Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
March-2023 Volume 62 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2023 Volume 62 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Chromobox proteins in cancer: Multifaceted functions and strategies for modulation (Review)

  • Authors:
    • Jian Wang
    • Bo Yang
    • Xiuhang Zhang
    • Shuhan Liu
    • Xiaoqiang Pan
    • Changkai Ma
    • Shiqiang Ma
    • Dehai Yu
    • Wei Wu
  • View Affiliations / Copyright

    Affiliations: Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China, Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China, Department of Burn Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China, Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 36
    |
    Published online on: January 31, 2023
       https://doi.org/10.3892/ijo.2023.5484
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Chromobox (CBX) proteins are important epigenetic regulatory proteins and are widely involved in biological processes, such as embryonic development, the maintenance of stem cell characteristics and the regulation of cell proliferation and apoptosis. Disorder and dysfunction of CBXs in cancer usually lead to the blockade or ectoptic activation of developmental pathways, promoting the occurrence, development and progression of cancer. In the present review, the characteristics and functions of CBXs were first introduced. Subsequently, the expression of CBXs in cancers and the relationship between CBXs and clinical characteristics (mainly cancer grade, stage, metastasis and relapse) and prognosis were discussed. Finally, it was described how CBXs regulate cell proliferation and self‑renewal, apoptosis and the acquisition of malignant phenotypes, such as invasion, migration and chemoresistance, through mechanisms involving epigenetic modification, nuclear translocation, noncoding RNA interactions, transcriptional regulation, posttranslational modifications, protein‑protein interactions, signal transduction and metabolic reprogramming. The study also focused on cancer therapies targeting CBXs. The present review provides new insight and a comprehensive basis for follow‑up research on CBXs and cancer.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Lewis EB: A gene complex controlling segmentation in Drosophila. Nature. 276:565–570. 1978. View Article : Google Scholar : PubMed/NCBI

2 

Levine SS, Weiss A, Erdjument-Bromage H, Shao Z, Tempst P and Kingston RE: The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol Cell Biol. 22:6070–6078. 2002. View Article : Google Scholar : PubMed/NCBI

3 

Sparmann A and van Lohuizen M: Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 6:846–856. 2006. View Article : Google Scholar : PubMed/NCBI

4 

Kerppola TK: Polycomb group complexes-many combinations, many functions. Trends Cell Biol. 19:692–704. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Bracken AP, Dietrich N, Pasini D, Hansen KH and Helin K: Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 20:1123–1136. 2006. View Article : Google Scholar : PubMed/NCBI

6 

James TC, Eissenberg JC, Craig C, Dietrich V, Hobson A and Elgin SC: Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of Drosophila. Eur J Cell Biol. 50:170–180. 1989.PubMed/NCBI

7 

James TC and Elgin SC: Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol. 6:3862–3872. 1986.PubMed/NCBI

8 

Desai D and Pethe P: Polycomb repressive complex 1: Regulators of neurogenesis from embryonic to adult stage. J Cell Physiol. 235:4031–4045. 2020. View Article : Google Scholar

9 

Ma RG, Zhang Y, Sun TT and Cheng B: Epigenetic regulation by polycomb group complexes: Focus on roles of CBX proteins. J Zhejiang Univ Sci B. 15:412–428. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Camahort R and Cowan CA: Cbx proteins help ESCs walk the line between self-renewal and differentiation. Cell Stem Cell. 10:4–6. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Wang B, Tang J, Liao D, Wang G, Zhang M, Sang Y, Cao J, Wu Y, Zhang R, Li S, et al: Chromobox homolog 4 is correlated with prognosis and tumor cell growth in hepatocellular carcinoma. Ann Surg Oncol. 20(Suppl 3): S684–692. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Zhang Y, Kang M, Zhang B, Meng F, Song J, Kaneko H, Shimamoto F and Tang B: m6A modification-mediated CBX8 induction regulates stemness and chemosensitivity of colon cancer via upregulation of LGR5. Mol Cancer. 18:1852019. View Article : Google Scholar

13 

Zhang Y, Chen H, Zhu H and Sun X: CBX8 promotes tumorigenesis and confers radioresistance in esophageal squamous cell carcinoma cells through targeting APAF1. Gene. 711:1439492019. View Article : Google Scholar : PubMed/NCBI

14 

Huang Z, Yan Y, Zhu Z, Liu J, He X, Dalangood S, Li M, Tan M, Cai J, Tang P, et al: CBX7 suppresses urinary bladder cancer progression via modulating AKR1B10-ERK signaling. Cell Death Dis. 12:5372021. View Article : Google Scholar : PubMed/NCBI

15 

Iqbal MA, Siddiqui S, Ur Rehman A, Siddiqui FA, Singh P, Kumar B and Saluja D: Multiomics integrative analysis reveals antagonistic roles of CBX2 and CBX7 in metabolic reprogramming of breast cancer. Mol Oncol. 15:1450–1465. 2021. View Article : Google Scholar : PubMed/NCBI

16 

Tsai HC and Baylin SB: Cancer epigenetics: Linking basic biology to clinical medicine. Cell Res. 21:502–517. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Simhadri C, Daze KD, Douglas SF, Quon TT, Dev A, Gignac MC, Peng F, Heller M, Boulanger MJ, Wulff JE, et al: Chromodomain antagonists that target the polycomb-group methyllysine reader protein chromobox homolog 7 (CBX7). J Med Chem. 57:2874–2883. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Kim KH and Roberts CW: Targeting EZH2 in cancer. Nat Med. 22:128–134. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Eich ML, Athar M, Ferguson JE III and Varambally S: EZH2-targeted therapies in cancer: Hype or a reality. Cancer Res. 80:5449–5458. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Berthon C, Raffoux E, Thomas X, Vey N, Gomez-Roca C, Yee K, Taussig DC, Rezai K, Roumier C, Herait P, et al: Bromodomain inhibitor OTX015 in patients with acute leukaemia: A dose-escalation, phase 1 study. Lancet Haematol. 3:e186–e195. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Shorstova T, Marques M, Su J, Johnston J, Kleinman CL, Hamel N, Huang S, Alaoui-Jamali MA, Foulkes WD and Witcher M: SWI/SNF-compromised cancers are susceptible to bromodomain inhibitors. Cancer Res. 79:2761–2774. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Jeon YH, Kim GW, Kim SY, Yi SA, Yoo J, Kim JY, Lee SW and Kwon SH: Heterochromatin protein 1: A Multiplayer in cancer progression. Cancers (Basel). 14:7632022. View Article : Google Scholar : PubMed/NCBI

23 

German B and Ellis L: Polycomb directed cell fate decisions in development and cancer. Epigenomes. 6:282022. View Article : Google Scholar : PubMed/NCBI

24 

Parreno V, Martinez AM and Cavalli G: Mechanisms of Polycomb group protein function in cancer. Cell Res. 32:231–253. 2022. View Article : Google Scholar : PubMed/NCBI

25 

Dong GJ, Xu JL, Qi YR, Yuan ZQ and Zhao W: Critical roles of polycomb repressive complexes in transcription and cancer. Int J Mol Sci. 23:95742022. View Article : Google Scholar : PubMed/NCBI

26 

Fonfría-Subirós E, Acosta-Reyes F, Saperas N, Pous J, Subirana JA and Campos JL: Crystal structure of a complex of DNA with one AT-hook of HMGA1. PLoS One. 7:e371202012. View Article : Google Scholar : PubMed/NCBI

27 

Tardat M, Albert M, Kunzmann R, Liu Z, Kaustov L, Thierry R, Duan S, Brykczynska U, Arrowsmith CH and Peters AH: Cbx2 targets PRC1 to constitutive heterochromatin in mouse zygotes in a parent-of-origin-dependent manner. Mol Cell. 58:157–171. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Senthilkumar R and Mishra RK: Novel motifs distinguish multiple homologues of Polycomb in vertebrates: Expansion and diversification of the epigenetic toolkit. BMC Genomics. 10:5492009. View Article : Google Scholar : PubMed/NCBI

29 

Levine SS, King IF and Kingston RE: Division of labor in polycomb group repression. Trends Biochem Sci. 29:478–485. 2004. View Article : Google Scholar : PubMed/NCBI

30 

Francis NJ, Kingston RE and Woodcock CL: Chromatin compaction by a polycomb group protein complex. Science. 306:1574–1577. 2004. View Article : Google Scholar : PubMed/NCBI

31 

Shao Z, Raible F, Mollaaghababa R, Guyon JR, Wu CT, Bender W and Kingston RE: Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell. 98:37–46. 1999. View Article : Google Scholar : PubMed/NCBI

32 

Fischle W, Wang Y, Jacobs SA, Kim Y, Allis CD and Khorasanizadeh S: Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev. 17:1870–1881. 2003. View Article : Google Scholar : PubMed/NCBI

33 

Chen T and Dent SY: Chromatin modifiers and remodellers: Regulators of cellular differentiation. Nat Rev Genet. 15:93–106. 2014. View Article : Google Scholar

34 

Kim J and Kingston RE: The CBX family of proteins in transcriptional repression and memory. J Biosci. 45:162020. View Article : Google Scholar : PubMed/NCBI

35 

Jangal M, Lebeau B and Witcher M: Beyond EZH2: Is the poly-comb protein CBX2 an emerging target for anti-cancer therapy. Expert Opin Ther Targets. 23:565–578. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Kawaguchi T, Machida S, Kurumizaka H, Tagami H and Nakayama JI: Phosphorylation of CBX2 controls its nucleosome-binding specificity. J Biochem. 162:343–355. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P and Reinberg D: Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16:2893–2905. 2002. View Article : Google Scholar : PubMed/NCBI

38 

Gao Z, Zhang J, Bonasio R, Strino F, Sawai A, Parisi F, Kluger Y and Reinberg D: PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol Cell. 45:344–356. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Blackledge NP, Farcas AM, Kondo T, King HW, McGouran JF, Hanssen L, Ito S, Cooper S, Kondo K, Koseki Y, et al: Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell. 157:1445–1459. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Schuettengruber B, Bourbon HM, Di Croce L and Cavalli G: Genome regulation by polycomb and trithorax: 70 years and counting. Cell. 171:34–57. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS and Zhang Y: Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 298:1039–1043. 2002. View Article : Google Scholar : PubMed/NCBI

42 

Kuzmichev A, Jenuwein T, Tempst P and Reinberg D: Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol Cell. 14:183–193. 2004. View Article : Google Scholar : PubMed/NCBI

43 

Plath K, Talbot D, Hamer KM, Otte AP, Yang TP, Jaenisch R and Panning B: Developmentally regulated alterations in Polycomb repressive complex 1 proteins on the inactive X chromosome. J Cell Biol. 167:1025–1035. 2004. View Article : Google Scholar : PubMed/NCBI

44 

Yap KL, Li S, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ and Zhou MM: Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell. 38:662–674. 2010. View Article : Google Scholar : PubMed/NCBI

45 

Ku M, Koche RP, Rheinbay E, Mendenhall EM, Endoh M, Mikkelsen TS, Presser A, Nusbaum C, Xie X, Chi AS, et al: Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet. 4:e10002422008. View Article : Google Scholar : PubMed/NCBI

46 

Chan HL and Morey L: Emerging roles for polycomb-group proteins in stem cells and cancer. Trends Biochem Sci. 44:688–700. 2019. View Article : Google Scholar : PubMed/NCBI

47 

Yu M, Mazor T, Huang H, Huang HT, Kathrein KL, Woo AJ, Chouinard CR, Labadorf A, Akie TE, Moran TB, et al: Direct recruitment of polycomb repressive complex 1 to chromatin by core binding transcription factors. Mol Cell. 45:330–343. 2012. View Article : Google Scholar : PubMed/NCBI

48 

Gao Z, Lee P, Stafford JM, von Schimmelmann M, Schaefer A and Reinberg D: An AUTS2-Polycomb complex activates gene expression in the CNS. Nature. 516:349–354. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Saunders WS, Chue C, Goebl M, Craig C, Clark RF, Powers JA, Eissenberg JC, Elgin SC, Rothfield NF and Earnshaw WC: Molecular cloning of a human homologue of Drosophila heterochromatin protein HP1 using anti-centromere autoantibodies with anti-chromo specificity. J Cell Sci. 104:573–582. 1993. View Article : Google Scholar : PubMed/NCBI

50 

Nielsen AL, Ortiz JA, You J, Oulad-Abdelghani M, Khechumian R, Gansmuller A, Chambon P and Losson R: Interaction with members of the heterochromatin protein 1 (HP1) family and histone deacetylation are differentially involved in transcriptional silencing by members of the TIF1 family. EMBO J. 18:6385–6395. 1999. View Article : Google Scholar : PubMed/NCBI

51 

Paro R and Hogness DS: The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. Proc Natl Acad Sci USA. 88:263–267. 1991. View Article : Google Scholar : PubMed/NCBI

52 

Nielsen AL, Oulad-Abdelghani M, Ortiz JA, Remboutsika E, Chambon P and Losson R: Heterochromatin formation in mammalian cells: Interaction between histones and HP1 proteins. Mol Cell. 7:729–739. 2001. View Article : Google Scholar : PubMed/NCBI

53 

Lachner M, O'Carroll D, Rea S, Mechtler K and Jenuwein T: Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature. 410:116–120. 2001. View Article : Google Scholar : PubMed/NCBI

54 

Aasland R and Stewart AF: The chromo shadow domain, a second chromo domain in heterochromatin-binding protein 1,HP1. Nucleic Acids Res. 23:3168–3173. 1995. View Article : Google Scholar : PubMed/NCBI

55 

Brasher SV, Smith BO, Fogh RH, Nietlispach D, Thiru A, Nielsen PR, Broadhurst RW, Ball LJ, Murzina NV and Laue ED: The structure of mouse HP1 suggests a unique mode of single peptide recognition by the shadow chromo domain dimer. EMBO J. 19:1587–1597. 2000. View Article : Google Scholar : PubMed/NCBI

56 

Cowieson NP, Partridge JF, Allshire RC and McLaughlin PJ: Dimerisation of a chromo shadow domain and distinctions from the chromodomain as revealed by structural analysis. Curr Biol. 10:517–525. 2000. View Article : Google Scholar : PubMed/NCBI

57 

Azzaz AM, Vitalini MW, Thomas AS, Price JP, Blacketer MJ, Cryderman DE, Zirbel LN, Woodcock CL, Elcock AH, Wallrath LL, et al: Human heterochromatin protein 1α promotes nucleosome associations that drive chromatin condensation. J Biol Chem. 289:6850–6861. 2014. View Article : Google Scholar : PubMed/NCBI

58 

Casale AM, Cappucci U, Fanti L and Piacentini L: Heterochromatin protein 1 (HP1) is intrinsically required for post-transcriptional regulation of Drosophila Germline Stem Cell (GSC) maintenance. Sci Rep. 9:43722019. View Article : Google Scholar : PubMed/NCBI

59 

Ligresti G, Caporarello N, Meridew JA, Jones DL, Tan Q, Choi KM, Haak AJ, Aravamudhan A, Roden AC, Prakash YS, et al: CBX5/G9a/H3K9me-mediated gene repression is essential to fibroblast activation during lung fibrosis. JCI Insight. 5:e1271112019. View Article : Google Scholar : PubMed/NCBI

60 

Tamaru H and Selker EU: A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature. 414:277–283. 2001. View Article : Google Scholar : PubMed/NCBI

61 

Feldman N, Gerson A, Fang J, Li E, Zhang Y, Shinkai Y, Cedar H and Bergman Y: G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol. 8:188–194. 2006. View Article : Google Scholar : PubMed/NCBI

62 

Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, Sabedot TS, Malta TM, Pagnotta SM, Castiglioni I, et al: TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 44:e712016. View Article : Google Scholar :

63 

Davis S and Meltzer PS: GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 23:1846–1847. 2007. View Article : Google Scholar : PubMed/NCBI

64 

Tang Z, Kang B, Li C, Chen T and Zhang Z: GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 47:W556–W560. 2019. View Article : Google Scholar : PubMed/NCBI

65 

Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et al: The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2:401–404. 2012. View Article : Google Scholar : PubMed/NCBI

66 

Asplund A, Edqvist PH, Schwenk JM and Pontén F: Antibodies for profiling the human proteome-The Human Protein Atlas as a resource for cancer research. Proteomics. 12:2067–2077. 2012. View Article : Google Scholar : PubMed/NCBI

67 

Li J, Xu Z, Zhou L and Hu K: Expression profile and prognostic values of Chromobox family members in human glioblastoma. Aging (Albany NY). 14:1910–1931. 2022. View Article : Google Scholar : PubMed/NCBI

68 

Zheng ZQ, Yuan GQ, Kang NL, Nie QQ, Zhang GG and Wang Z: Chromobox 7/8 serve as independent indicators for glioblastoma via promoting proliferation and invasion of glioma cells. Front Neurol. 13:9120392022. View Article : Google Scholar : PubMed/NCBI

69 

Zhao SP, Wang F, Yang M, Wang XY, Jin CL, Ji QK, Li S and Zhao XL: CBX3 promotes glioma U87 cell proliferation and predicts an unfavorable prognosis. J Neurooncol. 145:35–48. 2019. View Article : Google Scholar : PubMed/NCBI

70 

Zhang H, Chen W, Fu X, Su X and Yang A: CBX3 promotes tumor proliferation by regulating G1/S phase via p21 downregulation and associates with poor prognosis in tongue squamous cell carcinoma. Gene. 654:49–56. 2018. View Article : Google Scholar : PubMed/NCBI

71 

Zhang X, Zhou W, Zhang Y and Liu Z: CBX3 is a prognostic biomarker correlated with ATR activation and immune infiltration in head and neck squamous cell carcinoma. Int J Gen Med. 15:1497–1508. 2022. View Article : Google Scholar : PubMed/NCBI

72 

Guo XH, Zhang JY, Jiao DC, Zhu JJ, Ma YZ, Yang Y, Xiao H and Liu ZZ: The expression and significance of chromobox protein homolog 2 in breast cancer. Zhonghua Yi Xue Za Zhi. 100:130–135. 2020.In Chinese. PubMed/NCBI

73 

Zheng S, Lv P, Su J, Miao K, Xu H and Li M: Overexpression of CBX2 in breast cancer promotes tumor progression through the PI3K/AKT signaling pathway. Am J Transl Res. 11:1668–1682. 2019.PubMed/NCBI

74 

Chen WY, Zhang XY, Liu T, Liu Y, Zhao YS and Pang D: Chromobox homolog 2 protein: A novel biomarker for predicting prognosis and Taxol sensitivity in patients with breast cancer. Oncol Lett. 13:1149–1156. 2017. View Article : Google Scholar : PubMed/NCBI

75 

Piqué DG, Montagna C, Greally JM and Mar JC: A novel approach to modelling transcriptional heterogeneity identifies the oncogene candidate CBX2 in invasive breast carcinoma. Br J Cancer. 120:746–753. 2019. View Article : Google Scholar : PubMed/NCBI

76 

Zeng JS, Zhang ZD, Pei L, Bai ZZ, Yang Y, Yang H and Tian QH: CBX4 exhibits oncogenic activities in breast cancer via Notch1 signaling. Int J Biochem Cell Biol. 95:1–8. 2018. View Article : Google Scholar

77 

Li X, Gou J, Li H and Yang X: Bioinformatic analysis of the expression and prognostic value of chromobox family proteins in human breast cancer. Sci Rep. 10:177392020. View Article : Google Scholar : PubMed/NCBI

78 

Liang YK, Lin HY, Chen CF and Zeng D: Prognostic values of distinct CBX family members in breast cancer. Oncotarget. 8:92375–92387. 2017. View Article : Google Scholar : PubMed/NCBI

79 

Chung CY, Sun Z, Mullokandov G, Bosch A, Qadeer ZA, Cihan E, Rapp Z, Parsons R, Aguirre-Ghiso JA, Farias EF, et al: Cbx8 Acts Non-canonically with Wdr5 to promote mammary tumorigenesis. Cell Rep. 16:472–486. 2016. View Article : Google Scholar : PubMed/NCBI

80 

Mao G, Zheng Y, Lin S, Ma L, Zhou Z and Zhang S: Bioinformatic analysis of prognostic value, genetic interaction, and immune infiltration of chromobox family proteins in breast cancer. Int J Gen Med. 14:9181–9191. 2021. View Article : Google Scholar : PubMed/NCBI

81 

Xie X, Ning Y, Long J, Wang H and Chen X: Diverse CBX family members as potential prognostic biomarkers in non-small-cell lung cancer. FEBS Open Bio. 10:2206–2215. 2020. View Article : Google Scholar : PubMed/NCBI

82 

Chang SC, Lai YC, Chen YC, Wang NK, Wang WS and Lai JI: CBX3/heterochromatin protein 1 gamma is significantly upregulated in patients with non-small cell lung cancer. Asia Pac J Clin Oncol. 14:e283–e288. 2018. View Article : Google Scholar

83 

Huang J, Zhang W, Lin D, Lian L, Hong W and Xu Z: Chromobox Homologue 7 acts as a tumor suppressor in both lung adenocarcinoma and lung squamous cell carcinoma via inhibiting ERK/MAPK signaling pathway. Evid Based Complement Alternat Med. 2022:49521852022.PubMed/NCBI

84 

Zhang C, Chang L, Yao Y, Chao C, Ge Z, Fan C, Yu H, Wang B and Yang J: Role of the CBX molecular family in lung adenocarcinoma tumorigenesis and immune infiltration. Front Genet. 12:7710622021. View Article : Google Scholar : PubMed/NCBI

85 

Wang Z, Fang Z, Chen G, Liu B, Xu J, Li F, Li F, Liu H, Zhang H, Sun Y, et al: Chromobox 4 facilitates tumorigenesis of lung adenocarcinoma through the Wnt/β-catenin pathway. Neoplasia. 23:222–233. 2021. View Article : Google Scholar : PubMed/NCBI

86 

Liu J, Shen H, Chen X, Ding Y, Wang H, Xu N and Teng L: Expression and prognostic value of chromobox family proteins in esophageal cancer. Genes (Basel). 13:15822022. View Article : Google Scholar : PubMed/NCBI

87 

Fang X, Wang J, Chen J, Zhuang M, Huang T, Chen Z, Huang Y, Zheng B and Wang X: Identification and validation of chromobox family members as potential prognostic biomarkers and therapeutic targets for human esophageal cancer. Front Genet. 13:8513902022. View Article : Google Scholar : PubMed/NCBI

88 

Hou J, Yang Y, Gao H, Ouyang T, Liu Q, Ding R and Kan H: Systematic investigation of the clinical significance and prognostic value of the CBXs in esophageal cancer. Medicine (Baltimore). 101:e308882022. View Article : Google Scholar : PubMed/NCBI

89 

Ueda S, Kanda M, Sato Y, Baba H, Nakamura S, Sawaki K, Shimizu D, Motoyama S, Fujii T, Kodera Y, et al: Chromobox 2 expression predicts prognosis after curative resection of oesophageal squamous cell carcinoma. Cancer Genomics Proteomics. 17:391–400. 2020. View Article : Google Scholar : PubMed/NCBI

90 

Xiao W, Ou C, Qin J, Xing F, Sun Y, Li Z and Qiu J: CBX8, a novel DNA repair protein, promotes tumorigenesis in human esophageal carcinoma. Int J Clin Exp Pathol. 7:4817–4826. 2014.PubMed/NCBI

91 

Lin H, Lian J, Xia L, Guan G and You J: CBX3 promotes gastric cancer progression and affects factors related to immunotherapeutic responses. Cancer Manag Res. 12:10113–10125. 2020. View Article : Google Scholar : PubMed/NCBI

92 

Li W, Chen H, Wang Z, Liu J, Lei X and Chen W: Chromobox 4 (CBX4) promotes tumor progression and stemness via activating CDC20 in gastric cancer. J Gastrointest Oncol. 13:1058–1072. 2022. View Article : Google Scholar : PubMed/NCBI

93 

He M, Yue L, Wang H, Yu F, Yu M, Ni P, Zhang K, Chen S, Duan G and Zhang R: Evaluation of the prognostic value of CBXs in gastric cancer patients. Sci Rep. 11:123752021. View Article : Google Scholar : PubMed/NCBI

94 

Ma T, Ma N, Chen JL, Tang FX, Zong Z, Yu ZM, Chen S and Zhou TC: Expression and prognostic value of Chromobox family members in gastric cancer. J Gastrointest Oncol. 11:983–998. 2020. View Article : Google Scholar : PubMed/NCBI

95 

Lin K, Zhu J, Hu C, Bu F, Luo C, Zhu X and Zhu Z: Comprehensive analysis of the prognosis for chromobox family in gastric cancer. J Gastrointest Oncol. 11:932–951. 2020. View Article : Google Scholar : PubMed/NCBI

96 

Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, Engel J Jr, Forsgren L, French JA, Glynn M, et al: ILAE official report: A practical clinical definition of epilepsy. Epilepsia. 55:475–482. 2014. View Article : Google Scholar : PubMed/NCBI

97 

Chen ZY, Sun SX, Zhu SX and Bu J: Identification of the roles of chromobox family members in gastric cancer: A study based on multiple datasets. Biomed Res Int. 2020:53065092020.PubMed/NCBI

98 

Zhang YJ, Zhao LY, He X, Yao RF, Lu F, Lu BN and Pang ZR: CBXs-related prognostic gene signature correlates with immune microenvironment in gastric cancer. Aging (Albany NY). 14:6227–6254. 2022. View Article : Google Scholar : PubMed/NCBI

99 

Li Q, Fu L, Wu D and Wang J: Prognostic and immune infiltrates for the Chromobox (CBX) protein family in human pancreatic adenocarcinoma. J Gastrointest Oncol. 12:2310–2324. 2021. View Article : Google Scholar : PubMed/NCBI

100 

Teng BW, Zhang KD, Yang YH, Guo ZY, Chen WW and Qiu ZJ: Genome-wide CRISPR-Cas9 screening identifies that hypoxia-inducible factor-1a-induced CBX8 transcription promotes pancreatic cancer progression via IRS1/AKT axis. World J Gastrointest Oncol. 13:1709–1724. 2021. View Article : Google Scholar : PubMed/NCBI

101 

Wang H, Zhao W, Wang J and Zhang Z: Clinicopathological significance of CBX3 in colorectal cancer: An intensive expression study based on formalin-fixed and paraffin-embedded tissues. Pathol Int. 72:107–116. 2022. View Article : Google Scholar : PubMed/NCBI

102 

Tang J, Wang G, Zhang M, Li FY, Sang Y, Wang B, Hu K, Wu Y, Luo R, Liao D, et al: Paradoxical role of CBX8 in proliferation and metastasis of colorectal cancer. Oncotarget. 5:10778–10790. 2014. View Article : Google Scholar : PubMed/NCBI

103 

Li Q, Pan Y, Cao Z and Zhao S: Comprehensive analysis of prognostic value and immune infiltration of chromobox family members in colorectal cancer. Front Oncol. 10:5826672020. View Article : Google Scholar : PubMed/NCBI

104 

Zhou H, Xiong Y, Liu Z, Hou S and Zhou T: Expression and prognostic significance of CBX2 in colorectal cancer: Database mining for CBX family members in malignancies and vitro analyses. Cancer Cell Int. 21:4022021. View Article : Google Scholar : PubMed/NCBI

105 

Yuan GJ, Chen X, Lu J, Feng ZH, Chen SL, Chen RX, Wei WS, Zhou FJ and Xie D: Chromobox homolog 8 is a predictor of muscle invasive bladder cancer and promotes cell proliferation by repressing the p53 pathway. Cancer Sci. 108:2166–2175. 2017. View Article : Google Scholar : PubMed/NCBI

106 

Zhou J, Chen Z, Zou M, Wan R, Wu T, Luo Y, Wu G, Wang W and Liu T: Prognosis and immune infiltration of chromobox family genes in sarcoma. Front Oncol. 11:6575952021. View Article : Google Scholar : PubMed/NCBI

107 

Ma C, Nie XG, Wang YL, Liu XH, Liang X, Zhou QL and Wu DP: CBX3 predicts an unfavorable prognosis and promotes tumorigenesis in osteosarcoma. Mol Med Rep. 19:4205–4212. 2019.PubMed/NCBI

108 

Yang J, Cheng D, Zhu B, Zhou S, Ying T and Yang Q: Chromobox Homolog 4 is positively correlated to tumor growth, survival and activation of HIF-1α signaling in human osteosarcoma under normoxic condition. J Cancer. 7:427–435. 2016. View Article : Google Scholar :

109 

Karamitopoulou E, Pallante P, Zlobec I, Tornillo L, Carafa V, Schaffner T, Borner M, Diamantis I, Esposito F, Brunner T, et al: Loss of the CBX7 protein expression correlates with a more aggressive phenotype in pancreatic cancer. Eur J Cancer. 46:1438–1444. 2010. View Article : Google Scholar : PubMed/NCBI

110 

Zhu Y, Pu Z, Li Z, Lin Y, Li N and Peng F: Comprehensive analysis of the expression and prognosis value of chromobox family members in clear cell renal cell carcinoma. Front Oncol. 11:7005282021. View Article : Google Scholar : PubMed/NCBI

111 

Hu K, Yao L, Xu Z, Yan Y and Li J: Prognostic value and therapeutic potential of CBX family members in ovarian cancer. Front Cell Dev Biol. 10:8323542022. View Article : Google Scholar : PubMed/NCBI

112 

Tian P, Zhang C, Ma C, Ding L, Tao N, Ning L, Wang Y, Yong X, Yan Q, Lin X, et al: Decreased chromobox homologue 7 expression is associated with epithelial-mesenchymal transition and poor prognosis in cervical cancer. Open Med (Wars). 16:410–418. 2021. View Article : Google Scholar : PubMed/NCBI

113 

Li D, Liu Y, Hao S, Chen B and Li A: Mining database for the clinical significance and prognostic value of CBX family in skin cutaneous melanoma. J Clin Lab Anal. 34:e235372020. View Article : Google Scholar : PubMed/NCBI

114 

Ning G, Huang YL, Zhen LM, Xu WX, Jiao Q, Yang FJ, Wu LN, Zheng YY, Song J, Wang YS, et al: Transcriptional expressions of Chromobox 1/2/3/6/8 as independent indicators for survivals in hepatocellular carcinoma patients. Aging (Albany NY). 10:3450–3473. 2018. View Article : Google Scholar : PubMed/NCBI

115 

Yang YF, Pan YH, Tian QH, Wu DC and Su SG: CBX1 indicates poor outcomes and exerts oncogenic activity in hepatocellular carcinoma. Transl Oncol. 11:1110–1118. 2018. View Article : Google Scholar : PubMed/NCBI

116 

Zhong X, Kan A, Zhang W, Zhou J, Zhang H, Chen J and Tang S: CBX3/HP1γ promotes tumor proliferation and predicts poor survival in hepatocellular carcinoma. Aging (Albany NY). 11:5483–5497. 2019. View Article : Google Scholar : PubMed/NCBI

117 

Zheng H, Jiang WH, Tian T, Tan HS, Chen Y, Qiao GL, Han J, Huang SY, Yang Y, Li S, et al: CBX6 overexpression contributes to tumor progression and is predictive of a poor prognosis in hepatocellular carcinoma. Oncotarget. 8:18872–18884. 2017. View Article : Google Scholar : PubMed/NCBI

118 

Wang J, He H, Jiang Q, Wang Y and Jia S: CBX6 promotes HCC metastasis via transcription factors Snail/Zeb1-mediated EMT mechanism. Onco Targets Ther. 13:12489–12500. 2020. View Article : Google Scholar : PubMed/NCBI

119 

Zhu X, Qin M, Li C, Zeng W, Bei C, Tan C, Zhang Y, Shi W, Kong J, Fu Y, et al: Downregulated expression of chromobox homolog 7 in hepatocellular carcinoma. Genet Test Mol Biomarkers. 23:348–352. 2019. View Article : Google Scholar : PubMed/NCBI

120 

Tang B, Tian Y, Liao Y, Li Z, Yu S, Su H, Zhong F, Yuan G, Wang Y, Yu H, et al: CBX8 exhibits oncogenic properties and serves as a prognostic factor in hepatocellular carcinoma. Cell Death Dis. 10:522019. View Article : Google Scholar : PubMed/NCBI

121 

Zhang CZ, Chen SL, Wang CH, He YF, Yang X, Xie D and Yun JP: CBX8 exhibits oncogenic activity via AKT/β-catenin activation in hepatocellular carcinoma. Cancer Res. 78:51–63. 2018. View Article : Google Scholar

122 

Pan C, Luo N, Guo K, Wang W, Li L, Fan N and Tian Y: Members of the chromobox family have prognostic value in hepatocellular carcinoma. Front Genet. 13:8879252022. View Article : Google Scholar : PubMed/NCBI

123 

Xu Y, Pan S, Song Y, Pan C, Chen C and Zhu X: The prognostic value of the chromobox family in human ovarian cancer. J Cancer. 11:5198–5209. 2020. View Article : Google Scholar : PubMed/NCBI

124 

Wheeler LJ, Watson ZL, Qamar L, Yamamoto TM, Post MD, Berning AA, Spillman MA, Behbakht K and Bitler BG: CBX2 identified as driver of anoikis escape and dissemination in high grade serous ovarian cancer. Oncogenesis. 7:922018. View Article : Google Scholar : PubMed/NCBI

125 

Yang Y, Hu Z, Sun H, Yu Q, Yang L, Yin F, Sun Y, Pu L, Zhu X, Li S, et al: CBX7, a potential prognostic biomarker in lung adenocarcinoma. Onco Targets Ther. 14:5477–5492. 2021. View Article : Google Scholar

126 

Hu CY, Li X, Zeng T, Ye DM, Li YK and Yan HX: Significance of chromobox protein (CBX) expression in diffuse LBCL. Gene. 813:1460922022. View Article : Google Scholar

127 

Tan C, Bei C, Zhu X, Zhang Y, Qin L and Tan S: Single nucleotide polymorphisms of CBX4 and CBX7 decrease the risk of hepatocellular carcinoma. Biomed Res Int. 2019:64368252019. View Article : Google Scholar : PubMed/NCBI

128 

Zhu XY, Huang MJ, Su QY, Wang XZ, Wang J, Long QQ, Wu XM, Huang XY, Yao JG and Long XD: The predictive potential of genetic single nucleotide polymorphisms in CBX4 for hepatocellular carcinoma survival. Front Biosci (Landmark Ed). 26:1191–1203. 2021. View Article : Google Scholar : PubMed/NCBI

129 

Chang C, Liu J, He W, Qu M, Huang X, Deng Y, Shen L, Zhao X, Guo H, Jiang J, et al: A regulatory circuit HP1γ/miR-451a/c-Myc promotes prostate cancer progression. Oncogene. 37:415–426. 2018. View Article : Google Scholar

130 

Cheng W, Qi Y, Tian L, Wang B, Huang W and Chen Y: Dicer promotes tumorigenesis by translocating to nucleus to promote SFRP1 promoter methylation in cholangiocarcinoma cells. Cell Death Dis. 8:e26282017. View Article : Google Scholar : PubMed/NCBI

131 

Ci X, Hao J, Dong X, Choi SY, Xue H, Wu R, Qu S, Gout PW, Zhang F, Haegert AM, et al: Heterochromatin protein 1α mediates development and aggressiveness of neuroendocrine prostate cancer. Cancer Res. 78:2691–2704. 2018. View Article : Google Scholar : PubMed/NCBI

132 

Wang X, Li L, Wu Y, Zhang R, Zhang M, Liao D, Wang G, Qin G, Xu RH and Kang T: CBX4 suppresses metastasis via recruitment of HDAC3 to the Runx2 promoter in colorectal carcinoma. Cancer Res. 76:7277–7289. 2016. View Article : Google Scholar : PubMed/NCBI

133 

Jiang N, Niu G, Pan YH, Pan W, Zhang MF, Zhang CZ and Shen H: CBX4 transcriptionally suppresses KLF6 via interaction with HDAC1 to exert oncogenic activities in clear cell renal cell carcinoma. EBioMedicine. 53:1026922020. View Article : Google Scholar : PubMed/NCBI

134 

Yu T, Wu Y, Hu Q, Zhang J, Nie E, Wu W, Wang X, Wang Y and Liu N: CBX7 is a glioma prognostic marker and induces G1/S arrest via the silencing of CCNE1. Oncotarget. 8:26637–26647. 2017. View Article : Google Scholar : PubMed/NCBI

135 

Federico A, Pallante P, Bianco M, Ferraro A, Esposito F, Monti M, Cozzolino M, Keller S, Fedele M, Leone V, et al: Chromobox protein homologue 7 protein, with decreased expression in human carcinomas, positively regulates E-cadherin expression by interacting with the histone deacetylase 2 protein. Cancer Res. 69:7079–7087. 2009. View Article : Google Scholar : PubMed/NCBI

136 

Wu Y, Duan Y, Li X, Zhao R, Lan B, Zhang X, Wang X, Chen H, Feng S, Liu Z, et al: CBX8 together with SET facilitates ovarian carcinoma growth and metastasis by suppressing the transcription of SUSD2. Mol Cancer Res. 20:1611–1622. 2022. View Article : Google Scholar : PubMed/NCBI

137 

Mancini M, Papon L, Mangé A, Cammas F and Fabbrizio E: HP1s modulate the S-Adenosyl Methionine synthesis pathway in liver cancer cells. Biochem J. 477:1033–1047. 2020. View Article : Google Scholar : PubMed/NCBI

138 

Zhang K, Wang J, Yang L, Yuan YC, Tong TR, Wu J, Yun X, Bonner M, Pangeni R, Liu Z, et al: Targeting histone methyltransferase G9a inhibits growth and Wnt signaling pathway by epigenetically regulating HP1α and APC2 gene expression in non-small cell lung cancer. Mol Cancer. 17:1532018. View Article : Google Scholar

139 

Zheng Q, Xu J, Lin Z, Lu Y, Xin X, Li X, Yang Y, Meng Q, Wang C, Xiong W, et al: Inflammatory factor receptor Toll-like receptor 4 controls telomeres through heterochromatin protein 1 isoforms in liver cancer stem cell. J Cell Mol Med. 22:3246–3258. 2018. View Article : Google Scholar : PubMed/NCBI

140 

Cheng W, Tian L, Wang B, Qi Y, Huang W, Li H and Chen YJ: Downregulation of HP1α suppresses proliferation of cholangiocarcinoma by restoring SFRP1 expression. Oncotarget. 7:48107–48119. 2016. View Article : Google Scholar : PubMed/NCBI

141 

Yi SA, Lee DH, Kim GW, Ryu HW, Park JW, Lee J, Han J, Park JH, Oh H, Lee J, et al: HPV-mediated nuclear export of HP1γ drives cervical tumorigenesis by downregulation of p53. Cell Death Differ. 27:2537–2551. 2020. View Article : Google Scholar : PubMed/NCBI

142 

Gao G, Wang L and Li C: Circ_0006790 carried by bone marrow mesenchymal stem cell-derived exosomes regulates S100A11 DNA methylation through binding to CBX7 in pancreatic ductal adenocarcinoma. Am J Cancer Res. 12:1934–1959. 2022.PubMed/NCBI

143 

Zhang Z, Li N, Wei X, Chen B, Zhang Y, Zhao Y, Hu X and Hou S: GRM4 inhibits the proliferation, migration, and invasion of human osteosarcoma cells through interaction with CBX4. Biosci Biotechnol Biochem. 84:279–289. 2020. View Article : Google Scholar

144 

Wang W, Li X, Guan C, Hu Z, Zhao Y, Li W and Jiang X: LncRNA PCAT6 promotes the proliferation, migration and invasion of pancreatic ductal adenocarcinoma via regulating miR-185-5p/CBX2 axis. Pathol Res Pract. 216:1530742020. View Article : Google Scholar : PubMed/NCBI

145 

Huo W, Tan D and Chen Q: CASC9 facilitates cell proliferation in bladder cancer by regulating CBX2 expression. Nephron. 144:388–399. 2020. View Article : Google Scholar : PubMed/NCBI

146 

Mather RL, Parolia A, Carson SE, Venalainen E, Roig-Carles D, Jaber M, Chu SC, Alborelli I, Wu R, Lin D, et al: The evolutionarily conserved long non-coding RNA LINC00261 drives neuroendocrine prostate cancer proliferation and metastasis via distinct nuclear and cytoplasmic mechanisms. Mol Oncol. 15:1921–1941. 2021. View Article : Google Scholar : PubMed/NCBI

147 

Dou Y, Chen F, Lu Y, Qiu H and Zhang H: Effects of Wnt/β-catenin signal pathway regulated by miR-342-5p targeting CBX2 on proliferation, metastasis and invasion of ovarian cancer cells. Cancer Manag Res. 12:3783–3794. 2020. View Article : Google Scholar :

148 

Han Q, Li C, Cao Y, Bao J, Li K, Song R, Chen X, Li J and Wu X: CBX2 is a functional target of miRNA let-7a and acts as a tumor promoter in osteosarcoma. Cancer Med. 8:3981–3991. 2019. View Article : Google Scholar : PubMed/NCBI

149 

Zhu J, Luo JE, Chen Y and Wu Q: Circ_0061140 knockdown inhibits tumorigenesis and improves PTX sensitivity by regulating miR-136/CBX2 axis in ovarian cancer. J Ovarian Res. 14:1362021. View Article : Google Scholar : PubMed/NCBI

150 

Wang F, Zhang L, Luo Y, Zhang Q, Zhang Y, Shao Y and Yuan L: The LncRNA RP11-279C4.1 enhances the malignant behaviour of glioma cells and glioma stem-like cells by regulating the miR-1273g-3p/CBX3 axis. Mol Neurobiol. 58:3362–3373. 2021. View Article : Google Scholar : PubMed/NCBI

151 

Zhou W, Li H, Shang S and Liu F: lncRNA KCNQ1OT1 reverses the effect of sevoflurane on hepatocellular carcinoma progression via regulating the miR-29a-3p/CBX3 axis. Braz J Med Biol Res. 54:e102132021. View Article : Google Scholar : PubMed/NCBI

152 

Song Y, Wang S and Cheng X: LINC01006 regulates the proliferation, migration and invasion of hepatocellular carcinoma cells through regulating miR-433-3p/CBX3 axis. Ann Hepatol. 25:1003432021. View Article : Google Scholar : PubMed/NCBI

153 

Liu J, Zhan Y, Wang J, Wang J, Guo J and Kong D: lncRNA-SNHG17 promotes colon adenocarcinoma progression and serves as a sponge for miR-375 to regulate CBX3 expression. Am J Transl Res. 12:5283–5295. 2020.PubMed/NCBI

154 

Huang Y, Lin Y, Song X and Wu D: LINC00857 contributes to proliferation and lymphomagenesis by regulating miR-370-3p/CBX3 axis in diffuse large B-cell lymphoma. Carcinogenesis. 42:733–741. 2021. View Article : Google Scholar : PubMed/NCBI

155 

Cai H, Yu Y, Ni X, Li C, Hu Y, Wang J, Chen F, Xi S and Chen Z: LncRNA LINC00998 inhibits the malignant glioma phenotype via the CBX3-mediated c-Met/Akt/mTOR axis. Cell Death Dis. 11:10322020. View Article : Google Scholar : PubMed/NCBI

156 

Zhang P, Yang X, Zha Z, Zhu Y, Zhang G and Li G: CBX3 regulated by miR-139 promotes the development of HCC by regulating cell cycle progression. Cell Cycle. 21:1740–1752. 2022. View Article : Google Scholar : PubMed/NCBI

157 

Liu M, Huang F, Zhang D, Ju J, Wu XB, Wang Y, Wang Y, Wu Y, Nie M, Li Z, et al: Heterochromatin protein HP1γ promotes colorectal cancer progression and is regulated by miR-30a. Cancer Res. 75:4593–4604. 2015. View Article : Google Scholar : PubMed/NCBI

158 

Gao F, Du Y, Zhang Y, Ren D, Xu J and Chen D: Circ-EZH2 knockdown reverses DDAH1 and CBX3-mediated cell growth and invasion in glioma through miR-1265 sponge activity. Gene. 726:1441962020. View Article : Google Scholar

159 

Kang S, Ou C, Yan A, Zhu K, Xue R, Zhang Y and Lai J: Long Noncoding RNA SNHG5 induces the NF-κB pathway by regulating miR-181c-5p/CBX4 axis to promote the progression of Non-small cell lung cancer. Arch Bronconeumol. 59:10–18. 2022. View Article : Google Scholar

160 

Yang Z, OuYang X, Zheng L, Dai L and Luo W: Long intergenic noncoding RNA00265 promotes proliferation of gastric cancer via the microRNA-144-3p/Chromobox 4 axis. Bioengineered. 12:1012–1025. 2021. View Article : Google Scholar : PubMed/NCBI

161 

Zhao J, Yang T and Li L: LncRNA FOXP4-AS1 is involved in cervical cancer progression via regulating miR-136-5p/CBX4 Axis. Onco Targets Ther. 13:2347–2355. 2020. View Article : Google Scholar : PubMed/NCBI

162 

Zheng Z, Qiu K and Huang W: Long Non-coding RNA (lncRNA) RAMS11 promotes metastatis and cell growth of prostate cancer by CBX4 complex binding to Top2α. Cancer Manag Res. 13:913–923. 2021. View Article : Google Scholar :

163 

Meng R, Fang J, Yu Y, Hou LK, Chi JR, Chen AX, Zhao Y and Cao XC: miR-129-5p suppresses breast cancer proliferation by targeting CBX4. Neoplasma. 65:572–578. 2018. View Article : Google Scholar : PubMed/NCBI

164 

Wen LJ, Wang YS and Tan PY: miR-515-5p inhibits the proliferation, migration and invasion of human breast cancer cells by targeting CBX4. Exp Ther Med. 22:13282021. View Article : Google Scholar : PubMed/NCBI

165 

Fang X and Pan A: MiR-507 inhibits the progression of gastric carcinoma via targeting CBX4-mediated activation of Wnt/β-catenin and HIF-1α pathways. Clin Transl Oncol. 24:2021–2028. 2022. View Article : Google Scholar : PubMed/NCBI

166 

Dou Z, Lu F, Hu J, Wang H, Li B and Li X: MicroRNA-6838-5p suppresses the self-renewal and metastasis of human liver cancer stem cells through downregulating CBX4 expression and inactivating ERK signaling. Biol Chem. 404:29–39. 2022. View Article : Google Scholar : PubMed/NCBI

167 

Chen Y, Du J, Wang Y, Shi H, Jiang Q, Wang Y, Zhang H, Wei Y, Xue W, Pu Z, et al: MicroRNA-497-5p induces cell cycle arrest of cervical cancer cells in S phase by targeting CBX4. Onco Targets Ther. 12:10535–10545. 2019. View Article : Google Scholar : PubMed/NCBI

168 

Yan X, Kang D, Lin Y, Qi S and Jiang C: CBX4-dependent regulation of HDAC3 nuclear translocation reduces Bmp2-induced osteoblastic differentiation and calcification in adamantinomatous craniopharyngioma. Cell Commun Signal. 20:32022. View Article : Google Scholar : PubMed/NCBI

169 

Zhao W, Ma B, Tian Z, Han H, Tang J, Dong B, An G, Cao B and Wang B: Inhibiting CBX4 efficiently protects hepatocellular carcinoma cells against sorafenib resistance. Br J Cancer. 124:1237–1248. 2021. View Article : Google Scholar : PubMed/NCBI

170 

Yu F, Lin Y, Ai MM, Tan GJ, Huang JL and Zou ZR: Knockdown of circular RNA hsa_circ_PVT1 inhibited laryngeal cancer progression via preventing wnt4/β-catenin signaling pathway activation. Front Cell Dev Biol. 9:6581152021. View Article : Google Scholar

171 

Huang FJ, Dang JQ, Zhang S and Cheng ZY: Circular RNA hsa_ circ_0008039 promotes proliferation, migration and invasion of breast cancer cells through upregulating CBX4 via sponging miR-515-5p. Eur Rev Med Pharmacol Sci. 24:1887–1898. 2020.PubMed/NCBI

172 

Sun Y, Wang X and Bu X: LINC02381 contributes to cell proliferation and hinders cell apoptosis in glioma by transcriptionally enhancing CBX5. Brain Res Bull. 176:121–129. 2021. View Article : Google Scholar : PubMed/NCBI

173 

Yu L, Zhang W, Wang P, Zhang Q, Cong A, Yang X and Sang K: LncRNA SNHG11 aggravates cell proliferation and migration in triple-negative breast cancer via sponging miR-2355-5p and targeting CBX5. Exp Ther Med. 22:8922021. View Article : Google Scholar : PubMed/NCBI

174 

Li H, Li J, Jia S, Wu M, An J, Zheng Q, Zhang W and Lu D: miR675 upregulates long noncoding RNA H19 through activating EGR1 in human liver cancer. Oncotarget. 6:31958–31984. 2015. View Article : Google Scholar : PubMed/NCBI

175 

Yang Y, Meng Q, Wang C, Li X, Lu Y, Xin X, Zheng Q and Lu D: MicroRNA 675 cooperates PKM2 to aggravate progression of human liver cancer stem cells induced from embryonic stem cells. J Mol Med (Berl). 96:1119–1130. 2018. View Article : Google Scholar : PubMed/NCBI

176 

Wu C and Zhang J: Long non-conding RNA LOXL1-AS1 sponges miR-589-5p to up-regulate CBX5 expression in renal cell carcinoma. Biosci Rep. 40:BSR202002122020. View Article : Google Scholar : PubMed/NCBI

177 

Shi X, Song S, Gao Y, Cui Z, Wang W and Liu M: Circ_0037866 contributes to the tumorigenesis of renal cell carcinoma by sequestering miR-384 to elevate chromobox 5 expression. Kidney Blood Press Res. 47:329–340. 2022. View Article : Google Scholar : PubMed/NCBI

178 

Li F, Sun X, Liu Q, Liu X and Zhang J: Long Noncoding RNA MIR100HG knockdown attenuates hepatocellular carcinoma progression by regulating MicroRNA-146b-5p/Chromobox 6. Gastroenterol Res Pract. 2021:68325182021. View Article : Google Scholar : PubMed/NCBI

179 

Pei YF, He Y, Hu LZ, Zhou B, Xu HY and Liu XQ: The Crosstalk between lncRNA-SNHG7/miRNA-181/cbx7 modulates malignant character in lung adenocarcinoma. Am J Pathol. 190:1343–1354. 2020. View Article : Google Scholar : PubMed/NCBI

180 

Peng X, Guan L and Gao B: miRNA-19 promotes non-small-cell lung cancer cell proliferation via inhibiting CBX7 expression. Onco Targets Ther. 11:8865–8874. 2018. View Article : Google Scholar : PubMed/NCBI

181 

Xie D, Shang C, Zhang H, Guo Y and Tong X: Up-regulation of miR-9 target CBX7 to regulate invasion ability of bladder transitional cell carcinoma. Med Sci Monit. 21:225–230. 2015. View Article : Google Scholar : PubMed/NCBI

182 

Pickl JM, Tichy D, Kuryshev VY, Tolstov Y, Falkenstein M, Schüler J, Reidenbach D, Hotz-Wagenblatt A, Kristiansen G, Roth W, et al: Ago-RIP-Seq identifies Polycomb repressive complex I member CBX7 as a major target of miR-375 in prostate cancer progression. Oncotarget. 7:59589–59603. 2016. View Article : Google Scholar : PubMed/NCBI

183 

Zhao Y, Liu XL, Huang JH, Yin AJ and Zhang H: MicroRNA-18a suppresses ovarian carcinoma progression by targeting CBX7 and regulating ERK/MAPK signaling pathway and epithelial-to-mesenchymal transition. Eur Rev Med Pharmacol Sci. 24:5292–5302. 2020.PubMed/NCBI

184 

Mansueto G, Forzati F, Ferraro A, Pallante P, Bianco M, Esposito F, Iaccarino A, Troncone G and Fusco A: Identification of a new pathway for tumor progression: MicroRNA-181b Up-regulation and CBX7 Down-regulation by HMGA1 Protein. Genes Cancer. 1:210–224. 2010. View Article : Google Scholar : PubMed/NCBI

185 

Gong L, Tang Y, Jiang L, Tang W and Luo S: Regulation of circGOLPH3 and its binding protein CBX7 on the proliferation and apoptosis of prostate cancer cells. Biosci Rep. 40:BSR202009362020. View Article : Google Scholar : PubMed/NCBI

186 

Song X, Ning W, Niu J, Zhang G, Liu H and Zhou L: CBX8 acts as an independent RNA-binding protein to regulate the maturation of miR-378a-3p in colon cancer cells. Hum Cell. 34:515–529. 2021. View Article : Google Scholar : PubMed/NCBI

187 

Liang Y, Yu ZJ, Liu M, Liu HM, Zhang JZ, Xiong T, Tang YY and Huang ZP: hsa-miR-429 targets CBX8 to promote cell apoptosis in diffuse large B-cell lymphoma. Mol Med Rep. 24:8572021. View Article : Google Scholar :

188 

Xu Y, Yao Y, Leng K, Ji D, Qu L, Liu Y and Cui Y: Increased expression of circular RNA circ_0005230 indicates dismal prognosis in breast cancer and regulates cell proliferation and invasion via miR-618/CBX8 signal pathway. Cell Physiol Biochem. 51:1710–1722. 2018. View Article : Google Scholar

189 

Liu J, Wang D, Long Z, Liu J and Li W: CircRNA8924 promotes cervical cancer cell proliferation, migration and invasion by competitively binding to MiR-518d-5p/519-5p family and modulating the expression of CBX8. Cell Physiol Biochem. 48:173–184. 2018. View Article : Google Scholar

190 

Yi SA, Ryu HW, Lee DH, Han JW and Kwon SH: HP1β suppresses metastasis of human cancer cells by decreasing the expression and activation of MMP2. Int J Oncol. 45:2541–2548. 2014. View Article : Google Scholar : PubMed/NCBI

191 

Clermont PL, Crea F, Chiang YT, Lin D, Zhang A, Wang JZ, Parolia A, Wu R, Xue H, Wang Y, et al: Identification of the epigenetic reader CBX2 as a potential drug target in advanced prostate cancer. Clin Epigenetics. 8:162016. View Article : Google Scholar : PubMed/NCBI

192 

Alam H, Li N, Dhar SS, Wu SJ, Lv J, Chen K, Flores ER, Baseler L and Lee MG: HP1γ promotes lung adenocarcinoma by downregulating the transcription-repressive regulators NCOR2 and ZBTB7A. Cancer Res. 78:3834–3848. 2018. View Article : Google Scholar : PubMed/NCBI

193 

Fan Y, Li H, Liang X and Xiang Z: CBX3 promotes colon cancer cell proliferation by CDK6 kinase-independent function during cell cycle. Oncotarget. 8:19934–19946. 2017. View Article : Google Scholar : PubMed/NCBI

194 

Chen LY, Cheng CS, Qu C, Wang P, Chen H, Meng ZQ and Chen Z: Overexpression of CBX3 in pancreatic adenocarcinoma promotes cell cycle transition-associated tumor progression. Int J Mol Sci. 19:17682018. View Article : Google Scholar : PubMed/NCBI

195 

Zhang H, Yu H, Ren D, Sun Y, Guo F, Cai H, Zhou C, Zhou Y, Jin X and Wu H: CBX3 regulated By YBX1 promotes smoking-induced pancreatic cancer progression via inhibiting SMURF2 expression. Int J Biol Sci. 18:3484–3497. 2022. View Article : Google Scholar : PubMed/NCBI

196 

Sanyal S, Mondal P, Sen S, Sengupta Bandyopadhyay S and Das C: SUMO E3 ligase CBX4 regulates hTERT-mediated transcription of CDH1 and promotes breast cancer cell migration and invasion. Biochem J. 477:3803–3818. 2020. View Article : Google Scholar : PubMed/NCBI

197 

Hu C, Zhang Q, Tang Q, Zhou H, Liu W, Huang J, Liu Y, Wang Q, Zhang J, Zhou M, et al: CBX4 promotes the proliferation and metastasis via regulating BMI-1 in lung cancer. J Cell Mol Med. 24:618–631. 2020. View Article : Google Scholar

198 

Wang X, Qin G, Liang X, Wang W, Wang Z, Liao D, Zhong L, Zhang R, Zeng YX, Wu Y, et al: Targeting the CK1α/CBX4 axis for metastasis in osteosarcoma. Nat Commun. 11:11412020. View Article : Google Scholar

199 

Thomsen R, Christensen DB, Rosborg S, Linnet TE, Blechingberg J and Nielsen AL: Analysis of HP1α regulation in human breast cancer cells. Mol Carcinog. 50:601–613. 2011. View Article : Google Scholar : PubMed/NCBI

200 

Prieto C, Nguyen D, Liu Z, Wheat J, Perez A, Gourkanti S, Chou T, Barin E, Velleca A, Rohwetter T, et al: Transcriptional control of CBX5 by the RNA binding proteins RBMX and RBMXL1 maintains chromatin state in myeloid leukemia. Nat Cancer. 2:741–757. 2021. View Article : Google Scholar : PubMed/NCBI

201 

Deng H, Guan X, Gong L, Zeng J, Zhang H, Chen MY and Li G: CBX6 is negatively regulated by EZH2 and plays a potential tumor suppressor role in breast cancer. Sci Rep. 9:1972019. View Article : Google Scholar : PubMed/NCBI

202 

Sakai K, Nishiuchi T, Tange S, Suzuki Y, Yano S, Terashima M, Suzuki T and Matsumoto K: Proteasomal degradation of polycomb-group protein CBX6 confers MMP-2 expression essential for mesothelioma invasion. Sci Rep. 10:166782020. View Article : Google Scholar : PubMed/NCBI

203 

Wu W, Zhou X, Yu T, Bao Z, Zhi T, Jiang K, Nie E, Wang Y, Zhang J and You Y: The malignancy of miR-18a in human glioblastoma via directly targeting CBX7. Am J Cancer Res. 7:64–76. 2017.PubMed/NCBI

204 

Bao Z, Xu X, Liu Y, Chao H, Lin C, Li Z, You Y, Liu N and Ji J: CBX7 negatively regulates migration and invasion in glioma via Wnt/β-catenin pathway inactivation. Oncotarget. 8:39048–39063. 2017. View Article : Google Scholar : PubMed/NCBI

205 

Dai T, Liu Y, Cao R and Cao J: CBX7 regulates metastasis of basal-like breast cancer through Twist1/EphA2 pathway. Transl Oncol. 24:1014682022. View Article : Google Scholar : PubMed/NCBI

206 

Bernard D, Martinez-Leal JF, Rizzo S, Martinez D, Hudson D, Visakorpi T, Peters G, Carnero A, Beach D and Gil J: CBX7 controls the growth of normal and tumor-derived prostate cells by repressing the Ink4a/Arf locus. Oncogene. 24:5543–5551. 2005. View Article : Google Scholar : PubMed/NCBI

207 

Huang Z, Liu J, Yang J, Yan Y, Yang C, He X, Huang R, Tan M, Wu D, Yan J, et al: PDE4B Induces Epithelial-to-mesenchymal transition in bladder cancer cells and is transcriptionally suppressed by CBX7. Front Cell Dev Biol. 9:7830502021. View Article : Google Scholar :

208 

Jia Y, Wang Y, Zhang C and Chen MY: Upregulated CBX8 promotes cancer metastasis via the WNK2/MMP2 pathway. Mol Ther Oncolytics. 19:188–196. 2020. View Article : Google Scholar : PubMed/NCBI

209 

Wang G, Tang J, Zhan W, Zhang R, Zhang M, Liao D, Wang X, Wu Y and Kang T: CBX8 suppresses tumor metastasis via repressing snail in esophageal squamous cell carcinoma. Theranostics. 7:3478–3488. 2017. View Article : Google Scholar : PubMed/NCBI

210 

Yang S, Liu W, Li M, Wen J, Zhu M and Xu S: Insulin-like growth Factor-1 modulates polycomb Cbx8 expression and inhibits colon cancer cell apoptosis. Cell Biochem Biophys. 71:1503–1507. 2015. View Article : Google Scholar

211 

Tan J, Jones M, Koseki H, Nakayama M, Muntean AG, Maillard I and Hess JL: CBX8, a polycomb group protein, is essential for MLL-AF9-induced leukemogenesis. Cancer Cell. 20:563–575. 2011. View Article : Google Scholar : PubMed/NCBI

212 

Mao J, Tian Y, Wang C, Jiang K, Li R, Yao Y, Zhang R, Sun D, Liang R, Gao Z, et al: CBX2 regulates proliferation and apoptosis via the phosphorylation of YAP in hepatocellular carcinoma. J Cancer. 10:2706–2719. 2019. View Article : Google Scholar : PubMed/NCBI

213 

Peng W, Shi S, Zhong J, Liang H, Hou J, Hu X, Wang F, Zhang J, Geng S, Sun X, et al: CBX3 accelerates the malignant progression of glioblastoma multiforme by stabilizing EGFR expression. Oncogene. 41:3051–3063. 2022. View Article : Google Scholar : PubMed/NCBI

214 

Li J, Xu Y, Long XD, Wang W, Jiao HK, Mei Z, Yin QQ, Ma LN, Zhou AW, Wang LS, et al: Cbx4 governs HIF-1α to potentiate angiogenesis of hepatocellular carcinoma by its SUMO E3 ligase activity. Cancer Cell. 25:118–131. 2014. View Article : Google Scholar : PubMed/NCBI

215 

Bawa-Khalfe T, Lu LS, Zuo Y, Huang C, Dere R, Lin FM and Yeh ET: Differential expression of SUMO-specific protease 7 variants regulates epithelial-mesenchymal transition. Proc Natl Acad Sci USA. 109:17466–17471. 2012. View Article : Google Scholar : PubMed/NCBI

216 

Lin FM, Kumar S, Ren J, Karami S, Bahnassy S, Li Y, Zheng X, Wang J and Bawa-Khalfe T: SUMOylation of HP1α supports association with ncRNA to define responsiveness of breast cancer cells to chemotherapy. Oncotarget. 7:30336–30349. 2016. View Article : Google Scholar : PubMed/NCBI

217 

Shiota M, Song Y, Yokomizo A, Tada Y, Kuroiwa K, Eto M, Oda Y, Inokuchi J, Uchiumi T, Fujimoto N, et al: Human heterochromatin protein 1 isoform HP1beta enhances androgen receptor activity and is implicated in prostate cancer growth. Endocr Relat Cancer. 17:455–467. 2010. View Article : Google Scholar : PubMed/NCBI

218 

Hu FF, Chen H, Duan Y, Lan B, Liu CJ, Hu H, Dong X, Zhang Q, Cheng YM, Liu M, et al: CBX2 and EZH2 cooperatively promote the growth and metastasis of lung adenocarcinoma. Mol Ther Nucleic Acids. 27:670–684. 2022. View Article : Google Scholar : PubMed/NCBI

219 

Li J, Alvero AB, Nuti S, Tedja R, Roberts CM, Pitruzzello M, Li Y, Xiao Q, Zhang S, Gan Y, et al: CBX7 binds the E-box to inhibit TWIST-1 function and inhibit tumorigenicity and metastatic potential. Oncogene. 39:3965–3979. 2020. View Article : Google Scholar : PubMed/NCBI

220 

Xiao L, Zhou Z, Li W, Peng J, Sun Q, Zhu H, Song Y, Hou JL, Sun J, Cao HC, et al: Chromobox homolog 8 (CBX8) Interacts with Y-Box binding protein 1 (YBX1) to promote cellular proliferation in hepatocellular carcinoma cells. Aging (Albany NY). 11:7123–7149. 2019. View Article : Google Scholar : PubMed/NCBI

221 

Zeng F, Luo L, Li D, Guo J and Guo M: KPNA2 interaction with CBX8 contributes to the development and progression of bladder cancer by mediating the PRDM1/c-FOS pathway. J Transl Med. 19:1122021. View Article : Google Scholar : PubMed/NCBI

222 

Bilton LJ, Warren C, Humphries RM, Kalsi S, Waters E, Francis T, Dobrowinski W, Beltran-Alvarez P and Wade MA: The epigenetic regulatory protein CBX2 promotes mTORC1 signalling and inhibits DREAM complex activity to drive breast cancer cell growth. Cancers (Basel). 14:34912022. View Article : Google Scholar : PubMed/NCBI

223 

Zeng M, Li B, Yang L and Guan Q: CBX2 depletion inhibits the proliferation, invasion and migration of gastric cancer cells by inactivating the YAP/β-catenin pathway. Mol Med Rep. 23:1372021. View Article : Google Scholar

224 

Wang L, Ren B, Zhuang H, Zhong Y and Nan Y: CBX2 induces glioma cell proliferation and invasion through the Akt/PI3K pathway. Technol Cancer Res Treat. 20:153303382110458312021. View Article : Google Scholar : PubMed/NCBI

225 

Jin X, Zhang B, Zhang H and Yu H: Smoking-associated upregulation of CBX3 suppresses ARHGAP24 expression to activate Rac1 signaling and promote tumor progression in lung adenocarcinoma. Oncogene. 41:538–549. 2022. View Article : Google Scholar :

226 

Nawaz Z, Patil V, Arora A, Hegde AS, Arivazhagan A, Santosh V and Somasundaram K: Cbx7 is epigenetically silenced in glioblastoma and inhibits cell migration by targeting YAP/TAZ-dependent transcription. Sci Rep. 6:277532016. View Article : Google Scholar : PubMed/NCBI

227 

Kim HY, Park JH, Won HY, Lee JY and Kong G: CBX7 inhibits breast tumorigenicity through DKK-1-mediated suppression of the Wnt/β-catenin pathway. FASEB J. 29:300–313. 2015. View Article : Google Scholar

228 

Ni S, Wang H, Zhu X, Wan C, Xu J, Lu C, Xiao L, He J, Jiang C, Wang W, et al: CBX7 suppresses cell proliferation, migration, and invasion through the inhibition of PTEN/Akt signaling in pancreatic cancer. Oncotarget. 8:8010–8021. 2017. View Article : Google Scholar :

229 

Ni SJ, Zhao LQ, Wang XF, Wu ZH, Hua RX, Wan CH, Zhang JY, Zhang XW, Huang MZ, Gan L, et al: CBX7 regulates stem cell-like properties of gastric cancer cells via p16 and AKT-NF-κB-miR-21 pathways. J Hematol Oncol. 11:172018. View Article : Google Scholar

230 

Zhang XW, Zhang L, Qin W, Yao XH, Zheng LZ, Liu X, Li J and Guo WJ: Oncogenic role of the chromobox protein CBX7 in gastric cancer. J Exp Clin Cancer Res. 29:1142010. View Article : Google Scholar : PubMed/NCBI

231 

Chen LY, Cheng CS, Qu C, Wang P, Chen H, Meng ZQ and Chen Z: CBX3 promotes proliferation and regulates glycolysis via suppressing FBP1 in pancreatic cancer. Biochem Biophys Res Commun. 500:691–697. 2018. View Article : Google Scholar : PubMed/NCBI

232 

Di Costanzo A, Del Gaudio N, Conte L, Dell'Aversana C, Vermeulen M, de Thé H, Migliaccio A, Nebbioso A and Altucci L: The HDAC inhibitor SAHA regulates CBX2 stability via a SUMO-triggered ubiquitin-mediated pathway in leukemia. Oncogene. 37:2559–2572. 2018. View Article : Google Scholar : PubMed/NCBI

233 

Yi SA, Kim GW, Yoo J, Han JW and Kwon SH: HP1γ sensitizes cervical cancer cells to Cisplatin through the Suppression of UBE2L3. Int J Mol Sci. 21:59762020. View Article : Google Scholar

234 

Silva-Fisher JM, Dang HX, White NM, Strand MS, Krasnick BA, Rozycki EB, Jeffers G, Grossman JG, Highkin MK, Tang C, et al: Long non-coding RNA RAMS11 promotes metastatic colorectal cancer progression. Nat Commun. 11:21562020. View Article : Google Scholar : PubMed/NCBI

235 

Oliva J, El Messaoudi S, Pellestor F, Fuentes M, Georget V, Balaguer P, Cavaillès V, Vignon F and Badia E: Involvement of HP1alpha protein in irreversible transcriptional inactivation by antiestrogens in breast cancer cells. FEBS Lett. 579:4278–4286. 2005. View Article : Google Scholar : PubMed/NCBI

236 

Chen L, Xia JS, Wu JH, Chen YG and Qiu CJ: Resveratrol inhibits oral squamous cell carcinoma cells proliferation while promoting apoptosis through inhibition of CBX7 protein. Environ Toxicol. 35:1234–1240. 2020. View Article : Google Scholar : PubMed/NCBI

237 

Cacciola NA, Sepe R, Forzati F, Federico A, Pellecchia S, Malapelle U, De Stefano A, Rocco D, Fusco A and Pallante P: Restoration of CBX7 expression increases the susceptibility of human lung carcinoma cells to irinotecan treatment. Naunyn Schmiedebergs Arch Pharmacol. 388:1179–1186. 2015. View Article : Google Scholar : PubMed/NCBI

238 

Liu W, Wang H, Jian C, Li W, Ye K, Ren J, Zhu L, Wang Y, Jin X and Yi L: The RNF26/CBX7 axis modulates the TNF pathway to promote cell proliferation and regulate sensitivity to TKIs in ccRCC. Int J Biol Sci. 18:2132–2145. 2022. View Article : Google Scholar : PubMed/NCBI

239 

Lee SH, Um SJ and Kim EJ: CBX8 antagonizes the effect of Sirtinol on premature senescence through the AKT-RB-E2F1 pathway in K562 leukemia cells. Biochem Biophys Res Commun. 469:884–890. 2016. View Article : Google Scholar : PubMed/NCBI

240 

Wang S, Alpsoy A, Sood S, Ordonez-Rubiano SC, Dhiman A, Sun Y, Jiao G, Krusemark CJ and Dykhuizen EC: A potent, selective CBX2 Chromodomain ligand and its cellular activity during prostate cancer neuroendocrine differentiation. Chembiochem. 22:2335–2344. 2021. View Article : Google Scholar : PubMed/NCBI

241 

Stuckey JI, Dickson BM, Cheng N, Liu Y, Norris JL, Cholensky SH, Tempel W, Qin S, Huber KG, Sagum C, et al: A cellular chemical probe targeting the chromodomains of Polycomb repressive complex 1. Nat Chem Biol. 12:180–187. 2016. View Article : Google Scholar : PubMed/NCBI

242 

Liu H, Li Z and Li L: The molecular selectivity of UNC3866 inhibitor for Polycomb CBX7 protein from molecular dynamics simulation. Comput Biol Chem. 74:339–346. 2018. View Article : Google Scholar : PubMed/NCBI

243 

Milosevich N, Gignac MC, McFarlane J, Simhadri C, Horvath S, Daze KD, Croft CS, Dheri A, Quon TT, Douglas SF, et al: Selective inhibition of CBX6: A methyllysine reader protein in the polycomb family. ACS Med Chem Lett. 7:139–144. 2016. View Article : Google Scholar : PubMed/NCBI

244 

Milosevich N, Wilson CR, Brown TM, Alpsoy A, Wang S, Connelly KE, Sinclair K, Ponio FR, Hof R, Dykhuizen EC, et al: Polycomb Paralog Chromodomain inhibitors active against both CBX6 and CBX8*. ChemMedChem. 16:3027–3034. 2021. View Article : Google Scholar : PubMed/NCBI

245 

Ren C, Morohashi K, Plotnikov AN, Jakoncic J, Smith SG, Li J, Zeng L, Rodriguez Y, Stojanoff V, Walsh M, et al: Small-molecule modulators of methyl-lysine binding for the CBX7 chromodomain. Chem Biol. 22:161–168. 2015. View Article : Google Scholar : PubMed/NCBI

246 

Connelly KE, Martin EC and Dykhuizen EC: CBX Chromodomain inhibition enhances chemotherapy response in glioblastoma multiforme. Yale J Biol Med. 89:431–440. 2016.PubMed/NCBI

247 

Simhadri C, Gignac MC, Anderson CJ, Milosevich N, Dheri A, Prashar N, Flemmer RT, Dev A, Henderson TG, Douglas SF, et al: Structure-activity relationships of Cbx7 inhibitors, including selectivity studies against other Cbx proteins. ACS Omega. 1:541–551. 2016. View Article : Google Scholar : PubMed/NCBI

248 

Ren C, Smith SG, Yap K, Li S, Li J, Mezei M, Rodriguez Y, Vincek A, Aguilo F, Walsh MJ, et al: Structure-guided discovery of selective antagonists for the chromodomain of polycomb repressive protein CBX7. ACS Med Chem Lett. 7:601–605. 2016. View Article : Google Scholar : PubMed/NCBI

249 

Lamb KN, Bsteh D, Dishman SN, Moussa HF, Fan H, Stuckey JI, Norris JL, Cholensky SH, Li D, Wang J, et al: Discovery and characterization of a cellular potent positive allosteric modulator of the polycomb repressive Complex 1 chromodomain, CBX7. Cell Chem Biol. 26:1365–1379.e22. 2019. View Article : Google Scholar : PubMed/NCBI

250 

Simhadri C, Daze KD, Douglas SF, Milosevich N, Monjas L, Dev A, Brown TM, Hirsch A, Wulff JE and Hof F: Rational adaptation of L3MBTL1 inhibitors to create small-molecule Cbx7 antagonists. ChemMedChem. 14:1444–1456. 2019. View Article : Google Scholar : PubMed/NCBI

251 

Denton KE, Wang S, Gignac MC, Milosevich N, Hof F, Dykhuizen EC and Krusemark CJ: Robustness of in vitro selection assays of DNA-encoded peptidomimetic ligands to CBX7 and CBX8. SLAS Discov. 23:417–428. 2018. View Article : Google Scholar : PubMed/NCBI

252 

Suh JL, Bsteh D, Hart B, Si Y, Weaver TM, Pribitzer C, Lau R, Soni S, Ogana H, Rectenwald JM, et al: Reprogramming CBX8-PRC1 function with a positive allosteric modulator. Cell Chem Biol. 29:555–571.e11. 2022. View Article : Google Scholar :

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang J, Yang B, Zhang X, Liu S, Pan X, Ma C, Ma S, Yu D and Wu W: Chromobox proteins in cancer: Multifaceted functions and strategies for modulation (Review). Int J Oncol 62: 36, 2023.
APA
Wang, J., Yang, B., Zhang, X., Liu, S., Pan, X., Ma, C. ... Wu, W. (2023). Chromobox proteins in cancer: Multifaceted functions and strategies for modulation (Review). International Journal of Oncology, 62, 36. https://doi.org/10.3892/ijo.2023.5484
MLA
Wang, J., Yang, B., Zhang, X., Liu, S., Pan, X., Ma, C., Ma, S., Yu, D., Wu, W."Chromobox proteins in cancer: Multifaceted functions and strategies for modulation (Review)". International Journal of Oncology 62.3 (2023): 36.
Chicago
Wang, J., Yang, B., Zhang, X., Liu, S., Pan, X., Ma, C., Ma, S., Yu, D., Wu, W."Chromobox proteins in cancer: Multifaceted functions and strategies for modulation (Review)". International Journal of Oncology 62, no. 3 (2023): 36. https://doi.org/10.3892/ijo.2023.5484
Copy and paste a formatted citation
x
Spandidos Publications style
Wang J, Yang B, Zhang X, Liu S, Pan X, Ma C, Ma S, Yu D and Wu W: Chromobox proteins in cancer: Multifaceted functions and strategies for modulation (Review). Int J Oncol 62: 36, 2023.
APA
Wang, J., Yang, B., Zhang, X., Liu, S., Pan, X., Ma, C. ... Wu, W. (2023). Chromobox proteins in cancer: Multifaceted functions and strategies for modulation (Review). International Journal of Oncology, 62, 36. https://doi.org/10.3892/ijo.2023.5484
MLA
Wang, J., Yang, B., Zhang, X., Liu, S., Pan, X., Ma, C., Ma, S., Yu, D., Wu, W."Chromobox proteins in cancer: Multifaceted functions and strategies for modulation (Review)". International Journal of Oncology 62.3 (2023): 36.
Chicago
Wang, J., Yang, B., Zhang, X., Liu, S., Pan, X., Ma, C., Ma, S., Yu, D., Wu, W."Chromobox proteins in cancer: Multifaceted functions and strategies for modulation (Review)". International Journal of Oncology 62, no. 3 (2023): 36. https://doi.org/10.3892/ijo.2023.5484
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team