|
1
|
Colucci-D'amato L, Speranza L and
Volpicelli F: Neurotrophic factor BDNF, physiological functions and
therapeutic potential in depression, neurodegeneration and brain
cancer. Int J Mol Sci. 21:77772020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Radin DP and Patel P: BDNF: An oncogene or
tumor suppressor? Anticancer Res. 37:3983–3990. 2017.PubMed/NCBI
|
|
3
|
Meng L, Liu B, Ji R, Jiang X, Yan X and
Xin Y: Targeting the BDNF/TrkB pathway for the treatment of tumors.
Oncol Lett. 17:2031–2039. 2019.PubMed/NCBI
|
|
4
|
Pruunsild P, Kazantseva A, Aid T, Palm K
and Timmusk T: Dissecting the human BDNF locus: Bidirectional
transcription, complex splicing, and multiple promoters. Genomics.
90:397–406. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
De la Cruz-Morcillo MA, Berger J,
Sánchez-Prieto R, Saada S, Naves T, Guillaudeau A, Perraud A,
Sindou P, Lacroix A, Descazeaud A, et al: p75 neurotrophin receptor
and pro-BDNF promote cell survival and migration in clear cell
renal cell carcinoma. Oncotarget. 7:34480–34497. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wang X, Ma W, Wang T, Yang J, Wu Z, Liu K,
Dai Y, Zang C, Liu W, Liu J, et al: BDNF-TrkB and
proBDNF-p75NTR/sortilin signaling pathways are involved in
mitochondria-mediated neuronal apoptosis in dorsal root ganglia
after sciatic nerve transection. CNS Neurol Disord Drug Targets.
19:66–82. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Xiong J, Zhou L, Yang M, Lim Y, Zhu YH, Fu
DL, Li ZW, Zhong JH, Xiao ZC and Zhou XF: ProBDNF and its receptors
are upregulated in glioma and inhibit the growth of glioma cells in
vitro. Neuro Oncol. 15:990–1007. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Xiong J, Zhou LI, Lim Y, Yang M, Zhu YH,
Li ZW, Fu DL and Zhou XF: Mature brain-derived neurotrophic factor
and its receptor TrkB are upregulated in human glioma tissues.
Oncol Lett. 10:223–227. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Yap NY, Tan NYT, Tan CJ, Loh KW, Ng RCH,
Ho HK and Chan A: Associations of plasma brain-derived neurotrophic
factor (BDNF) and Val66Met polymorphism (rs6265) with long-term
cancer-related cognitive impairment in survivors of breast cancer.
Breast Cancer Res Treat. 183:683–696. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Hall D, Dhilla A, Charalambous A, Gogos JA
and Karayiorgou M: Sequence variants of the brain-derived
neurotrophic factor (BDNF) gene are strongly associated with
obsessive-compulsive disorder. Am J Hum Genet. 73:370–376. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
D'Addario C, Bellia F, Benatti B, Grancini
B, Vismara M, Pucci M, De Carlo V, Viganò C, Galimberti D, Fenoglio
C, et al: Exploring the role of BDNF DNA methylation and
hydroxymethylation in patients with obsessive compulsive disorder.
J Psychiatr Res. 114:17–23. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kleimann A, Kotsiari A, Sperling W,
Gröschl M, Heberlein A, Kahl KG, Hillemacher T, Bleich S, Kornhuber
J and Frieling H: BDNF serum levels and promoter methylation of
BDNF exon I, IV and VI in depressed patients receiving
electroconvulsive therapy. J Neural Transm (Vienna). 122:925–928.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zou W, Hu X and Jiang L: Advances in
regulating tumorigenicity and metastasis of cancer through TrkB
signaling. Curr Cancer Drug Targets. 20:779–788. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wang CS, Kavalali ET and Monteggia LM:
BDNF signaling in context: From synaptic regulation to psychiatric
disorders. Cell. 185:62–76. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Arora S, Kanekiyo T and Singh J:
Functionalized nanoparticles for brain targeted BDNF gene therapy
to rescue Alzheimer's disease pathology in transgenic mouse model.
Int J Biol Macromol. 208:901–911. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Mukherjee S, Kuroiwa M, Oakden W, Paul BT,
Noman A, Chen J, Lin V, Dimitrijevic A, Stanisz G and Le TN: Local
magnetic delivery of adeno-associated virus AAV2(quad Y-F)-mediated
BDNF gene therapy restores hearing after noise injury. Mol Ther.
30:519–533. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Hill M and Tran N: miRNA interplay:
Mechanisms and consequences in cancer. Dis Model Mech.
14:dmm0476622021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
He B, Zhao Z, Cai Q, Zhang Y, Zhang P, Shi
S, Xie H, Peng X, Yin W, Tao Y and Wang X: miRNA-based biomarkers,
therapies, and resistance in cancer. Int J Biol Sci. 16:2628–2647.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Takahashi RU, Prieto-Vila M, Kohama I and
Ochiya T: Development of miRNA-based therapeutic approaches for
cancer patients. Cancer Sci. 110:1140–1147. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Cheng F, Yang Z, Huang F, Yin L, Yan G and
Gong G: microRNA-107 inhibits gastric cancer cell proliferation and
metastasis by targeting PI3K/AKT pathway. Microb Pathog.
121:110–114. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wei J, Xu H, Wei W, Wang Z, Zhang Q, De W
and Shu Y: circHIPK3 promotes cell proliferation and migration of
gastric cancer by sponging miR-107 and regulating BDNF expression.
Onco Targets Ther. 13:1613–1624. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ren J, Huang HJ, Gong Y, Yue S, Tang LM
and Cheng SY: MicroRNA-206 suppresses gastric cancer cell growth
and metastasis. Cell Biosci. 4:262014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ding D, Hou R, Gao Y and Feng Y: miR-613
inhibits gastric cancer progression through repressing brain
derived neurotrophic factor. Exp Ther Med. 15:1735–1741.
2018.PubMed/NCBI
|
|
24
|
Xu AJ, Fu LN, Wu HX, Yao XL and Meng R:
MicroRNA-744 inhibits tumor cell proliferation and invasion of
gastric cancer via targeting brain derived neurotrophic factor. Mol
Med Rep. 16:5055–5061. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Hong W, Zhang Y, Ding J, Yang Q, Xie H and
Gao X: circHIPK3 acts as competing endogenous RNA and promotes
non-small-cell lung cancer progression through the miR-107/BDNF
signaling pathway. Biomed Res Int. 2020:60759022020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Li F, Wang X and Yang L: MicroRNA-147
targets BDNF to inhibit cell proliferation, migration and invasion
in non-small cell lung cancer. Oncol Lett. 20:1931–1937. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ma R, Zhu P, Liu S, Gao B and Wang W:
miR-496 suppress tumorigenesis via targeting BDNF-mediated PI3K/Akt
signaling pathway in non-small cell lung cancer. Biochem Biophys
Res Commun. 518:273–277. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Gao B, Hao S, Tian W, Jiang Y, Zhang S,
Guo L, Zhao J, Zhang G, Yan J and Luo D: MicroRNA-107 is
downregulated and having tumor suppressive effect in breast cancer
by negatively regulating brain-derived neurotrophic factor. J Gene
Med. 19:e29322017. View Article : Google Scholar
|
|
29
|
Zhang HY, Xing MQ, Guo J, Zhao JC, Chen X,
Jiang Z, Zhang H and Dong Q: Long noncoding RNA DLX6-AS1 promotes
neuroblastoma progression by regulating miR-107/BDNF pathway.
Cancer Cell Int. 19:3132019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Gao L, Yan P, Guo FF, Liu HJ and Zhao ZF:
MiR-1-3p inhibits cell proliferation and invasion by regulating
BDNF-TrkB signaling pathway in bladder cancer. Neoplasma. 65:89–96.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Long J, Jiang C, Liu B, Fang S and Kuang
M: MicroRNA-15a-5p suppresses cancer proliferation and division in
human hepatocellular carcinoma by targeting BDNF. Tumour Biol.
37:5821–5828. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Sun YX, Yang J, Wang PY, Li YJ, Xie SY and
Sun RP: Cisplatin regulates SH-SY5Y cell growth through
downregulation of BDNF via miR-16. Oncol Rep. 30:2343–2349. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sun Z, Guo X, Zang M, Wang P, Xue S and
Chen G: Long non-coding RNA LINC00152 promotes cell growth and
invasion of papillary thyroid carcinoma by regulating the
miR-497/BDNF axis. J Cell Physiol. 234:1336–1345. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Hu X, Zou W, Liu D, Qin G and Jiang L: The
down-regulation of TrkB alleviates the malignant biological
behavior and cancer stem-like property of laryngeal cancer. Cancer
Manag Res. 12:6865–6875. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Yan H, Wu W, Ge H, Li P and Wang Z:
Up-regulation of miR-204 enhances anoikis sensitivity in epithelial
ovarian cancer cell line via brain-derived neurotrophic factor
pathway in vitro. Int J Gynecol Cancer. 25:944–952. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Song D, Diao J, Yang Y and Chen Y:
MicroRNA-382 inhibits cell proliferation and invasion of
retinoblastoma by targeting BDNFmediated PI3K/AKT signalling
pathway. Mol Med Rep. 16:6428–6436. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Fei X, Jin HY, Gao Y, Kong LM and Tan XD:
Hsa-miR-10a-5p promotes pancreatic cancer growth by BDNF/SEMA4C
pathway. J Biol Regul Homeost Agents. 34:927–934. 2020.PubMed/NCBI
|
|
38
|
Nagpal N, Ahmad HM, Molparia B and
Kulshreshtha R: MicroRNA-191, an estrogen-responsive microRNA,
functions as an oncogenic regulator in human breast cancer.
Carcinogenesis. 34:1889–1899. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Nagpal N, Sharma S, Maji S, Durante G,
Ferracin M, Thakur JK and Kulshreshtha R: Essential role of MED1 in
the transcriptional regulation of ER-dependent oncogenic miRNAs in
breast cancer. Sci Rep. 8:118052018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Xu Y, Fu Z, Gao X, Wang R and Li Q: Long
non-coding RNA XIST promotes retinoblastoma cell proliferation,
migration, and invasion by modulating microRNA-191-5p/brain derived
neurotrophic factor. Bioengineered. 12:1587–1598. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Dong X, Fu X, Yu M and Li Z: Long
intergenic non-protein coding RNA 1094 promotes initiation and
progression of glioblastoma by promoting microRNA-577-regulated
stabilization of brain-derived neurotrophic factor. Cancer Manag
Res. 12:5619–5631. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Amuti A, Liu D, Maimaiti A, Yu Y, Yasen Y,
Ma H, Li R, Deng S, Pang F and Tian Y: Doxorubicin inhibits
osteosarcoma progression by regulating circ_0000006/miR-646/BDNF
axis. J Orthop Surg Res. 16:6452021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Liu Y, Qi L, Zhang K and Wang F:
MicroRNA-10a suppresses cell metastasis by targeting BDNF and
predicted patients survival in renal cell carcinoma. J BUON.
26:250–258. 2021.PubMed/NCBI
|
|
44
|
Liu S, Jiang T, Zhong Y and Yu Y: miR-210
inhibits cell migration and invasion by targeting the brain-derived
neurotrophic factor in glioblastoma. J Cell Biochem.
120:11375–11382. 2019. View Article : Google Scholar
|
|
45
|
Imam JS, Plyler JR, Bansal H, Prajapati S,
Bansal S, Rebeles J, Chen HI, Chang YF, Panneerdoss S, Zoghi B, et
al: Genomic loss of tumor suppressor miRNA-204 promotes cancer cell
migration and invasion by activating AKT/mTOR/Rac1 signaling and
actin reorganization. PLoS One. 7:e523972012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Zhong KZ, Chen WW, Hu XY, Jiang AL and
Zhao J: Clinicopathological and prognostic significance of
microRNA-107 in human non small cell lung cancer. Int J Clin Exp
Pathol. 7:4545–4551. 2014.PubMed/NCBI
|
|
47
|
Zhai L, Li Y, Lan X and Ai L:
MicroRNA-10a-5p suppresses cancer proliferation and division in
human cervical cancer by targeting BDNF. Exp Ther Med.
14:6147–6151. 2017.PubMed/NCBI
|
|
48
|
Zheng B and Chen T: MiR-489-3p inhibits
cell proliferation, migration, and invasion, and induces apoptosis,
by targeting the BDNF-mediated PI3K/AKT pathway in glioblastoma.
Open Life Sci. 15:274–283. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wang L, Liu Y and Song J: MicroRNA-103
suppresses glioma cell proliferation and invasion by targeting the
brain-derived neurotrophic factor. Mol Med Rep. 17:4083–4089.
2018.PubMed/NCBI
|
|
50
|
Ye J, Xie W, Zuo Y, Jing G and Tong J:
MicroRNA-496 suppresses tumor cell proliferation by targeting BDNF
in osteosarcoma. Exp Ther Med. 19:1425–1431. 2020.PubMed/NCBI
|
|
51
|
Song Y, Wang G, Zhuang J, Ni J, Zhang S,
Ye Y and Xia W: MicroRNA-584 prohibits hepatocellular carcinoma
cell proliferation and invasion by directly targeting BDNF. Mol Med
Rep. 20:1994–2001. 2019.PubMed/NCBI
|
|
52
|
Climent M, Viggiani G, Chen YW, Coulis G
and Castaldi A: MicroRNA and ROS crosstalk in cardiac and pulmonary
diseases. Int J Mol Sci. 21:43702020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Bjorkman KK, Buvoli M, Pugach EK, Polmear
MM and Leinwand LA: miR-1/206 downregulates splicing factor Srsf9
to promote C2C12 differentiation. Skelet Muscle. 9:312019.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Cimmino A, Calin GA, Fabbri M, Iorio MV,
Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, et
al: miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl
Acad Sci USA. 102:13944–13949. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhu W, Zhu D, Lu S, Wang T, Wang J, Jiang
B, Shu Y and Liu P: miR-497 modulates multidrug resistance of human
cancer cell lines by targeting BCL2. Med Oncol. 29:384–391. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Tajbakhsh A, Mokhtari-Zaer A, Rezaee M,
Afzaljavan F, Rivandi M, Hassanian SM, Ferns GA, Pasdar A and Avan
A: Therapeutic potentials of BDNF/TrkB in breast cancer; current
status and perspectives. J Cell Biochem. 118:2502–2515. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Guo D, Sun W, Zhu L, Zhang H, Hou X, Liang
J, Jiang X and Liu C: Knockdown of BDNF suppressed invasion of
HepG2 and HCCLM3 cells, a mechanism associated with inactivation of
RhoA or Rac1 and actin skeleton disorganization. APMIS.
120:469–476. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhou Y, Sinha S, Schwartz JL and Adami GR:
A subtype of oral, laryngeal, esophageal, and lung, squamous cell
carcinoma with high levels of TrkB-T1 neurotrophin receptor mRNA.
BMC Cancer. 19:6072019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Garofalo S, D'Alessandro G, Chece G, Brau
F, Maggi L, Rosa A, Porzia A, Mainiero F, Esposito V, Lauro C, et
al: Enriched environment reduces glioma growth through immune and
non-immune mechanisms in mice. Nat Commun. 6:66232015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Li Z, Chang Z, Chiao LJ, Kang Y, Xia Q,
Zhu C, Fleming JB, Evans DB and Chiao PJ: TrkBT1 induces liver
metastasis of pancreatic cancer cells by sequestering Rho GDP
dissociation inhibitor and promoting RhoA activation. Cancer Res.
69:7851–7859. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Gao J, Zhang X, Jiang L, Li Y and Zheng Q:
Tumor endothelial cell-derived extracellular vesicles contribute to
tumor microenvironment remodeling. Cell Commun Signal. 20:972022.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhou C, Liu Q, Xiang Y, Gou X and Li W:
Role of the tumor immune microenvironment in tumor immunotherapy.
Oncol Lett. 23:532022. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Cao L, Liu X, Lin EJ, Wang C, Choi EY,
Riban V, Lin B and During MJ: Environmental and genetic activation
of a brain-adipocyte BDNF/leptin axis causes cancer remission and
inhibition. Cell. 142:52–64. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Liu X, McMurphy T, Xiao R, Slater A, Huang
W and Cao L: Hypothalamic gene transfer of BDNF inhibits breast
cancer progression and metastasis in middle age obese mice. Mol
Ther. 22:1275–1284. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Xiao R, Bergin SM, Huang W, Slater AM, Liu
X, Judd RT, Lin ED, Widstrom KJ, Scoville SD, Yu J, et al:
Environmental and genetic activation of hypothalamic BDNF modulates
T-cell immunity to exert an anticancer phenotype. Cancer Immunol
Res. 4:488–497. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhou J, Yu L, Gao X, Hu J, Wang J, Dai Z,
Wang JF, Zhang Z, Lu S, Huang X, et al: Plasma microRNA panel to
diagnose hepatitis B virus-related hepatocellular carcinoma. J Clin
Oncol. 29:4781–4788. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ng EKO, Chong WWS, Jin H, Lam EKY, Shin
VY, Yu J, Poon TCW, Ng SSM and Sung JJY: Differential expression of
microRNAs in plasma of patients with colorectal cancer: A potential
marker for colorectal cancer screening. Gut. 58:1375–1381. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Huang Z, Huang D, Ni S, Peng Z, Sheng W
and Du X: Plasma microRNAs are promising novel biomarkers for early
detection of colorectal cancer. Int J Cancer. 127:118–126. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Toden S, Zumwalt TJ and Goel A: Non-coding
RNAs and potential therapeutic targeting in cancer. Biochim Biophys
Acta Rev Cancer. 1875:1884912021. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Saw PE, Xu X, Chen J and Song EW:
Non-coding RNAs: The new central dogma of cancer biology. Sci China
Life Sci. 64:22–50. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zhang S, Cheng Z, Wang Y and Han T: The
risks of miRNA therapeutics: In a drug target perspective. Drug Des
Devel Ther. 15:721–733. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Chu YY, Ko CY, Wang SM, Lin PI, Wang HY,
Lin WC, Wu DY, Wang LH and Wang JM: Bortezomib-induced miRNAs
direct epigenetic silencing of locus genes and trigger apoptosis in
leukemia. Cell Death Dis. 8:e31672017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ye LL, Cheng ZG, Cheng XE and Huang YL:
Propofol regulates miR-1-3p/IGF1 axis to inhibit the proliferation
and accelerates apoptosis of colorectal cancer cells. Toxicol Res
(Camb). 10:696–705. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Cui P, Hu J, Wang X, Xia Y, Ruan X and Cai
M: Effects of propofol on invasion, migration and
epithelial-mesenchymal transition of breast cancer MDA-MB-231 cells
by up-regulating miR-204. Chin J Immunol. 36:2100–2104. 2020.(In
Chinese).
|
|
75
|
Wang D, Yang T, Liu J, Liu Y, Xing N, He
J, Yang J and Ai Y: Propofol inhibits the migration and invasion of
glioma cells by blocking the PI3K/AKT pathway through miR-206/ROCK1
axis. Onco Targets Ther. 13:361–370. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Shi A, Luo J and Cao H: Propofol affects
invasion and metastasis of lung adenocarcinoma cells by regulating
hypoxia inducible factor-1α/microRNA-210 signaling pathway. Chin J
Clin Pharmacol. 35:2314–2317. 2019.(In Chinese).
|
|
77
|
Wang L, Li K, Lin X, Yao Z, Wang S, Xiong
X, Ning Z, Wang J, Xu X, Jiang Y, et al: Metformin induces human
esophageal carcinoma cell pyroptosis by targeting the miR-497/PELP1
axis. Cancer Lett. 450:22–31. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Wang Y, Chen X, Li J and Xia C: Quercetin
antagonizes esophagus cancer by modulating miR-1-3p/TAGLN2
pathway-dependent growth and metastasis. Nutr Cancer. 74:1872–1881.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhao J, Fang Z, Zha Z, Sun Q, Wang H, Sun
M and Qiao B: Quercetin inhibits cell viability, migration and
invasion by regulating miR-16/HOXA10 axis in oral cancer. Eur J
Pharmacol. 847:11–18. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ahmed Youness R, Amr Assal R, Mohamed
Ezzat S, Zakaria Gad M and Abdel Motaal A: A methoxylated quercetin
glycoside harnesses HCC tumor progression in a TP53/miR-15/miR-16
dependent manner. Nat Prod Res. 34:1475–1480. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wang N, Feng T, Liu X and Liu Q: Curcumin
inhibits migration and invasion of non-small cell lung cancer cells
through up-regulation of miR-206 and suppression of PI3K/AKT/mTOR
signaling pathway. Acta Pharm. 70:399–409. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Ran H, Chen H, Pu J, Li M, Zhang Z and He
Y: Effect of curcumin on apoptosis of PC3 cell line via
down-regulating the expressions of MiR210 and TLR4/NF-κB signaling
pathway. Pharmacol Clin Chin Mater. 37:64–68. 2021.(In
Chinese).
|
|
83
|
Li Y, Lin Q, Chang S, Zhang R and Wang J:
Vitamin D3 mediates miR-15a-5p inhibition of liver cancer cell
proliferation via targeting E2F3. Oncol Lett. 20:292–298. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhang J, Ren L, Yu M, Liu X, Ma W, Huang
L, Li X and Ye X: S-equol inhibits proliferation and promotes
apoptosis of human breast cancer MCF-7 cells via regulating
miR-10a-5p and PI3K/AKT pathway. Arch Biochem Biophys.
672:1080642019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zhang W, Li W and Han X: Skullcapflavone I
inhibits proliferation of human colorectal cancer cells via
down-regulation of miR-107 expression. Neoplasma. 66:203–210. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Li H, Xia Z, Liu L, Pan G, Ding J, Liu J,
Kang J, Li J, Jiang D and Liu W: Astragalus IV undermines
multi-drug resistance and glycolysis of MDA-MB-231/ADR Cell line by
depressing hsa_circ_0001982-miR-206/miR-613 axis. Cancer Manag Res.
13:5821–5833. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Dan H, Lei H and JinMing H:
Andrographolide inhibits proliferation and promotes apoptosis of
prostate cancer cells by regulating miR-206/STC2. Chin J Gerontol.
39:4802–4807. 2019.
|
|
88
|
Buist M, Fuss D and Rastegar M:
Transcriptional regulation of MECP2E1-E2 isoforms and BDNF by
Metformin and Simvastatin through analyzing nascent RNA synthesis
in a human brain cell Line. Biomolecules. 11:12532021. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Kumar P, Barua CC, Sulakhiya K and Sharma
RK: Curcumin ameliorates cisplatin-induced nephrotoxicity and
potentiates its anticancer activity in SD rats: Potential role of
curcumin in breast cancer chemotherapy. Front Pharmacol. 8:1322017.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Alhusban L, Ayoub N and Alhusban A:
ProBDNF is a novel mediator of the interaction between MDA-MB-231
breast cancer cells and brain microvascular endothelial cells. Curr
Mol Med. 21:914–921. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Iqbal MUN, Yaqoob T, Ali SA and Khan TA: A
functional polymorphism (rs6265, G>A) of brain-derived
neurotrophic factor gene and breast cancer: An association study.
Breast Cancer (Auckl). 13:11782234198449772019.PubMed/NCBI
|
|
92
|
Kim JM, Kang HJ, Kim SY, Kim SW, Shin IS,
Kim HR, Park MH, Shin MG, Yoon JH and Yoon JS: BDNF promoter
methylation associated with suicidal ideation in patients with
breast cancer. Int J Psychiatry Med. 49:75–94. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Lin X, Dinglin X, Cao S, Zheng S, Wu C,
Chen W, Li Q, Hu Q, Zheng F, Wu Z, et al: Enhancer-driven lncRNA
BDNF-AS induces endocrine resistance and malignant progression of
breast cancer through the RNH1/TRIM21/mTOR cascade. Cell Rep.
31:1077532020. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Huang G, Xiang Z, Wu H, He Q, Dou R, Lin
Z, Yang C, Huang S, Song J, Di Z, et al: The lncRNA
BDNF-AS/WDR5/FBXW7 axis mediates ferroptosis in gastric cancer
peritoneal metastasis by regulating VDAC3 ubiquitination. Int J
Biol Sci. 18:1415–1433. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Koh MJ, Jeung HC, Namkoong K, Chung HC and
Kang JI: Influence of the BDNF Val66Met polymorphism on coping
response to stress in patients with advanced gastric cancer. J
Psychosom Res. 77:76–80. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Guo JC, Yang YJ, Zheng JF, Guo M, Wang XD,
Gao YS, Fu LQ, Jiang XL, Fu LM and Huang T: Functional rs6265
polymorphism in the brain-derived neurotrophic factor gene confers
protection against neurocognitive dysfunction in posttraumatic
stress disorder among Chinese patients with hepatocellular
carcinoma. J Cell Biochem. 120:10434–10443. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Bai L, Zhang S, Zhou X, Li Y and Bai J:
Brain-derived neurotrophic factor induces thioredoxin-1 expression
through TrkB/Akt/CREB pathway in SH-SY5Y cells. Biochimie.
160:55–60. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Hua Z, Gu X, Dong Y, Tan F, Liu Z, Thiele
CJ and Li Z: PI3K and MAPK pathways mediate the BDNF/TrkB-increased
metastasis in neuroblastoma. Tumour Biol. 37:16227–16236.
2016.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Yuan Y, Ye HQ and Ren QC: Upregulation of
the BDNF/TrKB pathway promotes epithelial-mesenchymal transition,
as well as the migration and invasion of cervical cancer. Int J
Oncol. 52:461–472. 2018.PubMed/NCBI
|
|
100
|
Okugawa Y, Tanaka K, Inoue Y, Kawamura M,
Kawamoto A, Hiro J, Saigusa S, Toiyama Y, Ohi M, Uchida K, et al:
Brain-derived neurotrophic factor/tropomyosin-related kinase B
pathway in gastric cancer. Br J Cancer. 108:121–130. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Kojadinovic A, Laderian B and Mundi PS:
Targeting TRK: A fast-tracked application of precision oncology and
future directions. Crit Rev Oncol Hematol. 165:1034512021.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Bhangoo MS and Sigal D: TRK inhibitors:
Clinical development of larotrectinib. Curr Oncol Rep. 21:142019.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Peng Y, Wang Y, Zhou C, Mei W and Zeng C:
PI3K/Akt/mTOR pathway and its role in cancer therapeutics: Are we
making headway? Front Oncol. 12:8191282022. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Kaboli PJ, Imani S, Jomhori M and Ling KH:
Chemoresistance in breast cancer: PI3K/Akt pathway inhibitors vs
the current chemotherapy. Am J Cancer Res. 11:5155–5183.
2021.PubMed/NCBI
|
|
105
|
Duan Y, Haybaeck J and Yang Z: Therapeutic
potential of PI3K/AKT/mTOR pathway in gastrointestinal stromal
tumors: Rationale and progress. Cancers (Basel). 12:29722020.
View Article : Google Scholar : PubMed/NCBI
|