Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
February-2023 Volume 62 Issue 2

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2023 Volume 62 Issue 2

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Blocking the Wnt/β‑catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies (Review)

  • Authors:
    • Yuxiang Chen
    • Mo Chen
    • Kai Deng
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China, Department of Gerontology, Tibetan Chengdu Branch Hospital of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
    Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 24
    |
    Published online on: December 27, 2022
       https://doi.org/10.3892/ijo.2022.5472
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Colorectal cancer (CRC) is one of the most common malignant tumor types occurring in the digestive system. The incidence of CRC has exhibits yearly increases and the mortality rate among patients with CRC is high. The Wnt/β‑catenin signaling pathway, which is associated with carcinogenesis, is abnormally activated in CRC. Most patients with CRC have adenomatous polyposis coli mutations, while half of the remaining patients have β‑catenin gene mutations. Therefore, targeting the Wnt/β‑catenin signaling pathway for the treatment of CRC is of clinical value. In recent years, with in‑depth research on the Wnt/β‑catenin signaling pathway, inhibitors have been developed that are able to suppress or hinder the development and progression of CRC. In the present review, the role of the Wnt/β‑catenin signaling pathway in CRC is summarized, the research status on Wnt/β‑catenin pathway inhibitors is outlined and potential targets for inhibition of this pathway are presented.
View Figures

Figure 1

View References

1 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

3 

Chen Y, Liu C, Zhu S, Liang X, Zhang Q, Luo X, Yuan L and Song L: PD-1/PD-L1 immune checkpoint blockade-based combinational treatment: Immunotherapeutic amplification strategies against colorectal cancer. Int Immunopharmacol. 96:1076072021. View Article : Google Scholar : PubMed/NCBI

4 

Kuipers EJ, Grady WM, Lieberman D, Seufferlein T, Sung JJ, Boelens PG, van de Velde CJ and Watanabe T: Colorectal cancer. Nat Rev Dis Primers. 1:150652015. View Article : Google Scholar : PubMed/NCBI

5 

Zhang Y and Wang X: Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol. 13:1652020. View Article : Google Scholar

6 

Clevers H and Nusse R: Wnt/β-catenin signaling and disease. Cell. 149:1192–1205. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Cheng X, Xu X, Chen D, Zhao F and Wang W: Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomed Pharmacother. 110:473–481. 2019. View Article : Google Scholar

8 

Krishnamurthy N and Kurzrock R: Targeting the Wnt/betacatenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat Rev. 62:50–60. 2018. View Article : Google Scholar

9 

Dekker E, Tanis PJ, Vleugels JLA, Kasi PM and Wallace MB: Colorectal cancer. Lancet. 394:1467–1480. 2019. View Article : Google Scholar : PubMed/NCBI

10 

Brenner H, Kloor M and Pox CP: Colorectal cancer. Lancet. 383:1490–1502. 2014. View Article : Google Scholar

11 

Lee YH, Kung PT, Wang YH, Kuo WY, Kao SL and Tsai WC: Effect of length of time from diagnosis to treatment on colorectal cancer survival: A population-based study. PLoS One. 14:e02104652019. View Article : Google Scholar : PubMed/NCBI

12 

Banerjee A, Pathak S, Subramanium VD, G D, Murugesan R and Verma RS: Strategies for targeted drug delivery in treatment of colon cancer: Current trends and future perspectives. Drug Discov Today. 22:1224–1232. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA and Jemal A: Colorectal cancer statistics, 2020. CA Cancer J Clin. 70:145–164. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Payandeh Z, Khalili S, Somi MH, Mard-Soltani M, Baghbanzadeh A, Hajiasgharzadeh K, Samadi N and Baradaran B: PD-1/PD-L1-dependent immune response in colorectal cancer. J Cell Physiol. 235:5461–5475. 2020. View Article : Google Scholar : PubMed/NCBI

15 

Xiao Y and Freeman GJ: The microsatellite instable subset of colorectal cancer is a particularly good candidate for checkpoint blockade immunotherapy. Cancer Discov. 5:16–18. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, Desai J, Hill A, Axelson M, Moss RA, et al: Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study. Lancet Oncol. 18:1182–1191. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Silva VR, Santos LS, Dias RB, Quadros CA and Bezerra DP: Emerging agents that target signaling pathways to eradicate colorectal cancer stem cells. Cancer Commun (Lond). 41:1275–1313. 2021. View Article : Google Scholar : PubMed/NCBI

18 

Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F and Cui H: Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 5:82020. View Article : Google Scholar : PubMed/NCBI

19 

Voorneveld PW, Kodach LL, Jacobs RJ, van Noesel CJ, Peppelenbosch MP, Korkmaz KS, Molendijk I, Dekker E, Morreau H, van Pelt GW, et al: The BMP pathway either enhances or inhibits the Wnt pathway depending on the SMAD4 and p53 status in CRC. Br J Cancer. 112:122–130. 2015. View Article : Google Scholar :

20 

Nusse R and Clevers H: Wnt/β-Catenin signaling, disease, and emerging therapeutic modalities. Cell. 169:985–999. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Duchartre Y, Kim YM and Kahn M: The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol. 99:141–149. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Taciak B, Pruszynska I, Kiraga L, Bialasek M and Krol M: Wnt signaling pathway in development and cancer. J Physiol Pharmacol. 69:Jul 4–2018.Epub ahead of print. PubMed/NCBI

23 

Wang D, Zhang Q, Li F, Wang C, Yang C and Yu H: β-TrCP-mediated ubiquitination and degradation of Dlg5 regulates hepatocellular carcinoma cell proliferation. Cancer Cell Int. 19:2982019. View Article : Google Scholar

24 

DeBruine ZJ, Xu HE and Melcher K: Assembly and architecture of the Wnt/β-catenin signalosome at the membrane. Br J Pharmacol. 174:4564–4574. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Qi J, Lee HJ, Saquet A, Cheng XN, Shao M, Zheng JJ and Shi DL: Autoinhibition of Dishevelled protein regulated by its extreme C terminus plays a distinct role in Wnt/β-catenin and Wnt/planar cell polarity (PCP) signaling pathways. J Biol Chem. 292:5898–5908. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Schatoff EM, Leach BI and Dow LE: Wnt signaling and colorectal cancer. Curr Colorectal Cancer Rep. 13:101–110. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Gómez-Orte E, Sáenz-Narciso B, Moreno S and Cabello J: Multiple functions of the noncanonical Wnt pathway. Trends Genet. 29:545–553. 2013. View Article : Google Scholar : PubMed/NCBI

28 

De A: Wnt/Ca2+ signaling pathway: A brief overview. Acta Biochim Biophys Sin (Shanghai). 43:745–756. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Chae WJ and Bothwell ALM: Canonical and Non-Canonical Wnt signaling in immune cells. Trends Immunol. 39:830–847. 2018. View Article : Google Scholar : PubMed/NCBI

30 

van Es JH, Haegebarth A, Kujala P, Itzkovitz S, Koo BK, Boj SF, Korving J, van den Born M, van Oudenaarden A, Robine S and Clevers H: A critical role for the Wnt effector Tcf4 in adult intestinal homeostatic self-renewal. Mol Cell Biol. 32:1918–1927. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ and Clevers H: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459:262–265. 2009. View Article : Google Scholar : PubMed/NCBI

32 

Farin HF, Jordens I, Mosa MH, Basak O, Korving J, Tauriello DV, de Punder K, Angers S, Peters PJ, Maurice MM and Clevers H: Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature. 530:340–343. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Chen M, Lin W, Li N, Wang Q, Zhu S, Zeng A and Song L: Therapeutic approaches to colorectal cancer via strategies based on modulation of gut microbiota. Front Microbiol. 13:9455332022. View Article : Google Scholar : PubMed/NCBI

34 

Shoshkes-Carmel M, Wang YJ, Wangensteen KJ, Tóth B, Kondo A, Massasa EE, Itzkovitz S and Kaestner KH: Subepithelial telocytes are an important source of Wnts that supports intestinal crypts. Nature. 557:242–246. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Kahn M: Wnt signaling in stem cells and cancer stem cells: A tale of two coactivators. Prog Mol Biol Transl Sci. 153:209–244. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Aceto GM, Catalano T and Curia MC: Molecular aspects of colorectal adenomas: The interplay among microenvironment, oxidative stress, and predisposition. Biomed Res Int. 2020:17263092020. View Article : Google Scholar : PubMed/NCBI

37 

Bright-Thomas RM and Hargest R: APC, beta-Catenin and hTCF-4; an unholy trinity in the genesis of colorectal cancer. Eur J Surg Oncol. 29:107–117. 2003. View Article : Google Scholar : PubMed/NCBI

38 

Zhang L and Shay JW: Multiple roles of APC and its therapeutic implications in colorectal cancer. J Natl Cancer Inst. 109:djw3322017. View Article : Google Scholar : PubMed/NCBI

39 

Xu N, Shen C, Luo Y, Xia L, Xue F, Xia Q and Zhang J: Upregulated miR-130a increases drug resistance by regulating RUNX3 and Wnt signaling in cisplatin-treated HCC cell. Biochem Biophys Res Commun. 425:468–472. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Shen DY, Zhang W, Zeng X and Liu CQ: Inhibition of Wnt/β-catenin signaling downregulates P-glycoprotein and reverses multi-drug resistance of cholangiocarcinoma. Cancer Sci. 104:1303–1308. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Krausova M and Korinek V: Wnt signaling in adult intestinal stem cells and cancer. Cell Signal. 26:570–579. 2014. View Article : Google Scholar

42 

Roy S and Majumdar AP: Signaling in colon cancer stem cells. J Mol Signal. 7:112012. View Article : Google Scholar : PubMed/NCBI

43 

Sebio A, Kahn M and Lenz HJ: The potential of targeting Wnt/β-catenin in colon cancer. Expert Opin Ther Targets. 18:611–615. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Tai D, Wells K, Arcaroli J, Vanderbilt C, Aisner DL, Messersmith WA and Lieu CH: Targeting the WNT signaling pathway in cancer therapeutics. Oncologist. 20:1189–1198. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Paluszczak J, Kleszcz R, Studzińska-Sroka E and Krajka-Kuźniak V: Lichen-derived caperatic acid and physodic acid inhibit Wnt signaling in colorectal cancer cells. Mol Cell Biochem. 441:109–124. 2018. View Article : Google Scholar :

46 

Gekas C, D'Altri T, Aligué R, González J, Espinosa L and Bigas A: β-Catenin is required for T-cell leukemia initiation and MYC transcription downstream of Notch1. Leukemia. 30:2002–2010. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Li L, Peng W, Zhou Q, Wan JP, Wang XT and Qi HB: LRP6 regulates Rab7-mediated autophagy through the Wnt/β-catenin pathway to modulate trophoblast cell migration and invasion. J Cell Biochem. 121:1599–1609. 2020. View Article : Google Scholar

48 

Matsuzaki S and Darcha C: Involvement of the Wnt/β-catenin signaling pathway in the cellular and molecular mechanisms of fibrosis in endometriosis. PLoS One. 8:e768082013. View Article : Google Scholar

49 

Kim JY, Park G, Krishnan M, Ha E and Chun KS: Selective Wnt/β-catenin Small-molecule Inhibitor CWP232228 impairs tumor growth of colon cancer. Anticancer Res. 39:3661–3667. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Jang GB, Hong IS, Kim RJ, Lee SY, Park SJ, Lee ES, Park JH, Yun CH, Chung JU, Lee KJ, et al: Wnt/β-Catenin small-molecule inhibitor CWP232228 preferentially inhibits the growth of breast cancer stem-like cells. Cancer Res. 75:1691–1702. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Kim JY, Lee HY, Park KK, Choi YK, Nam JS and Hong IS: CWP232228 targets liver cancer stem cells through Wnt/β-catenin signaling: A novel therapeutic approach for liver cancer treatment. Oncotarget. 7:20395–20409. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Kazi A, Xiang S, Yang H, Delitto D, Trevino J, Jiang RHY, Ayaz M, Lawrence HR, Kennedy P and Sebti SM: GSK3 suppression upregulates β-catenin and c-Myc to abrogate KRas-dependent tumors. Nat Commun. 9:51542018. View Article : Google Scholar

53 

Wong CC, Xu J, Bian X, Wu JL, Kang W, Qian Y, Li W, Chen H, Gou H, Liu D, et al: In colorectal cancer cells with mutant KRAS, SLC25A22-Mediated Glutaminolysis Reduces DNA demethylation to increase WNT signaling, stemness, and drug resistance. Gastroenterology. 159:2163–2180.e6. 2020. View Article : Google Scholar : PubMed/NCBI

54 

Du F, Cao T, Xie H, Li T, Sun L, Liu H, Guo H, Wang X, Liu Q, Kim T, et al: KRAS Mutation-Responsive miR-139-5p inhibits colorectal cancer progression and is repressed by Wnt signaling. Theranostics. 10:7335–7350. 2020. View Article : Google Scholar : PubMed/NCBI

55 

Mologni L, Brussolo S, Ceccon M and Gambacorti-Passerini C: Synergistic effects of combined Wnt/KRAS inhibition in colorectal cancer cells. PLoS One. 7:e514492012. View Article : Google Scholar : PubMed/NCBI

56 

Chen Z, Venkatesan AM, Dehnhardt CM, Dos Santos O, Delos Santos E, Ayral-Kaloustian S, Chen L, Geng Y, Arndt KT, Lucas J, et al: 2,4-Diamino-quinazolines as inhibitors of beta-catenin/Tcf-4 pathway: Potential treatment for colorectal cancer. Bioorg Med Chem Lett. 19:4980–4983. 2009. View Article : Google Scholar : PubMed/NCBI

57 

Dehnhardt CM, Venkatesan AM, Chen Z, Ayral-Kaloustian S, Dos Santos O, Delos Santos E, Curran K, Follettie MT, Diesl V, Lucas J, et al: Design and synthesis of novel diaminoquinazolines with in vivo efficacy for beta-catenin/T-cell transcriptional factor 4 pathway inhibition. J Med Chem. 53:897–910. 2010. View Article : Google Scholar

58 

Chang TS, Lu CK, Hsieh YY, Wei KL, Chen WM, Tung SY, Wu CS, Chan MWY and Chiang MK: 2,4-Diamino-Quinazoline, a Wnt signaling inhibitor, suppresses gastric cancer progression and metastasis. Int J Mol Sci. 21:59012020. View Article : Google Scholar : PubMed/NCBI

59 

Fan HC, Hsieh YC, Li LH and Chang CC, Janoušková K, Ramani MV, Subbaraju GV, Cheng KT and Chang CC: Dehydroxyhispolon methyl ether, a hispolon derivative, inhibits WNT/β-Catenin signaling to elicit human colorectal carcinoma cell apoptosis. Int J Mol Sci. 21:88392020. View Article : Google Scholar

60 

Wu L, Zhou Z, Han S, Chen J, Liu Z, Zhang X, Yuan W, Ji J and Shu X: PLAGL2 promotes epithelial-mesenchymal transition and mediates colorectal cancer metastasis via β-catenin-dependent regulation of ZEB1. Br J Cancer. 122:578–589. 2020. View Article : Google Scholar

61 

Low JL, Du W, Gocha T, Oguz G, Zhang X, Chen MW, Masirevic S, Yim DGR, Tan IBH, Ramasamy A, et al: Molecular docking-aided identification of small molecule inhibitors targeting β-catenin-TCF4 interaction. iScience. 24:1025442021. View Article : Google Scholar

62 

Hu J, Wang Z, Chen J, Yu Z, Zhang J, Li W, Lin M, Yang X and Liu H: Overexpression of ICAT inhibits the progression of colorectal cancer by binding with β-Catenin in the cytoplasm. Technol Cancer Res Treat. 20:153303382110412532021. View Article : Google Scholar

63 

Masuda M, Uno Y, Ohbayashi N, Ohata H, Mimata A, Kukimoto-Niino M, Moriyama H and Kashimoto S: TNIK inhibition abrogates colorectal cancer stemness. Nat Commun. 7:125862016. View Article : Google Scholar : PubMed/NCBI

64 

Yamada T and Masuda M: Emergence of TNIK inhibitors in cancer therapeutics. Cancer Sci. 108:818–823. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Sugano T, Masuda M, Takeshita F, Motoi N, Hirozane T, Goto N, Kashimoto S, Uno Y, Moriyama H, Sawa M, et al: Pharmacological blockage of transforming growth factor-β signalling by a Traf2- and Nck-interacting kinase inhibitor, NCB-0846. Br J Cancer. 124:228–236. 2021. View Article : Google Scholar

66 

Sekita T, Yamada T, Kobayashi E, Yoshida A, Hirozane T, Kawai A, Uno Y, Moriyama H, Sawa M, Nagakawa Y, et al: Feasibility of targeting Traf2-and-Nck-Interacting kinase in synovial sarcoma. Cancers (Basel). 12:12582020. View Article : Google Scholar : PubMed/NCBI

67 

Jung HR, Oh Y, Na D, Min S, Kang J, Jang D, Shin S, Kim J, Lee SE, Jeong EM, et al: CRISPR screens identify a novel combination treatment targeting BCL-XL and WNT signaling for KRAS/BRAF-mutated colorectal cancers. Oncogene. 40:3287–3302. 2021. View Article : Google Scholar : PubMed/NCBI

68 

Zhao L, Sun L, Lu Y, Li F and Xu H: A small-molecule LF3 abrogates β-catenin/TCF4-mediated suppression of NaV 1.5 expression in HL-1 cardiomyocytes. J Mol Cell Cardiol. 135:90–96. 2019. View Article : Google Scholar : PubMed/NCBI

69 

Fang L, Zhu Q, Neuenschwander M, Specker E, Wulf-Goldenberg A, Weis WI, von Kries JP and Birchmeier W: A small-molecule antagonist of the β-Catenin/TCF4 interaction blocks the self-renewal of cancer stem cells and suppresses tumorigenesis. Cancer Res. 76:891–901. 2016. View Article : Google Scholar

70 

Gurpinar E, Grizzle WE and Piazza GA: NSAIDs inhibit tumorigenesis, but how? Clin Cancer Res. 20:1104–1113. 2014. View Article : Google Scholar :

71 

Sareddy GR, Kesanakurti D, Kirti PB and Babu PP: Nonsteroidal anti-inflammatory drugs diclofenac and celecoxib attenuates Wnt/β-catenin/Tcf signaling pathway in human glioblastoma cells. Neurochem Res. 38:2313–2322. 2013. View Article : Google Scholar : PubMed/NCBI

72 

Li N, Xi Y, Tinsley HN, Gurpinar E, Gary BD, Zhu B, Li Y, Chen X, Keeton AB, Abadi AH, et al: Sulindac selectively inhibits colon tumor cell growth by activating the cGMP/PKG pathway to suppress Wnt/β-catenin signaling. Mol Cancer Ther. 12:1848–1859. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Egashira I, Takahashi-Yanaga F, Nishida R, Arioka M, Igawa K, Tomooka K, Nakatsu Y, Tsuzuki T, Nakabeppu Y, Kitazono T and Sasaguri T: Celecoxib and 2,5-dimethylcelecoxib inhibit intestinal cancer growth by suppressing the Wnt/β-catenin signaling pathway. Cancer Sci. 108:108–115. 2017. View Article : Google Scholar

74 

Bowen CM, Walter L, Borras E, Wu W, Ozcan Z, Chang K, Bommi PV, Taggart MW, Thirumurthi S, Lynch PM, et al: Combination of sulindac and bexarotene for prevention of intestinal carcinogenesis in familial adenomatous polyposis. Cancer Prev Res (Phila). 14:851–862. 2021. View Article : Google Scholar : PubMed/NCBI

75 

Wu M, Guan J, Li C, Gunter S, Nusrat L, Ng S, Dhand K, Morshead C, Kim A and Das S: Aberrantly activated Cox-2 and Wnt signaling interact to maintain cancer stem cells in glioblastoma. Oncotarget. 8:82217–82230. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Bindu S, Mazumder S and Bandyopadhyay U: Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem Pharmacol. 180:1141472020. View Article : Google Scholar : PubMed/NCBI

77 

Grosser T, Ricciotti E and FitzGerald GA: The cardiovascular pharmacology of nonsteroidal anti-inflammatory drugs. Trends Pharmacol Sci. 38:733–748. 2017. View Article : Google Scholar : PubMed/NCBI

78 

Walker C and Biasucci LM: Cardiovascular safety of non-steroidal anti-inflammatory drugs revisited. Postgrad Med. 130:55–71. 2018. View Article : Google Scholar

79 

Yan KS, Janda CY, Chang J, Zheng GXY, Larkin KA, Luca VC, Chia LA, Mah AT, Han A, Terry JM, et al: Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal. Nature. 545:238–242. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Gurney A, Axelrod F, Bond CJ, Cain J, Chartier C, Donigan L, Fischer M, Chaudhari A, Ji M, Kapoun AM, et al: Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci USA. 109:11717–11722. 2012. View Article : Google Scholar : PubMed/NCBI

81 

Zhang Y, Morris JP IV, Yan W, Schofield HK, Gurney A, Simeone DM, Millar SE, Hoey T, Hebrok M and Pasca di Magliano M: Canonical wnt signaling is required for pancreatic carcinogenesis. Cancer Res. 73:4909–4922. 2013. View Article : Google Scholar : PubMed/NCBI

82 

Flanagan DJ, Barker N, Costanzo NSD, Mason EA, Gurney A, Meniel VS, Koushyar S, Austin CR, Ernst M, Pearson HB, et al: Frizzled-7 is required for Wnt signaling in gastric tumors with and without apc mutations. Cancer Res. 79:970–981. 2019. View Article : Google Scholar : PubMed/NCBI

83 

Diamond JR, Becerra C, Richards D, Mita A, Osborne C, O'Shaughnessy J, Zhang C, Henner R, Kapoun AM, Xu L, et al: Phase Ib clinical trial of the anti-frizzled antibody vantictumab (OMP-18R5) plus paclitaxel in patients with locally advanced or metastatic HER2-negative breast cancer. Breast Cancer Res Treat. 184:53–62. 2020. View Article : Google Scholar : PubMed/NCBI

84 

Le PN, McDermott JD and Jimeno A: Targeting the Wnt pathway in human cancers: Therapeutic targeting with a focus on OMP-54F28. Pharmacol Ther. 146:1–11. 2015. View Article : Google Scholar

85 

Jimeno A, Gordon M, Chugh R, Messersmith W, Mendelson D, Dupont J, Stagg R, Kapoun AM, Xu L, Uttamsingh S, et al: A First-in-human phase I study of the anticancer stem cell agent ipafricept (OMP-54F28), a decoy receptor for Wnt ligands, in patients with advanced solid tumors. Clin Cancer Res. 23:7490–7497. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Dotan E, Cardin DB, Lenz HJ, Messersmith W, O'Neil B, Cohen SJ, Denlinger CS, Shahda S, Astsaturov I, Kapoun AM, et al: Phase Ib study of wnt inhibitor ipafricept with gemcitabine and nab-paclitaxel in patients with previously untreated stage IV pancreatic cancer. Clin Cancer Res. 26:5348–5357. 2020. View Article : Google Scholar : PubMed/NCBI

87 

Moore KN, Gunderson CC, Sabbatini P, McMeekin DS, Mantia-Smaldone G, Burger RA, Morgan MA, Kapoun AM, Brachmann RK, Stagg R, et al: A phase 1b dose escalation study of ipafricept (OMP54F28) in combination with paclitaxel and carboplatin in patients with recurrent platinum-sensitive ovarian cancer. Gynecol Oncol. 154:294–301. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Le PN, Keysar SB, Miller B, Eagles JR, Chimed TS, Reisinger J, Gomez KE, Nieto C, Jackson BC, Somerset HL, et al: Wnt signaling dynamics in head and neck squamous cell cancer tumor-stroma interactions. Mol Carcinog. 58:398–410. 2019. View Article : Google Scholar :

89 

Madan B, McDonald MJ, Foxa GE, Diegel CR, Williams BO and Virshup DM: Bone loss from Wnt inhibition mitigated by concurrent alendronate therapy. Bone Res. 6:172018. View Article : Google Scholar : PubMed/NCBI

90 

Resh MD: Palmitoylation of ligands, receptors, and intracellular signaling molecules. Sci STKE. 2006:re142006. View Article : Google Scholar : PubMed/NCBI

91 

Torres VI, Godoy JA and Inestrosa NC: Modulating Wnt signaling at the root: Porcupine and Wnt acylation. Pharmacol Ther. 198:34–45. 2019. View Article : Google Scholar : PubMed/NCBI

92 

Nile AH and Hannoush RN: Fatty acylation of Wnt proteins. Nat Chem Biol. 12:60–69. 2016. View Article : Google Scholar : PubMed/NCBI

93 

Bagheri M, Tabatabae Far MA, Mirzaei H and Ghasemi F: Evaluation of antitumor effects of aspirin and LGK974 drugs on cellular signaling pathways, cell cycle and apoptosis in colorectal cancer cell lines compared to oxaliplatin drug. Fundam Clin Pharmacol. 34:51–64. 2020. View Article : Google Scholar

94 

Hayashi M, Baker A, Goldstein SD, Albert CM, Jackson KW, McCarty G, Kahlert UD and Loeb DM: Inhibition of porcupine prolongs metastasis free survival in a mouse xenograft model of Ewing sarcoma. Oncotarget. 8:78265–78276. 2017. View Article : Google Scholar : PubMed/NCBI

95 

Rudy SF, Brenner JC, Harris JL, Liu J, Che J, Scott MV, Owen JH, Komarck CM, Graham MP, Bellile EL, et al: In vivo Wnt pathway inhibition of human squamous cell carcinoma growth and metastasis in the chick chorioallantoic model. J Otolaryngol Head Neck Surg. 45:262016. View Article : Google Scholar : PubMed/NCBI

96 

Liu J, Pan S, Hsieh MH, Ng N, Sun F, Wang T, Kasibhatla S, Schuller AG, Li AG, Cheng D, et al: Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci USA. 110:20224–20229. 2013. View Article : Google Scholar : PubMed/NCBI

97 

Li J, Wu G, Xu Y, Li J, Ruan N, Chen Y, Zhang Q and Xia Q: Porcupine Inhibitor LGK974 Downregulates the Wnt signaling pathway and inhibits clear cell renal cell carcinoma. Biomed Res Int. 2020:25276432020.PubMed/NCBI

98 

Cho YH, Ro EJ, Yoon JS, Mizutani T, Kang DW, Park JC, Il Kim T, Clevers H and Choi KY: 5-FU promotes stemness of colorectal cancer via p53-mediated WNT/β-catenin pathway activation. Nat Commun. 11:53212020. View Article : Google Scholar

99 

Guimaraes PPG, Tan M, Tammela T, Wu K, Chung A, Oberli M, Wang K, Spektor R, Riley RS, Viana CTR, et al: Potent in vivo lung cancer Wnt signaling inhibition via cyclodextrin-LGK974 inclusion complexes. J Control Release. 290:75–87. 2018. View Article : Google Scholar : PubMed/NCBI

100 

Jin XF, Spoettl G, Maurer J, Nölting S and Auernhammer CJ: Inhibition of Wnt/β-Catenin signaling in neuroendocrine tumors in vitro: Antitumoral effects. Cancers (Basel). 12:3452020. View Article : Google Scholar

101 

Suwala AK, Koch K, Rios DH, Aretz P, Uhlmann C, Ogorek I, Felsberg J, Reifenberger G, Köhrer K, Deenen R, et al: Inhibition of Wnt/beta-catenin signaling downregulates expression of aldehyde dehydrogenase isoform 3A1 (ALDH3A1) to reduce resistance against temozolomide in glioblastoma in vitro. Oncotarget. 9:22703–22716. 2018. View Article : Google Scholar : PubMed/NCBI

102 

Boone JD, Arend RC, Johnston BE, Cooper SJ, Gilchrist SA, Oelschlager DK, Grizzle WE, McGwin G Jr, Gangrade A, Straughn JM Jr and Buchsbaum DJ: Targeting the Wnt/β-catenin pathway in primary ovarian cancer with the porcupine inhibitor WNT974. Lab Invest. 96:249–259. 2016. View Article : Google Scholar

103 

Bland T, Wang J, Yin L, Pu T, Li J, Gao J, Lin TP, Gao AC and Wu BJ: WLS-Wnt signaling promotes neuroendocrine prostate cancer. iScience. 24:1019702021. View Article : Google Scholar : PubMed/NCBI

104 

Jiang X, Hao HX, Growney JD, Woolfenden S, Bottiglio C, Ng N, Lu B, Hsieh MH, Bagdasarian L, Meyer R, et al: Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proc Natl Acad Sci USA. 110:12649–12654. 2013. View Article : Google Scholar : PubMed/NCBI

105 

Li Y, Li J, Wang R, Zhang L, Fu G, Wang X, Wang Y, Fang C, Zhang D, Du D, et al: Frequent RNF43 mutation contributes to moderate activation of Wnt signaling in colorectal signet-ring cell carcinoma. Protein Cell. 11:292–298. 2020. View Article : Google Scholar : PubMed/NCBI

106 

Rodon J, Argilés G, Connolly RM, Vaishampayan U, de Jonge M, Garralda E, Giannakis M, Smith DC, Dobson JR, McLaughlin ME, et al: Phase 1 study of single-agent WNT974, a first-in-class Porcupine inhibitor, in patients with advanced solid tumours. Br J Cancer. 125:28–37. 2021. View Article : Google Scholar : PubMed/NCBI

107 

Mo ML, Li MR, Chen Z, Liu XW, Sheng Q and Zhou HM: Inhibition of the Wnt palmitoyltransferase porcupine suppresses cell growth and downregulates the Wnt/β-catenin pathway in gastric cancer. Oncol Lett. 5:1719–1723. 2013. View Article : Google Scholar : PubMed/NCBI

108 

Blyszczuk P, Müller-Edenborn B, Valenta T, Osto E, Stellato M, Behnke S, Glatz K, Basler K, Lüscher TF, Distler O, et al: Transforming growth factor-β-dependent Wnt secretion controls myofibroblast formation and myocardial fibrosis progression in experimental autoimmune myocarditis. Eur Heart J. 38:1413–1425. 2017.

109 

Najdi R, Proffitt K, Sprowl S, Kaur S, Yu J, Covey TM, Virshup DM and Waterman ML: A uniform human Wnt expression library reveals a shared secretory pathway and unique signaling activities. Differentiation. 84:203–213. 2012. View Article : Google Scholar : PubMed/NCBI

110 

Boulter L, Guest RV, Kendall TJ, Wilson DH, Wojtacha D, Robson AJ, Ridgway RA, Samuel K, Van Rooijen N, Barry ST, et al: WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. J Clin Invest. 125:1269–1285. 2015. View Article : Google Scholar : PubMed/NCBI

111 

Katoh M: Multi-layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β-catenin signaling activation (Review). Int J Mol Med. 42:713–725. 2018.PubMed/NCBI

112 

Zhang J, Cai H, Sun L, Zhan P, Chen M, Zhang F, Ran Y and Wan J: LGR5, a novel functional glioma stem cell marker, promotes EMT by activating the Wnt/β-catenin pathway and predicts poor survival of glioma patients. J Exp Clin Cancer Res. 37:2252018. View Article : Google Scholar

113 

Jang J, Song J, Sim I, Kwon YV and Yoon Y: Wnt-Signaling Inhibitor Wnt-C59 suppresses the cytokine upregulation in multiple organs of lipopolysaccharide-induced endotoxemic mice via reducing the interaction between β-Catenin and NF-κB. Int J Mol Sci. 22:62492021. View Article : Google Scholar

114 

Jang J, Song J, Sim I and Yoon Y: Wnt-C59 inhibits proinflammatory cytokine expression by reducing the interaction between β-catenin and NF-κB in LPS-stimulated epithelial and macrophage cells. Korean J Physiol Pharmacol. 25:307–319. 2021. View Article : Google Scholar : PubMed/NCBI

115 

Madan B, Ke Z, Harmston N, Ho SY, Frois AO, Alam J, Jeyaraj DA, Pendharkar V, Ghosh K, Virshup IH, et al: Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene. 35:2197–2207. 2016. View Article : Google Scholar

116 

Zhong Z, Sepramaniam S, Chew XH, Wood K, Lee MA, Madan B and Virshup DM: PORCN inhibition synergizes with PI3K/mTOR inhibition in Wnt-addicted cancers. Oncogene. 38:6662–6677. 2019. View Article : Google Scholar : PubMed/NCBI

117 

Kaur A, Lim JYS, Sepramaniam S, Patnaik S, Harmston N, Lee MA, Petretto E, Virshup DM and Madan B: WNT inhibition creates a BRCA-like state in Wnt-addicted cancer. EMBO Mol Med. 13:e133492021. View Article : Google Scholar : PubMed/NCBI

118 

Shirai F, Mizutani A, Yashiroda Y, Tsumura T, Kano Y, Muramatsu Y, Chikada T, Yuki H, Niwa H, Sato S, et al: Design and discovery of an orally efficacious spiroindolinone-based tankyrase inhibitor for the treatment of colon cancer. J Med Chem. 63:4183–4204. 2020. View Article : Google Scholar : PubMed/NCBI

119 

Kulak O, Chen H, Holohan B, Wu X, He H, Borek D, Otwinowski Z, Yamaguchi K, Garofalo LA, Ma Z, et al: Disruption of Wnt/β-Catenin signaling and telomeric shortening are inextricable consequences of tankyrase inhibition in human cells. Mol Cell Biol. 35:2425–2435. 2015. View Article : Google Scholar : PubMed/NCBI

120 

Arqués O, Chicote I, Puig I, Tenbaum SP, Argilés G, Dienstmann R, Fernández N, Caratù G, Matito J, Silberschmidt D, et al: Tankyrase Inhibition Blocks Wnt/β-Catenin pathway and reverts resistance to PI3K and AKT inhibitors in the treatment of colorectal cancer. Clin Cancer Res. 22:644–656. 2016. View Article : Google Scholar

121 

Wu X, Luo F, Li J, Zhong X and Liu K: Tankyrase1 inhibitior XAV939 increases chemosensitivity in colon cancer cell lines via inhibition of the Wnt signaling pathway. Int J Oncol. 48:1333–1340. 2016. View Article : Google Scholar : PubMed/NCBI

122 

Yu J, Liu D, Sun X, Yang K, Yao J, Cheng C, Wang C and Zheng J: CDX2 inhibits the proliferation and tumor formation of colon cancer cells by suppressing Wnt/β-catenin signaling via transactivation of GSK-3β and Axin2 expression. Cell Death Dis. 10:262019. View Article : Google Scholar

123 

Sun K, He SB, Yao YZ, Qu JG, Xie R, Ma YQ, Zong MH and Chen JX: Tre2 (USP6NL) promotes colorectal cancer cell proliferation via Wnt/β-catenin pathway. Cancer Cell Int. 19:1022019. View Article : Google Scholar

124 

Alula KM, Delgado-Deida Y, Jackson DN, Venuprasad K and Theiss AL: Nuclear partitioning of Prohibitin 1 inhibits Wnt/β-catenin-dependent intestinal tumorigenesis. Oncogene. 40:369–383. 2021. View Article : Google Scholar

125 

Wang T, Ning K, Lu TX and Hua D: Elevated expression of TrpC5 and GLUT1 is associated with chemoresistance in colorectal cancer. Oncol Rep. 37:1059–1065. 2017. View Article : Google Scholar

126 

Xu J, Lv G, Xu B and Jiang B: Overexpression of UBE2M through Wnt/β-Catenin signaling is associated with poor prognosis and chemotherapy resistance in colorectal cancer. Transl Cancer Res. 9:5614–5625. 2020. View Article : Google Scholar : PubMed/NCBI

127 

Siraj AK, Kumar Parvathareddy S, Pratheeshkumar P, Padmaja Divya S, Ahmed SO, Melosantos R, Begum R, Concepcion RMJA, Al-Sanea N, Ashari LH, et al: APC truncating mutations in Middle Eastern Population: Tankyrase inhibitor is an effective strategy to sensitize APC mutant CRC To 5-FU chemotherapy. Biomed Pharmacother. 121:1095722020. View Article : Google Scholar

128 

Martins-Neves SR, Paiva-Oliveira DI, Fontes-Ribeiro C, Bovée JVMG, Cleton-Jansen AM and Gomes CMF: IWR-1, a tankyrase inhibitor, attenuates Wnt/β-catenin signaling in cancer stem-like cells and inhibits in vivo the growth of a subcutaneous human osteosarcoma xenograft. Cancer Lett. 414:1–15. 2018. View Article : Google Scholar

129 

Cheng C, Huang Z, Zhou R, An H, Cao G, Ye J, Huang C and Wu D: Numb negatively regulates the epithelial-to-mesenchymal transition in colorectal cancer through the Wnt signaling pathway. Am J Physiol Gastrointest Liver Physiol. 318:G841–G853. 2020. View Article : Google Scholar : PubMed/NCBI

130 

Okunlola FO, Akawa OB, Subair TI, Omolabi KF and Soliman MES: Unravelling the mechanistic role of quinazolinone pharmacophore in the inhibitory activity of bis-quinazolinone derivative on tankyrase-1 in the treatment of colorectal cancer (CRC) and non-small cell lung cancer (NSCLC): A computational approach. Cell Biochem Biophys. 80:1–10. 2022. View Article : Google Scholar

131 

Lau T, Chan E, Callow M, Waaler J, Boggs J, Blake RA, Magnuson S, Sambrone A, Schutten M, Firestein R, et al: A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. Cancer Res. 73:3132–3144. 2013. View Article : Google Scholar : PubMed/NCBI

132 

Katoh M: Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int J Oncol. 51:1357–1369. 2017. View Article : Google Scholar : PubMed/NCBI

133 

Norum JH, Skarpen E, Brech A, Kuiper R, Waaler J, Krauss S and Sørlie T: The tankyrase inhibitor G007-LK inhibits small intestine LGR5+ stem cell proliferation without altering tissue morphology. Biol Res. 51:32018. View Article : Google Scholar

134 

Kierulf-Vieira KS, Sandberg CJ, Waaler J, Lund K, Skaga E, Saberniak BM, Panagopoulos I, Brandal P, Krauss S, Langmoen IA and Vik-Mo EO: A small-molecule tankyrase inhibitor reduces glioma stem cell proliferation and sphere formation. Cancers (Basel). 12:16302020. View Article : Google Scholar : PubMed/NCBI

135 

Waaler J, Mygland L, Tveita A, Strand MF, Solberg NT, Olsen PA, Aizenshtadt A, Fauskanger M, Lund K, Brinch SA, et al: Tankyrase inhibition sensitizes melanoma to PD-1 immune checkpoint blockade in syngeneic mouse models. Commun Biol. 3:1962020. View Article : Google Scholar : PubMed/NCBI

136 

Solberg NT, Waaler J, Lund K, Mygland L, Olsen PA and Krauss S: TANKYRASE inhibition enhances the antiproliferative effect of PI3K and EGFR inhibition, mutually affecting β-CATENIN and AKT signaling in colorectal cancer. Mol Cancer Res. 16:543–553. 2018. View Article : Google Scholar

137 

Tang L, Zhu H, Yang X, Xie F, Peng J, Jiang D, Xie J, Qi M and Yu L: Shizukaol D, a dimeric sesquiterpene isolated from chloranthus serratus, represses the growth of human liver cancer cells by modulating wnt signalling pathway. PLoS One. 11:e01520122016. View Article : Google Scholar : PubMed/NCBI

138 

Pricci M, Girardi B, Giorgio F, Losurdo G, Ierardi E and Di Leo A: Curcumin and colorectal cancer: From basic to clinical evidences. Int J Mol Sci. 21:23642020. View Article : Google Scholar : PubMed/NCBI

139 

Weng W and Goel A: Curcumin and colorectal cancer: An update and current perspective on this natural medicine. Semin Cancer Biol. 80:73–86. 2022. View Article : Google Scholar

140 

Villegas C, Perez R, Sterner O, González-Chavarría I and Paz C: Curcuma as an adjuvant in colorectal cancer treatment. Life Sci. 286:1200432021. View Article : Google Scholar : PubMed/NCBI

141 

Jiang X, Li S, Qiu X, Cong J, Zhou J and Miu W: Curcumin inhibits cell viability and increases apoptosis of SW620 human colon adenocarcinoma cells via the caudal type homeobox-2 (CDX2)/Wnt/β-catenin pathway. Med Sci Monit. 25:7451–7458. 2019. View Article : Google Scholar : PubMed/NCBI

142 

Bian Y, Wang G, Zhou J, Yin G, Liu T, Liang L, Liang L, Yang X, Zhang W, Ni K, et al: Astragalus membranaceus (Huangqi) and Rhizoma curcumae (Ezhu) decoction suppresses colorectal cancer via downregulation of Wnt5/β-Catenin signal. Chin Med. 17:112022. View Article : Google Scholar

143 

Wu X, Yu N, Zhang Y, Ye Y, Sun W, Ye L, Wu H, Yang Z, Wu L and Wang F: Radix Tetrastigma hemsleyani flavone exhibits antitumor activity in colorectal cancer via Wnt/β-catenin signaling pathway. Onco Targets Ther. 11:6437–6446. 2018. View Article : Google Scholar :

144 

Pintova S, Dharmupari S, Moshier E, Zubizarreta N, Ang C and Holcombe RF: Genistein combined with FOLFOX or FOLFOX-Bevacizumab for the treatment of metastatic colorectal cancer: Phase I/II pilot study. Cancer Chemother Pharmacol. 84:591–598. 2019. View Article : Google Scholar : PubMed/NCBI

145 

Křížová L, Dadáková K, Kašparovská J and Kašparovský T: Isoflavones. Molecules. 24:10762019. View Article : Google Scholar :

146 

Dou R, Ng K, Giovannucci EL, Manson JE, Qian ZR and Ogino S: Vitamin D and colorectal cancer: Molecular, epidemiological and clinical evidence. Br J Nutr. 115:1643–1660. 2016. View Article : Google Scholar : PubMed/NCBI

147 

Wesselink E, Kok DE, Bours MJL, de Wilt JHW, van Baar H, van Zutphen M, Geijsen AMJR, Keulen ETP, Hansson BME, van den Ouweland J, et al: Vitamin D, magnesium, calcium, and their interaction in relation to colorectal cancer recurrence and all-cause mortality. Am J Clin Nutr. 111:1007–1017. 2020. View Article : Google Scholar : PubMed/NCBI

148 

Kim H, Lipsyc-Sharf M, Zong X, Wang X, Hur J, Song M, Wang M, Smith-Warner SA, Fuchs C, Ogino S, et al: Total Vitamin D intake and risks of early-onset colorectal cancer and precursors. Gastroenterology 2021. 161:1208–1217.e9. 2021.

149 

Fernández-Barral A, Costales-Carrera A, Buira SP, Jung P, Ferrer-Mayorga G, Larriba MJ, Bustamante-Madrid P, Domínguez O, Real FX, Guerra-Pastriá L, et al: Vitamin D differentially regulates colon stem cells in patient-derived normal and tumor organoids. FEBS J. 287:53–72. 2020. View Article : Google Scholar

150 

Razak S, Afsar T, Almajwal A, Alam I and Jahan S: Growth inhibition and apoptosis in colorectal cancer cells induced by Vitamin D-Nanoemulsion (NVD): Involvement of Wnt/β-catenin and other signal transduction pathways. Cell Biosci. 9:152019. View Article : Google Scholar

151 

Ren H, Zhao J, Fan D, Wang Z, Zhao T, Li Y, Zhao Y, Adelson D and Hao H: Alkaloids from nux vomica suppresses colon cancer cell growth through Wnt/β-catenin signaling pathway. Phytother Res. 33:1570–1578. 2019. View Article : Google Scholar : PubMed/NCBI

152 

Seshadri VD: Brucine promotes apoptosis in cervical cancer cells (ME-180) via suppression of inflammation and cell proliferation by regulating PI3K/AKT/mTOR signaling pathway. Environ Toxicol. 36:1841–1847. 2021. View Article : Google Scholar : PubMed/NCBI

153 

Ruan H, Zhan YY, Hou J, Xu B, Chen B, Tian Y, Wu D, Zhao Y, Zhang Y, Chen X, et al: Berberine binds RXRα to suppress β-catenin signaling in colon cancer cells. Oncogene. 36:6906–6918. 2017. View Article : Google Scholar : PubMed/NCBI

154 

Liu Y, Liu X, Zhang N, Yin M, Dong J, Zeng Q, Mao G, Song D, Liu L and Deng H: Berberine diminishes cancer cell PD-L1 expression and facilitates antitumor immunity via inhibiting the deubiquitination activity of CSN5. Acta Pharm Sin B. 10:2299–2312. 2020. View Article : Google Scholar : PubMed/NCBI

155 

Ham SW, Kim JK, Jeon HY, Kim EJ, Jin X, Eun K, Park CG, Lee SY, Seo S, Kim JY, et al: Korean Red ginseng extract inhibits glioblastoma propagation by blocking the Wnt signaling pathway. J Ethnopharmacol. 236:393–400. 2019. View Article : Google Scholar : PubMed/NCBI

156 

Kim D, Park M, Haleem I, Lee Y, Koo J, Na YC, Song G and Lee J: Natural product ginsenoside 20(S)-25-Methoxyl-Dammarane-3β, 12β, 20-Triol in cancer treatment: A review of the pharmacological mechanisms and pharmacokinetics. Front Pharmacol. 11:5212020. View Article : Google Scholar

157 

Yuan Y, Wang J, Xu M, Zhang Y, Wang Z, Liang L and Sun P: 20(S)-ginsenoside Rh2 as agent for the treatment of LMN-CRC via regulating epithelial-mesenchymal transition. Biosci Rep. 40:BSR201915072020. View Article : Google Scholar : PubMed/NCBI

158 

Hashemi F, Zarrabi A, Zabolian A, Saleki H, Farahani MV, Sharifzadeh SO, Ghahremaniyeh Z, Bejandi AK, Hushmandi K, Ashrafizadeh M and Khan H: Novel strategy in breast cancer therapy: Revealing the bright side of ginsenosides. Curr Mol Pharmacol. 14:1093–1111. 2021. View Article : Google Scholar : PubMed/NCBI

159 

Sui H, Zhao J, Zhou L, Wen H, Deng W, Li C, Ji Q, Liu X, Feng Y, Chai N, et al: Tanshinone IIA inhibits β-catenin/VEGF-mediated angiogenesis by targeting TGF-β1 in normoxic and HIF-1α in hypoxic microenvironments in human colorectal cancer. Cancer Lett. 403:86–97. 2017. View Article : Google Scholar : PubMed/NCBI

160 

Li H, Jeong JH, Kwon SW, Lee SK, Lee HJ and Ryu JH: Z-Aj oene Inhibits Growth of Colon Cancer by Promotion of CK1α Dependent β-Catenin Phosphorylation. Molecules. 25:7032020. View Article : Google Scholar

161 

Zhu ML, Zheng Z, Lou EZ, Zhao KT, He SY and Chen JY: Anti-gastric cancer effects of Z Ajoene and its molecular mechanisms. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 37:514–519. 2021.In Chinese. PubMed/NCBI

162 

Li N, Zeng A, Wang Q, Chen M, Zhu S and Song L: Regulatory function of DNA methylation mediated lncRNAs in gastric cancer. Cancer Cell Int. 22:2272022. View Article : Google Scholar : PubMed/NCBI

163 

Tong Y, Liu Y, Zheng H, Zheng L, Liu W, Wu J, Ou R, Zhang G, Li F, Hu M, et al: Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling. Oncotarget. 7:31413–31428. 2016. View Article : Google Scholar : PubMed/NCBI

164 

Wang CZ, Wan C, Luo Y, Zhang CF, Zhang QH, Chen L, Liu Z, Wang DH, Lager M, Li CH, et al: Effects of dihydroartemisinin, a metabolite of artemisinin, on colon cancer chemoprevention and adaptive immune regulation. Mol Biol Rep. 49:2695–2709. 2022. View Article : Google Scholar : PubMed/NCBI

165 

Gong RH, Yang DJ, Kwan HY, Lyu AP, Chen GQ and Bian ZX: Cell death mechanisms induced by synergistic effects of halofuginone and artemisinin in colorectal cancer cells. Int J Med Sci. 19:175–185. 2022. View Article : Google Scholar : PubMed/NCBI

166 

Wen SY, Chen YY, Deng CM, Zhang CQ and Jiang MM: Nerigoside suppresses colorectal cancer cell growth and metastatic potential through inhibition of ERK/GSK3β/β-catenin signaling pathway. Phytomedicine. 57:352–363. 2019. View Article : Google Scholar : PubMed/NCBI

167 

Yang D, Zhang X, Zhang W and Rengarajan T: Vicenin-2 inhibits Wnt/β-catenin signaling and induces apoptosis in HT-29 human colon cancer cell line. Drug Des Devel Ther. 12:1303–1310. 2018. View Article : Google Scholar :

168 

Yang MH, Ha IJ, Lee SG, Lee J, Um JY and Ahn KS: Ginkgolide C promotes apoptosis and abrogates metastasis of colorectal carcinoma cells by targeting Wnt/β-catenin signaling pathway. IUBMB Life. 73:1222–1234. 2021. View Article : Google Scholar : PubMed/NCBI

169 

Pashirzad M, Johnston TP and Sahebkar A: Therapeutic effects of polyphenols on the treatment of colorectal cancer by regulating Wnt β-Catenin signaling pathway. J Oncol. 2021:36195102021. View Article : Google Scholar

170 

Howells LM, Berry DP, Elliott PJ, Jacobson EW, Hoffmann E, Hegarty B, Brown K, Steward WP and Gescher AJ: Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases-safety, pharmacokinetics, and pharmacodynamics. Cancer Prev Res (Phila). 4:1419–1425. 2011. View Article : Google Scholar : PubMed/NCBI

171 

Reabroi S, Chairoungdua A, Saeeng R, Kasemsuk T, Saengsawang W, Zhu W and Piyachaturawat P: A silyl andrographolide analogue suppresses Wnt/β-catenin signaling pathway in colon cancer. Biomed Pharmacother. 101:414–421. 2018. View Article : Google Scholar : PubMed/NCBI

172 

Takahashi K, Kikuchi H, Nguyen VH, Oshima Y, Ishigaki H, Nakajima-Shimada J and Kubohara Y: Biological activities of novel derivatives of differentiation-inducing factor 3 from dictyostelium discoideum. Biol Pharm Bull. 40:1941–1947. 2017. View Article : Google Scholar : PubMed/NCBI

173 

Totsuka K, Makioka Y, Iizumi K, Takahashi K, Oshima Y, Kikuchi H and Kubohara Y: Halogen-Substituted derivatives of dictyostelium differentiation-inducing factor-1 suppress serum-induced cell migration of human breast cancer MDA-MB-231 cells in vitro. Biomolecules. 9:2562019. View Article : Google Scholar : PubMed/NCBI

174 

Efe Ertürk N and Taşcı S: The effects of peppermint oil on nausea, vomiting and retching in cancer patients undergoing chemotherapy: An open label quasi-randomized controlled pilot study. Complement Ther Med. 56:1025872021. View Article : Google Scholar

175 

Li X, Bai B, Liu L, Ma P, Kong L, Yan J, Zhang J, Ye Z, Zhou H, Mao B, et al: Novel β-carbolines against colorectal cancer cell growth via inhibition of Wnt/β-catenin signaling. Cell Death Discov. 1:150332015. View Article : Google Scholar

176 

Cha PH, Hwang JH, Kwak DK, Koh E, Kim KS and Choi KY: APC loss induces Warburg effect via increased PKM2 transcription in colorectal cancer. Br J Cancer. 124:634–644. 2021. View Article : Google Scholar :

177 

Ruan Z, Liang M, Lai M, Shang L, Deng X and Su X: KYA1797K down-regulates PD-L1 in colon cancer stem cells to block immune evasion by suppressing the β-catenin/STT3 signaling pathway. Int Immunopharmacol. 78:1060032020. View Article : Google Scholar

178 

Cho YH, Ro EJ, Yoon JS, Kwak DK, Cho J, Kang DW, Lee HY and Choi KY: Small molecule-induced simultaneous destabilization of β-catenin and RAS is an effective molecular strategy to suppress stemness of colorectal cancer cells. Cell Commun Signal. 18:382020. View Article : Google Scholar

179 

Savvidou I, Khong T, Cuddihy A, McLean C, Horrigan S and Spencer A: β-Catenin Inhibitor BC2059 Is efficacious as monotherapy or in combination with proteasome inhibitor bortezomib in multiple myeloma. Mol Cancer Ther. 16:1765–1778. 2017. View Article : Google Scholar : PubMed/NCBI

180 

Savvidou I, Khong T, Whish S, Carmichael I, Sepehrizadeh T, Mithraprabhu S, Horrigan SK, de Veer M and Spencer A: Combination of histone deacetylase inhibitor panobinostat (LBH589) with β-Catenin Inhibitor Tegavivint (BC2059) exerts significant anti-myeloma activity both in vitro and in vivo. Cancers (Basel). 14:8402022. View Article : Google Scholar

181 

Choi JH, Jang TY, Jeon SE, Kim JH, Lee CJ, Yun HJ, Jung JY, Park SY and Nam JS: The small-molecule Wnt Inhibitor ICG-001 efficiently inhibits colorectal cancer stemness and metastasis by suppressing MEIS1 Expression. Int J Mol Sci. 22:134132021. View Article : Google Scholar : PubMed/NCBI

182 

Yang D, Li Q, Shang R, Yao L, Wu L, Zhang M, Zhang L, Xu M, Lu Z, Zhou J, et al: WNT4 secreted by tumor tissues promotes tumor progression in colorectal cancer by activation of the Wnt/β-catenin signalling pathway. J Exp Clin Cancer Res. 39:2512020. View Article : Google Scholar

183 

Song Q, Han Z, Wu X, Wang Y, Zhou L, Yang L, Liu N, Sui H, Cai J, Ji Q and Li Q: β-Arrestin1 promotes colorectal cancer metastasis through GSK-3β/β-Catenin signaling-mediated epithelial-to-mesenchymal transition. Front Cell Dev Biol. 9:6500672021. View Article : Google Scholar

184 

Li B, Orton D, Neitzel LR, Astudillo L, Shen C, Long J, Chen X, Kirkbride KC, Doundoulakis T, Guerra ML, et al: Differential abundance of CK1α provides selectivity for pharmacological CK1α activators to target WNT-dependent tumors. Sci Signal. 10:eaak99162017. View Article : Google Scholar

185 

Zheng W, Hu J, Lv Y, Bai B, Shan L, Chen K, Dai S and Zhu H: Pyrvinium pamoate inhibits cell proliferation through ROS-mediated AKT-dependent signaling pathway in colorectal cancer. Med Oncol. 38:212021. View Article : Google Scholar : PubMed/NCBI

186 

Yang W, Li Y, Ai Y, Obianom ON, Guo D, Yang H, Sakamuru S, Xia M, Shu Y and Xue F: Pyrazole-4-Carboxamide (YW2065): A therapeutic candidate for colorectal cancer via dual activities of Wnt/β-Catenin signaling inhibition and AMP-Activated protein kinase (AMPK) activation. J Med Chem. 62:11151–11164. 2019. View Article : Google Scholar : PubMed/NCBI

187 

Song P, Feng L, Li J, Dai D, Zhu L, Wang C, Li J, Li L, Zhou Q, Shi R, et al: β-catenin represses miR455-3p to stimulate m6A modification of HSF1 mRNA and promote its translation in colorectal cancer. Mol Cancer. 19:1292019. View Article : Google Scholar

188 

Wang Z, Zhou L, Wang Y, Peng Q, Li H, Zhang X, Su Z, Song J, Sun Q, Sayed S, et al: The CK1δ/ε-AES axis regulates tumorigenesis and metastasis in colorectal cancer. Theranostics. 11:4421–4435. 2021. View Article : Google Scholar :

189 

Li Y, Rogoff HA, Keates S, Gao Y, Murikipudi S, Mikule K, Leggett D, Li W, Pardee AB and Li CJ: Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proc Natl Acad Sci USA. 112:1839–1844. 2015. View Article : Google Scholar : PubMed/NCBI

190 

MacDonagh L, Gray SG, Breen E, Cuffe S, Finn SP, O'Byrne KJ and Barr MP: BBI608 inhibits cancer stemness and reverses cisplatin resistance in NSCLC. Cancer Lett. 428:117–126. 2018. View Article : Google Scholar : PubMed/NCBI

191 

Han D, Yu T, Dong N, Wang B, Sun F and Jiang D: Napabucasin, a novel STAT3 inhibitor suppresses proliferation, invasion and stemness of glioblastoma cells. J Exp Clin Cancer Res. 38:2892019. View Article : Google Scholar : PubMed/NCBI

192 

Beyreis M, Gaisberger M, Jakab M, Neureiter D, Helm K, Ritter M, Kiesslich T and Mayr C: The cancer stem cell inhibitor napabucasin (BBI608) shows general cytotoxicity in biliary tract cancer cells and reduces cancer stem cell characteristics. Cancers (Basel). 11:2762019. View Article : Google Scholar : PubMed/NCBI

193 

Jonker DJ, Nott L, Yoshino T, Gill S, Shapiro J, Ohtsu A, Zalcberg J, Vickers MM, Wei AC, Gao Y, et al: Napabucasin versus placebo in refractory advanced colorectal cancer: A randomised phase 3 trial. Lancet Gastroenterol Hepatol. 3:263–270. 2018. View Article : Google Scholar : PubMed/NCBI

194 

Tam BY, Chiu K, Chung H, Bossard C, Nguyen JD, Creger E, Eastman BW, Mak CC, Ibanez M, Ghias A, et al: The CLK inhibitor SM08502 induces anti-tumor activity and reduces Wnt pathway gene expression in gastrointestinal cancer models. Cancer Lett. 473:186–197. 2020. View Article : Google Scholar

195 

Kajino-Sakamoto R, Fujishita T, Taketo MM and Aoki M: Synthetic lethality between MyD88 loss and mutations in Wnt/β-catenin pathway in intestinal tumor epithelial cells. Oncogene. 40:408–420. 2021. View Article : Google Scholar

196 

Chen Y, Rao X, Huang K, Jiang X, Wang H and Teng L: FH535 inhibits proliferation and motility of colon cancer cells by targeting wnt/β-catenin signaling pathway. J Cancer. 8:3142–3153. 2017. View Article : Google Scholar :

197 

Tu X, Hong D, Jiang Y, Lou Z, Wang K, Jiang Y and Jin L: FH535 inhibits proliferation and migration of colorectal cancer cells by regulating CyclinA2 and Claudin1 gene expression. Gene. 690:48–56. 2019. View Article : Google Scholar

198 

Hua F, Shang S, Yang YW, Zhang HZ, Xu TL, Yu JJ, Zhou DD, Cui B, Li K, Lv XX, et al: TRIB3 Interacts With β-Catenin and TCF4 to increase stem cell features of colorectal cancer stem cells and tumorigenesis. Gastroenterology. 156:708–721.e15. 2019. View Article : Google Scholar

199 

Shang S, Yang YW, Chen F, Yu L, Shen SH, Li K, Cui B, Lv XX, Zhang C, Yang C, et al: TRIB3 reduces CD8(+) T cell infiltration and induces immune evasion by repressing the STAT1-CXCL10 axis in colorectal cancer. Sci Transl Med. 14:eabf09922022. View Article : Google Scholar : PubMed/NCBI

200 

Cai X, Wei B, Li L, Chen X, Yang J, Li X, Jiang X, Lv M, Li M, Lin Y, et al: Therapeutic potential of apatinib against colorectal cancer by inhibiting VEGFR2-Mediated Angiogenesis and β-Catenin Signaling. Onco Targets Ther. 13:11031–11044. 2020. View Article : Google Scholar :

201 

Or CR, Huang CW and Chang CC, Lai YC, Chen YJ and Chang CC: Obatoclax, a Pan-BCL-2 inhibitor, downregulates survivin to induce apoptosis in human colorectal carcinoma cells via suppressing WNT/β-catenin Signaling. Int J Mol Sci. 21:17732020. View Article : Google Scholar

202 

Gan T, Stevens AT, Xiong X, Wen YA, Farmer TN, Li AT, Stevens PD, Golshani S, Weiss HL, Evers BM and Gao T: Inhibition of protein tyrosine phosphatase receptor type F suppresses Wnt signaling in colorectal cancer. Oncogene. 39:6789–6801. 2020. View Article : Google Scholar : PubMed/NCBI

203 

Song W, Ma J, Lei B, Yuan X, Cheng B, Yang H, Wang M, Feng Z and Wang L: Sine oculis homeobox 1 promotes proliferation and migration of human colorectal cancer cells through activation of Wnt/β-catenin signaling. Cancer Sci. 110:608–616. 2019. View Article : Google Scholar :

204 

Lepore Signorile M, Grossi V, Di Franco S, Forte G, Disciglio V, Fasano C, Disciglio V, Fasano C, Sanese P, De Marco K, et al: Pharmacological targeting of the novel β-catenin chromatin-associated kinase p38α in colorectal cancer stem cell tumorspheres and organoids. Cell Death Dis. 12:3162021. View Article : Google Scholar

205 

Sheng YH, Wong KY, Seim I, Wang R, He Y, Wu A, Patrick M, Lourie R, Schreiber V, Giri R, et al: MUC13 promotes the development of colitis-associated colorectal tumors via β-catenin activity. Oncogene. 38:7294–7310. 2019. View Article : Google Scholar : PubMed/NCBI

206 

Li Q, Wang G, Tao J and Chen W: RNF6 promotes colorectal cancer invasion and migration via the Wnt/β-catenin pathway by inhibiting GSK3β activity. Pathol Res Pract. 225:1535452021. View Article : Google Scholar

207 

Peng W, Zhang H, Tan S, Li Y, Zhou Y, Wang L, Liu C, Li Q, Cen X, Yang S and Zhao Y: Synergistic antitumor effect of 5-fluorouracil with the novel LSD1 inhibitor ZY0511 in colorectal cancer. Ther Adv Med Oncol. 12:17588359209374282020. View Article : Google Scholar : PubMed/NCBI

208 

Zhu Y, Gu L, Lin X, Zhang J, Tang Y, Zhou X, Lu B, Lin X, Liu C, Prochownik EV and Li Y: Ceramide-mediated gut dysbiosis enhances cholesterol esterification and promotes colorectal tumorigenesis in mice. JCI Insight. 7:e1506072022. View Article : Google Scholar :

209 

Chen Z, Wu J, Liu B, Zhang G, Wang Z, Zhang L, Wang K, Fan Z and Zhu P: Identification of cis-HOX-HOXC10 axis as a therapeutic target for colorectal tumor-initiating cells without APC mutations. Cell Rep. 36:1094312021. View Article : Google Scholar : PubMed/NCBI

210 

Wang C, Dai J, Sun Z, Shi C, Cao H, Chen X, Gu S, Li Z, Qian W and Han X: Targeted inhibition of disheveled PDZ domain via NSC668036 depresses fibrotic process. Exp Cell Res. 331:115–122. 2015. View Article : Google Scholar

211 

Pradhan TR and Mohapatra DK: A synthetic study toward the core structure of (-)-apicularen A. Org Biomol Chem. 16:8810–8818. 2018. View Article : Google Scholar : PubMed/NCBI

212 

Mauvezin C and Neufeld TP: Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy. 11:1437–1438. 2015. View Article : Google Scholar : PubMed/NCBI

213 

Wang J, Mook RA Jr, Ren XR, Zhang Q, Jing G, Lu M, Spasojevic I, Lyerly HK, Hsu D and Chen W: Identification of DK419, a potent inhibitor of Wnt/β-catenin signaling and colorectal cancer growth. Bioorg Med Chem. 26:5435–5442. 2018. View Article : Google Scholar : PubMed/NCBI

214 

An T, Gong Y, Li X, Kong L, Ma P, Gong L, Zhu H, Yu C, Liu J, Zhou H, et al: USP7 inhibitor P5091 inhibits Wnt signaling and colorectal tumor growth. Biochem Pharmacol. 131:29–39. 2017. View Article : Google Scholar : PubMed/NCBI

215 

Kumar B, Ahmad R, Sharma S, Gowrikumar S, Primeaux M, Rana S, Natarajan A, Oupicky D, Hopkins CR, Dhawan P and Singh AB: PIK3C3 inhibition promotes sensitivity to colon cancer therapy by inhibiting cancer stem cells. Cancers (Basel). 13:21682021. View Article : Google Scholar : PubMed/NCBI

216 

Ye GD, Sun GB, Jiao P, Chen C, Liu QF, Huang XL, Zhang R, Cai WY, Li SN, Wu JF, et al: OVOL2, an inhibitor of WNT signaling, reduces invasive activities of human and mouse cancer cells and is down-regulated in human colorectal tumors. Gastroenterology. 150:659–671.e16. 2016. View Article : Google Scholar

217 

Monin MB, Krause P, Stelling R, Bocuk D, Niebert S, Klemm F, Pukrop T and Koenig S: The anthelmintic niclosamide inhibits colorectal cancer cell lines via modulation of the canonical and noncanonical Wnt signaling pathway. J Surg Res. 203:193–205. 2016. View Article : Google Scholar : PubMed/NCBI

218 

Ren Y, Tao J, Jiang Z, Guo D and Tang J: Pimozide suppresses colorectal cancer via inhibition of Wnt/β-catenin signaling pathway. Life Sci. 209:267–273. 2018. View Article : Google Scholar : PubMed/NCBI

219 

Fako V, Yu Z, Henrich CJ, Ransom T, Budhu AS and Wang XW: Inhibition of wnt/β-catenin signaling in hepatocellular carcinoma by an antipsychotic drug pimozide. Int J Biol Sci. 12:768–775. 2016. View Article : Google Scholar :

220 

Al-Dali AM, Weiher H and Schmidt-Wolf IGH: Utilizing ethacrynic acid and ciclopirox olamine in liver cancer. Oncol Lett. 16:6854–6860. 2018.PubMed/NCBI

221 

Liu Q, Zeng A, Liu Z, Wu C and Song L: Liver organoids: From fabrication to application in liver diseases. Front Physiol. 13:9562442022. View Article : Google Scholar : PubMed/NCBI

222 

Caspi M, Wittenstein A, Kazelnik M, Shor-Nareznoy Y and Rosin-Arbesfeld R: Therapeutic targeting of the oncogenic Wnt signaling pathway for treating colorectal cancer and other colonic disorders. Adv Drug Deliv Rev. 169:118–136. 2021. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen Y, Chen M and Deng K: Blocking the Wnt/β‑catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies (Review). Int J Oncol 62: 24, 2023.
APA
Chen, Y., Chen, M., & Deng, K. (2023). Blocking the Wnt/β‑catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies (Review). International Journal of Oncology, 62, 24. https://doi.org/10.3892/ijo.2022.5472
MLA
Chen, Y., Chen, M., Deng, K."Blocking the Wnt/β‑catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies (Review)". International Journal of Oncology 62.2 (2023): 24.
Chicago
Chen, Y., Chen, M., Deng, K."Blocking the Wnt/β‑catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies (Review)". International Journal of Oncology 62, no. 2 (2023): 24. https://doi.org/10.3892/ijo.2022.5472
Copy and paste a formatted citation
x
Spandidos Publications style
Chen Y, Chen M and Deng K: Blocking the Wnt/β‑catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies (Review). Int J Oncol 62: 24, 2023.
APA
Chen, Y., Chen, M., & Deng, K. (2023). Blocking the Wnt/β‑catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies (Review). International Journal of Oncology, 62, 24. https://doi.org/10.3892/ijo.2022.5472
MLA
Chen, Y., Chen, M., Deng, K."Blocking the Wnt/β‑catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies (Review)". International Journal of Oncology 62.2 (2023): 24.
Chicago
Chen, Y., Chen, M., Deng, K."Blocking the Wnt/β‑catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies (Review)". International Journal of Oncology 62, no. 2 (2023): 24. https://doi.org/10.3892/ijo.2022.5472
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team