Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
January-2023 Volume 62 Issue 1

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2023 Volume 62 Issue 1

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Mechanism of exosomes in the tumor microenvironment in the abscopal effect (Review)

  • Authors:
    • Guicheng Kuang
    • Zirui Wang
    • Chengyu Luo
    • Jingyan Luo
    • Jing Wang
  • View Affiliations / Copyright

    Affiliations: Clinical Medical College, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
    Copyright: © Kuang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 2
    |
    Published online on: November 7, 2022
       https://doi.org/10.3892/ijo.2022.5450
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Previously, the abscopal effect, which is an antitumor therapeutic effect on untreated tumor locations elsewhere in the body as a result of treatment of the targeted region, was rarely reported, and its mechanism remains unknown. Increasing evidence has shown that the immune system is implicated in the abscopal effect, and that combining immunotherapy and radiation can assist to improve its frequency. Understanding how different types of cells and cell‑derived exosomes cause the abscopal effect in the tumor microenvironment (TME) is crucial to increasing the clinical occurrence of the abscopal effect in the TME.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Chargari C, Deutsch E, Blanchard P, Gouy S, Martelli H, Guérin F, Dumas I, Bossi A, Morice P, Viswanathan AN and Haie-Meder C: Brachytherapy: An overview for clinicians. CA Cancer J Clin. 69:386–401. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Mohamad O, Tabuchi T, Nitta Y, Nomoto A, Sato A, Kasuya G, Makishima H, Choy H, Yamada S, Morishima T, et al: Risk of subsequent primary cancers after carbon ion radiotherapy, photon radiotherapy, or surgery for localised prostate cancer: A propensity score-weighted, retrospective, cohort study. Lancet Oncol. 20:674–685. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Kahalley LS, Peterson R, Ris MD, Janzen L, Okcu MF, Grosshans DR, Ramaswamy V, Paulino AC, Hodgson D, Mahajan A, et al: Superior intellectual outcomes after proton radiotherapy compared with photon radiotherapy for pediatric medulloblastoma. J Clin Oncol. 38:454–461. 2020. View Article : Google Scholar :

4 

Mole RH: Whole body irradiation; radiobiology or medicine? Br J Radiol. 26:234–241. 1953. View Article : Google Scholar : PubMed/NCBI

5 

Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L and Formenti SC: Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 58:862–870. 2004. View Article : Google Scholar : PubMed/NCBI

6 

Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS and Khasraw M: Management of glioblastoma: State of the art and future directions. CA Cancer J Clin. 70:299–312. 2020. View Article : Google Scholar : PubMed/NCBI

7 

Ene CI, Kreuser SA, Jung M, Zhang H, Arora S, White Moyes K, Szulzewsky F, Barber J, Cimino PJ, Wirsching HG, et al: Anti-PD-L1 antibody direct activation of macrophages contributes to a radiation-induced abscopal response in glioblastoma. Neuro Oncol. 22:639–651. 2020. View Article : Google Scholar

8 

Lheureux S, Braunstein M and Oza AM: Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA Cancer J Clin. 69:280–304. 2019.PubMed/NCBI

9 

Formenti SC, Rudqvist NP, Golden E, Cooper B, Wennerberg E, Lhuillier C, Vanpouille-Box C, Friedman K, Ferrari de Andrade L, Wucherpfennig KW, et al: Radiotherapy induces responses of lung cancer to CTLA-4 blockade. Nat Med. 24:1845–1851. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Yang W, Zhang F, Deng H, Lin L, Wang S, Kang F, Yu G, Lau J, Tian R, Zhang M, et al: Smart nanovesicle-mediated immunogenic cell death through tumor microenvironment modulation for effective photodynamic immunotherapy. ACS Nano. 14:620–631. 2020. View Article : Google Scholar

11 

Hu ZI, McArthur HL and Ho AY: The abscopal effect of radiation therapy: What is it and how can we use it in breast cancer? Curr Breast Cancer Rep. 9:45–51. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Beyls C, Haustermans K, Deroose CM, Pans S, Vanbeckevoort D, Verslype C and Dekervel J: Could autoimmune disease contribute to the abscopal effect in metastatic hepatocellular carcinoma? Hepatology. 72:1152–1154. 2020. View Article : Google Scholar : PubMed/NCBI

13 

Guan S, Wang H, Qi XH, Guo Q, Zhang HY, Liu H and Zhu BJ: Abscopal effect of local irradiation treatment for thymoma: A case report. Am J Transl Res. 12:2234–2240. 2020.PubMed/NCBI

14 

Chakravarty PK, Alfieri A, Thomas EK, Beri V, Tanaka KE, Vikram B and Guha C: Flt3-ligand administration after radiation therapy prolongs survival in a murine model of metastatic lung cancer. Cancer Res. 59:6028–6032. 1999.

15 

Camphausen K, Moses MA, Ménard C, Sproull M, Beecken WD, Folkman J and O'Reilly MS: Radiation abscopal antitumor effect is mediated through p53. Cancer Res. 63:1990–1993. 2003.PubMed/NCBI

16 

Ngwa W, Irabor OC, Schoenfeld JD, Hesser J, Demaria S and Formenti SC: Using immunotherapy to boost the abscopal effect. Nat Rev Cancer. 18:313–322. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Sexton RE, Mpilla G, Kim S, Philip PA and Azmi AS: Ras and exosome signaling. Semin Cancer Biol. 54:131–137. 2019. View Article : Google Scholar : PubMed/NCBI

18 

Möller A and Lobb RJ: The evolving translational potential of small extracellular vesicles in cancer. Nat Rev Cancer. 20:697–709. 2020. View Article : Google Scholar : PubMed/NCBI

19 

Kalluri R and LeBleu VS: The biology, function, and biomedical applications of exosomes. Science. 367:eaau69772020. View Article : Google Scholar : PubMed/NCBI

20 

He C, Li L, Wang L, Meng W, Hao Y and Zhu G: Exosome-mediated cellular crosstalk within the tumor microenvironment upon irradiation. Cancer Biol Med. 18:21–33. 2021. View Article : Google Scholar : PubMed/NCBI

21 

Hu X, Qiu Y, Zeng X and Wang H: Exosomes reveal the dual nature of radiotherapy in tumor immunology. Cancer Sci. 113:1105–1112. 2022. View Article : Google Scholar : PubMed/NCBI

22 

Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ, Inghirami G, Coleman CN, Formenti SC and Demaria S: DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. 8:156182017. View Article : Google Scholar : PubMed/NCBI

23 

Craig DJ, Nanavaty NS, Devanaboyina M, Stanbery L, Hamouda D, Edelman G, Dworkin L and Nemunaitis JJ: The abscopal effect of radiation therapy. Future Oncol. 17:1683–1694. 2021. View Article : Google Scholar : PubMed/NCBI

24 

Zhao X, Hu S, Zeng L, Liu X, Song Y, Zhang Y, Chen Q, Bai Y, Zhang J, Zhang H, et al: Irradiation combined with PD-L1(-/-) and autophagy inhibition enhances the antitumor effect of lung cancer via cGAS-STING-mediated T cell activation. iScience. 25:1046902022. View Article : Google Scholar

25 

Wang J, Wang L, Lin Z, Tao L and Chen M: More efficient induction of antitumor T cell immunity by exosomes from CD40L gene-modified lung tumor cells. Mol Med Rep. 9:125–131. 2014. View Article : Google Scholar

26 

Choi D, Montermini L, Kim DK, Meehan B, Roth FP and Rak J: The impact of oncogenic EGFRvIII on the proteome of extracellular vesicles released from glioblastoma cells. Mol Cell Proteomics. 17:1948–1964. 2018. View Article : Google Scholar : PubMed/NCBI

27 

Hsieh RC, Krishnan S, Wu RC, Boda AR, Liu A, Winkler M, Hsu WH, Lin SH, Hung MC, Chan LC, et al: ATR-mediated CD47 and PD-L1 up-regulation restricts radiotherapy-induced immune priming and abscopal responses in colorectal cancer. Sci Immunol. 7:eabl93302022. View Article : Google Scholar : PubMed/NCBI

28 

Feng M, Jiang W, Kim BYS, Zhang CC, Fu YX and Weissman IL: Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer. 19:568–586. 2019. View Article : Google Scholar : PubMed/NCBI

29 

He S, Cheng J, Sun L, Wang Y, Wang C, Liu X, Zhang Z, Zhao M, Luo Y, Tian L, et al: HMGB1 released by irradiated tumor cells promotes living tumor cell proliferation via paracrine effect. Cell Death Dis. 9:6482018. View Article : Google Scholar : PubMed/NCBI

30 

Leonardi GC, Falzone L, Salemi R, Zanghì A, Spandidos DA, Mccubrey JA, Candido S and Libra M: Cutaneous melanoma: From pathogenesis to therapy (Review). Int J Oncol. 52:1071–1080. 2018.PubMed/NCBI

31 

Minton K: Predicting the anti-PD1 response. Nat Rev Immunol. 19:414–415. 2019. View Article : Google Scholar : PubMed/NCBI

32 

Daassi D, Mahoney KM and Freeman GJ: The importance of exosomal PDL1 in tumour immune evasion. Nat Rev Immunol. 20:209–215. 2020. View Article : Google Scholar : PubMed/NCBI

33 

Bennett F, Luxenberg D, Ling V, Wang IM, Marquette K, Lowe D, Khan N, Veldman G, Jacobs KA, Valge-Archer VE, et al: Program death-1 engagement upon TCR activation has distinct effects on costimulation and cytokine-driven proliferation: Attenuation of ICOS, IL-4, and IL-21, but not CD28, IL-7, and IL-15 responses. J Immunol. 170:711–718. 2003. View Article : Google Scholar : PubMed/NCBI

34 

Yuan Y, Wang L, Ge D, Tan L, Cao B, Fan H and Xue L: Exosomal O-GlcNAc transferase from esophageal carcinoma stem cell promotes cancer immunosuppression through up-regulation of PD-1 in CD8(+) T cells. Cancer Lett. 500:98–106. 2021. View Article : Google Scholar

35 

Liu J, Fan L, Yu H, Zhang J, He Y, Feng D, Wang F, Li X, Liu Q, Li Y, et al: Endoplasmic reticulum stress causes liver cancer cells to release exosomal miR-23a-3p and Up-regulate programmed death ligand 1 expression in macrophages. Hepatology. 70:241–258. 2019.PubMed/NCBI

36 

Ye L, Zhang Q, Cheng Y, Chen X, Wang G, Shi M, Zhang T, Cao Y, Pan H, Zhang L, et al: Tumor-derived exosomal HMGB1 fosters hepatocellular carcinoma immune evasion by promoting TIM-1(+) regulatory B cell expansion. J Immunother Cancer. 6:1452018. View Article : Google Scholar : PubMed/NCBI

37 

Wang Y, Yi J, Chen X, Zhang Y, Xu M and Yang Z: The regulation of cancer cell migration by lung cancer cell-derived exosomes through TGF-β and IL-10. Oncol Lett. 11:1527–1530. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Andreola G, Rivoltini L, Castelli C, Huber V, Perego P, Deho P, Squarcina P, Accornero P, Lozupone F, Lugini L, et al: Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. J Exp Med. 195:1303–1316. 2002. View Article : Google Scholar : PubMed/NCBI

39 

Fuentes P, Sesé M, Guijar ro PJ, Emperador M, Sánchez-Redondo S, Peinado H, Hümmer S and Cajal SRY: Publisher Correction: ITGB3-mediated uptake of small extracellular vesicles facilitates intercellular communication in breast cancer cells. Nat Commun. 11:47302020. View Article : Google Scholar : PubMed/NCBI

40 

Ji Q, Zhou L, Sui H, Yang L, Wu X, Song Q, Jia R, Li R, Sun J, Wang Z, et al: Primary tumors release ITGBL1-rich extracellular vesicles to promote distal metastatic tumor growth through fibroblast-niche formation. Nat Commun. 11:12112020. View Article : Google Scholar : PubMed/NCBI

41 

Gabrusiewicz K, Li X, Wei J, Hashimoto Y, Marisetty AL, Ott M, Wang F, Hawke D, Yu J, Healy LM, et al: Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes. Oncoimmunology. 7:e14129092018. View Article : Google Scholar : PubMed/NCBI

42 

Ferguson Bennit HR, Gonda A, Kabagwira J, Oppegard L, Chi D, Licero Campbell J, De Leon M and Wall NR: Natural killer cell phenotype and functionality affected by exposure to extracellular survivin and lymphoma-derived exosomes. Int J Mol Sci. 22:12552021. View Article : Google Scholar : PubMed/NCBI

43 

Kitai Y, Kawasaki T, Sueyoshi T, Kobiyama K, Ishii KJ, Zou J, Akira S, Matsuda T and Kawai T: DNA-containing exosomes derived from cancer cells treated with topotecan activate a STING-Dependent pathway and reinforce antitumor immunity. J Immunol. 198:1649–1659. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Sun J, Jia H, Bao X, Wu Y, Zhu T, Li R and Zhao H: Tumor exosome promotes Th17 cell differentiation by transmitting the lncRNA CRNDE-h in colorectal cancer. Cell Death Dis. 12:1232021. View Article : Google Scholar : PubMed/NCBI

45 

Ding G, Zhou L, Qian Y, Fu M, Chen J, Chen J, Xiang J, Wu Z, Jiang G and Cao L: Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p. Oncotarget. 6:29877–29888. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Zhao S, Mi Y, Guan B, Zheng B, Wei P, Gu Y, Zhang Z, Cai S, Xu Y, Li X, et al: Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer. J Hematol Oncol. 13:1562020. View Article : Google Scholar : PubMed/NCBI

47 

Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, Liu B, Su L and Qiu Z: Hypoxic tumor-derived exosomal miR-301a Mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis. Cancer Res. 78:4586–4598. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Chen X, Zhou J, Li X and Wang X, Lin Y and Wang X: Exosomes derived from hypoxic epithelial ovarian cancer cells deliver microRNAs to macrophages and elicit a tumor-promoted phenotype. Cancer Lett. 435:80–91. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Hurley JH: ESCRTs are everywhere. EMBO J. 34:2398–2407. 2015. View Article : Google Scholar : PubMed/NCBI

50 

de Araujo Farias V, O'Valle F, Serrano-Saenz S, Anderson P, Andrés E, López-Peñalver J, Tovar I, Nieto A, Santos A, Martín F, et al: Exosomes derived from mesenchymal stem cells enhance radiotherapy-induced cell death in tumor and metastatic tumor foci. Mol Cancer. 17:1222018. View Article : Google Scholar : PubMed/NCBI

51 

Stary V, Wolf B, Unterleuthner D, List J, Talic M, Laengle J, Beer A, Strobl J, Stary G, Dolznig H and Bergmann M: Short-course radiotherapy promotes pro-inflammatory macrophages via extracellular vesicles in human rectal cancer. J Immunother Cancer. 8:e0006672020. View Article : Google Scholar : PubMed/NCBI

52 

Ahn J, Xia T, Rabasa Capote A, Betancourt D and Barber GN: Extrinsic phagocyte-dependent STING signaling dictates the immunogenicity of dying cells. Cancer Cell. 33:862–873.e5. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Jiang MJ, Chen YY, Dai JJ, Gu DN, Mei Z, Liu FR, Huang Q and Tian L: Dying tumor cell-derived exosomal miR-194-5p potentiates survival and repopulation of tumor repopulating cells upon radiotherapy in pancreatic cancer. Mol Cancer. 19:682020. View Article : Google Scholar : PubMed/NCBI

54 

Khambu B, Huda N, Chen X, Antoine DJ, Li Y, Dai G, Köhler UA, Zong WX, Waguri S, Werner S, et al: HMGB1 promotes ductular reaction and tumorigenesis in autophagy-deficient livers. J Clin Invest. 128:2419–2435. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Kazama H, Ricci JE, Herndon JM, Hoppe G, Green DR and Ferguson TA: Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity. 29:21–32. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Golden EB, Frances D, Pellicciotta I, Demaria S, Helen Barcellos-Hoff M and Formenti SC: Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology. 3:e285182014. View Article : Google Scholar : PubMed/NCBI

57 

Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, et al: Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science. 334:1573–1577. 2011. View Article : Google Scholar : PubMed/NCBI

58 

Shi Y and Lammers T: Combining nanomedicine and immunotherapy. Acc Chem Res. 52:1543–1554. 2019. View Article : Google Scholar : PubMed/NCBI

59 

Lecciso M, Ocadlikova D, Sangaletti S, Trabanelli S, De Marchi E, Orioli E, Pegoraro A, Portararo P, Jandus C, Bontadini A, et al: ATP release from chemotherapy-treated dying leukemia cells elicits an immune suppressive effect by increasing regulatory T cells and tolerogenic dendritic cells. Front Immunol. 8:19182017. View Article : Google Scholar

60 

Yamaguchi H, Maruyama T, Urade Y and Nagata S: Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells. Elife. 3:e021722014. View Article : Google Scholar : PubMed/NCBI

61 

Allard D, Allard B and Stagg J: On the mechanism of anti-CD39 immune checkpoint therapy. J Immunother Cancer. 8:e0001862020. View Article : Google Scholar : PubMed/NCBI

62 

Baghbani E, Noorolyai S, Shanehbandi D, Mokhtarzadeh A, Aghebati-Maleki L, Shahgoli VK, Brunetti O, Rahmani S, Shadbad MA, Baghbanzadeh A, et al: Regulation of immune responses through CD39 and CD73 in cancer: Novel checkpoints. Life Sci. 282:1198262021. View Article : Google Scholar : PubMed/NCBI

63 

Batlle E and Massagué J: Transforming growth factor-β signaling in immunity and cancer. Immunity. 50:924–940. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Formenti SC, Lee P, Adams S, Goldberg JD, Li X, Xie MW, Ratikan JA, Felix C, Hwang L, Faull KF, et al: Focal irradiation and systemic TGFβ blockade in metastatic breast cancer. Clin Cancer Res. 24:2493–2504. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Karapetyan L, Luke JJ and Davar D: Toll-Like Receptor 9 Agonists in Cancer. Onco Targets Ther. 13:10039–10060. 2020. View Article : Google Scholar : PubMed/NCBI

66 

Vincent-Schneider H, Stumptner-Cuvelette P, Lankar D, Pain S, Raposo G, Benaroch P and Bonnerot C: Exosomes bearing HLA-DR1 molecules need dendritic cells to efficiently stimulate specific T cells. Int Immunol. 14:713–722. 2002. View Article : Google Scholar : PubMed/NCBI

67 

Xie F, Zhou X, Fang M, Li H, Su P, Tu Y, Zhang L and Zhou F: Extracellular vesicles in cancer immune microenvironment and cancer immunotherapy. Adv Sci (Weinh). 6:19017792019. View Article : Google Scholar : PubMed/NCBI

68 

Pitt JM, André F, Amigorena S, Soria JC, Eggermont A, Kroemer G and Zitvogel L: Dendritic cell-derived exosomes for cancer therapy. J Clin Invest. 126:1224–1232. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Quah BJ and O'Neill HC: Maturation of function in dendritic cells for tolerance and immunity. J Cell Mol Med. 9:643–654. 2005. View Article : Google Scholar : PubMed/NCBI

70 

Pang G, Chen C, Liu Y, Jiang T, Yu H, Wu Y, Wang Y, Wang FJ, Liu Z and Zhang LW: Bioactive polysaccharide nanoparticles improve radiation-induced abscopal effect through manipulation of dendritic cells. ACS Appl Mater Interfaces. 11:42661–42670. 2019. View Article : Google Scholar : PubMed/NCBI

71 

Accogli T, Bruchard M and Végran F: Modulation of CD4 T cell response according to tumor cytokine microenvironment. Cancers (Basel). 13:3732021. View Article : Google Scholar : PubMed/NCBI

72 

Shiokawa A, Kotaki R, Takano T, Nakajima-Adachi H and Hachimura S: Mesenteric lymph node CD11b(−) CD103(+) PD-L1High dendritic cells highly induce regulatory T cells. Immunology. 152:52–64. 2017. View Article : Google Scholar : PubMed/NCBI

73 

Zhou F, Zhang GX and Rostami A: Distinct Role of IL-27 in Immature and LPS-Induced mature dendritic cell-mediated development of CD4(+) CD127(+)3G11(+) regulatory T cell subset. Front Immunol. 9:25622018. View Article : Google Scholar : PubMed/NCBI

74 

Shirasawa M, Yoshida T, Matsumoto Y, Shinno Y, Okuma Y, Goto Y, Horinouchi H, Yamamoto N, Watanabe SI, Ohe Y and Motoi N: Impact of chemoradiotherapy on the immune-related tumour microenvironment and efficacy of anti-PD-(L)1 therapy for recurrences after chemoradiotherapy in patients with unresectable locally advanced non-small cell lung cancer. Eur J Cancer. 140:28–36. 2020. View Article : Google Scholar : PubMed/NCBI

75 

Tang C, Wang X, Soh H, Seyedin S, Cortez MA, Krishnan S, Massarelli E, Hong D, Naing A, Diab A, et al: Combining radiation and immunotherapy: A new systemic therapy for solid tumors? Cancer Immunol Res. 2:831–838. 2014. View Article : Google Scholar : PubMed/NCBI

76 

Cassetta L and Pollard JW: Targeting macrophages: Therapeutic approaches in cancer. Nat Rev Drug Discov. 17:887–904. 2018. View Article : Google Scholar : PubMed/NCBI

77 

Wang J, Deng Z, Wang Z, Wu J, Gu T, Jiang Y and Li G: MicroRNA-155 in exosomes secreted from helicobacter pylori infection macrophages immunomodulates inflammatory response. Am J Transl Res. 8:3700–3709. 2016.PubMed/NCBI

78 

Wang P, Wang H, Huang Q, Peng C, Yao L, Chen H, Qiu Z, Wu Y, Wang L and Chen W: Exosomes from M1-Polarized macrophages enhance paclitaxel antitumor activity by activating macrophages-mediated inflammation. Theranostics. 9:1714–1727. 2019. View Article : Google Scholar : PubMed/NCBI

79 

Deng F, Yan J, Lu J, Luo M, Xia P, Liu S, Wang X, Zhi F and Liu D: M2 Macrophage-Derived Exosomal miR-590-3p Attenuates DSS-Induced mucosal damage and promotes epithelial repair via the LATS1/YAP/β-Catenin Signalling Axis. J Crohns Colitis. 15:665–677. 2021. View Article : Google Scholar

80 

Wu J, Gao W, Tang Q, Yu Y, You W, Wu Z, Fan Y, Zhang L, Wu C, Han G, et al: M2 Macrophage-derived exosomes facilitate HCC metastasis by transferring αM β2 integrin to tumor cells. Hepatology. 73:1365–1380. 2021. View Article : Google Scholar

81 

Tavazoie MF, Pollack I, Tanqueco R, Ostendorf BN, Reis BS, Gonsalves FC, Kurth I, Andreu-Agullo C, Derbyshire ML, Posada J, et al: LXR/ApoE Activation restricts innate immune suppression in cancer. Cell. 172:825–840.e18. 2018. View Article : Google Scholar : PubMed/NCBI

82 

Zheng P, Chen L, Yuan X, Luo Q, Liu Y, Xie G, Ma Y and Shen L: Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells. J Exp Clin Cancer Res. 36:532017. View Article : Google Scholar : PubMed/NCBI

83 

Hao Y, Yasmin-Karim S, Moreau M, Sinha N, Sajo E and Ngwa W: Enhancing radiotherapy for lung cancer using immunoadjuvants delivered in situ from new design radiotherapy biomaterials: A preclinical study. Phys Med Biol. 61:N697–n707. 2016. View Article : Google Scholar : PubMed/NCBI

84 

Qian M, Wang S, Guo X, Wang J, Zhang Z, Qiu W, Gao X, Chen Z, Xu J, Zhao R, et al: Hypoxic glioma-derived exosomes deliver microRNA-1246 to induce M2 macrophage polarization by targeting TERF2IP via the STAT3 and NF-κB pathways. Oncogene. 39:428–442. 2020. View Article : Google Scholar

85 

Kelly A, Gunaltay S, McEntee CP, Shuttleworth EE, Smedley C, Houston SA, Fenton TM, Levison S, Mann ER and Travis MA: Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation. J Exp Med. 215:2725–2736. 2018. View Article : Google Scholar : PubMed/NCBI

86 

Veremeyko T, Yung AWY, Dukhinova M, Kuznetsova IS, Pomytkin I, Lyundup A, Strekalova T, Barteneva NS and Ponomarev ED: Cyclic AMP pathway suppress autoimmune neuroinflammation by inhibiting functions of encephalitogenic CD4 T cells and enhancing M2 macrophage polarization at the site of inflammation. Front Immunol. 9:502018. View Article : Google Scholar : PubMed/NCBI

87 

Su B, Han H, Gong Y, Li X, Ji C, Yao J, Yang J, Hu W, Zhao W, Li J, et al: Let-7d inhibits intratumoral macrophage M2 polarization and subsequent tumor angiogenesis by targeting IL-13 and IL-10. Cancer Immunol Immunother. 70:1619–1634. 2021. View Article : Google Scholar

88 

Ivashkiv LB: IFNγ: Signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat Rev Immunol. 18:545–558. 2018. View Article : Google Scholar : PubMed/NCBI

89 

Teresa Pinto A, Laranjeiro Pinto M, Patrícia Cardoso A, Monteiro C, Teixeira Pinto M, Filipe Maia A, Castro P, Figueira R, Monteiro A, Marques M, et al: Ionizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities. Sci Rep. 6:187652016. View Article : Google Scholar : PubMed/NCBI

90 

Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L, et al: Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 24:589–602. 2013. View Article : Google Scholar : PubMed/NCBI

91 

Leblond MM, Pérès EA, Helaine C, Gérault AN, Moulin D, Anfray C, Divoux D, Petit E, Bernaudin M and Valable S: M2 macrophages are more resistant than M1 macrophages following radiation therapy in the context of glioblastoma. Oncotarget. 8:72597–72612. 2017. View Article : Google Scholar : PubMed/NCBI

92 

Proctor DT, Huang J, Lama S, Albakr A, Van Marle G and Sutherland GR: Tumor-associated macrophage infiltration in meningioma. Neurooncol Adv. 1:vdz0182019.

93 

Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D, et al: PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 545:495–499. 2017. View Article : Google Scholar : PubMed/NCBI

94 

Zhao Y, Tao F, Jiang J, Chen L, Du J, Cheng X, He Q, Zhong S, Chen W, Wu X, et al: Tryptophan 2, 3-dioxygenase promotes proliferation, migration and invasion of ovarian cancer cells. Mol Med Rep. 23:4452021. View Article : Google Scholar :

95 

Suek N, Campesato LF, Merghoub T and Khalil DN: Targeted APC activation in cancer immunotherapy to enhance the abscopal effect. Front Immunol. 10:6042019. View Article : Google Scholar : PubMed/NCBI

96 

Zhou J, Li X, Wu X, Zhang T, Zhu Q and Wang X, Wang H, Wang K, Lin Y and Wang X: Exosomes Released from Tumor-Associated Macrophages Transfer miRNAs that induce a Treg/Th17 cell imbalance in epithelial ovarian cancer. Cancer Immunol Res. 6:1578–1592. 2018. View Article : Google Scholar : PubMed/NCBI

97 

Jiang M, Liu X, Zhang D, Wang Y, Hu X, Xu F, Jin M, Cao F and Xu L: Celastrol treatment protects against acute ischemic stroke-induced brain injury by promoting an IL-33/ST2 axis-mediated microglia/macrophage M2 polarization. J Neuroinflammation. 15:782018. View Article : Google Scholar : PubMed/NCBI

98 

Wang C, Zhang C, Liu L, A X, Chen B, Li Y and Du J: Macrophage-Derived mir-155-Containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Mol Ther. 25:192–204. 2017. View Article : Google Scholar : PubMed/NCBI

99 

Tan HY, Wang N, Zhang C, Chan YT, Yuen MF and Feng Y: Lysyl Oxidase-Like 4 fosters an immunosuppressive microenvironment during hepatocarcinogenesis. Hepatology. 73:2326–2341. 2021. View Article : Google Scholar

100 

Chen X, Zhang L, Zhang IY, Liang J, Wang H, Ouyang M, Wu S, da Fonseca ACC, Weng L, Yamamoto Y, et al: RAGE expression in tumor-associated macrophages promotes angiogenesis in glioma. Cancer Res. 74:7285–7297. 2014. View Article : Google Scholar : PubMed/NCBI

101 

Barnes TA and Amir E: HYPE or HOPE: The prognostic value of infiltrating immune cells in cancer. Br J Cancer. 118:e52018. View Article : Google Scholar : PubMed/NCBI

102 

Wang X, Shen H, Zhangyuan G, Huang R, Zhang W, He Q, Jin K, Zhuo H, Zhang Z, Wang J, et al: 14-3-3ζ delivered by hepatocellular carcinoma-derived exosomes impaired anti-tumor function of tumor-infiltrating T lymphocytes. Cell Death Dis. 9:1592018. View Article : Google Scholar

103 

Golstein P and Griffiths GM: An early history of T cell-mediated cytotoxicity. Nat Rev Immunol. 18:527–535. 2018. View Article : Google Scholar : PubMed/NCBI

104 

Alonso R, Rodríguez MC, Pindado J, Merino E, Mérida I and Izquierdo M: Diacylglycerol kinase alpha regulates the secretion of lethal exosomes bearing Fas ligand during activation-induced cell death of T lymphocytes. J Biol Chem. 280:28439–28450. 2005. View Article : Google Scholar : PubMed/NCBI

105 

Cai Z, Yang F, Yu L, Yu Z, Jiang L, Wang Q, Yang Y, Wang L, Cao X and Wang J: Activated T cell exosomes promote tumor invasion via Fas signaling pathway. J Immunol. 188:5954–5961. 2012. View Article : Google Scholar : PubMed/NCBI

106 

Lugini L, Cecchetti S, Huber V, Luciani F, Macchia G, Spadaro F, Paris L, Abalsamo L, Colone M, Molinari A, et al: Immune surveillance properties of human NK cell-derived exosomes. J Immunol. 189:2833–2842. 2012. View Article : Google Scholar : PubMed/NCBI

107 

van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde BJ, Knuth A and Boon T: A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. J Immunol. 178:2617–2621. 2007.PubMed/NCBI

108 

Torralba D, Baixauli F, Villarroya-Beltri C, Fernández-Delgado I, Latorre-Pellicer A, Acín-Pérez R, Martín-Cófreces NB, Jaso-Tamame ÁL, Iborra S, Jorge I, et al: Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat Commun. 9:26582018. View Article : Google Scholar : PubMed/NCBI

109 

Wang X, Shen H, He Q, Tian W, Xia A and Lu XJ: Exosomes derived from exhausted CD8+ T cells impaired the anticancer function of normal CD8+ T cells. J Med Genet. 56:29–31. 2019. View Article : Google Scholar

110 

Hui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA, Sasmal DK, Huang J, Kim JM, Mellman I and Vale RD: T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science. 355:1428–1433. 2017. View Article : Google Scholar : PubMed/NCBI

111 

Anderson AC, Joller N and Kuchroo VK: Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation. Immunity. 44:989–1004. 2016. View Article : Google Scholar : PubMed/NCBI

112 

Dimitrijević M, Arsenović-Ranin N, Kosec D, Bufan B, Nacka-Aleksić M, Pilipović I and Leposavić G: Sexual dimorphism in Th17/Treg axis in lymph nodes draining inflamed joints in rats with collagen-induced arthritis. Brain Behav Immun. 76:198–214. 2019. View Article : Google Scholar

113 

Asano T, Meguri Y, Yoshioka T, Kishi Y, Iwamoto M, Nakamura M, Sando Y, Yagita H, Koreth J, Kim HT, et al: PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy. Blood. 129:2186–2197. 2017. View Article : Google Scholar : PubMed/NCBI

114 

Abbas AK, Trotta E, R Simeonov D, Marson A and Bluestone JA: Revisiting IL-2: Biology and therapeutic prospects. Sci Immunol. 3:eaat14822018. View Article : Google Scholar : PubMed/NCBI

115 

Jukić T, Jurin Martić A, Ivanković S, Antica M, Pavan Jukić D, Rotim C and Jurin M: The role of regulatory T lymphocytes in immune control of MC-2 fibrosarcoma. Acta Clin Croat. 59:351–358. 2020.

116 

Mailloux AW and Young MR: Regulatory T-cell trafficking: From thymic development to tumor-induced immune suppression. Crit Rev Immunol. 30:435–447. 2010. View Article : Google Scholar : PubMed/NCBI

117 

Hammami A, Allard D, Allard B and Stagg J: Targeting the adenosine pathway for cancer immunotherapy. Semin Immunol. 42:1013042019. View Article : Google Scholar : PubMed/NCBI

118 

Smyth LA, Ratnasothy K, Tsang JY, Boardman D, Warley A, Lechler R and Lombardi G: CD73 expression on extracellular vesicles derived from CD4+ CD25+ Foxp3+ T cells contributes to their regulatory function. Eur J Immunol. 43:2430–2440. 2013. View Article : Google Scholar : PubMed/NCBI

119 

Aiello S, Rocchetta F, Longaretti L, Faravelli S, Todeschini M, Cassis L, Pezzuto F, Tomasoni S, Azzollini N, Mister M, et al: Extracellular vesicles derived from T regulatory cells suppress T cell proliferation and prolong allograft survival. Sci Rep. 7:115182017. View Article : Google Scholar : PubMed/NCBI

120 

Tung SL, Fanelli G, Matthews RI, Bazoer J, Letizia M, Vizcay-Barrena G, Faruqu FN, Philippeos C, Hannen R, Al-Jamal KT, et al: Regulatory T cell extracellular vesicles modify t-effector cell cytokine production and protect against human skin allograft damage. Front Cell Dev Biol. 8:3172020. View Article : Google Scholar : PubMed/NCBI

121 

Torri A, Carpi D, Bulgheroni E, Crosti MC, Moro M, Gruarin P, Rossi RL, Rossetti G, Di Vizio D, Hoxha M, et al: Extracellular MicroRNA signature of human helper T cell subsets in health and autoimmunity. J Biol Chem. 292:2903–2915. 2017. View Article : Google Scholar : PubMed/NCBI

122 

Tung SL, Boardman DA, Sen M, Letizia M, Peng Q, Cianci N, Dioni L, Carlin LM, Lechler R, Bollati V, et al: Regulatory T cell-derived extracellular vesicles modify dendritic cell function. Sci Rep. 8:60652018. View Article : Google Scholar : PubMed/NCBI

123 

Okoye IS, Coomes SM, Pelly VS, Czieso S, Papayannopoulos V, Tolmachova T, Seabra MC and Wilson MS: MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity. 41:89–103. 2014. View Article : Google Scholar : PubMed/NCBI

124 

Sullivan JA, Tomita Y, Jankowska-Gan E, Lema DA, Arvedson MP, Nair A, Bracamonte-Baran W, Zhou Y, Meyer KK, Zhong W, et al: Treg-Cell-Derived IL-35-Coated extracellular vesicles promote infectious tolerance. Cell Rep. 30:1039–1051.e5. 2020. View Article : Google Scholar : PubMed/NCBI

125 

Eckert F, Schilbach K, Klumpp L, Bardoscia L, Sezgin EC, Schwab M, Zips D and Huber SM: Potential Role of CXCR4 targeting in the context of radiotherapy and immunotherapy of cancer. Front Immunol. 9:30182018. View Article : Google Scholar

126 

Zhou M, Luo C, Zhou Z, Li L and Huang Y: Improving anti-PD-L1 therapy in triple negative breast cancer by polymer-enhanced immunogenic cell death and CXCR4 blockade. J Control Release. 334:248–262. 2021. View Article : Google Scholar : PubMed/NCBI

127 

Kohno M, Murakami J, Wu L, Chan ML, Yun Z, Cho BCJ and de Perrot M: Foxp3(+) Regulatory T cell depletion after nonablative oligofractionated irradiation boosts the abscopal effects in murine malignant mesothelioma. J Immunol. 205:2519–2531. 2020. View Article : Google Scholar : PubMed/NCBI

128 

Anderson BE, McNiff JM, Matte C, Athanasiadis I, Shlomchik WD and Shlomchik MJ: Recipient CD4+ T cells that survive irradiation regulate chronic graft-versus-host disease. Blood. 104:1565–1573. 2004. View Article : Google Scholar : PubMed/NCBI

129 

Zhang T, Yu H, Ni C, Zhang T, Liu L, Lv Q, Zhang Z, Wang Z, Wu D, Wu P, et al: Hypofractionated stereotactic radiation therapy activates the peripheral immune response in operable stage I non-small-cell lung cancer. Sci Rep. 7:48662017. View Article : Google Scholar : PubMed/NCBI

130 

Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM and Weaver CT: Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 6:1123–1132. 2005. View Article : Google Scholar : PubMed/NCBI

131 

Ye ZJ, Zhou Q, Gu YY, Qin SM, Ma WL, Xin JB, Tao XN and Shi HZ: Generation and differentiation of IL-17-producing CD4+ T cells in malignant pleural effusion. J Immunol. 185:6348–6354. 2010. View Article : Google Scholar : PubMed/NCBI

132 

Zou W and Restifo NP: T(H)17 cells in tumour immunity and immunotherapy. Nat Rev Immunol. 10:248–256. 2010. View Article : Google Scholar : PubMed/NCBI

133 

Berkhout L, Barikbin R, Schiller B, Ravichandran G, Krech T, Neumann K, Sass G and Tiegs G: Deletion of tumour necrosis factor α receptor 1 elicits an increased TH17 immune response in the chronically inflamed liver. Sci Rep. 9:42322019. View Article : Google Scholar

134 

Campanati A, Orciani M, Lazzarini R, Ganzetti G, Consales V, Sorgentoni G, Di Primio R and Offidani A: TNF-α inhibitors reduce the pathological Th1-Th17/Th2 imbalance in cutaneous mesenchymal stem cells of psoriasis patients. Exp Dermatol. 26:319–324. 2017. View Article : Google Scholar

135 

Nalbant A: IL-17, IL-21, and IL-22 Cytokines of T Helper 17 cells in cancer. J Interferon Cytokine Res. 39:56–60. 2019. View Article : Google Scholar

136 

Chang SH: T helper 17 (Th17) cells and interleukin-17 (IL-17) in cancer. Arch Pharm Res. 42:549–559. 2019. View Article : Google Scholar : PubMed/NCBI

137 

Papadopoulou E, Nicolatou-Galitis O, Papassotiriou I, Linardou H, Karagianni A, Tsixlakis K, Tarampikou A, Michalakakou K, Vardas E and Bafaloukos D: The use of crevicular fluid to assess markers of inflammation and angiogenesis, IL-17 and VEGF, in patients with solid tumors receiving zoledronic acid and/or bevacizumab. Support Care Cancer. 28:177–184. 2020. View Article : Google Scholar

138 

Messmer MN, Netherby CS, Banik D and Abrams SI: Tumor-induced myeloid dysfunction and its implications for cancer immunotherapy. Cancer Immunol Immunother. 64:1–13. 2015. View Article : Google Scholar :

139 

Waigel S, Rendon BE, Lamont G, Richie J, Mitchell RA and Yaddanapudi K: MIF inhibition reverts the gene expression profile of human melanoma cell line-induced MDSCs to normal monocytes. Genom Data. 7:240–242. 2016. View Article : Google Scholar : PubMed/NCBI

140 

Fenselau C and Ostrand-Rosenberg S: Molecular cargo in myeloid-derived suppressor cells and their exosomes. Cell Immunol. 359:1042582021. View Article : Google Scholar :

141 

Marvel D and Gabrilovich DI: Myeloid-derived suppressor cells in the tumor microenvironment: Expect the unexpected. J Clin Invest. 125:3356–3364. 2015. View Article : Google Scholar : PubMed/NCBI

142 

Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, Nadaf S, Kavanaugh D and Carbone DP: Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med. 2:1096–1103. 1996. View Article : Google Scholar : PubMed/NCBI

143 

Horikawa N, Abiko K, Matsumura N, Hamanishi J, Baba T, Yamaguchi K, Yoshioka Y, Koshiyama M and Konishi I: Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells. Clin Cancer Res. 23:587–599. 2017. View Article : Google Scholar

144 

Hsieh CC, Hung CH, Chiang M, Tsai YC and He JT: Hepatic stellate cells enhance liver cancer progression by inducing myeloid-derived suppressor cells through interleukin-6 signaling. Int J Mol Sci. 20:50792019. View Article : Google Scholar : PubMed/NCBI

145 

Li L, Zhang J, Diao W, Wang D, Wei Y, Zhang CY and Zen K: MicroRNA-155 and MicroRNA-21 promote the expansion of functional myeloid-derived suppressor cells. J Immunol. 192:1034–1043. 2014. View Article : Google Scholar : PubMed/NCBI

146 

Meng G, Wei J, Wang Y, Qu D and Zhang J: miR-21 regulates immunosuppression mediated by myeloid-derived suppressor cells by impairing RUNX1-YAP interaction in lung cancer. Cancer Cell Int. 20:4952020. View Article : Google Scholar : PubMed/NCBI

147 

Safarzadeh E, Asadzadeh Z, Safaei S, Hatefi A, Derakhshani A, Giovannelli F, Brunetti O, Silvestris N and Baradaran B: MicroRNAs and lncRNAs-A new layer of myeloid-derived suppressor cells regulation. Front Immunol. 11:5723232020. View Article : Google Scholar : PubMed/NCBI

148 

Geis-Asteggiante L, Belew AT, Clements VK, Edwards NJ, Ostrand-Rosenberg S, El-Sayed NM and Fenselau C: Differential Content of Proteins, mRNAs, and miRNAs Suggests that MDSC and their exosomes may mediate distinct immune suppressive functions. J Proteome Res. 17:486–498. 2018. View Article : Google Scholar :

149 

Li T, Li M, Xu C, Xu X, Ding J, Cheng L and Ou R: miR-146a regulates the function of Th17 cell differentiation to modulate cervical cancer cell growth and apoptosis through NF-κB signaling by targeting TRAF6. Oncol Rep. 41:2897–2908. 2019.PubMed/NCBI

150 

Tian S, Song X, Wang Y, Wang X, Mou Y, Chen Q, Zhao H, Ma K, Wu Z, Yu H, et al: Chinese herbal medicine Baoyuan Jiedu decoction inhibits the accumulation of myeloid derived suppressor cells in pre-metastatic niche of lung via TGF-β/CCL9 pathway. Biomed Pharmacother. 129:1103802020. View Article : Google Scholar

151 

Mao Y, Sarhan D, Steven A, Seliger B, Kiessling R and Lundqvist A: Inhibition of tumor-derived prostaglandin-e2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activity. Clin Cancer Res. 20:4096–4106. 2014. View Article : Google Scholar : PubMed/NCBI

152 

Deng Z, Rong Y, Teng Y, Zhuang X, Samykutty A, Mu J, Zhang L, Cao P, Yan J, Miller D and Zhang HG: Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis. Oncogene. 36:639–651. 2017. View Article : Google Scholar :

153 

Zöller M, Zhao K, Kutlu N, Bauer N, Provaznik J, Hackert T and Schnölzer M: Immunoregulatory effects of myeloid-derived suppressor cell exosomes in mouse model of autoimmune alopecia areata. Front Immunol. 9:12792018. View Article : Google Scholar : PubMed/NCBI

154 

Grisaru-Tal S, Itan M, Klion AD and Munitz A: A new dawn for eosinophils in the tumour microenvironment. Nat Rev Cancer. 20:594–607. 2020. View Article : Google Scholar : PubMed/NCBI

155 

Poggio M, Hu T, Pai CC, Chu B, Belair CD, Chang A, Montabana E, Lang UE, Fu Q, Fong L and Blelloch R: Suppression of Exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell. 177:414–427.e13. 2019. View Article : Google Scholar : PubMed/NCBI

156 

Mesnil C, Raulier S, Paulissen G, Xiao X, Birrell MA, Pirottin D, Janss T, Starkl P, Ramery E, Henket M, et al: Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J Clin Invest. 126:3279–3295. 2016. View Article : Google Scholar : PubMed/NCBI

157 

Choi Y, Kim YM, Lee HR, Mun J, Sim S, Lee DH, Pham DL, Kim SH, Shin YS, Lee SW and Park HS: Eosinophil extracellular traps activate type 2 innate lymphoid cells through stimulating airway epithelium in severe asthma. Allergy. 75:95–103. 2020. View Article : Google Scholar

158 

da Silva JM, Moreira Dos Santos TP, Sobral LM, Queiroz-Junior CM, Rachid MA, Proudfoot AEI, Garlet GP, Batista AC, Teixeira MM, Leopoldino AM, et al: Relevance of CCL3/CCR5 axis in oral carcinogenesis. Oncotarget. 8:51024–51036. 2017. View Article : Google Scholar : PubMed/NCBI

159 

Hu Y, Chen Z, Jin L, Wang M and Liao W: Decreased expression of indolamine 2,3-dioxygenase in childhood allergic asthma and its inverse correlation with fractional concentration of exhaled nitric oxide. Ann Allergy Asthma Immunol. 119:429–434. 2017. View Article : Google Scholar : PubMed/NCBI

160 

Kratochvill F, Neale G, Haverkamp JM, Van de Velde LA, Smith AM, Kawauchi D, McEvoy J, Roussel MF, Dyer MA, Qualls JE and Murray PJ: TNF counterbalances the emergence of M2 tumor macrophages. Cell Rep. 12:1902–1914. 2015. View Article : Google Scholar : PubMed/NCBI

161 

Herrera FG, Bourhis J and Coukos G: Radiotherapy combination opportunities leveraging immunity for the next oncology practice. CA Cancer J Clin. 67:65–85. 2017. View Article : Google Scholar

162 

Cao M, Cabrera R, Xu Y, Liu C and Nelson D: Different radio-sensitivity of CD4(+)CD25(+) regulatory T cells and effector T cells to low dose gamma irradiation in vitro. Int J Radiat Biol. 87:71–80. 2011. View Article : Google Scholar

163 

Kareff SA, Lischalk JW, Krochmal R and Kim C: Abscopal effect in pulmonary carcinoid tumor following ablative stereotactic body radiation therapy: A case report. J Med Case Rep. 14:1772020. View Article : Google Scholar : PubMed/NCBI

164 

Ohmatsu K, Hashimoto Y, Kawanishi M, Ishii Y, Kono S, Kuribayashi S, Ariizumi S and Karasawa K: Abscopal complete regression of hepatocellular carcinoma with multiple pleural metastases. Int Cancer Conf J. 10:54–58. 2020. View Article : Google Scholar

165 

Hotta T, Okuno T, Nakao M, Amano Y, Isobe T and Tsubata Y: Reproducible abscopal effect in a patient with lung cancer who underwent whole-brain irradiation and atezolizumab administration. Thorac Cancer. 12:985–988. 2021. View Article : Google Scholar : PubMed/NCBI

166 

Choi JS, Sansoni ER, Lovin BD, Lindquist NR, Phan J, Mayo LL, Ferrarotto R and Su SY: Abscopal effect following immunotherapy and combined stereotactic body radiation therapy in recurrent metastatic head and neck squamous cell carcinoma: A report of two cases and literature review. Ann Otol Rhinol Laryngol. 129:517–522. 2020. View Article : Google Scholar

167 

Wang H, Lin X, Luo Y, Sun S, Tian X, Sun Y, Zhang S, Chen J, Zhang J, Liu X, et al: α-PD-L1 mAb enhances the abscopal effect of hypo-fractionated radiation by attenuating PD-L1 expression and inducing CD8(+) T-cell infiltration. Immunotherapy. 11:101–118. 2019. View Article : Google Scholar

168 

Golden EB, Chhabra A, Chachoua A, Adams S, Donach M, Fenton-Kerimian M, Friedman K, Ponzo F, Babb JS, Goldberg J, et al: Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: A proof-of-principle trial. Lancet Oncol. 16:795–803. 2015. View Article : Google Scholar : PubMed/NCBI

169 

Thorne AH, Malo KN, Wong AJ, Nguyen TT, Cooch N, Reed C, Yan J, Broderick KE, Smith TRF, Masteller EL and Humeau L: Adjuvant screen identifies synthetic DNA-Encoding Flt3L and CD80 immunotherapeutics as candidates for enhancing anti-tumor T cell responses. Front Immunol. 11:3272020. View Article : Google Scholar : PubMed/NCBI

170 

Wennerberg E, Spada S, Rudqvist NP, Lhuillier C, Gruber S, Chen Q, Zhang F, Zhou XK, Gross SS, Formenti SC and Demaria S: CD73 blockade promotes dendritic cell infiltration of irradiated tumors and tumor rejection. Cancer Immunol Res. 8:465–478. 2020. View Article : Google Scholar : PubMed/NCBI

171 

Peluso MO, Adam A, Armet CM, Zhang L, O'Connor RW, Lee BH, Lake AC, Normant E, Chappel SC, Hill JA, et al: The Fully human anti-CD47 antibody SRF231 exerts dual-mechanism antitumor activity via engagement of the activating receptor CD32a. J Immunother Cancer. 8:e0004132020. View Article : Google Scholar : PubMed/NCBI

172 

Tsukui H, Horie H, Koinuma K, Ohzawa H, Sakuma Y, Hosoya Y, Yamaguchi H, Yoshimura K, Lefor AK, Sata N and Kitayama J: CD73 blockade enhances the local and abscopal effects of radiotherapy in a murine rectal cancer model. BMC Cancer. 20:4112020. View Article : Google Scholar : PubMed/NCBI

173 

Puro RJ, Bouchlaka MN, Hiebsch RR, Capoccia BJ, Donio MJ, Manning PT, Frazier WA, Karr RW and Pereira DS: Development of AO-176, a Next-Generation Humanized Anti-CD47 antibody with novel anticancer properties and negligible red blood cell binding. Mol Cancer Ther. 19:835–846. 2020. View Article : Google Scholar

174 

Chen D, Barsoumian HB, Yang L, Younes AI, Verma V, Hu Y, Menon H, Wasley M, Masropour F, Mosaffa S, et al: SHP-2 and PD-L1 inhibition combined with radiotherapy enhances systemic antitumor effects in an Anti-PD-1-Resistant model of non-small cell lung cancer. Cancer Immunol Res. 8:883–894. 2020. View Article : Google Scholar : PubMed/NCBI

175 

Muenkel J, Xu Z, Traughber BJ, Baig T, Xu K, Langmack C, Harris E and Podder TK: Feasibility of improving patient's safety with in vivo dose tracking in intracavitary and interstitial HDR brachytherapy. Brachytherapy. 20:353–360. 2021. View Article : Google Scholar

176 

Liu Y, Dong Y, Kong L, Shi F, Zhu H and Yu J: Abscopal effect of radiotherapy combined with immune checkpoint inhibitors. J Hematol Oncol. 11:1042018. View Article : Google Scholar : PubMed/NCBI

177 

Ahmed TA, Adamopoulos C, Karoulia Z, Wu X, Sachidanandam R, Aaronson SA and Poulikakos PI: SHP2 drives adaptive resistance to ERK signaling inhibition in molecularly defined subsets of ERK-Dependent tumors. Cell Rep. 26:65–78.e5. 2019. View Article : Google Scholar : PubMed/NCBI

178 

Strazza M, Adam K, Lerrer S, Straube J, Sandigursky S, Ueberheide B and Mor A: SHP2 Targets ITK Downstream of PD-1 to Inhibit T cell function. Inflammation. 44:1529–1539. 2021. View Article : Google Scholar : PubMed/NCBI

179 

Pustylnikov S, Costabile F, Beghi S and Facciabene A: Targeting mitochondria in cancer: Current concepts and immunotherapy approaches. Transl Res. 202:35–51. 2018. View Article : Google Scholar : PubMed/NCBI

180 

Chen D, Barsoumian HB, Fischer G, Yang L, Verma V, Younes AI, Hu Y, Masropour F, Klein K, Vellano C, et al: Combination treatment with radiotherapy and a novel oxidative phosphorylation inhibitor overcomes PD-1 resistance and enhances antitumor immunity. J Immunother Cancer. 8:e0002892020. View Article : Google Scholar : PubMed/NCBI

181 

Vanpouille-Box C, Diamond JM, Pilones KA, Zavadil J, Babb JS, Formenti SC, Barcellos-Hoff MH and Demaria S: TGFβ Is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res. 75:2232–2242. 2015. View Article : Google Scholar : PubMed/NCBI

182 

Liang Y, He J and Zhao Y: Modification of oncolytic adenovirus and its application in cancer therapy. Discov Med. 30:129–144. 2020.

183 

Havunen R, Santos JM, Sorsa S, Rantapero T, Lumen D, Siurala M, Airaksinen AJ, Cervera-Carrascon V, Tähtinen S, Kanerva A and Hemminki A: Abscopal effect in Non-injected tumors achieved with cytokine-armed oncolytic adenovirus. Mol Ther Oncolytics. 11:109–121. 2018. View Article : Google Scholar : PubMed/NCBI

184 

Kaufman HL, Amatruda T, Reid T, Gonzalez R, Glaspy J, Whitman E, Harrington K, Nemunaitis J, Zloza A, Wolf M and Senzer NN: Systemic versus local responses in melanoma patients treated with talimogene laherparepvec from a multi-institutional phase II study. J Immunother Cancer. 4:122016. View Article : Google Scholar : PubMed/NCBI

185 

Ono R, Takayama K, Sakurai F and Mizuguchi H: Efficient antitumor effects of a novel oncolytic adenovirus fully composed of species B adenovirus serotype 35. Mol Ther Oncolytics. 20:399–409. 2021. View Article : Google Scholar : PubMed/NCBI

186 

Challenor S and Tucker D: SARS-CoV-2-induced remission of Hodgkin lymphoma. Br J Haematol. 192:4152021. View Article : Google Scholar : PubMed/NCBI

187 

Ngwa W, Boateng F, Kumar R, Irvine DJ, Formenti S, Ngoma T, Herskind C, Veldwijk MR, Hildenbrand GL, Hausmann M, et al: Smart Radiation Therapy Biomaterials. Int J Radiat Oncol Biol Phys. 97:624–637. 2017. View Article : Google Scholar : PubMed/NCBI

188 

Zhao X, Yang K, Zhao R, Ji T, Wang X, Yang X, Zhang Y, Cheng K, Liu S, Hao J, et al: Inducing enhanced immunogenic cell death with nanocarrier-based drug delivery systems for pancreatic cancer therapy. Biomaterials. 102:187–197. 2016. View Article : Google Scholar : PubMed/NCBI

189 

Duan X, Chan C, Guo N, Han W, Weichselbaum RR and Lin W: Photodynamic therapy mediated by nontoxic core-shell nanoparticles synergizes with immune checkpoint blockade to elicit antitumor immunity and antimetastatic effect on breast cancer. J Am Chem Soc. 138:16686–16695. 2016. View Article : Google Scholar : PubMed/NCBI

190 

Chen Q, Wang C, Zhang X, Chen G, Hu Q, Li H, Wang J, Wen D, Zhang Y, Lu Y, et al: In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat Nanotechnol. 14:89–97. 2019. View Article : Google Scholar

191 

Min Y, Roche KC, Tian S, Eblan MJ, McKinnon KP, Caster JM, Chai S, Herring LE, Zhang L, Zhang T, et al: Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat Nanotechnol. 12:877–882. 2017. View Article : Google Scholar : PubMed/NCBI

192 

Zheng Y, Tang L, Mabardi L, Kumari S and Irvine DJ: Enhancing adoptive cell therapy of cancer through targeted delivery of small-molecule immunomodulators to internalizing or noninternalizing receptors. ACS Nano. 11:3089–3100. 2017. View Article : Google Scholar : PubMed/NCBI

193 

Chao Y, Xu L, Liang C, Feng L, Xu J, Dong Z, Tian L, Yi X, Yang K and Liu Z: Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumour responses. Nat Biomed Eng. 2:611–621. 2018. View Article : Google Scholar

194 

Xu H, Sun W, Kong Y, Huang Y, Wei Z, Zhang L, Liang J and Ye X: Immune abscopal effect of microwave ablation for lung metastases of endometrial carcinoma. J Cancer Res Ther. 16:1718–1721. 2020.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Kuang G, Wang Z, Luo C, Luo J and Wang J: Mechanism of exosomes in the tumor microenvironment in the abscopal effect (Review). Int J Oncol 62: 2, 2023.
APA
Kuang, G., Wang, Z., Luo, C., Luo, J., & Wang, J. (2023). Mechanism of exosomes in the tumor microenvironment in the abscopal effect (Review). International Journal of Oncology, 62, 2. https://doi.org/10.3892/ijo.2022.5450
MLA
Kuang, G., Wang, Z., Luo, C., Luo, J., Wang, J."Mechanism of exosomes in the tumor microenvironment in the abscopal effect (Review)". International Journal of Oncology 62.1 (2023): 2.
Chicago
Kuang, G., Wang, Z., Luo, C., Luo, J., Wang, J."Mechanism of exosomes in the tumor microenvironment in the abscopal effect (Review)". International Journal of Oncology 62, no. 1 (2023): 2. https://doi.org/10.3892/ijo.2022.5450
Copy and paste a formatted citation
x
Spandidos Publications style
Kuang G, Wang Z, Luo C, Luo J and Wang J: Mechanism of exosomes in the tumor microenvironment in the abscopal effect (Review). Int J Oncol 62: 2, 2023.
APA
Kuang, G., Wang, Z., Luo, C., Luo, J., & Wang, J. (2023). Mechanism of exosomes in the tumor microenvironment in the abscopal effect (Review). International Journal of Oncology, 62, 2. https://doi.org/10.3892/ijo.2022.5450
MLA
Kuang, G., Wang, Z., Luo, C., Luo, J., Wang, J."Mechanism of exosomes in the tumor microenvironment in the abscopal effect (Review)". International Journal of Oncology 62.1 (2023): 2.
Chicago
Kuang, G., Wang, Z., Luo, C., Luo, J., Wang, J."Mechanism of exosomes in the tumor microenvironment in the abscopal effect (Review)". International Journal of Oncology 62, no. 1 (2023): 2. https://doi.org/10.3892/ijo.2022.5450
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team