Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
April-2023 Volume 62 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2023 Volume 62 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Advances in understanding the role and mechanisms of tumor stem cells in HER2-positive breast cancer treatment resistance (Review)

  • Authors:
    • Linfei Xu
    • Fang Han
    • Liang Zhu
    • Wenli Ding
    • Kexin Zhang
    • Chengxia Kan
    • Ningning Hou
    • Qinying Li
    • Xiaodong Sun
  • View Affiliations / Copyright

    Affiliations: Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China, Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
    Copyright: © Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 48
    |
    Published online on: February 28, 2023
       https://doi.org/10.3892/ijo.2023.5496
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Approximately 15-20% of breast carcinomas exhibit human epidermal growth factor receptor (HER2) protein overexpression. HER2-positive breast cancer (BC) is a heterogeneous and aggressive subtype with poor prognosis and high relapse risk. Although several anti-HER2 drugs have achieved substantial efficacy, certain patients with HER2-positive BC relapse due to drug resistance after a treatment period. There is increasing evidence that BC stem cells (BCSCs) drive therapeutic resistance and a high rate of BC recurrence. BCSCs may regulate cellular self-renewal and differentiation, as well as invasive metastasis and treatment resistance. Efforts to target BCSCs may yield new methods to improve patient outcomes. In the present review, the roles of BCSCs in the occurrence, development and management of BC treatment resistance were summarized; BCSC-targeted strategies for the treatment of HER2-positive BC were also discussed.
View Figures

Figure 1

Figure 2

View References

1 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, et al: Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 100:8418–8423. 2003. View Article : Google Scholar : PubMed/NCBI

3 

Hugh J, Hanson J, Cheang MC, Nielsen TO, Perou CM, Dumontet C, Reed J, Krajewska M, Treilleux I, Rupin M, et al: Breast cancer subtypes and response to docetaxel in node-positive breast cancer: Use of an immunohistochemical definition in the BCIRG 001 trial. J Clin Oncol. 27:1168–1176. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Prat A, Cheang MC, Martín M, Parker JS, Carrasco E, Caballero R, Tyldesley S, Gelmon K, Bernard PS, Nielsen TO, et al: Prognostic significance of progesterone receptor-positive tumor cells within immunohistochemically defined luminal A breast cancer. J Clin Oncol. 31:203–209. 2013. View Article : Google Scholar

5 

Raj-Kumar PK, Liu J, Hooke JA, Kovatich AJ, Kvecher L, Shriver CD and Hu H: PCA-PAM50 improves consistency between breast cancer intrinsic and clinical subtyping reclassifying a subset of luminal A tumors as luminal B. Sci Rep. 9:79562019. View Article : Google Scholar : PubMed/NCBI

6 

Nagini S: Breast cancer: Current molecular therapeutic targets and new players. Anticancer Agents Med Chem. 17:152–163. 2017. View Article : Google Scholar

7 

Burstein HJ: The distinctive nature of HER2-positive breast cancers. N Engl J Med. 353:1652–1654. 2005. View Article : Google Scholar : PubMed/NCBI

8 

Pernas S, Barroso-Sousa R and Tolaney SM: Optimal treatment of early stage HER2-positive breast cancer. Cancer. 124:4455–4466. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Pellat A, Vaquero J and Fouassier L: Role of ErbB/HER family of receptor tyrosine kinases in cholangiocyte biology. Hepatology. 67:762–773. 2018. View Article : Google Scholar

10 

Reschke M, Mihic-Probst D, van der Horst EH, Knyazev P, Wild PJ, Hutterer M, Meyer S, Dummer R, Moch H and Ullrich A: HER3 is a determinant for poor prognosis in melanoma. Clin Cancer Res. 14:5188–5197. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Saglam O, Xiong Y, Marchion DC, Strosberg C, Wenham RM, Johnson JJ, Saeed-Vafa D, Cubitt C, Hakam A and Magliocco AM: ERBB4 expression in ovarian serous carcinoma resistant to platinum-based therapy. Cancer Control. 24:89–95. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Wang Z: ErbB receptors and cancer. Methods Mol Biol. 1652:3–35. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Watanabe S, Yonesaka K, Tanizaki J, Nonagase Y, Takegawa N, Haratani K, Kawakami H, Hayashi H, Takeda M, Tsurutani J and Nakagawaet K: Targeting of the HER2/HER3 signaling axis overcomes ligand-mediated resistance to trastuzumab in HER2-positive breast cancer. Cancer Med. 8:1258–1268. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Cronin KA, Harlan LC, Dodd KW, Abrams JS and Ballard-Barbash R: Population-based estimate of the prevalence of HER-2 positive breast cancer tumors for early stage patients in the US. Cancer Invest. 28:963–968. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Von Minckwitz G, Huang CS, Mano MS, Loibl S, Mamounas EP, Untch M, Wolmark N, Rastogi P, Schneeweiss A, Redondo A, et al: Trastuzumab Emtansine for residual invasive HER2-positive breast cancer. N Engl J Med. 380:617–628. 2019. View Article : Google Scholar

16 

Saura C, Oliveira M, Feng YH, Dai MS, Chen SW, Hurvitz SA, Kim SB, Moy B, Delaloge S, Gradishar W, et al: Neratinib plus capecitabine versus lapatinib plus capecitabine in HER2-positive metastatic breast cancer previously treated with ≥2 HER2-directed regimens: Phase III NALA trial. J Clin Oncol. 38:3138–3149. 2020. View Article : Google Scholar : PubMed/NCBI

17 

Piccart M, Procter M, Fumagalli D, de Azambuja E, Clark E, Ewer MS, Restuccia E, Jerusalem G, Dent S, Reaby L, et al: Adjuvant Pertuzumab and trastuzumab in early HER2-positive breast cancer in the APHINITY trial: 6 Years' follow-up. J Clin Oncol. 39:1448–1457. 2021. View Article : Google Scholar : PubMed/NCBI

18 

Nader-Marta G, Martins-Branco D and de Azambuja E: How we treat patients with metastatic HER2-positive breast cancer. ESMO Open. 7:1003432022. View Article : Google Scholar : PubMed/NCBI

19 

Figueroa-Magalhães MC, Jelovac D, Connolly R and Wolff AC: Treatment of HER2-positive breast cancer. Breast. 23:128–136. 2014. View Article : Google Scholar

20 

Qiu Y, Yang L, Liu H and Luo X: Cancer stem cell-targeted therapeutic approaches for overcoming trastuzumab resistance in HER2-positive breast cancer. Stem Cells. 39:1125–1136. 2021. View Article : Google Scholar : PubMed/NCBI

21 

Zhang Y: The root cause of drug resistance in HER2-positive breast cancer and the therapeutic approaches to overcoming the resistance. Pharmacol Ther. 218:1076772021. View Article : Google Scholar :

22 

Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM and Hortobagyi GN: The HER-2 receptor and breast cancer: Ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist. 14:320–368. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Lambertini M, Pondé NF, Solinas C and de Azambuja E: Adjuvant trastuzumab: A 10-year overview of its benefit. Expert Rev Anticancer Ther. 17:61–74. 2017. View Article : Google Scholar

24 

Valabrega G, Montemurro F and Aglietta M: Trastuzumab: Mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer. Ann Oncol. 18:977–984. 2007. View Article : Google Scholar : PubMed/NCBI

25 

McCormack PL: Pertuzumab: A review of its use for first-line combination treatment of HER2-positive metastatic breast cancer. Drugs. 73:1491–1502. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Xia W, Mullin RJ, Keith BR, Liu LH, Ma H, Rusnak DW, Owens G, Alligood KJ and Spector NL: Anti-tumor activity of GW572016: A dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene. 21:6255–6263. 2002. View Article : Google Scholar : PubMed/NCBI

27 

Hegde PS, Rusnak D, Bertiaux M, Alligood K, Strum J, Gagnon R and Gilmer TM: Delineation of molecular mechanisms of sensitivity to lapatinib in breast cancer cell lines using global gene expression profiles. Mol Cancer Ther. 6:1629–1640. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Rabindran SK, Discafani CM, Rosfjord EC, Baxter M, Floyd MB, Golas J, Hallett WA, Johnson BD, Nilakantan R, Overbeek E, et al: Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res. 64:3958–3965. 2004. View Article : Google Scholar : PubMed/NCBI

29 

Mohd Nafi SN, Generali D, Kramer-Marek G, Gijsen M, Strina C, Cappelletti M, Andreis D, Haider S, Li JL, Bridges E, et al: Nuclear HER4 mediates acquired resistance to trastuzumab and is associated with poor outcome in HER2 positive breast cancer. Oncotarget. 5:5934–5949. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Kourie HR, Chaix M, Gombos A, Aftimos P and Awada A: Pharmacodynamics, pharmacokinetics and clinical efficacy of neratinib in HER2-positive breast cancer and breast cancer with HER2 mutations. Expert Opin Drug Metab Toxicol. 12:947–957. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Borges VF, Ferrario C, Aucoin N, Falkson C, Khan Q, Krop I, Welch S, Conlin A, Chaves J, Bedard PL, et al: Tucatinib combined with Ado-trastuzumab emtansine in advanced ERBB2/HER2-positive metastatic breast cancer: A phase 1b clinical trial. JAMA Oncol. 4:1214–1220. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Kulukian A, Lee P, Taylor J, Rosler R, de Vries P, Watson D, Forero-Torres A and Peterson S: Preclinical activity of HER2-selective tyrosine kinase inhibitor tucatinib as a single agent or in combination with trastuzumab or docetaxel in solid tumor models. Mol Cancer Ther. 19:976–987. 2020. View Article : Google Scholar : PubMed/NCBI

33 

Murthy RK, Loi S, Okines A, Paplomata E, Hamilton E, Hurvitz SA, Lin NU, Borges V, Abramson V, Anders C, et al: Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. N Engl J Med. 382:597–609. 2020. View Article : Google Scholar

34 

Junttila TT, Li G, Parsons K, Phillips GL and Sliwkowski MX: Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer. Breast Cancer Res Treat. 128:347–356. 2011. View Article : Google Scholar

35 

Li G, Guo J, Shen BQ, Yadav DB, Sliwkowski MX, Crocker LM, Lacap JA and Phillips G: Mechanisms of acquired resistance to trastuzumab emtansine in breast cancer cells. Mol Cancer Ther. 17:1441–1453. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Nagai Y, Oitate M, Shiozawa H and Ando O: Comprehensive preclinical pharmacokinetic evaluations of trastuzumab deruxtecan (DS-8201a), a HER2-targeting antibody-drug conjugate, in cynomolgus monkeys. Xenobiotica. 49:1086–1096. 2019. View Article : Google Scholar

37 

Ogitani Y, Aida T, Hagihara K, Yamaguchi J, Ishii C, Harada N, Soma M, Okamoto H, Oitate M, Arakawa S, et al: DS-8201a, A novel HER2-targeting ADC with a Novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res. 22:5097–5108. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Metzger-Filho O, Vora T and Awada A: Management of metastatic HER2-positive breast cancer progression after adjuvant trastuzumab therapy-current evidence and future trends. Expert Opin Investig Drugs. 19(Suppl 1): S31–S39. 2010. View Article : Google Scholar

39 

Bonnet D and Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 3:730–737. 1997. View Article : Google Scholar : PubMed/NCBI

40 

Kreso A and Dick JE: Evolution of the cancer stem cell model. Cell Stem Cell. 14:275–291. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI

42 

Kim YJ, Sung D, Oh E, Cho Y, Cho TM, Farrand L, Seo JH and Kim JY: Flubendazole overcomes trastuzumab resistance by targeting cancer stem-like properties and HER2 signaling in HER2-positive breast cancer. Cancer Lett. 412:118–130. 2018. View Article : Google Scholar

43 

Seo AN, Lee HJ, Kim EJ, Jang MH, Kim YJ, Kim JH, Kim SW, Ryu HS, Park IA, Im SA, et al: Expression of breast cancer stem cell markers as predictors of prognosis and response to trastuzumab in HER2-positive breast cancer. Br J Cancer. 114:1109–1116. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Ricardo S, Vieira AF, Gerhard R, Leitão D, Pinto R, Cameselle-Teijeiro JF, Milanezi F, Schmitt F and Paredes J: Breast cancer stem cell markers CD44, CD24 and ALDH1: Expression distribution within intrinsic molecular subtype. J Clin Pathol. 64:937–946. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC, et al: Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 100:672–679. 2008. View Article : Google Scholar : PubMed/NCBI

46 

Bourguignon L: Matrix hyaluronan-CD44 interaction activates MicroRNA and LncRNA signaling associated with chemoresistance, invasion, and tumor progression. Front Oncol. 9:4922019. View Article : Google Scholar : PubMed/NCBI

47 

Chen Y, Song J, Jiang Y, Yu C and Ma Z: Predictive value of CD44 and CD24 for prognosis and chemotherapy response in invasive breast ductal carcinoma. Int J Clin Exp Pathol. 8:11287–11295. 2015.PubMed/NCBI

48 

Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, Martin-Trevino R, Shang L, McDermott SP, Landis MD, et al: Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports. 2:78–91. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Oliveras-Ferraros C, Vazquez-Martin A, Martin-Castillo B, Cufí S, Del Barco S, Lopez-Bonet E, Brunet J and Menendez JA: Dynamic emergence of the mesenchymal CD44(pos)CD24(neg/low) phenotype in HER2-gene amplified breast cancer cells with de novo resistance to trastuzumab (Herceptin). Biochem Biophys Res Commun. 397:27–33. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, et al: ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 1:555–567. 2007. View Article : Google Scholar

51 

Liu C, Qiang J, Deng Q, Xia J, Deng L, Zhou L, Wang D, He X, Liu Y, Zhao B, et al: ALDH1A1 activity in tumor-initiating cells remodels myeloid-derived suppressor cells to promote breast cancer progression. Cancer Res. 81:5919–5934. 2021. View Article : Google Scholar : PubMed/NCBI

52 

Talukdar S, Bhoopathi P, Emdad L, Das S, Sarkar D and Fisher PB: Dormancy and cancer stem cells: An enigma for cancer therapeutic targeting. Adv Cancer Res. 141:43–84. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Duru N, Fan M, Candas D, Menaa C, Liu HC, Nantajit D, Wen Y, Xiao K, Eldridge A, Chromy BA, et al: HER2-associated radiore-sistance of breast cancer stem cells isolated from HER2-negative breast cancer cells. Clin Cancer Res. 18:6634–6647. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Shao J, Fan W, Ma B and Wu Y: Breast cancer stem cells expressing different stem cell markers exhibit distinct biological characteristics. Mol Med Rep. 14:4991–4998. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Barzegar Behrooz A, Syahir A and Ahmad S: CD133: Beyond a cancer stem cell biomarker. J Drug Target. 27:257–269. 2019. View Article : Google Scholar

56 

Li Y, Chu J, Feng W, Yang M, Zhang Y, Zhang Y, Qin Y, Xu J, Li J, Vasilatos SN, et al: EPHA5 mediates trastuzumab resistance in HER2-positive breast cancers through regulating cancer stem cell-like properties. FASEB J. 33:4851–4865. 2019. View Article : Google Scholar : PubMed/NCBI

57 

He X, Semenov M, Tamai K and Zeng X: LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: Arrows point the way. Development. 131:1663–1677. 2004. View Article : Google Scholar : PubMed/NCBI

58 

Wei B, Cao J, Tian JH, Yu CY, Huang Q, Yu JJ, Ma R, Wang J, Xu F and Wang LB: Mortalin maintains breast cancer stem cells stemness via activation of Wnt/GSK3β/β-catenin signaling pathway. Am J Cancer Res. 11:2696–2716. 2021.

59 

Wu Y, Ginther C, Kim J, Mosher N, Chung S, Slamon D and Vadgama JV: Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells. Mol Cancer Res. 10:1597–1606. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Choi HJ, Jin S, Cho H, Won HY, An HW, Jeong GY, Park YU, Kim HY, Park MK, Son T, et al: CDK12 drives breast tumor initiation and trastuzumab resistance via WNT and IRS1-ErbB-PI3K signaling. EMBO Rep. 20:e480582019. View Article : Google Scholar : PubMed/NCBI

61 

El Abbass KA, Abdellateif MS, Gawish AM, Zekri AN, Malash I and Bahnassy AA: The role of breast cancer stem cells and some related molecular biomarkers in metastatic and nonmetastatic breast cancer. Clin Breast Cancer. 20:e373–e384. 2020. View Article : Google Scholar : PubMed/NCBI

62 

Shen Q and Reedijk M: Notch signaling and the breast cancer microenvironment. Adv Exp Med Biol. 1287:183–200. 2021. View Article : Google Scholar

63 

Baker A, Wyatt D, Bocchetta M, Li J, Filipovic A, Green A, Peiffer DS, Fuqua S, Miele L, Albain KS and Osipo C: Notch-1-PTEN-ERK1/2 signaling axis promotes HER2+ breast cancer cell proliferation and stem cell survival. Oncogene. 37:4489–4504. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Pandya K, Wyatt D, Gallagher B, Shah D, Baker A, Bloodworth J, Zlobin A, Pannuti A, Green A, Ellis IO, et al: PKCα attenuates Jagged-1-mediated notch signaling in ErbB-2-positive breast cancer to reverse trastuzumab resistance. Clin Cancer Res. 22:175–186. 2016. View Article : Google Scholar

65 

He M, Fu Y, Yan Y, Xiao Q, Wu H, Yao W, Zhao H, Zhao L, Jiang Q, Yu Z, et al: The Hedgehog signalling pathway mediates drug response of MCF-7 mammosphere cells in breast cancer patients. Clin Sci (Lond). 129:809–822. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Liu S, Duan X, Xu L, Ye J, Cheng Y, Liu Q, Zhang H, Zhang S, Zhu S, Li T and Liu Y: Nuclear Gli1 expression is associated with pathological complete response and event-free survival in HER2-positive breast cancer treated with trastuzumab-based neoadjuvant therapy. Tumour Biol. 37:4873–4881. 2016. View Article : Google Scholar

67 

Gupta P, Gupta N, Fofaria NM, Ranjan A and Srivastava SK: HER2-mediated GLI2 stabilization promotes anoikis resistance and metastasis of breast cancer cells. Cancer Lett. 442:68–81. 2019. View Article : Google Scholar

68 

Doheny D, Sirkisoon S, Carpenter RL, Aguayo NR, Regua AT, Anguelov M, Manore SG, Arrigo A, Jalboush SA, Wong GL, et al: Combined inhibition of JAK2-STAT3 and SMO-GLI1/tGLI1 pathways suppresses breast cancer stem cells, tumor growth, and metastasis. Oncogene. 39:6589–6605. 2020. View Article : Google Scholar : PubMed/NCBI

69 

Guo Z, Guo A and Zhou C: Breast cancer stem cell-derived ANXA6-containing exosomes sustain paclitaxel resistance and cancer aggressiveness in breast cancer. Front Cell Dev Biol. 9:7187212021. View Article : Google Scholar : PubMed/NCBI

70 

Yousefnia S, Seyed Forootan F, Seyed Forootan S, Nasr Esfahani MH, Gure AO and Ghaedi K: Mechanistic pathways of malignancy in breast cancer stem cells. Front Oncol. 10:4522020. View Article : Google Scholar : PubMed/NCBI

71 

Zhao Q, Liu Y, Wang T, Yang Y, Ni H, Liu H, Guo Q, Xi T and Zheng L: MiR-375 inhibits the stemness of breast cancer cells by blocking the JAK2/STAT3 signaling. Eur J Pharmacol. 884:1733592020. View Article : Google Scholar : PubMed/NCBI

72 

Hu Y, Guo R, Wei J, Zhou Y, Ji W, Liu J, Zhi X and Zhang J: Effects of PI3K inhibitor NVP-BKM120 on overcoming drug resistance and eliminating cancer stem cells in human breast cancer cells. Cell Death Dis. 6:e20202015. View Article : Google Scholar : PubMed/NCBI

73 

Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F and Cui H: Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 5:82020. View Article : Google Scholar : PubMed/NCBI

74 

Xing F, Kobayashi A, Okuda H, Watabe M, Pai SK, Pandey PR, Hirota S, Wilber A, Mo YY, Moore BE, et al: Reactive astrocytes promote the metastatic growth of breast cancer stem-like cells by activating Notch signalling in brain. EMBO Mol Med. 5:384–396. 2013. View Article : Google Scholar : PubMed/NCBI

75 

Zhou N, Zhang Y, Zhang X, Lei Z, Hu R, Li H, Mao Y, Wang X, Irwin DM, Niu G and Tan H: Exposure of tumor-associated macrophages to apoptotic MCF-7 cells promotes breast cancer growth and metastasis. Int J Mol Sci. 16:11966–11982. 2015. View Article : Google Scholar : PubMed/NCBI

76 

Ko YS, Rugira T, Jin H, Joo YN and Kim HJ: Radiotherapy-resistant breast cancer cells enhance tumor progression by enhancing premetastatic niche formation through the HIF-1α-LOX. Axis Int J Mol Sci. 21:80272020. View Article : Google Scholar

77 

Mao Y, Zhang Y, Qu Q, Zhao M, Lou Y, Liu J, huang O, Chen X, Wu J and Shen K: Cancer-associated fibroblasts induce trastuzumab resistance in HER2 positive breast cancer cells. Mol Biosyst. 11:1029–1040. 2015. View Article : Google Scholar : PubMed/NCBI

78 

Brown Y, Hua S and Tanwar PS: Extracellular matrix-mediated regulation of cancer stem cells and chemoresistance. Int J Biochem Cell Biol. 109:90–104. 2019. View Article : Google Scholar : PubMed/NCBI

79 

Liu J, Shen JX, Wu HT, Li XL, Wen XF, Du CW and Zhang GJ: Collagen 1A1 (COL1A1) promotes metastasis of breast cancer and is a potential therapeutic target. Discov Med. 25:211–223. 2018.PubMed/NCBI

80 

Hanker AB, Estrada MV, Bianchini G, Moore PD, Zhao J, Cheng F, Koch JP, Gianni L, Tyson DR, Sánchez V, et al: Extracellular matrix/integrin signaling promotes resistance to combined inhibition of HER2 and PI3K in HER2+ Breast Cancer. Cancer Res. 77:3280–3292. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Jokela TA and LaBarge MA: Integration of mechanical and ECM microenvironment signals in the determination of cancer stem cell states. Curr Stem Cell Rep. 7:39–47. 2021. View Article : Google Scholar : PubMed/NCBI

82 

Li F, Xu J and Liu S: Cancer stem cells and neovascularization. Cells. 10:10702021. View Article : Google Scholar : PubMed/NCBI

83 

Hori A, Shimoda M, Naoi Y, Kagara N, Tanei T, Miyake T, Shimazu K, Kim SJ and Noguchi S: Vasculogenic mimicry is associated with trastuzumab resistance of HER2-positive breast cancer. Breast Cancer Res. 21:882019. View Article : Google Scholar : PubMed/NCBI

84 

Bussolati B, Grange C, Sapino A and Camussi G: Endothelial cell differentiation of human breast tumour stem/progenitor cells. J Cell Mol Med. 13:309–319. 2009. View Article : Google Scholar

85 

McClements L, Yakkundi A, Papaspyropoulos A, Harrison H, Ablett MP, Jithesh PV, McKeen HD, Bennett R, Donley C, Kissenpfennig A, et al: Targeting treatment-resistant breast cancer stem cells with FKBPL and its peptide derivative, AD-01, via the CD44 pathway. Clin Cancer Res. 19:3881–3893. 2013. View Article : Google Scholar : PubMed/NCBI

86 

Li M, Pan M, You C, Zhao F, Wu D, Guo M, Xu H, Shi F, Zheng D and Dou J: MiR-7 reduces the BCSC subset by inhibiting XIST to modulate the miR-92b/Slug/ESA axis and inhibit tumor growth. Breast Cancer Res. 22:262020. View Article : Google Scholar : PubMed/NCBI

87 

Sandiford OA, Donnelly RJ, El-Far MH, Burgmeyer LM, Sinha G, Pamarthi SH, Sherman LS, Ferrer AI, DeVore DE, Patel SA, et al: Mesenchymal stem cell-secreted extracellular vesicles instruct stepwise dedifferentiation of breast cancer cells into dormancy at the bone marrow perivascular region. Cancer Res. 81:1567–1582. 2021. View Article : Google Scholar : PubMed/NCBI

88 

Kim SY, Kang JW, Song X, Kim BK, Yoo YD, Kwon YT and Lee YJ: Role of the IL-6-JAK1-STAT3-Oct-4 pathway in the conversion of non-stem cancer cells into cancer stem-like cells. Cell Signal. 25:961–969. 2013. View Article : Google Scholar : PubMed/NCBI

89 

Rodríguez CE, Berardi DE, Abrigo M, Todaro LB, Bal de Kier Joffé ED and Fiszman GL: Breast cancer stem cells are involved in Trastuzumab resistance through the HER2 modulation in 3D culture. J Cell Biochem. 119:1381–1391. 2018. View Article : Google Scholar

90 

Maroufi NF, Amiri M, Dizaji BF, Vahedian V, Akbarzadeh M, Roshanravan N, Haiaty S, Nouri M and Rashidi MR: Inhibitory effect of melatonin on hypoxia-induced vasculogenic mimicry via suppressing epithelial-mesenchymal transition (EMT) in breast cancer stem cells. Eur J Pharmacol. 881:1732822020. View Article : Google Scholar : PubMed/NCBI

91 

Lee KM, Giltnane JM, Balko JM, Schwarz LJ, Guerrero-Zotano AL, Hutchinson KE, Nixon MJ, Estrada MV, Sánchez V, Sanders ME, et al: MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation. Cell Metab. 26:633–647. 2017. View Article : Google Scholar : PubMed/NCBI

92 

Park SJ, Kim JG, Kim ND, Yang K, Shim JW and Heo K: Estradiol, TGF-β1 and hypoxia promote breast cancer stemness and EMT-mediated breast cancer migration. Oncol Lett. 11:1895–1902. 2016. View Article : Google Scholar : PubMed/NCBI

93 

Takegawa N, Nonagase Y, Yonesaka K, Sakai K, Maenishi O, Ogitani Y, Tamura T, Nishio K, Nakagawa K and Tsurutani J: DS-8201a, a new HER2-targeting antibody-drug conjugate incorporating a novel DNA topoisomerase I inhibitor, overcomes HER2-positive gastric cancer T-DM1 resistance. Int J Cancer. 141:1682–1689. 2017. View Article : Google Scholar : PubMed/NCBI

94 

Chen K, Huang YH and Chen JL: Understanding and targeting cancer stem cells: Therapeutic implications and challenges. Acta Pharmacol Sin. 34:732–740. 2013. View Article : Google Scholar : PubMed/NCBI

95 

Zhang YS, Yang C, Han L, Liu L and Liu YJ: Expression of BCRP/ABCG2 Protein in invasive breast cancer and response to neoadjuvant chemotherapy. Oncol Res Treat. 45:94–101. 2022. View Article : Google Scholar

96 

Němcová-Fürstová V, Kopperová D, Balušíková K, Ehrlichová M, Brynychová V, Václavíková R, Daniel P, Souček P and Kovář J: Characterization of acquired paclitaxel resistance of breast cancer cells and involvement of ABC transporters. Toxicol Appl Pharm. 310:215–228. 2016. View Article : Google Scholar

97 

Shi RZ, He YF, Wen J, Niu YN, Gao Y, Liu LH, Zhang XP, Wang Y, Zhang XL, Zhang HF, et al: Epithelial cell adhesion molecule promotes breast cancer resistance protein-mediated multidrug resistance in breast cancer by inducing partial epithelial-mesenchymal transition. Cell Biol Int. 45:1644–1653. 2021. View Article : Google Scholar : PubMed/NCBI

98 

Ye X, Bai W, Zhu H, Zhang X, Chen Y, Wang L, Yang A, Zhao J and Jia L: MiR-221 promotes trastuzumab-resistance and metastasis in HER2-positive breast cancers by targeting PTEN. BMB Rep. 47:268–273. 2014. View Article : Google Scholar :

99 

Li X, Li Y, Yu X and Jin F: Identification and validation of stemness-related lncRNA prognostic signature for breast cancer. J Transl Med. 18:3312020. View Article : Google Scholar : PubMed/NCBI

100 

Müller V, Oliveira-Ferrer L, Steinbach B, Pantel K and Schwarzenbach H: Interplay of lncRNA H19/miR-675 and lncRNA NEAT1/miR-204 in breast cancer. Mol Oncol. 13:1137–1149. 2019. View Article : Google Scholar : PubMed/NCBI

101 

Zheng A, Song X, Zhang L, Zhao L, Mao X, Wei M and Jin F: Long non-coding RNA LUCAT1/miR-5582-3p/TCF7L2 axis regulates breast cancer stemness via Wnt/β-catenin pathway. J Exp Clin Cancer Res. 38:3052019. View Article : Google Scholar

102 

Xu S, Kong D, Chen Q, Ping Y and Pang D: Oncogenic long noncoding RNA landscape in breast cancer. Mol Cancer. 16:1292017. View Article : Google Scholar : PubMed/NCBI

103 

Pickard MR and Williams GT: Regulation of apoptosis by long non-coding RNA GAS5 in breast cancer cells: Implications for chemotherapy. Breast Cancer Res Treat. 145:359–370. 2014. View Article : Google Scholar : PubMed/NCBI

104 

Ye XM, Zhu HY, Bai WD, Wang T, Wang L, Chen Y, Yang AG and Jia LT: Epigenetic silencing of miR-375 induces trastuzumab resistance in HER2-positive breast cancer by targeting IGF1R. BMC Cancer. 14:1342014. View Article : Google Scholar : PubMed/NCBI

105 

Liu S, Sun Y, Hou Y, Yang L, Wan X, Qin Y, Liu Y, Wang R, Zhu P, Teng Y and Liuet M: A novel lncRNA ROPM-mediated lipid metabolism governs breast cancer stem cell properties. J Hematol Oncol. 14:1782021. View Article : Google Scholar : PubMed/NCBI

106 

Peng F, Wang JH, Fan WJ, Meng YT, Li MM, Li TT, Cui B, Wang HF, Zhao Y, An F, et al: Glycolysis gatekeeper PDK1 repro-grams breast cancer stem cells under hypoxia. Oncogene. 37:1062–1074. 2018. View Article : Google Scholar

107 

Fox DB, Garcia N, McKinney BJ, Lupo R, Noteware LC, Newcomb R, Liu J, Locasale JW, Hirschey MD and Alvarez JV: NRF2 activation promotes the recurrence of dormant tumour cells through regulation of redox and nucleotide metabolism. Nat Metab. 2:318–334. 2020. View Article : Google Scholar : PubMed/NCBI

108 

Najafi M, Mortezaee K and Majidpoor J: Cancer stem cell (CSC) resistance drivers. Life Sci. 234:1167812019. View Article : Google Scholar : PubMed/NCBI

109 

Abad E, Graifer D and Lyakhovich A: DNA damage response and resistance of cancer stem cells. Cancer Lett. 474:106–117. 2020. View Article : Google Scholar : PubMed/NCBI

110 

Oh KS, Nam AR, Bang JH, Seo HR, Kim JM, Yoon J, Kim TY and Oh DY: A synthetic lethal strategy using PARP and ATM inhibition for overcoming trastuzumab resistance in HER2-positive cancers. Oncogene. 41:3939–3952. 2022. View Article : Google Scholar : PubMed/NCBI

111 

Wengner AM, Scholz A and Haendler B: Targeting DNA damage response in prostate and breast cancer. Int J Mol Sci. 21:82732020. View Article : Google Scholar : PubMed/NCBI

112 

Torres VI, Godoy JA and Inestrosa NC: Modulating Wnt signaling at the root: Porcupine and Wnt acylation. Pharmacol Ther. 198:34–45. 2019. View Article : Google Scholar : PubMed/NCBI

113 

Yang Y, Li X, Wang T, Guo Q, Xi T and Zheng L: Emerging agents that target signaling pathways in cancer stem cells. J Hematol Oncol. 13:602020. View Article : Google Scholar : PubMed/NCBI

114 

Jang GB, Hong IS, Kim RJ, Lee SY, Park SJ, Lee ES, Park JH, Yun CH, Chung JU, Lee KJ, et al: Wnt/β-Catenin small-molecule inhibitor CWP232228 preferentially inhibits the growth of breast cancer stem-like cells. Cancer Res. 75:1691–1702. 2015. View Article : Google Scholar : PubMed/NCBI

115 

Gurney A, Axelrod F, Bond CJ, Cain J, Chartier C, Donigan L, Fischer M, Chaudhari A, Ji M, Kapoun AM, et al: Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci USA. 109:11717–11722. 2012. View Article : Google Scholar : PubMed/NCBI

116 

Mu J, Hui T, Shao B, Li L, Du Z, Lu L, Ye L, Li S, Li Q, Xiao Q, et al: Dickkopf-related protein 2 induces G0/G1 arrest and apoptosis through suppressing Wnt/β-catenin signaling and is frequently methylated in breast cancer. Oncotarget. 8:39443–39459. 2017. View Article : Google Scholar : PubMed/NCBI

117 

An SM, Ding Q, Zhang J, Xie J and Li L: Targeting stem cell signaling pathways for drug discovery: Advances in the Notch and Wnt pathways. Sci China Life Sci. 57:575–580. 2014. View Article : Google Scholar : PubMed/NCBI

118 

Schott AF, Landis MD, Dontu G, Griffith KA, Layman RM, Krop I, Paskett LA, Wong H, Dobrolecki LE, Lewis MT, et al: Preclinical and clinical studies of gamma secretase inhibitors with docetaxel on human breast tumors. Clin Cancer Res. 19:1512–1524. 2013. View Article : Google Scholar : PubMed/NCBI

119 

Takebe N, Nguyen D and Yang SX: Targeting notch signaling pathway in cancer: Clinical development advances and challenges. Pharmacol Ther. 141:140–149. 2014. View Article : Google Scholar :

120 

Yen WC, Fischer MM, Axelrod F, Bond C, Cain J, Cancilla B, Henner WR, Meisner R, Sato A, Shah J, et al: Targeting Notch signaling with a Notch2/Notch3 antagonist (tarextumab) inhibits tumor growth and decreases tumor-initiating cell frequency. Clin Cancer Res. 21:2084–2095. 2015. View Article : Google Scholar : PubMed/NCBI

121 

Huang J, Hu W, Hu L, Previs RA, Dalton HJ, Yang XY, Sun Y, McGuire M, Rupaimoole R, Nagaraja AS, et al: Dll4 inhibition plus aflibercept markedly reduces ovarian tumor growth. Mol Cancer Ther. 15:1344–1352. 2016. View Article : Google Scholar : PubMed/NCBI

122 

McKeage MJ, Kotasek D, Markman B, Hidalgo M, Millward MJ, Jameson MB, Harris DL, Stagg RJ, Kapoun AM, Xu L, et al: Phase IB Trial of the Anti-cancer stem cell DLL4-binding agent demcizumab with pemetrexed and carboplatin as First-line treatment of metastatic non-squamous NSCLC. Target Oncol. 13:89–98. 2018. View Article : Google Scholar

123 

Silkenstedt E, Arenas F, Colom-Sanmartí B, Xargay-Torrent S, Higashi M, Giró A, Rodriguez V, Fuentes P, Aulitzky WE, van der Kuip H, et al: Notch1 signaling in NOTCH1-mutated mantle cell lymphoma depends on delta-like ligand 4 and is a potential target for specific antibody therapy. J Exp Clin Cancer Res. 38:4462019. View Article : Google Scholar : PubMed/NCBI

124 

Hui M, Cazet A, Nair R, Watkins DN, O'Toole SA and Swarbrick A: The Hedgehog signalling pathway in breast development, carcinogenesis and cancer therapy. Breast Cancer Res. 15:2032013. View Article : Google Scholar : PubMed/NCBI

125 

Clara JA, Monge C, Yang Y and Takebe N: Targeting signalling pathways and the immune microenvironment of cancer stem cells-a clinical update. Nat Rev Clin Oncol. 17:204–232. 2020. View Article : Google Scholar

126 

Bhateja P, Cherian M, Majumder S and Ramaswamy B: The hedgehog signaling pathway: A viable target in breast cancer. Cancers (Basel). 11:11262019. View Article : Google Scholar

127 

Liu C, Qi M, Li L, Yuan Y, Wu X and Fu J: Natural cordycepin induces apoptosis and suppresses metastasis in breast cancer cells by inhibiting the Hedgehog pathway. Food Funct. 11:2107–2116. 2020. View Article : Google Scholar : PubMed/NCBI

128 

Takebe N, Harris PJ, Warren RQ and Ivy SP: Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol. 8:97–106. 2011. View Article : Google Scholar

129 

Sorrentino G, Ruggeri N, Specchia V, Cordenonsi M, Mano M, Dupont S, Manfrin A, Ingallina E, Sommaggio R, Piazza S, et al: Metabolic control of YAP and TAZ by the mevalonate pathway. Nat Cell Biol. 16:357–366. 2014. View Article : Google Scholar : PubMed/NCBI

130 

Haque S and Morris JC: Transforming growth factor-β: A therapeutic target for cancer. Hum Vaccin Immunother. 13:1741–1750. 2017. View Article : Google Scholar : PubMed/NCBI

131 

Wang T, Fahrmann JF, Lee H, Li YJ, Tripathi SC, Yue C, Zhang C, Lifshitz V, Song J, Yuan Y, et al: JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab. 27:136–150. 2018. View Article : Google Scholar

132 

Patel JS, Hu M, Sinha G, Walker ND, Sherman LS, Gallagher A and Rameshwar P: Non-coding RNA as mediators in microenvironment-breast cancer cell communication. Cancer Lett. 380:289–295. 2016. View Article : Google Scholar

133 

Liu Y, Zhang P, Wu Q, Fang H, Wang Y, Xiao Y, Cong M, Wang T, He Y, Ma C, et al: Long non-coding RNA NR2F1-AS1 induces breast cancer lung metastatic dormancy by regulating NR2F1 and ΔNp63. Nat Commun. 12:52322021. View Article : Google Scholar

134 

El Touny LH, Vieira A, Mendoza A, Khanna C, Hoenerhoff MJ and Green JE: Combined SFK/MEK inhibition prevents metastatic outgrowth of dormant tumor cells. J Clin Invest. 124:156–168. 2014. View Article : Google Scholar :

135 

Puig I, Tenbaum SP, Chicote I, Arqués O, Martínez-Quintanilla J, Cuesta-Borrás E, Ramírez L, Gonzalo P, Soto A, Aguilar S, et al: TET2 controls chemoresistant slow-cycling cancer cell survival and tumor recurrence. J Clin Invest. 128:3887–3905. 2018. View Article : Google Scholar : PubMed/NCBI

136 

Ma HP, Chang HL, Bamodu OA, Yadav VK, Huang TY, Wu A, Yeh CT, Tsai SH and Lee WH: Collagen 1A1 (COL1A1) is a reliable biomarker and putative therapeutic target for hepatocellular carcinogenesis and metastasis. Cancers (Basel). 11:7862019. View Article : Google Scholar : PubMed/NCBI

137 

Chen Q, Xu L, Chen J, Yang Z, Liang C, Yang Y and Liu Z: Tumor vasculature normalization by orally fed erlotinib to modulate the tumor microenvironment for enhanced cancer nanomedicine and immunotherapy. Biomaterials. 148:69–80. 2017. View Article : Google Scholar : PubMed/NCBI

138 

Kim JH, Verwilst P, Won M, Lee J, Sessler JL, Han J and Kim JS: A small molecule strategy for targeting cancer stem cells in hypoxic microenvironments and preventing tumorigenesis. J Am Chem Soc. 143:14115–14124. 2021. View Article : Google Scholar : PubMed/NCBI

139 

Fico F and Santamaria-Martínez A: TGFBI modulates tumour hypoxia and promotes breast cancer metastasis. Mol Oncol. 14:3198–3210. 2020. View Article : Google Scholar : PubMed/NCBI

140 

Jiang B, Zhu H, Tang L, Gao T, Zhou Y, Gong F, Tan Y, Xie L, Wu X and Li Y: Apatinib inhibits stem properties and malignant biological behaviors of breast cancer stem cells by blocking wnt/β-catenin signal pathway through down-regulating LncRNA ROR. Anticancer Agents Med Chem. 22:1723–1734. 2022. View Article : Google Scholar

141 

Wu X, Zhang X, Sun L, Zhang H, Li L, Wang X, Li W, Su P, Hu J, Gao P and Zhou G: Progesterone negatively regulates BCRP in progesterone receptor-positive human breast cancer cells. Cell Physiol Biochem. 32:344–354. 2013. View Article : Google Scholar : PubMed/NCBI

142 

Vannini I, Zoli W, Fabbri F, Ulivi P, Tesei A, Carloni S, Brigliadori G and Amadori D: Role of efflux Pump activity in Lapatinib/Caelyx combination in breast cancer cell lines. Anticancer Drugs. 20:918–925. 2009. View Article : Google Scholar : PubMed/NCBI

143 

Karbownik A, Sobańska K, Płotek W, Grabowski T, Klupczynska A, Plewa S, Grześkowiak E and Szałek E: The influence of the coadministration of the p-glycoprotein modulator elacridar on the pharmacokinetics of lapatinib and its distribution in the brain and cerebrospinal fluid. Invest New Drugs. 38:574–583. 2020. View Article : Google Scholar :

144 

Yi J, Chen S, Yi P, Luo J, Fang M, Du Y, Zou L and Fan P: Pyrotinib sensitizes 5-fluorouracil-resistant HER2 breast cancer cells to 5-fluorouracil. Oncol Res. 28:519–531. 2020. View Article : Google Scholar : PubMed/NCBI

145 

Cufi S, Corominas-Faja B, Vazquez-Martin A, Oliveras-Ferraros C, Dorca J, Bosch-Barrera J, Martin-Castillo B and Menendez JA: Metformin-induced preferential killing of breast cancer initiating CD44+CD24-/low cells is sufficient to overcome primary resistance to trastuzumab in HER2+ human breast cancer xenografts. Oncotarget. 3:395–398. 2012. View Article : Google Scholar : PubMed/NCBI

146 

Song CW, Lee H, Dings RP, Williams B, Powers J, Santos TD, Choi BH and Park HJ: Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells. Sci Rep. 2:3622012. View Article : Google Scholar : PubMed/NCBI

147 

Singh JK, Simões BM, Clarke RB and Bundred NJ: Targeting IL-8 signalling to inhibit breast cancer stem cell activity. Expert Opin Ther Targets. 17:1235–1241. 2013. View Article : Google Scholar : PubMed/NCBI

148 

Singh JK, Farnie G, Bundred NJ, Simões BM, Shergill A, Landberg G, Howell SJ and Clarke RB: Targeting CXCR1/2 significantly reduces breast cancer stem cell activity and increases the efficacy of inhibiting HER2 via HER2-dependent and -independent mechanisms. Clin Cancer Res. 19:643–656. 2013. View Article : Google Scholar

149 

Kim HJ, Min A, Im SA, Jang H, Lee KH, Lau A, Lee M, Kim S, Yang Y, Kim J, et al: Anti-tumor activity of the ATR inhibitor AZD6738 in HER2 positive breast cancer cells. Int J Cancer. 140:109–119. 2017. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Xu L, Han F, Zhu L, Ding W, Zhang K, Kan C, Hou N, Li Q and Sun X: Advances in understanding the role and mechanisms of tumor stem cells in HER2-positive breast cancer treatment resistance (Review). Int J Oncol 62: 48, 2023.
APA
Xu, L., Han, F., Zhu, L., Ding, W., Zhang, K., Kan, C. ... Sun, X. (2023). Advances in understanding the role and mechanisms of tumor stem cells in HER2-positive breast cancer treatment resistance (Review). International Journal of Oncology, 62, 48. https://doi.org/10.3892/ijo.2023.5496
MLA
Xu, L., Han, F., Zhu, L., Ding, W., Zhang, K., Kan, C., Hou, N., Li, Q., Sun, X."Advances in understanding the role and mechanisms of tumor stem cells in HER2-positive breast cancer treatment resistance (Review)". International Journal of Oncology 62.4 (2023): 48.
Chicago
Xu, L., Han, F., Zhu, L., Ding, W., Zhang, K., Kan, C., Hou, N., Li, Q., Sun, X."Advances in understanding the role and mechanisms of tumor stem cells in HER2-positive breast cancer treatment resistance (Review)". International Journal of Oncology 62, no. 4 (2023): 48. https://doi.org/10.3892/ijo.2023.5496
Copy and paste a formatted citation
x
Spandidos Publications style
Xu L, Han F, Zhu L, Ding W, Zhang K, Kan C, Hou N, Li Q and Sun X: Advances in understanding the role and mechanisms of tumor stem cells in HER2-positive breast cancer treatment resistance (Review). Int J Oncol 62: 48, 2023.
APA
Xu, L., Han, F., Zhu, L., Ding, W., Zhang, K., Kan, C. ... Sun, X. (2023). Advances in understanding the role and mechanisms of tumor stem cells in HER2-positive breast cancer treatment resistance (Review). International Journal of Oncology, 62, 48. https://doi.org/10.3892/ijo.2023.5496
MLA
Xu, L., Han, F., Zhu, L., Ding, W., Zhang, K., Kan, C., Hou, N., Li, Q., Sun, X."Advances in understanding the role and mechanisms of tumor stem cells in HER2-positive breast cancer treatment resistance (Review)". International Journal of Oncology 62.4 (2023): 48.
Chicago
Xu, L., Han, F., Zhu, L., Ding, W., Zhang, K., Kan, C., Hou, N., Li, Q., Sun, X."Advances in understanding the role and mechanisms of tumor stem cells in HER2-positive breast cancer treatment resistance (Review)". International Journal of Oncology 62, no. 4 (2023): 48. https://doi.org/10.3892/ijo.2023.5496
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team