Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
February-2023 Volume 62 Issue 2

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2023 Volume 62 Issue 2

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Interaction of tumor‑associated macrophages with stromal and immune components in solid tumors: Research progress (Review)

  • Authors:
    • Anna Kazakova
    • Tatiana Sudarskikh
    • Oleg Kovalev
    • Julia Kzhyshkowska
    • Irina Larionova
  • View Affiliations / Copyright

    Affiliations: Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russian Federation
    Copyright: © Kazakova et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 32
    |
    Published online on: January 16, 2023
       https://doi.org/10.3892/ijo.2023.5480
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Tumor‑associated macrophages (TAMs) are crucial cells of the tumor microenvironment (TME), which belong to the innate immune system and regulate primary tumor growth, immunosuppression, angiogenesis, extracellular matrix remodeling and metastasis. The review discusses current knowledge of essential cell‑cell interactions of TAMs within the TME of solid tumors. It summarizes the mechanisms of stromal cell (including cancer‑associated fibroblasts and endothelial cells)‑mediated monocyte recruitment and regulation of differentiation, as well as pro‑tumor and antitumor polarization of TAMs. Additionally, it focuses on the perivascular TAM subpopulations that regulate angiogenesis and lymphangiogenesis. It describes the possible mechanisms of reciprocal interactions of TAMs with other immune cells responsible for immunosuppression. Finally, it highlights the perspectives for novel therapeutic approaches to use combined cellular targets that include TAMs and other stromal and immune cells in the TME. The collected data demonstrated the importance of understanding cell‑cell interactions in the TME to prevent distant metastasis and reduce the risk of tumor recurrence.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Yuan Y, Jiang YC, Sun CK and Chen QM: Role of the tumor microenvironment in tumor progression and the clinical applications (Review). Oncol Rep. 35:2499–2515. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Whiteside TL: The tumor microenvironment and its role in promoting tumor growth. Oncogene. 27:5904–5912. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Werb Z and Lu P: The role of stroma in tumor development. Cancer J. 21:250–253. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, Kolahian S, Javaheri T and Zare P: Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal. 18:592020. View Article : Google Scholar : PubMed/NCBI

5 

Larionova I, Tuguzbaeva G, Ponomaryova A, Stakheyeva M, Cherdyntseva N, Pavlov V, Choinzonov E and Kzhyshkowska J: Tumor-associated macrophages in human breast, colorectal, lung, ovarian and prostate cancers. Front Oncol. 10:5665112020. View Article : Google Scholar : PubMed/NCBI

6 

Lin Y, Xu J and Lan H: Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J Hematol Oncol. 12:762019. View Article : Google Scholar : PubMed/NCBI

7 

Pan Y, Yu Y, Wang X and Zhang T: Tumor-associated macrophages in tumor immunity. Front Immunol. 11:5830842020. View Article : Google Scholar : PubMed/NCBI

8 

Larionova I, Kazakova E, Patysheva M and Kzhyshkowska J: Transcriptional, epigenetic and metabolic programming of tumor-associated macrophages. Cancers (Basel). 12:14112020. View Article : Google Scholar : PubMed/NCBI

9 

Gao J, Liang Y and Wang L: Shaping polarization of tumor-associated macrophages in cancer immunotherapy. Front Immunol. 13:8887132022. View Article : Google Scholar : PubMed/NCBI

10 

Quail DF and Joyce JA: Microenvironmental regulation of tumor progression and metastasis. Nat Med. 19:1423–1437. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Marusyk A, Almendro V and Polyak K: Intra-tumour heterogeneity: A looking glass for cancer? Nat Rev Cancer. 12:323–334. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Gordillo CH, Sa ndova l P, Muñoz-Her nández P, Pascual-Antón L, López-Cabrera M and Jiménez-Heffernan JA: Mesothelial-to-mesenchymal transition contributes to the generation of carcinoma-associated fibroblasts in locally advanced primary colorectal carcinomas. Cancers (Basel). 12:4992020. View Article : Google Scholar : PubMed/NCBI

13 

Shiga K, Hara M, Nagasaki T, Sato T, Takahashi H and Takeyama H: Cancer-associated fibroblasts: Their characteristics and their roles in tumor growth. Cancers (Basel). 7:2443–2458. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Adjuto-Saccone M, Soubeyran P, Garcia J, Audebert S, Camoin L, Rubis M, Roques J, Binétruy B, Iovanna JL and Tournaire R: TNF-α induces endothelial-mesenchymal transition promoting stromal development of pancreatic adenocarcinoma. Cell Death Dis. 12:6492021. View Article : Google Scholar

15 

Ciszewski WM, Sobierajska K, Wawro ME, Klopocka W, Chefczyńska N, Muzyczuk A, Siekacz K, Wujkowska A and Niewiarowska J: The ILK-MMP9-MRTF axis is crucial for EndMT differentiation of endothelial cells in a tumor microenvironment. Biochim Biophys Acta Mol Cell Res. 1864:2283–2296. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Fan CS, Chen LL, Hsu TA, Chen CC, Chua KV, Li CP and Huang TS: Endothelial-mesenchymal transition harnesses HSP90α-secreting M2-macrophages to exacerbate pancreatic ductal adenocarcinoma. J Hematol Oncol. 12:1382019. View Article : Google Scholar

17 

Fan CS, Chen WS, Chen LL, Chen CC, Hsu YT, Chua KV, Wang HD and Huang TS: Osteopontin-integrin engagement induces HIF-1α-TCF12-mediated endothelial-mesenchymal transition to exacerbate colorectal cancer. Oncotarget. 9:4998–5015. 2017. View Article : Google Scholar

18 

Chen C, Li WJ, Weng JJ, Chen ZJ, Wen YY, Deng T, Le HB, Zhang YK and Zhang BJ: Cancer-associated fibroblasts, matrix metalloproteinase-9 and lymphatic vessel density are associated with progression from adenocarcinoma in situ to invasive adenocarcinoma of the lung. Oncol Lett. 20:1302020. View Article : Google Scholar : PubMed/NCBI

19 

Xie J, Qi X, Wang Y, Yin X, Xu W, Han S, Cai Y and Han W: Cancer-associated fibroblasts secrete hypoxia-induced serglycin to promote head and neck squamous cell carcinoma tumor cell growth in vitro and in vivo by activating the Wnt/β-catenin pathway. Cell Oncol (Dordr). 44:661–671. 2021. View Article : Google Scholar : PubMed/NCBI

20 

Fullár A, Dudás J, Oláh L, Hollósi P, Papp Z, Sobel G, Karászi K, Paku S, Baghy K and Kovalszky I: Remodeling of extracellular matrix by normal and tumor-associated fibroblasts promotes cervical cancer progression. BMC Cancer. 15:2562015. View Article : Google Scholar : PubMed/NCBI

21 

Erdogan B and Webb DJ: Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans. 45:229–236. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Ren J, Smid M, Iaria J, Salvatori DCF, van Dam H, Zhu HJ, Martens JWM and Ten Dijke P: Cancer-associated fibroblast-derived Gremlin 1 promotes breast cancer progression. Breast Cancer Res. 21:1092019. View Article : Google Scholar : PubMed/NCBI

23 

Takahashi M, Kobayashi H, Mizutani Y, Hara A, Iida T, Miyai Y, Asai N and Enomoto A: Roles of the mesenchymal stromal/stem cell marker meflin/Islr in cancer fibrosis. Front Cell Dev Biol. 9:7499242021. View Article : Google Scholar : PubMed/NCBI

24 

Attieh Y, Clark AG, Grass C, Richon S, Pocard M, Mariani P, Elkhatib N, Betz T, Gurchenkov B and Vignjevic DM: Cancer-associated fibroblasts lead tumor invasion through integrin-β3-dependent fibronectin assembly. J Cell Biol. 216:3509–3520. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Zhang J, Fu B, Li M and Mi S: Secretome of activated fibroblasts induced by exosomes for the discovery of biomarkers in non-small cell lung cancer. Small. 17:e20047502021. View Article : Google Scholar

26 

Glentis A, Oertle P, Mariani P, Chikina A, El Marjou F, Attieh Y, Zaccarini F, Lae M, Loew D, Dingli F, et al: Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane. Nat Commun. 8:9242017. View Article : Google Scholar : PubMed/NCBI

27 

Stadler M, Pudelko K, Biermeier A, Walterskirchen N, Gaigneaux A, Weindorfer C, Harrer N, Klett H, Hengstschläger M, Schüler J, et al: Stromal fibroblasts shape the myeloid phenotype in normal colon and colorectal cancer and induce CD163 and CCL2 expression in macrophages. Cancer Lett. 520:184–200. 2021. View Article : Google Scholar : PubMed/NCBI

28 

Zhang R, Qi F, Zhao F, Li G, Shao S, Zhang X, Yuan L and Feng Y: Cancer-associated fibroblasts enhance tumor-associated macrophages enrichment and suppress NK cells function in colorectal cancer. Cell Death Dis. 10:2732019. View Article : Google Scholar : PubMed/NCBI

29 

Chen S, Morine Y, Tokuda K, Yamada S, Saito Y, Nishi M, Ikemoto T and Shimada M: Cancer-associated fibroblast-induced M2-polarized macrophages promote hepatocellular carcinoma progression via the plasminogen activator inhibitor-1 pathway. Int J Oncol. 59:592021. View Article : Google Scholar :

30 

Olingy CE, Dinh HQ and Hedrick CC: Monocyte heterogeneity and functions in cancer. J Leukoc Biol. 106:309–322. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Hao Q, Vadgama JV and Wang P: CCL2/CCR2 signaling in cancer pathogenesis. Cell Commun Signal. 18:822020. View Article : Google Scholar : PubMed/NCBI

32 

Gomez-Roca CA, Italiano A, Le Tourneau C, Cassier PA, Toulmonde M, D'Angelo SP, Campone M, Weber KL, Loirat D, Cannarile MA, et al: Phase I study of emactuzumab single agent or in combination with paclitaxel in patients with advanced/metastatic solid tumors reveals depletion of immunosuppressive M2-like macrophages. Ann Oncol. 30:1381–1392. 2019. View Article : Google Scholar : PubMed/NCBI

33 

Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH and Rüttinger D: Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 5:532017. View Article : Google Scholar : PubMed/NCBI

34 

Cho H, Seo Y, Loke KM, Kim SW, Oh SM, Kim JH, Soh J, Kim HS, Lee H, Kim J, et al: Cancer-stimulated CAFs enhance monocyte differentiation and protumoral TAM Activation via IL6 and GM-CSF secretion. Clin Cancer Res. 24:5407–5421. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Xiang H, Ramil CP, Hai J, Zhang C, Wang H, Watkins AA, Afshar R, Georgiev P, Sze MA, Song XS, et al: Cancer-associated fibroblasts promote immunosuppression by inducing ROS-generating monocytic MDSCs in lung squamous cell carcinoma. Cancer Immunol Res. 8:436–450. 2020. View Article : Google Scholar : PubMed/NCBI

36 

Higashino N, Koma YI, Hosono M, Takase N, Okamoto M, Kodaira H, Nishio M, Shigeoka M, Kakeji Y and Yokozaki H: Fibroblast activation protein-positive fibroblasts promote tumor progression through secretion of CCL2 and interleukin-6 in esophageal squamous cell carcinoma. Lab Invest. 99:777–792. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Gok Yavuz B, Gunaydin G, Gedik ME, Kosemehmetoglu K, Karakoc D, Ozgur F and Guc D: Cancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1+ TAMs. Sci Rep. 9:31722019. View Article : Google Scholar

38 

Yang F, Wei Y, Han D, Li Y, Shi S, Jiao D, Wu J, Zhang Q, Shi C, Yang L, et al: Interaction with CD68 and regulation of GAS6 expression by endosialin in fibroblasts drives recruitment and polarization of macrophages in hepatocellular carcinoma. Cancer Res. 80:3892–3905. 2020. View Article : Google Scholar : PubMed/NCBI

39 

Allaoui R, Bergenfelz C, Mohlin S, Hagerling C, Salari K, Werb Z, Anderson RL, Ethier SP, Jirström K, Påhlman S, et al: Cancer-associated fibroblast-secreted CXCL16 attracts monocytes to promote stroma activation in triple-negative breast cancers. Nat Commun. 7:130502016. View Article : Google Scholar : PubMed/NCBI

40 

Comito G, Giannoni E, Segura CP, Barcellos-de-Souza P, Raspollini MR, Baroni G, Lanciotti M, Serni S and Chiarugi P: Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene. 33:2423–2431. 2014. View Article : Google Scholar

41 

Hegab AE, Ozaki M, Kameyama N, Gao J, Kagawa S, Yasuda H, Soejima K, Yin Y, Guzy RD, Nakamura Y, et al: Effect of FGF/FGFR pathway blocking on lung adenocarcinoma and its cancer-associated fibroblasts. J Pathol. 249:193–205. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Zhang A, Qian Y, Ye Z, Chen H, Xie H, Zhou L, Shen Y and Zheng S: Cancer-associated fibroblasts promote M2 polarization of macrophages in pancreatic ductal adenocarcinoma. Cancer Med. 6:463–470. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Chua KV, Fan CS, Chen CC, Chen LL, Hsieh SC and Huang TS: Octyl gallate induces pancreatic ductal adenocarcinoma cell apoptosis and suppresses endothelial-mesenchymal transition-promoted M2-macrophages, HSP90α secretion, and tumor growth. Cells. 9:912019. View Article : Google Scholar

44 

Cohen N, Shani O, Raz Y, Sharon Y, Hoffman D, Abramovitz L and Erez N: Fibroblasts drive an immunosuppressive and growth-promoting microenvironment in breast cancer via secretion of Chitinase 3-like 1. Oncogene. 36:4457–4468. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Zhou Q, Wu X, Wang X, Yu Z, Pan T, Li Z, Chang X, Jin Z, Li J, Zhu Z, et al: The reciprocal interaction between tumor cells and activated fibroblasts mediated by TNF-α/IL-33/ST2L signaling promotes gastric cancer metastasis. Oncogene. 39:1414–1428. 2020. View Article : Google Scholar

46 

Andersson P, Yang Y, Hosaka K, Zhang Y, Fischer C, Braun H, Liu S, Yu G, Liu S, Beyaert R, et al: Molecular mechanisms of IL-33-mediated stromal interactions in cancer metastasis. JCI Insight. 3:e1223752018. View Article : Google Scholar : PubMed/NCBI

47 

Mazur A, Holthoff E, Vadali S, Kelly T and Post SR: Cleavage of type I collagen by fibroblast activation protein-α enhances class A scavenger receptor mediated macrophage adhesion. PLoS One. 11:e01502872016. View Article : Google Scholar

48 

Cat B, Stuhlmann D, Steinbrenner H, Alili L, Holtkötter O, Sies H and Brenneisen P: Enhancement of tumor invasion depends on transdifferentiation of skin fibroblasts mediated by reactive oxygen species. J Cell Sci. 119:2727–2738. 2006. View Article : Google Scholar : PubMed/NCBI

49 

Yang X, Lin Y, Shi Y, Li B, Liu W, Yin W, Dang Y, Chu Y, Fan J and He R: FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling. Cancer Res. 76:4124–4135. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Potente M and Carmeliet P: The Link between angiogenesis and endothelial metabolism. Annu Rev Physiol. 79:43–66. 2017. View Article : Google Scholar

51 

Papetti M and Herman IM: Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol. 282:C947–C970. 2002. View Article : Google Scholar : PubMed/NCBI

52 

Hida K and Maishi N: Abnormalities of tumor endothelial cells and cancer progression. Oral Sci Int. 15:1–6. 2018. View Article : Google Scholar

53 

Hida K, Maishi N, Takeda R and Hida Y: The roles of tumor endothelial cells in cancer metastasis. Metastasis Brisbane (AU): Sergi CM: Exon Publications; 2022, View Article : Google Scholar

54 

Wang WY, Lin D, Jarman EH, Polacheck WJ and Baker BM: Functional angiogenesis requires microenvironmental cues balancing endothelial cell migration and proliferation. Lab Chip. 20:1153–1166. 2020. View Article : Google Scholar : PubMed/NCBI

55 

Yang D, Guo P, He T and Powell CA: Role of endothelial cells in tumor microenvironment. Clin Transl Med. 11:e4502021. View Article : Google Scholar : PubMed/NCBI

56 

Wei K, Ma Z, Yang F, Zhao X, Jiang W, Pan C, Li Z, Pan X, He Z, Xu J, et al: M2 macrophage-derived exosomes promote lung adenocarcinoma progression by delivering miR-942. Cancer Lett. 526:205–216. 2022. View Article : Google Scholar

57 

Baradaran A, Asadzadeh Z, Hemmat N, Baghbanzadeh A, Shadbad MA, Khosravi N, Derakhshani A, Alemohammad H, Afrashteh Nour M, Safarpour H, et al: The cross-talk between tumor-associated macrophages and tumor endothelium: Recent advances in macrophage-based cancer immunotherapy. Biomed Pharmacother. 146:1125882022. View Article : Google Scholar : PubMed/NCBI

58 

Laoui D, Van Overmeire E, Di Conza G, Aldeni C, Keirsse J, Morias Y, Movahedi K, Houbracken I, Schouppe E, Elkrim Y, et al: Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population. Cancer Res. 74:24–30. 2014. View Article : Google Scholar

59 

Hughes R, Qian BZ, Rowan C, Muthana M, Keklikoglou I, Olson OC, Tazzyman S, Danson S, Addison C, Clemons M, et al: Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res. 75:3479–3491. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Cheng N, Bei Y, Song Y, Zhang W, Xu L, Zhang W, Yang N, Bai X, Shu Y and Shen P: B7-H3 augments the pro-angiogenic function of tumor-associated macrophages and acts as a novel adjuvant target for triple-negative breast cancer therapy. Biochem Pharmacol. 183:1142982021. View Article : Google Scholar

61 

Treps L, Faure S and Clere N: Vasculogenic mimicry, a complex and devious process favoring tumorigenesis-Interest in making it a therapeutic target. Pharmacol Ther. 223:1078052021. View Article : Google Scholar

62 

Zhang L, Xu Y, Sun J, Chen W, Zhao L, Ma C, Wang Q, Sun J, Huang B, Zhang Y, et al: M2-like tumor-associated macrophages drive vasculogenic mimicry through amplification of IL-6 expression in glioma cells. Oncotarget. 8:819–832. 2017. View Article : Google Scholar :

63 

Delprat V and Michiels C: A bi-directional dialog between vascular cells and monocytes/macrophages regulates tumor progression. Cancer Metastasis Rev. 40:477–500. 2021. View Article : Google Scholar : PubMed/NCBI

64 

Cortes-Santiago N, Hossain MB, Gabrusiewicz K, Fan X, Gumin J, Marini FC, Alonso MM, Lang F, Yung WK, Fueyo J, et al: Soluble Tie2 overrides the heightened invasion induced by anti-angiogenesis therapies in gliomas. Oncotarget. 7:16146–16157. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Sopo M, Sallinen H, Hämäläinen K, Kivelä A, Ylä-Herttuala S, Kosma VM, Keski-Nisula L and Anttila M: High expression of Tie-2 predicts poor prognosis in primary high grade serous ovarian cancer. PLoS One. 15:e02414842020. View Article : Google Scholar : PubMed/NCBI

66 

Dong Z, Chen J, Yang X, Zheng W, Wang L, Fang M, Wu M, Yao M and Yao D: Ang-2 promotes lung cancer metastasis by increasing epithelial-mesenchymal transition. Oncotarget. 9:12705–12717. 2018. View Article : Google Scholar : PubMed/NCBI

67 

Hidalgo M, Martinez-Garcia M, Le Tourneau C, Massard C, Garralda E, Boni V, Taus A, Albanell J, Sablin MP, Alt M, et al: First-in-human phase I study of single-agent vanucizumab, a first-in-class bispecific anti-angiopoietin-2/anti-VEGF-A antibody, in adult patients with advanced solid tumors. Clin Cancer Res. 24:1536–1545. 2018. View Article : Google Scholar

68 

Karikoski M, Irjala H, Maksimow M, Miiluniemi M, Granfors K, Hernesniemi S, Elima K, Moldenhauer G, Schledzewski K, Kzhyshkowska J, et al: Clever-1/stabilin-1 regulates lymphocyte migration within lymphatics and leukocyte entrance to sites of inflammation. Eur J Immunol. 39:3477–3487. 2009. View Article : Google Scholar : PubMed/NCBI

69 

Karikoski M, Marttila-Ichihara F, Elima K, Rantakari P, Hollmén M, Kelkka T, Gerke H, Huovinen V, Irjala H, Holmdahl R, et al: Clever-1/stabilin-1 controls cancer growth and metastasis. Clin Cancer Res. 20:6452–6464. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Riabov V, Yin S, Song B, Avdic A, Schledzewski K, Ovsiy I, Gratchev A, Llopis Verdiell M, Sticht C, Schmuttermaier C, et al: Stabilin-1 is expressed in human breast cancer and supports tumor growth in mammary adenocarcinoma mouse model. Oncotarget. 7:31097–31110. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Yin M, Zhou HJ, Zhang J, Lin C, Li H, Li X, Li Y, Zhang H, Breckenridge DG, Ji W and Min W: ASK1-dependent endothelial cell activation is critical in ovarian cancer growth and metastasis. JCI Insight. 2:e918282017. View Article : Google Scholar : PubMed/NCBI

72 

Arwert EN, Harney AS, Entenberg D, Wang Y, Sahai E, Pollard JW and Condeelis JS: A unidirectional transition from migratory to perivascular macrophage is required for tumor cell intravasation. Cell Rep. 23:1239–1248. 2018. View Article : Google Scholar : PubMed/NCBI

73 

Leung E, Xue A, Wang Y, Rougerie P, Sharma VP, Eddy R, Cox D and Condeelis J: Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway. Oncogene. 36:2680–2692. 2017. View Article : Google Scholar :

74 

Opzoomer JW, Anstee JE, Dean I, Hill EJ, Bouybayoune I, Caron J, Muliaditan T, Gordon P, Sosnowska D, Nuamah R, et al: Macrophages orchestrate the expansion of a proangiogenic perivascular niche during cancer progression. Sci Adv. 7:eabg95182021. View Article : Google Scholar : PubMed/NCBI

75 

Lewis CE, Harney AS and Pollard JW: The multifaceted role of perivascular macrophages in tumors. Cancer Cell. 30:3652016. View Article : Google Scholar : PubMed/NCBI

76 

Sparano JA, Gray R, Oktay MH, Entenberg D, Rohan T, Xue X, Donovan M, Peterson M, Shuber A, Hamilton DA, et al: A metastasis biomarker (MetaSite Breast™ Score) is associated with distant recurrence in hormone receptor-positive, HER2-negative early-stage breast cancer. NPJ Breast Cancer. 3:422017. View Article : Google Scholar

77 

Anstee JE, Opzoomer JW, Dean I, Muller HP, Bahri M, Liakath-Ali K, Liu Z, Choy D, Caron J, Sosnowska D, et al: Perivascular macrophages collaborate to facilitate chemotherapy resistance in cancer. bioRxiv. 2022.2002.2003.478952. 2022.

78 

Hongu T, Pein M, Insua-Rodríguez J, Gutjahr E, Mattavelli G, Meier J, Decker K, Descot A, Bozza M, Harbottle R, et al: Perivascular tenascin C triggers sequential activation of macrophages and endothelial cells to generate a pro-metastatic vascular niche in the lungs. Nat Cancer. 3:486–504. 2022. View Article : Google Scholar : PubMed/NCBI

79 

He H, Mack JJ, Güç E, Warren CM, Squadrito ML, Kilarski WW, Baer C, Freshman RD, McDonald AI, Ziyad S, et al: Perivascular macrophages limit permeability. Arterioscler Thromb Vasc Biol. 36:2203–2212. 2016. View Article : Google Scholar : PubMed/NCBI

80 

Wang Q, He Z, Huang M, Liu T, Wang Y, Xu H, Duan H, Ma P, Zhang L, Zamvil SS, et al: Vascular niche IL-6 induces alternative macrophage activation in glioblastoma through HIF-2α. Nat Commun. 9:5592018. View Article : Google Scholar

81 

Chen L, Li J, Wang F, Dai C, Wu F, Liu X, Li T, Glauben R, Zhang Y, Nie G, et al: Tie2 expression on macrophages is required for blood vessel reconstruction and tumor relapse after chemotherapy. Cancer Res. 76:6828–6838. 2016. View Article : Google Scholar : PubMed/NCBI

82 

Harney AS, Arwert EN, Entenberg D, Wang Y, Guo P, Qian BZ, Oktay MH, Pollard JW, Jones JG and Condeelis JS: Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discov. 5:932–943. 2015. View Article : Google Scholar : PubMed/NCBI

83 

Bieniasz-Krzywiec P, Martín-Pérez R, Ehling M, García-Caballero M, Pinioti S, Pretto S, Kroes R, Aldeni C, Di Matteo M, Prenen H, et al: Podoplanin-expressing macrophages promote lymphangiogenesis and lymphoinvasion in breast cancer. Cell Metab. 30:917–936.e10. 2019. View Article : Google Scholar : PubMed/NCBI

84 

Elder AM, Tamburini BAJ, Crump LS, Black SA, Wessells VM, Schedin PJ, Borges VF and Lyons TR: Semaphorin 7A promotes macrophage-mediated lymphatic remodeling during postpartum mammary gland involution and in breast cancer. Cancer Res. 78:6473–6485. 2018. View Article : Google Scholar : PubMed/NCBI

85 

Evans R, Flores-Borja F, Nassiri S, Miranda E, Lawler K, Grigoriadis A, Monypenny J, Gillet C, Owen J, Gordon P, et al: Integrin-mediated macrophage adhesion promotes lymphovascular dissemination in breast cancer. Cell Rep. 27:1967–1978.e4. 2019. View Article : Google Scholar : PubMed/NCBI

86 

Bron S, Henry L, Faes-Van't Hull E, Turrini R, Vanhecke D, Guex N, Ifticene-Treboux A, Marina Iancu E, Semilietof A, Rufer N, et al: TIE-2-expressing monocytes are lymphangiogenic and associate specifically with lymphatics of human breast cancer. Oncoimmunology. 5:e10738822015. View Article : Google Scholar

87 

Moussai D, Mitsui H, Pettersen JS, Pierson KC, Shah KR, Suárez-Fariñas M, Cardinale IR, Bluth MJ, Krueger JG and Carucci JA: The human cutaneous squamous cell carcinoma microenvironment is characterized by increased lymphatic density and enhanced expression of macrophage-derived VEGF-C. J Invest Dermatol. 131:229–236. 2011. View Article : Google Scholar

88 

Zhang BC, Gao J, Wang J, Rao ZG, Wang BC and Gao JF: Tumor-associated macrophages infiltration is associated with peritumoral lymphangiogenesis and poor prognosis in lung adenocarcinoma. Med Oncol. 28:1447–1452. 2011. View Article : Google Scholar

89 

Zhang B, Yao G, Zhang Y and Gao J, Yang B, Rao Z and Gao J: M2-polarized tumor-associated macrophages are associated with poor prognoses resulting from accelerated lymphangiogenesis in lung adenocarcinoma. Clinics (Sao Paulo). 66:1879–1886. 2011. View Article : Google Scholar : PubMed/NCBI

90 

Yamagata Y, Tomioka H, Sakamoto K, Sato K, Harada H, Ikeda T and Kayamori K: CD163-positive macrophages within the tumor stroma are associated with lymphangiogenesis and lymph node metastasis in oral squamous cell carcinoma. J Oral Maxillofac Surg. 75:2144–2153. 2017. View Article : Google Scholar : PubMed/NCBI

91 

Kurahara H, Takao S, Maemura K, Mataki Y, Kuwahata T, Maeda K, Sakoda M, Iino S, Ishigami S, Ueno S, et al: M2-polarized tumor-associated macrophage infiltration of regional lymph nodes is associated with nodal lymphangiogenesis and occult nodal involvement in pN0 pancreatic cancer. Pancreas. 42:155–159. 2013. View Article : Google Scholar

92 

Wu H, Xu JB, He YL, Peng JJ, Zhang XH, Chen CQ, Li W and Cai SR: Tumor-associated macrophages promote angiogenesis and lymphangiogenesis of gastric cancer. J Surg Oncol. 106:462–468. 2012. View Article : Google Scholar : PubMed/NCBI

93 

Ding H, Cai J, Mao M, Fang Y, Huang Z, Jia J, Li T, Xu L, Wang J, Zhou J, et al: Tumor-associated macrophages induce lymphangiogenesis in cervical cancer via interaction with tumor cells. APMIS. 122:1059–1069. 2014.PubMed/NCBI

94 

Utrera-Barillas D, Castro-Manrreza M, Castellanos E, Gutiérrez-Rodríguez M, Arciniega-Ruíz de Esparza O, García-Cebada J, Velazquez JR, Flores-Reséndiz D, Hernández-Hernández D and Benítez-Bribiesca L: The role of macrophages and mast cells in lymphangiogenesis and angiogenesis in cervical carcinogenesis. Exp Mol Pathol. 89:190–196. 2010. View Article : Google Scholar : PubMed/NCBI

95 

Zhang W, Tian J and Hao Q: HMGB1 combining with tumor-associated macrophages enhanced lymphangiogenesis in human epithelial ovarian cancer. Tumour Biol. 35:2175–2186. 2014. View Article : Google Scholar

96 

Sweat RS, Sloas DC and Murfee WL: VEGF-C induces lymphangiogenesis and angiogenesis in the rat mesentery culture model. Microcirculation. 21:532–540. 2014. View Article : Google Scholar : PubMed/NCBI

97 

Ji H, Cao R, Yang Y, Zhang Y, Iwamoto H, Lim S, Nakamura M, Andersson P, Wang J, Sun Y, et al: TNFR1 mediates TNF-α-induced tumour lymphangiogenesis and metastasis by modulating VEGF-C-VEGFR3 signalling. Nat Commun. 5:49442014. View Article : Google Scholar

98 

Peppicelli S, Bianchini F and Calorini L: Inflammatory cytokines induce vascular endothelial growth factor-C expression in melanoma-associated macrophages and stimulate melanoma lymph node metastasis. Oncol Lett. 8:1133–1138. 2014. View Article : Google Scholar : PubMed/NCBI

99 

Schoppmann SF, Birner P, Stöckl J, Kalt R, Ullrich R, Caucig C, Kriehuber E, Nagy K, Alitalo K and Kerjaschki D: Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol. 161:947–956. 2002. View Article : Google Scholar : PubMed/NCBI

100 

Mazzone M and Bergers G: Regulation of blood and lymphatic vessels by immune cells in tumors and metastasis. Annu Rev Physiol. 81:535–560. 2019. View Article : Google Scholar : PubMed/NCBI

101 

Weichand B, Popp R, Dziumbla S, Mora J, Strack E, Elwakeel E, Frank AC, Scholich K, Pierre S, Syed SN, et al: S1PR1 on tumor-associated macrophages promotes lymphangiogenesis and metastasis via NLRP3/IL-1β. J Exp Med. 214:2695–2713. 2017. View Article : Google Scholar : PubMed/NCBI

102 

Watari K, Shibata T, Kawahara A, Sata K, Nabeshima H, Shinoda A, Abe H, Azuma K, Murakami Y, Izumi H, et al: Tumor-derived interleukin-1 promotes lymphangiogenesis and lymph node metastasis through M2-type macrophages. PLoS One. 9:e995682014. View Article : Google Scholar : PubMed/NCBI

103 

Jung M, Ören B, Mora J, Mertens C, Dziumbla S, Popp R, Weigert A, Grossmann N, Fleming I and Brüne B: Lipocalin 2 from macrophages stimulated by tumor cell-derived sphingosine 1-phosphate promotes lymphangiogenesis and tumor metastasis. Sci Signal. 9:ra642016. View Article : Google Scholar : PubMed/NCBI

104 

Storr SJ, Safuan S, Ahmad N, El-Refaee M, Jackson AM and Martin SG: Macrophage-derived interleukin-1beta promotes human breast cancer cell migration and lymphatic adhesion in vitro. Cancer Immunol Immunother. 66:1287–1294. 2017. View Article : Google Scholar : PubMed/NCBI

105 

Chen C, He W, Huang J, Wang B, Li H, Cai Q, Su F, Bi J, Liu H, Zhang B, et al: LNMAT1 promotes lymphatic metastasis of bladder cancer via CCL2 dependent macrophage recruitment. Nat Commun. 9:38262018. View Article : Google Scholar : PubMed/NCBI

106 

Tauchi Y, Tanaka H, Kumamoto K, Tokumoto M, Sakimura C, Sakurai K, Kimura K, Toyokawa T, Amano R, Kubo N, et al: Tumor-associated macrophages induce capillary morphogenesis of lymphatic endothelial cells derived from human gastric cancer. Cancer Sci. 107:1101–1109. 2016. View Article : Google Scholar : PubMed/NCBI

107 

Kabasawa T, Ohe R, Aung NY, Urano Y, Kitaoka T, Tamazawa N, Utsunomiya A and Yamakawa M: Potential role of M2 TAMs around lymphatic vessels during lymphatic invasion in papillary thyroid carcinoma. Sci Rep. 11:11502021. View Article : Google Scholar : PubMed/NCBI

108 

Chen XJ, Wei WF, Wang ZC, Wang N, Guo CH, Zhou CF, Liang LJ, Wu S, Liang L and Wang W: A novel lymphatic pattern promotes metastasis of cervical cancer in a hypoxic tumour-associated macrophage-dependent manner. Angiogenesis. 24:549–565. 2021. View Article : Google Scholar : PubMed/NCBI

109 

Ding M, Fu X, Tan H, Wang R, Chen Z and Ding S: The effect of vascular endothelial growth factor C expression in tumor-associated macrophages on lymphangiogenesis and lymphatic metastasis in breast cancer. Mol Med Rep. 6:1023–1029. 2012. View Article : Google Scholar : PubMed/NCBI

110 

Ran S and Wilber A: Novel role of immature myeloid cells in formation of new lymphatic vessels associated with inflammation and tumors. J Leukoc Biol. 102:253–263. 2017. View Article : Google Scholar : PubMed/NCBI

111 

Ran S and Volk-Draper L: Lymphatic endothelial cell progenitors in the tumor microenvironment. Adv Exp Med Biol. 1234:87–105. 2020. View Article : Google Scholar : PubMed/NCBI

112 

Ran S and Montgomery KE: Macrophage-mediated lymphangiogenesis: The emerging role of macrophages as lymphatic endothelial progenitors. Cancers (Basel). 4:618–657. 2012. View Article : Google Scholar : PubMed/NCBI

113 

Volk-Draper L, Patel R, Bhattarai N, Yang J, Wilber A, DeNardo D and Ran S: Myeloid-derived lymphatic endothelial cell progenitors significantly contribute to lymphatic metastasis in clinical breast cancer. Am J Pathol. 189:2269–2292. 2019. View Article : Google Scholar : PubMed/NCBI

114 

Gordon EJ, Rao S, Pollard JW, Nutt SL, Lang RA and Harvey NL: Macrophages define dermal lymphatic vessel calibre during development by regulating lymphatic endothelial cell proliferation. Development. 137:3899–3910. 2010. View Article : Google Scholar : PubMed/NCBI

115 

Dannenmann SR, Thielicke J, Stöckli M, Matter C, von Boehmer L, Cecconi V, Hermanns T, Hefermehl L, Schraml P, Moch H, et al: Tumor-associated macrophages subvert T-cell function and correlate with reduced survival in clear cell renal cell carcinoma. Oncoimmunology. 2:e235622013. View Article : Google Scholar : PubMed/NCBI

116 

Gordon S and Martinez FO: Alternative activation of macrophages: Mechanism and functions. Immunity. 32:593–604. 2010. View Article : Google Scholar : PubMed/NCBI

117 

He Z and Zhang S: Tumor-associated macrophages and their functional transformation in the hypoxic tumor microenvironment. Front Immunol. 12:7413052021. View Article : Google Scholar : PubMed/NCBI

118 

Zhang L, Zhang K, Zhang J, Zhu J, Xi Q, Wang H, Zhang Z, Cheng Y, Yang G, Liu H, et al: Loss of fragile site-associated tumor suppressor promotes antitumor immunity via macrophage polarization. Nat Commun. 12:43002021. View Article : Google Scholar : PubMed/NCBI

119 

Wang W, Marinis JM, Beal AM, Savadkar S, Wu Y, Khan M, Taunk PS, Wu N, Su W, Wu J, et al: RIP1 kinase drives macrophage-mediated adaptive immune tolerance in pancreatic cancer. Cancer Cell. 34:757–774.e7. 2018. View Article : Google Scholar : PubMed/NCBI

120 

Ho TTB, Nasti A, Seki A, Komura T, Inui H, Kozaka T, Kitamura Y, Shiba K, Yamashita T, Yamashita T, et al: Combination of gemcitabine and anti-PD-1 antibody enhances the anticancer effect of M1 macrophages and the Th1 response in a murine model of pancreatic cancer liver metastasis. J Immunother Cancer. 8:e0013672020. View Article : Google Scholar : PubMed/NCBI

121 

Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L, et al: Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 24:589–602. 2013. View Article : Google Scholar : PubMed/NCBI

122 

Shiao SL, Ruffell B, DeNardo DG, Faddegon BA, Park CC and Coussens LM: TH2-polarized CD4(+) T cells and macrophages limit efficacy of radiotherapy. Cancer Immunol Res. 3:518–525. 2015. View Article : Google Scholar : PubMed/NCBI

123 

DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N and Coussens LM: CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell. 16:91–102. 2009. View Article : Google Scholar : PubMed/NCBI

124 

Yasuda K, Takeuchi Y and Hirota K: The pathogenicity of Th17 cells in autoimmune diseases. Semin Immunopathol. 41:283–297. 2019. View Article : Google Scholar : PubMed/NCBI

125 

Chang SH: T helper 17 (Th17) cells and interleukin-17 (IL-17) in cancer. Arch Pharm Res. 42:549–559. 2019. View Article : Google Scholar : PubMed/NCBI

126 

Kryczek I, Banerjee M, Cheng P, Vatan L, Szeliga W, Wei S, Huang E, Finlayson E, Simeone D, Welling TH, et al: Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood. 114:1141–1149. 2009. View Article : Google Scholar : PubMed/NCBI

127 

Zhou J, Li X, Wu X, Zhang T, Zhu Q and Wang X, Wang H, Wang K, Lin Y and Wang X: Exosomes released from tumor-associated macrophages transfer miRNAs that induce a Treg/Th17 cell imbalance in epithelial ovarian cancer. Cancer Immunol Res. 6:1578–1592. 2018. View Article : Google Scholar : PubMed/NCBI

128 

Yang JY, Jie Z, Mathews A, Zhou X, Li Y, Gu M, Xie X, Ko CJ, Cheng X, Qi Y, et al: Intestinal epithelial tbk1 prevents differentiation of T-helper 17 cells and tumorigenesis in mice. Gastroenterology. 159:1793–1806. 2020. View Article : Google Scholar : PubMed/NCBI

129 

Maruyama T, Kono K, Mizukami Y, Kawaguchi Y, Mimura K, Watanabe M, Izawa S and Fujii H: Distribution of Th17 cells and FoxP3(+) regulatory T cells in tumor-infiltrating lymphocytes, tumor-draining lymph nodes and peripheral blood lymphocytes in patients with gastric cancer. Cancer Sci. 101:1947–1954. 2010. View Article : Google Scholar : PubMed/NCBI

130 

Knochelmann HM, Dwyer CJ, Bailey SR, Amaya SM, Elston DM, Mazza-McCrann JM and Paulos CM: When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell Mol Immunol. 15:458–469. 2018. View Article : Google Scholar : PubMed/NCBI

131 

Ohue Y and Nishikawa H: Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci. 110:2080–2089. 2019. View Article : Google Scholar : PubMed/NCBI

132 

Whiteside TL: What are regulatory T cells (Treg) regulating in cancer and why? Semin Cancer Biol. 22:327–334. 2012. View Article : Google Scholar : PubMed/NCBI

133 

Tanaka A and Sakaguchi S: Regulatory T cells in cancer immunotherapy. Cell Res. 27:109–118. 2017. View Article : Google Scholar :

134 

Waniczek D, Lorenc Z, Śnietura M, Wesecki M, Kopec A and Muc-Wierzgoń M: Tumor-associated macrophages and regulatory T cells infiltration and the clinical outcome in colorectal cancer. Arch Immunol Ther Exp (Warsz). 65:445–454. 2017. View Article : Google Scholar : PubMed/NCBI

135 

La Fleur L, Botling J, He F, Pelicano C, Zhou C, He C, Palano G, Mezheyeuski A, Micke P, Ravetch JV, et al: Targeting MARCO and IL37R on immunosuppressive macrophages in lung cancer blocks regulatory T cells and supports cytotoxic lymphocyte function. Cancer Res. 81:956–967. 2021. View Article : Google Scholar

136 

Zhu Q, Wu X, Wu Y and Wang X: Interaction between Treg cells and tumor-associated macrophages in the tumor microenvironment of epithelial ovarian cancer. Oncol Rep. 36:3472–3478. 2016. View Article : Google Scholar : PubMed/NCBI

137 

Wu Q, Zhou W, Yin S, Zhou Y, Chen T, Qian J, Su R, Hong L, Lu H, Zhang F, et al: Blocking triggering receptor expressed on myeloid cells-1-positive tumor-associated macrophages induced by hypoxia reverses immunosuppression and anti-programmed cell death ligand 1 resistance in liver cancer. Hepatology. 70:198–214. 2019. View Article : Google Scholar : PubMed/NCBI

138 

Fujimura T, Kambayashi Y, Fujisawa Y, Hidaka T and Aiba S: Tumor-associated macrophages: Therapeutic targets for skin cancer. Front Oncol. 8:32018. View Article : Google Scholar : PubMed/NCBI

139 

Furudate S, Fujimura T, Kambayashi Y, Kakizaki A, Hidaka T and Aiba S: Immunomodulatory effect of imiquimod through CCL22 produced by tumor-associated macrophages in B16F10 melanomas. Anticancer Res. 37:3461–3471. 2017.PubMed/NCBI

140 

Wang D, Yang L, Yue D, Cao L, Li L, Wang D, Ping Y, Shen Z, Zheng Y, Wang L and Zhang Y: Macrophage-derived CCL22 promotes an immunosuppressive tumor microenvironment via IL-8 in malignant pleural effusion. Cancer Lett. 452:244–253. 2019. View Article : Google Scholar : PubMed/NCBI

141 

Carbó JM, León TE, Font-Díaz J, De la Rosa JV, Castrillo A, Picard FR, Staudenraus D, Huber M, Cedó L, Escolà-Gil JC, et al: Pharmacologic activation of LXR alters the expression profile of tumor-associated macrophages and the abundance of regulatory T cells in the tumor microenvironment. Cancer Res. 81:968–985. 2021. View Article : Google Scholar

142 

Liu J, Zhang N, Li Q, Zhang W, Ke F, Leng Q and Wang H, Chen J and Wang H: Tumor-associated macrophages recruit CCR6+ regulatory T cells and promote the development of colorectal cancer via enhancing CCL20 production in mice. PLoS One. 6:e194952011. View Article : Google Scholar : PubMed/NCBI

143 

Yang S, Wang B, Guan C, Wu B, Cai C, Wang M, Zhang B, Liu T and Yang P: Foxp3+IL-17+ T cells promote development of cancer-initiating cells in colorectal cancer. J Leukoc Biol. 89:85–91. 2011. View Article : Google Scholar

144 

Liu C, Chikina M, Deshpande R, Menk AV, Wang T, Tabib T, Brunazzi EA, Vignali KM, Sun M, Stolz DB, et al: Treg cells promote the SREBP1-dependent metabolic fitness of tumor-promoting macrophages via repression of CD8+ T cell-derived interferon-γ. Immunity. 51:381–397.e6. 2019. View Article : Google Scholar

145 

Fu Q, Xu L, Wang Y, Jiang Q, Liu Z, Zhang J, Zhou Q, Zeng H, Tong S, Wang T, et al: Tumor-associated macrophage-derived Interleukin-23 interlinks kidney cancer glutamine addiction with immune evasion. Eur Urol. 75:752–763. 2019. View Article : Google Scholar

146 

Sun W, Wei FQ, Li WJ, Wei JW, Zhong H, Wen YH, Lei WB, Chen L, Li H, Lin HQ, et al: A positive-feedback loop between tumour infiltrating activated Treg cells and type 2-skewed macrophages is essential for progression of laryngeal squamous cell carcinoma. Br J Cancer. 117:1631–1643. 2017. View Article : Google Scholar : PubMed/NCBI

147 

Campesato LF, Budhu S, Tchaicha J, Weng CH, Gigoux M, Cohen IJ, Redmond D, Mangarin L, Pourpe S, Liu C, et al: Blockade of the AHR restricts a Treg-macrophage suppressive axis induced by L-Kynurenine. Nat Commun. 11:40112020. View Article : Google Scholar : PubMed/NCBI

148 

Raskov H, Orhan A, Christensen JP and Gögenur I: Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br J Cancer. 124:359–367. 2021. View Article : Google Scholar

149 

Reiser J and Banerjee A: Effector, memory, and dysfunctional CD8(+) T cell fates in the antitumor immune response. J Immunol Res. 2016:89412602016. View Article : Google Scholar : PubMed/NCBI

150 

Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari-Mimoun C, Bercovici N, Guérin M, Biton J, Ouakrim H, et al: Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci USA. 115:E4041–E4050. 2018. View Article : Google Scholar : PubMed/NCBI

151 

Garrido-Martin EM, Mellows TWP, Clarke J, Ganesan AP, Wood O, Cazaly A, Seumois G, Chee SJ, Alzetani A, King EV, et al: M1hot tumor-associated macrophages boost tissue-resident memory T cells infiltration and survival in human lung cancer. J Immunother Cancer. 8:e0007782020. View Article : Google Scholar

152 

Dai X, Lu L, Deng S, Meng J, Wan C, Huang J, Sun Y, Hu Y, Wu B, Wu G, et al: USP7 targeting modulates anti-tumor immune response by reprogramming tumor-associated macrophages in lung cancer. Theranostics. 10:9332–9347. 2020. View Article : Google Scholar : PubMed/NCBI

153 

Casanova-Acebes M, Dalla E, Leader AM, LeBerichel J, Nikolic J, Morales BM, Brown M, Chang C, Troncoso L, Chen ST, et al: Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. Nature. 595:578–584. 2021. View Article : Google Scholar : PubMed/NCBI

154 

Yao W, Ba Q, Li X, Li H, Zhang S, Yuan Y, Wang F, Duan X, Li J, Zhang W and Wang H: A natural CCR2 antagonist relieves tumor-associated macrophage-mediated immunosuppression to produce a therapeutic effect for liver cancer. EBioMedicine. 22:58–67. 2017. View Article : Google Scholar : PubMed/NCBI

155 

Dolina JS, Van Braeckel-Budimir N, Thomas GD and Salek-Ardakani S: CD8+ T cell exhaustion in cancer. Front Immunol. 12:7152342021. View Article : Google Scholar

156 

Dangaj D, Bruand M, Grimm AJ, Ronet C, Barras D, Duttagupta PA, Lanitis E, Duraiswamy J, Tanyi JL, Benencia F, et al: Cooperation between constitutive and inducible chemokines enables T cell engraftment and immune attack in solid tumors. Cancer Cell. 35:885–900.e10. 2019. View Article : Google Scholar : PubMed/NCBI

157 

House IG, Savas P, Lai J, Chen AXY, Oliver AJ, Teo ZL, Todd KL, Henderson MA, Giuffrida L, Petley EV, et al: Macrophage-derived CXCL9 and CXCL10 are required for antitumor immune responses following immune checkpoint blockade. Clin Cancer Res. 26:487–504. 2020. View Article : Google Scholar

158 

Petty AJ, Li A, Wang X, Dai R, Heyman B, Hsu D, Huang X and Yang Y: Hedgehog signaling promotes tumor-associated macrophage polarization to suppress intratumoral CD8+ T cell recruitment. J Clin Invest. 129:5151–5162. 2019. View Article : Google Scholar : PubMed/NCBI

159 

Pascual-García M, Bonfill-Teixidor E, Planas-Rigol E, Rubio-Perez C, Iurlaro R, Arias A, Cuartas I, Sala-Hojman A, Escudero L, Martínez-Ricarte F, et al: LIF regulates CXCL9 in tumor-associated macrophages and prevents CD8+ T cell tumor-infiltration impairing anti-PD1 therapy. Nat Commun. 10:24162019. View Article : Google Scholar

160 

Yu J, Green MD, Li S, Sun Y, Journey SN, Choi JE, Rizvi SM, Qin A, Waninger JJ, Lang X, et al: Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat Med. 27:152–164. 2021. View Article : Google Scholar : PubMed/NCBI

161 

Kusmartsev S and Gabrilovich DI: STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol. 174:4880–4891. 2005. View Article : Google Scholar : PubMed/NCBI

162 

Stanley ER and Chitu V: CSF-1 receptor signaling in myeloid cells. Cold Spring Harb Perspect Biol. 6:a0218572014. View Article : Google Scholar : PubMed/NCBI

163 

Kato Y, Tabata K, Kimura T, Yachie-Kinoshita A, Ozawa Y, Yamada K, Ito J, Tachino S, Hori Y, Matsuki M, et al: Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway. PLoS One. 14:e02125132019. View Article : Google Scholar : PubMed/NCBI

164 

Mehta AK, Cheney EM, Hartl CA, Pantelidou C, Oliwa M, Castrillon JA, Lin JR, Hurst KE, de Oliveira Taveira M, Johnson NT, et al: Targeting immunosuppressive macrophages overcomes PARP inhibitor resistance in BRCA1-associated triple-negative breast cancer. Nat Cancer. 2:66–82. 2021. View Article : Google Scholar : PubMed/NCBI

165 

Xiang W, Shi R, Kang X, Zhang X, Chen P, Zhang L, Hou A, Wang R, Zhao Y, Zhao K, et al: Monoacylglycerol lipase regulates cannabinoid receptor 2-dependent macrophage activation and cancer progression. Nat Commun. 9:25742018. View Article : Google Scholar : PubMed/NCBI

166 

Chen EP, Markosyan N, Connolly E, Lawson JA, Li X, Grant GR, Grosser T, FitzGerald GA and Smyth EM: Myeloid cell COX-2 deletion reduces mammary tumor growth through enhanced cytotoxic T-lymphocyte function. Carcinogenesis. 35:1788–1797. 2014. View Article : Google Scholar : PubMed/NCBI

167 

Li L, Han L, Sun F, Zhou J, Ohaegbulam KC, Tang X, Zang X, Steinbrecher KA, Qu Z and Xiao G: NF-κB RelA renders tumor-associated macrophages resistant to and capable of directly suppressing CD8+ T cells for tumor promotion. Oncoimmunology. 7:e14352502018. View Article : Google Scholar

168 

Kaneda MM, Messer KS, Ralainirina N, Li H, Leem CJ, Gorjestani S, Woo G, Nguyen AV, Figueiredo CC, Foubert P, et al: PI3Kγ is a molecular switch that controls immune suppression. Nature. 539:437–442. 2016. View Article : Google Scholar : PubMed/NCBI

169 

McIntire RH and Hunt JS: Antigen presenting cells and HLA-G-a review. Placenta. 26(Suppl A): S104–S109. 2005. View Article : Google Scholar

170 

Nixon BG, Kuo F, Liu M, Capistrano K, Do M, Franklin RA, Wu X, Kansler ER, Srivastava RM, Purohit TA, et al: IRF8 governs tumor-associated macrophage control of T cell exhaustion. bioRxiv. 2020.2003.2012.989731. 2020.

171 

Tseng D, Volkmer JP, Willingham SB, Contreras-Trujillo H, Fathman JW, Fernhoff NB, Seita J, Inlay MA, Weiskopf K, Miyanishi M and Weissman IL: Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc Natl Acad Sci USA. 110:11103–11108. 2013. View Article : Google Scholar : PubMed/NCBI

172 

Ruffell B, Chang-Strachan D, Chan V, Rosenbusch A, Ho CM, Pryer N, Daniel D, Hwang ES, Rugo HS and Coussens LM: Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell. 26:623–637. 2014. View Article : Google Scholar : PubMed/NCBI

173 

Fang W, Zhou T, Shi H, Yao M, Zhang D, Qian H, Zeng Q, Wang Y, Jin F, Chai C and Chen T: Progranulin induces immune escape in breast cancer via up-regulating PD-L1 expression on tumor-associated macrophages (TAMs) and promoting CD8+ T cell exclusion. J Exp Clin Cancer Res. 40:42021. View Article : Google Scholar

174 

Lin H, Wei S, Hurt EM, Green MD, Zhao L, Vatan L, Szeliga W, Herbst R, Harms PW, Fecher LA, et al: Host expression of PD-L1 determines efficacy of PD-L1 pathway blockade-mediated tumor regression. J Clin Invest. 128:805–815. 2018. View Article : Google Scholar : PubMed/NCBI

175 

Chow MT, Ozga AJ, Servis RL, Frederick DT, Lo JA, Fisher DE, Freeman GJ, Boland GM and Luster AD: Intratumoral activity of the CXCR3 chemokine system is required for the efficacy of anti-PD-1 therapy. Immunity. 50:1498–1512.e5. 2019. View Article : Google Scholar : PubMed/NCBI

176 

Lee AH, Sun L, Mochizuki AY, Reynoso JG, Orpilla J, Chow F, Kienzler JC, Everson RG, Nathanson DA, Bensinger SJ, et al: Neoadjuvant PD-1 blockade induces T cell and cDC1 activation but fails to overcome the immunosuppressive tumor associated macrophages in recurrent glioblastoma. Nat Commun. 12:69382021. View Article : Google Scholar : PubMed/NCBI

177 

Tsou P, Katayama H, Ostrin EJ and Hanash SM: The emerging role of B cells in tumor immunity. Cancer Res. 76:5597–5601. 2016. View Article : Google Scholar : PubMed/NCBI

178 

Nelson BH: CD20+ B cells: The other tumor-infiltrating lymphocytes. J Immunol. 185:4977–4982. 2010. View Article : Google Scholar : PubMed/NCBI

179 

Gunderson AJ, Kaneda MM, Tsujikawa T, Nguyen AV, Affara NI, Ruffell B, Gorjestani S, Liudahl SM, Truitt M, Olson P, et al: Bruton tyrosine kinase-dependent immune cell cross-talk drives pancreas cancer. Cancer Discov. 6:270–285. 2016. View Article : Google Scholar

180 

Fremd C, Schuetz F, Sohn C, Beckhove P and Domschke C: B cell-regulated immune responses in tumor models and cancer patients. Oncoimmunology. 2:e254432013. View Article : Google Scholar : PubMed/NCBI

181 

Wang SS, Liu W, Ly D, Xu H, Qu L and Zhang L: Tumor-infiltrating B cells: Their role and application in anti-tumor immunity in lung cancer. Cell Mol Immunol. 16:6–18. 2019. View Article : Google Scholar :

182 

Audzevich T, Bashford-Rogers R, Mabbott NA, Frampton D, Freeman TC, Potocnik A, Kellam P and Gilroy DW: Pre/pro-B cells generate macrophage populations during homeostasis and inflammation. Proc Natl Acad Sci USA. 114:E3954–E3963. 2017. View Article : Google Scholar : PubMed/NCBI

183 

Fridman WH, Petitprez F, Meylan M, Chen TW, Sun CM, Roumenina LT and Sautès-Fridman C: B cells and cancer: To B or not to B? J Exp Med. 218:e202008512021. View Article : Google Scholar : PubMed/NCBI

184 

Gonzalez H, Hagerling C and Werb Z: Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev. 32:1267–1284. 2018. View Article : Google Scholar : PubMed/NCBI

185 

Michel T, Hentges F and Zimmer J: Consequences of the cross-talk between monocytes/macrophages and natural killer cells. Front Immunol. 3:4032013. View Article : Google Scholar

186 

Sivori S, Pende D, Quatrini L, Pietra G, Della Chiesa M, Vacca P, Tumino N, Moretta F, Mingari MC, Locatelli F and Moretta L: NK cells and ILCs in tumor immunotherapy. Mol Aspects Med. 80:1008702021. View Article : Google Scholar

187 

Krneta T, Gillgrass A, Poznanski S, Chew M, Lee AJ, Kolb M and Ashkar AA: M2-polarized and tumor-associated macrophages alter NK cell phenotype and function in a contact-dependent manner. J Leukoc Biol. 101:285–295. 2017. View Article : Google Scholar

188 

Platonova S, Cherfils-Vicini J, Damotte D, Crozet L, Vieillard V, Validire P, André P, Dieu-Nosjean MC, Alifano M, Régnard JF, et al: Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res. 71:5412–5422. 2011. View Article : Google Scholar : PubMed/NCBI

189 

Kloss M, Decker P, Baltz KM, Baessler T, Jung G, Rammensee HG, Steinle A, Krusch M and Salih HR: Interaction of monocytes with NK cells upon Toll-like receptor-induced expression of the NKG2D ligand MICA. J Immunol. 181:6711–6719. 2008. View Article : Google Scholar : PubMed/NCBI

190 

Peng LS, Zhang JY, Teng YS, Zhao YL, Wang TT, Mao FY, Lv YP, Cheng P, Li WH, Chen N, et al: Tumor-associated monocytes/macrophages impair NK-cell function via TGFβ1 in human gastric cancer. Cancer Immunol Res. 5:248–256. 2017. View Article : Google Scholar : PubMed/NCBI

191 

Castriconi R, Cantoni C, Della Chiesa M, Vitale M, Marcenaro E, Conte R, Biassoni R, Bottino C, Moretta L and Moretta A: Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: Consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA. 100:4120–4125. 2003. View Article : Google Scholar : PubMed/NCBI

192 

Gallazzi M, Baci D, Mortara L, Bosi A, Buono G, Naselli A, Guarneri A, Dehò F, Capogrosso P, Albini A, et al: Prostate cancer peripheral blood NK cells show enhanced CD9, CD49a, CXCR4, CXCL8, MMP-9 production and secrete monocyte-recruiting and polarizing factors. Front Immunol. 11:5861262021. View Article : Google Scholar : PubMed/NCBI

193 

Malekghasemi S, Majidi J, Baghbanzadeh A, Abdolalizadeh J, Baradaran B and Aghebati-Maleki L: Tumor-associated macrophages: Protumoral macrophages in inflammatory tumor microenvironment. Adv Pharm Bull. 10:556–565. 2020. View Article : Google Scholar : PubMed/NCBI

194 

Xu B, Chen L, Li J, Zheng X, Shi L, Wu C and Jiang J: Prognostic value of tumor infiltrating NK cells and macrophages in stage II+III esophageal cancer patients. Oncotarget. 7:74904–74916. 2016. View Article : Google Scholar : PubMed/NCBI

195 

Eisinger S, Sarhan D, Boura VF, Ibarlucea-Benitez I, Tyystjärvi S, Oliynyk G, Arsenian-Henriksson M, Lane D, Wikström SL, Kiessling R, et al: Targeting a scavenger receptor on tumor-associated macrophages activates tumor cell killing by natural killer cells. Proc Natl Acad Sci USA. 117:32005–32016. 2020. View Article : Google Scholar : PubMed/NCBI

196 

Bellora F, Castriconi R, Dondero A, Pessino A, Nencioni A, Liggieri G, Moretta L, Mantovani A, Moretta A and Bottino C: TLR activation of tumor-associated macrophages from ovarian cancer patients triggers cytolytic activity of NK cells. Eur J Immunol. 44:1814–1822. 2014. View Article : Google Scholar : PubMed/NCBI

197 

Bellora F, Castriconi R, Dondero A, Reggiardo G, Moretta L, Mantovani A, Moretta A and Bottino C: The interaction of human natural killer cells with either unpolarized or polarized macrophages results in different functional outcomes. Proc Natl Acad Sci USA. 107:21659–21664. 2010. View Article : Google Scholar : PubMed/NCBI

198 

Dalbeth N, Gundle R, Davies RJO, Lee YCG, McMichael AJ and Callan MFC: CD56bright NK cells are enriched at inflammatory sites and can engage with monocytes in a reciprocal program of activation. J Immunol. 173:6418–6426. 2004. View Article : Google Scholar : PubMed/NCBI

199 

O'Sullivan T, Saddawi-Konefka R, Vermi W, Koebel CM, Arthur C, White JM, Uppaluri R, Andrews DM, Ngiow SF, Teng MW, et al: Cancer immunoediting by the innate immune system in the absence of adaptive immunity. J Exp Med. 209:1869–1882. 2012. View Article : Google Scholar : PubMed/NCBI

200 

Ponzetta A, Carriero R, Carnevale S, Barbagallo M, Molgora M, Perucchini C, Magrini E, Gianni F, Kunderfranco P, Polentarutti N, et al: Neutrophils driving unconventional T cells mediate resistance against murine sarcomas and selected human tumors. Cell. 178:346–360.e24. 2019. View Article : Google Scholar : PubMed/NCBI

201 

Wu L and Zhang XH: Tumor-associated neutrophils and macrophages-heterogenous but not chaotic. Front Immunol. 11:5539672020. View Article : Google Scholar : PubMed/NCBI

202 

Kim J and Bae JS: Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediators Inflamm. 2016:60581472016. View Article : Google Scholar : PubMed/NCBI

203 

Zhou SL, Zhou ZJ, Hu ZQ, Huang XW, Wang Z, Chen EB, Fan J, Cao Y, Dai Z and Zhou J: Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib. Gastroenterology. 150:1646–1658.e17. 2016. View Article : Google Scholar : PubMed/NCBI

204 

Zilionis R, Engblom C, Pfirschke C, Savova V, Zemmour D, Saatcioglu HD, Krishnan I, Maroni G, Meyerovitz CV, Kerwin CM, et al: Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity. 50:1317–1334.e10. 2019. View Article : Google Scholar : PubMed/NCBI

205 

Zhou Z, Wang P, Sun R, Li J, Hu Z, Xin H, Luo C, Zhou J, Fan J and Zhou S: Tumor-associated neutrophils and macrophages interaction contributes to intrahepatic cholangiocarcinoma progression by activating STAT3. J Immunother Cancer. 9:e0019462021. View Article : Google Scholar : PubMed/NCBI

206 

Gunaydin G: CAFs interacting with TAMs in tumor microenvironment to enhance tumorigenesis and immune evasion. Front Oncol. 11:6683492021. View Article : Google Scholar : PubMed/NCBI

207 

Sweeny L, Liu Z, Lancaster W, Hart J, Hartman YE and Rosenthal EL: Inhibition of fibroblasts reduced head and neck cancer growth by targeting fibroblast growth factor receptor. Laryngoscope. 122:1539–1544. 2012. View Article : Google Scholar : PubMed/NCBI

208 

Vu HN, Miller WJ, O'Connor SA, He M, Schafer PH, Payvandi F, Muller GW, Stirling DI and Libutti SK: CC-5079: A small molecule with MKP1, antiangiogenic, and antitumor activity. J Surg Res. 164:116–125. 2010. View Article : Google Scholar

209 

Donthireddy L, Vonteddu P, Murthy T, Kwak T, Eraslan RN, Podojil JR, Elhofy A, Boyne MT II, Puisis JJ, Veglia F, et al: ONP-302 nanoparticles inhibit tumor growth by altering tumor-associated macrophages and cancer-associated fibroblasts. J Cancer. 13:1933–1944. 2022. View Article : Google Scholar : PubMed/NCBI

210 

Kashyap AS, Schmittnaegel M, Rigamonti N, Pais-Ferreira D, Mueller P, Buchi M, Ooi CH, Kreuzaler M, Hirschmann P, Guichard A, et al: Optimized antiangiogenic reprogramming of the tumor microenvironment potentiates CD40 immunotherapy. Proc Natl Acad Sci USA. 117:541–551. 2020. View Article : Google Scholar : PubMed/NCBI

211 

Zhang L, Qi Y, Min H, Ni C, Wang F, Wang B, Qin H, Zhang Y, Liu G, Qin Y, et al: Cooperatively responsive peptide nanotherapeutic that regulates angiopoietin receptor Tie2 activity in tumor microenvironment to prevent breast tumor relapse after chemotherapy. ACS Nano. 13:5091–5102. 2019. View Article : Google Scholar : PubMed/NCBI

212 

Alam A, Blanc I, Gueguen-Dorbes G, Duclos O, Bonnin J, Barron P, Laplace MC, Morin G, Gaujarengues F, Dol F, et al: SAR131675, a potent and selective VEGFR-3-TK inhibitor with antilymphangiogenic, antitumoral, and antimetastatic activities. Mol Cancer Ther. 11:1637–1649. 2012. View Article : Google Scholar : PubMed/NCBI

213 

Gyori D, Lim EL, Grant FM, Spensberger D, Roychoudhuri R, Shuttleworth SJ, Okkenhaug K, Stephens LR and Hawkins PT: Compensation between CSF1R+ macrophages and Foxp3+ Treg cells drives resistance to tumor immunotherapy. JCI Insight. 3:e1206312018. View Article : Google Scholar : PubMed/NCBI

214 

Oweida AJ, Darragh L, Phan A, Binder D, Bhatia S, Mueller A, Court BV, Milner D, Raben D, Woessner R, et al: STAT3 modulation of regulatory T cells in response to radiation therapy in head and neck cancer. J Natl Cancer Inst. 111:1339–1349. 2019. View Article : Google Scholar : PubMed/NCBI

215 

Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL, Luo J, Wang-Gillam A, Goedegebuure SP, Linehan DC and DeNardo DG: CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 74:5057–5069. 2014. View Article : Google Scholar : PubMed/NCBI

216 

Sluijter M, van der Sluis TC, van der Velden PA, Versluis M, West BL, van der Burg SH and van Hall T: Inhibition of CSF-1R supports T-cell mediated melanoma therapy. PLoS One. 9:e1042302014. View Article : Google Scholar : PubMed/NCBI

217 

Doleschel D, Hoff S, Koletnik S, Rix A, Zopf D, Kiessling F and Lederle W: Regorafenib enhances anti-PD1 immunotherapy efficacy in murine colorectal cancers and their combination prevents tumor regrowth. J Exp Clin Cancer Res. 40:2882021. View Article : Google Scholar : PubMed/NCBI

218 

Zhang JQ, Zeng S, Vitiello GA, Seifert AM, Medina BD, Beckman MJ, Loo JK, Santamaria-Barria J, Maltbaek JH, Param NJ, et al: Macrophages and CD8+ T cells mediate the antitumor efficacy of combined CD40 ligation and imatinib therapy in gastrointestinal stromal tumors. Cancer Immunol Res. 6:434–447. 2018. View Article : Google Scholar : PubMed/NCBI

219 

Zhang M, Wen B, Anton OM, Yao Z, Dubois S, Ju W, Sato N, DiLillo DJ, Bamford RN, Ravetch JV and Waldmann TA: IL-15 enhanced antibody-dependent cellular cytotoxicity mediated by NK cells and macrophages. Proc Natl Acad Sci USA. 115:E10915–E10924. 2018. View Article : Google Scholar : PubMed/NCBI

220 

Jarosz-Biej M, Kamińska N, Matuszczak S, Cichoń T, Pamuła-Piłat J, Czapla J, Smolarczyk R, Skwarzyńska D, Kulik K and Szala S: M1-like macrophages change tumor blood vessels and microenvironment in murine melanoma. PLoS One. 13:e01910122018. View Article : Google Scholar : PubMed/NCBI

221 

Gaggero S, Witt K, Carlsten M and Mitra S: Cytokines orchestrating the natural killer-myeloid cell crosstalk in the tumor microenvironment: implications for natural killer cell-based cancer immunotherapy. Front Immunol. 11:6212252021. View Article : Google Scholar : PubMed/NCBI

222 

Zhou Z, Zhang C, Zhang J and Tian Z: Macrophages help NK cells to attack tumor cells by stimulatory NKG2D ligand but protect themselves from NK killing by inhibitory ligand Qa-1. PLoS One. 7:e369282012. View Article : Google Scholar : PubMed/NCBI

223 

Wang C, Cui A, Bukenya M, Aung A, Pradhan D, Whittaker CA, Agarwal Y, Thomas A, Liang S, Amlashi P, et al: Reprogramming NK cells and macrophages via combined antibody and cytokine therapy primes tumors for elimination by checkpoint blockade. Cell Rep. 37:1100212021. View Article : Google Scholar : PubMed/NCBI

224 

Nywening TM, Belt BA, Cullinan DR, Panni RZ, Han BJ, Sanford DE, Jacobs RC, Ye J, Patel AA, Gillanders WE, et al: Targeting both tumour-associated CXCR2+ neutrophils and CCR2+ macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut. 67:1112–1123. 2018. View Article : Google Scholar

225 

Li X, Yao W, Yuan Y, Chen P, Li B, Li J, Chu R, Song H, Xie D, Jiang X and Wang H: Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut. 66:157–167. 2017. View Article : Google Scholar

226 

Veillette A and Tang Z: Signaling regulatory protein (SIRP) α-CD47 blockade joins the ranks of immune checkpoint inhibition. J Clin Oncol. 37:1012–1014. 2019. View Article : Google Scholar : PubMed/NCBI

227 

Wesolowski R, Sharma N, Reebel L, Rodal MB, Peck A, West BL, Marimuthu A, Severson P, Karlin DA, Dowlati A, et al: Phase Ib study of the combination of pexidartinib (PLX3397), a CSF-1R inhibitor, and paclitaxel in patients with advanced solid tumors. Ther Adv Med Oncol. 11:17588359198542382019. View Article : Google Scholar : PubMed/NCBI

228 

Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S and Zhou H: Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther. 6:2182021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Kazakova A, Sudarskikh T, Kovalev O, Kzhyshkowska J and Larionova I: Interaction of tumor‑associated macrophages with stromal and immune components in solid tumors: Research progress (Review). Int J Oncol 62: 32, 2023.
APA
Kazakova, A., Sudarskikh, T., Kovalev, O., Kzhyshkowska, J., & Larionova, I. (2023). Interaction of tumor‑associated macrophages with stromal and immune components in solid tumors: Research progress (Review). International Journal of Oncology, 62, 32. https://doi.org/10.3892/ijo.2023.5480
MLA
Kazakova, A., Sudarskikh, T., Kovalev, O., Kzhyshkowska, J., Larionova, I."Interaction of tumor‑associated macrophages with stromal and immune components in solid tumors: Research progress (Review)". International Journal of Oncology 62.2 (2023): 32.
Chicago
Kazakova, A., Sudarskikh, T., Kovalev, O., Kzhyshkowska, J., Larionova, I."Interaction of tumor‑associated macrophages with stromal and immune components in solid tumors: Research progress (Review)". International Journal of Oncology 62, no. 2 (2023): 32. https://doi.org/10.3892/ijo.2023.5480
Copy and paste a formatted citation
x
Spandidos Publications style
Kazakova A, Sudarskikh T, Kovalev O, Kzhyshkowska J and Larionova I: Interaction of tumor‑associated macrophages with stromal and immune components in solid tumors: Research progress (Review). Int J Oncol 62: 32, 2023.
APA
Kazakova, A., Sudarskikh, T., Kovalev, O., Kzhyshkowska, J., & Larionova, I. (2023). Interaction of tumor‑associated macrophages with stromal and immune components in solid tumors: Research progress (Review). International Journal of Oncology, 62, 32. https://doi.org/10.3892/ijo.2023.5480
MLA
Kazakova, A., Sudarskikh, T., Kovalev, O., Kzhyshkowska, J., Larionova, I."Interaction of tumor‑associated macrophages with stromal and immune components in solid tumors: Research progress (Review)". International Journal of Oncology 62.2 (2023): 32.
Chicago
Kazakova, A., Sudarskikh, T., Kovalev, O., Kzhyshkowska, J., Larionova, I."Interaction of tumor‑associated macrophages with stromal and immune components in solid tumors: Research progress (Review)". International Journal of Oncology 62, no. 2 (2023): 32. https://doi.org/10.3892/ijo.2023.5480
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team