate
cancer diagnosis and monitoring: An appraisal of clinical
potential. Mol Diagn Ther. 18:389–402. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Hardingham JE, Grover P, Winter M, Hewett
PJ, Price TJ and Thierry B: Detection and clinical significance of
circulating tumor cells in colorectal cancer-20 years of progress.
Mol Med. 21(Suppl 1): S25–S31. 2015. View Article : Google Scholar :
|
|
87
|
Hou JM, Krebs MG, Lancashire L, Sloane R,
Backen A, Swain RK, Priest LJ, Greystoke A, Zhou C, Morris K, et
al: Clinical significance and molecular characteristics of
circulating tumor cells and circulating tumor microemboli in
patients with small-cell lung cancer. J Clin Oncol. 30:525–532.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Naito T, Tanaka F, Ono A, Yoneda K,
Takahashi T, Murakami H, Nakamura Y, Tsuya A, Kenmotsu H, Shukuya
T, et al: Prognostic Impact of Circulating Tumor Cells in Patients
with Small Cell Lung Cancer. J Thorac Oncol. 7:512–519. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Juan O, Vidal J, Gisbert R, Muñoz J, Maciá
S and Gómez-Codina J: Prognostic significance of circulating tumor
cells in advanced non-small cell lung cancer patients treated with
docetaxel and gemcitabine. Clin Transl Oncol. 16:637–643. 2014.
View Article : Google Scholar
|
|
90
|
Pailler E, Adam J, Barthélémy A, Oulhen M,
Auger N, Valent A, Borget I, Planchard D, Taylor M, André F, et al:
Detection of circulating tumor cells harboring a unique ALK
Rearrangement in ALK-Positive non-small-cell lung cancer. J Clin
Oncol. 31:2273–2281. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ilie M, Hofman V, Long E, Bordone O, Selva
E, Washetine K, Marquette CH and Hofman P: Current challenges for
detection of circulating tumor cells and cell-free circulating
nucleic acids, and their characterization in non-small cell lung
carcinoma patients. What is the best blood substrate for
personalized medicine? Ann Transl Med. 2:1072014.PubMed/NCBI
|
|
92
|
Peng Y and Croce CM: The role of MicroRNAs
in human cancer. Signal Transduct Target Ther. 1:150042016.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Lin PY, Yu SL and Yang PC: MicroRNA in
lung cancer. Br J Cancer. 103:1144–1148. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Ramírez-Salazar EG, Gayosso-Gómez LV,
Baez-Saldaña R, Ramírez-Salazar EG, Gayosso-Gómez LV, Baez-Saldaña
R, Falfán-Valencia R, Pérez-Padilla R, Higuera-Iglesias AL,
Vázquez-Manríquez ME and Ortiz-Quintero B: Cigarette smoking
alters the expression of circulating microRNAs and its potential
diagnostic value in female lung cancer patients. Biology (Basel).
10:7932021.
|
|
95
|
Nymark P, Guled M, Borze I, Faisal A,
Lahti L, Salmenkivi K, Kettunen E, Anttila S and Knuutila S:
Integrative analysis of microRNA, mRNA and aCGH data reveals
asbestos- and histology-related changes in lung cancer. Genes
Chromosomes Cancer. 50:585–597. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wu X, Bhayani MK, Dodge CT, Nicoloso MS,
Chen Y, Yan X, Adachi M, Thomas L, Galer CE, Jiffar T, et al:
Coordinated Targeting of the EGFR Signaling Axis by MicroRNA-27a*.
Oncotarget. 4:1388–1398. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Han F, He J, Li F, Yang J, Wei J, Cho WC
and Liu X: Emerging roles of MicroRNAs in EGFR-Targeted therapies
for lung cancer. Biomed Res Int. 2015:6727592015. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Vishwamitra D, Li Y, Wilson D, Manshouri
R, Curry CV, Shi B, Tang XM, Sheehan AM, Wistuba II, Shi P and Amin
HM: MicroRNA 96 is a post-transcriptional suppressor of anaplastic
lymphoma kinase expression. Am J Pathol. 180:1772–1780. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Yan C, Zhang W, Shi X, Zheng J, Jin X and
Huo J: MiR-760 suppresses non-small cell lung cancer proliferation
and metastasis by targeting ROS1. Environ Sci Pollut Res Int.
25:18385–18391. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Fan Q, Hu X, Zhang H, Wang S, Zhang H, You
C, Zhang CY, Liang H, Chen X and Ba Y: MiR-193a-3p is an important
tumour suppressor in lung cancer and directly targets KRAS. Cell
Physiol Biochem. 44:1311–1324. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Pop-Bica C, Pintea S, Magdo L, Cojocneanu
R, Gulei D, Ferracin M and Berindan-Neagoe I: The Clinical Utility
of miR-21 and let-7 in Non-small Cell Lung Cancer (NSCLC). A
systematic review and meta-analysis. Front Oncol. 10:5168502020.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Xie Q, Yu Z, Lu Y, Fan J, Ni Y and Ma L:
microRNA-148a-3p inhibited the proliferation and
epithelial-mesenchymal transition progression of non-small-cell
lung cancer via modulating Ras/MAPK/Erk signaling. J Cell Physiol.
234:12786–12799. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Bishop JA, Benjamin H, Cholakh H, Chajut
A, Clark DP and Westra WH: Accurate classification of non-small
cell lung carcinoma using a novel MicroRNA-based approach. Clin
Cancer Res. 16:610–619. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Lebanony D, Benjamin H, Gilad S, Ezagouri
M, Dov A, Ashkenazi K, Gefen N, Izraeli S, Rechavi G, Pass H, et
al: Diagnostic Assay Based on hsa-miR-205 expression distinguishes
squamous from nonsquamous non-small-cell lung carcinoma. J Clin
Oncol. 27:2030–2037. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zhang YK, Zhu WY, He JY, Chen DD, Huang
YY, Le HB and Liu XG: MiRNAs expression profiling to distinguish
lung squamous-cell carcinoma from adenocarcinoma subtypes. J Cancer
Res Clin Oncol. 138:1641–1650. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Montani F, Marzi MJ, Dezi F, Dama E,
Carletti RM, Bonizzi G, Bertolotti R, Bellomi M, Rampinelli C,
Maisonneuve P, et al: MiR-Test: A blood test for lung cancer early
detection. J Natl Cancer Inst. 107:djv0632015. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Sozzi G, Boeri M, Rossi M, Verri C,
Suatoni P, Bravi F, Roz L, Conte D, Grassi M, Sverzellati N, et al:
Clinical utility of a plasma-based miRNA signature classifier
within computed tomography lung cancer screening: A correlative
MILD Trial Study. J Clin Oncol. 32:768–773. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Asakura K, Kadota T, Matsuzaki J, Yoshida
Y, Yamamoto Y, Nakagawa K, Takizawa S, Aoki Y, Nakamura E, Miura J,
et al: A miRNA-based diagnostic model predicts resectable lung
cancer in humans with high accuracy. Commun Biol. 3:1342020.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Xiao W, Zhong Y, Wu L, Yang D, Ye S and
Zhang M: Prognostic value of microRNAs in lung cancer: A systematic
review and meta-analysis. Mol Clin Oncol. 10:67–77. 2019.PubMed/NCBI
|
|
110
|
Yu S, Qin X, Chen T, Zhou L, Xu X and Feng
J: MicroRNA-106b-5p regulates cisplatin chemosensitivity by
targeting polycystic kidney disease-2 in non-small-cell lung
cancer. AntiCancer Drugs. 28:852–860. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Qiu T, Zhou L, Wang T, Xu J, Wang J, Chen
W, Zhou X, Huang Z, Zhu W, Shu Y and Liu P: MiR-503 regulates the
resistance of non-small cell lung cancer cells to cisplatin by
targeting Bcl-2. Int J Mol Med. 32:593–598. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Li Q, Yang Z, Chen M and Liu Y:
Downregulation of microRNA-196a enhances the sensitivity of
non-small cell lung cancer cells to cisplatin treatment. Int J Mol
Med. 37:1067–1074. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Bisagni A, Pagano M, Maramotti S, Zanelli
F, Bonacini M, Tagliavini E, Braglia L, Paci M, Mozzarelli A and
Croci S: Higher expression of miR-133b is associated with better
efficacy of erlotinib as the second or third line in non-small cell
lung cancer patients. PLoS One. 13:e01963502018. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Condrat CE, Thompson DC, Barbu MG, Bugnar
OL, Boboc A, Cretoiu D, Suciu N, Cretoiu SM and Voinea SC: MiRNAs
as biomarkers in disease: Latest findings regarding their role in
diagnosis and prognosis. Cells. 9:2762020. View Article : Google Scholar :
|