
Long non‑coding RNAs in multiple myeloma (Review)
- Authors:
- Chenbo Yang
- Yinghao Liang
- Jiao Shu
- Shuaiyuan Wang
- Yichen Hong
- Kuisheng Chen
- Miaomiao Sun
-
Affiliations: Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China, Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China - Published online on: May 4, 2023 https://doi.org/10.3892/ijo.2023.5517
- Article Number: 69
-
Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Cowan AJ, Allen C, Barac A, Basaleem H, Bensenor I, Curado MP, Foreman K, Gupta R, Harvey J, Hosgood HD, et al: Global burden of multiple myeloma: A systematic analysis for the global burden of disease study 2016. JAMA Oncol. 4:1221–1227. 2018. | |
Kumar SK, Dimopoulos MA, Kastritis E, Terpos E, Nahi H, Goldschmidt H, Hillengass J, Leleu X, Beksac M, Alsina M, et al: Natural history of relapsed myeloma, refractory to immunomodulatory drugs and proteasome inhibitors: A multicenter IMWG study. Leukemia. 31:2443–2448. 2017. | |
van de Donk N, Pawlyn C and Yong KL: Multiple myeloma. Lancet. 397:410–427. 2021. | |
Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, Thurman RE, et al: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 447:799–816. 2007. | |
Yan H and Bu P: Non-coding RNA in cancer. Essays. Biochem. 65:625–639. 2021. | |
Winkle M, Kluiver JL, Diepstra A and van den Berg A: Emerging roles for long noncoding RNAs in B-cell development and malignancy. Crit Rev Oncol Hematol. 120:77–85. 2017. | |
Li Y, Li G, Guo X, Yao H, Wang G and Li C: Non-coding RNA in bladder cancer. Cancer Lett. 485:38–44. 2020. | |
Statello L, Guo CJ, Chen LL and Huarte M: Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 22:96–118. 2021. | |
Zhu J, Fu H, Wu Y and Zheng X: Function of lncRNAs and approaches to lncRNA-protein interactions. Sci China Life Sci. 56:876–885. 2013. | |
Kopp F and Mendell JT: Functional classification and experimental dissection of long noncoding RNAs. Cell. 172:393–407. 2018. | |
Sun Q, Hao Q and Prasanth KV: Nuclear long noncoding RNAs: Key regulators of gene expression. Trends Genet. 34:142–157. 2018. | |
Peng WX, Koirala P and Mo YY: LncRNA-mediated regulation of cell signaling in cancer. Oncogene. 36:5661–5667. 2017. | |
Kazandjian D: Multiple myeloma epidemiology and survival: A unique malignancy. Semin Oncol. 43:676–681. 2016. | |
Goyal B, Yadav SRM, Awasthee N, Gupta S, Kunnumakkara AB and Gupta SC: Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim Biophys Acta Rev Cancer. 1875:1885022021. | |
Sun Y, Jiang T, Jia Y, Zou J, Wang X and Gu W: LncRNA MALAT1/miR-181a-5p affects the proliferation and adhesion of myeloma cells via regulation of Hippo-YAP signaling pathway. Cell Cycle. 18:2509–2523. 2019. | |
Liu H, Chi Z, Jin H and Yang W: MicroRNA miR-188-5p as a mediator of long non-coding RNA MALAT1 regulates cell proliferation and apoptosis in multiple myeloma. Bioengineered. 12:1611–1626. 2021. | |
Ghafouri-Fard S, Esmaeili M and Taheri M: H19 lncRNA: Roles in tumorigenesis. Biomed Pharmacother. 123:1097742020. | |
Zheng JF, Guo NH, Zi FM and Cheng J: Long noncoding RNA H19 promotes tumorigenesis of multiple myeloma by activating BRD4 signaling by targeting MicroRNA 152-3p. Mol Cell Biol. 40:e00382–19. 2020. | |
Xiong T, Li J, Chen F and Zhang F: PCAT-1: A novel oncogenic long non-coding RNA in human cancers. Int J Biol Sci. 15:847–856. 2019. | |
Shen X, Kong S, Yang Q, Yin Q, Cong H, Wang X and Ju S: PCAT-1 promotes cell growth by sponging miR-129 via MAP3K7/NF-κB pathway in multiple myeloma. J Cell Mol Med. 24:3492–3503. 2020. | |
Onagoruwa OT, Pal G, Ochu C and Ogunwobi OO: Oncogenic role of PVT1 and therapeutic implications. Front Oncol. 10:172020. | |
Yang M, Zhang L, Wang X, Zhou Y and Wu S: Down-regulation of miR-203a by lncRNA PVT1 in multiple myeloma promotes cell proliferation. Arch Med Sci. 14:1333–1339. 2018. | |
Wang M, Zhao HY, Zhang JL, Wan DM, Li YM and Jiang ZX: Dysregulation of LncRNA ANRIL mediated by miR-411-3p inhibits the malignant proliferation and tumor stem cell like property of multiple myeloma via hypoxia-inducible factor 1α. Exp Cell Res. 396:1122802020. | |
Meng YB, He X, Huang YF, Wu QN, Zhou YC and Hao DJ: Long noncoding RNA CRNDE promotes multiple myeloma cell growth by suppressing miR-451. Oncol Res. 25:1207–1214. 2017. | |
Liu Q, Ran R, Song M, Li X, Wu Z, Dai G and Xia R: LncRNA HCP5 acts as a miR-128-3p sponge to promote the progression of multiple myeloma through activating Wnt/β-catenin/cyclin D1 signaling via PLAGL2. Cell Biol Toxicol. 38:979–993. 2022. | |
Liu H, Shen Y, Xu Y, Wang L, Zhang C, Jiang Y, Hong L, Huang H and Liu H: lncRNA transcription factor 7 is related to deteriorating clinical features and poor prognosis in multiple myeloma, and its knockdown suppresses disease progression by regulating the miR-203-mediated Jagged1-Notch1 signaling pathway. Oncol Lett. 21:4122021. | |
Ding T, Deng R and Huang T: Long non-coding RNA T cell factor 7 is associated with increased disease risk and poor prognosis, and promotes cell proliferation, attenuates cell apoptosis and miR-200c expression in multiple myeloma. Oncol Lett. 21:1292021. | |
Xiao X, Gu Y, Wang G and Chen S: c-Myc, RMRP, and miR-34a-5p form a positive-feedback loop to regulate cell proliferation and apoptosis in multiple myeloma. Int J Biol Macromol. 122:526–537. 2019. | |
Liu Z, Han M, Meng N, Luo J and Fu R: lncRNA MSTRG.29039.1 promotes proliferation by sponging hsa-miR-12119 via JAK2/STAT3 pathway in multiple myeloma. Oxid Med Cell Longev. 2021:99694492021. | |
Wang F, Luo Y, Zhang L, Younis M and Yuan L: The LncRNA RP11-301G19.1/miR-582-5p/HMGB2 axis modulates the proliferation and apoptosis of multiple myeloma cancer cells via the PI3K/AKT signalling pathway. Cancer Gene Ther. 29:292–303. 2022. | |
Chen X, Liu Y, Yang Z, Zhang J, Chen S and Cheng J: LINC01234 promotes multiple myeloma progression by regulating miR-124-3p/GRB2 axis. Am J Transl Res. 11:6600–6618. 2019. | |
Deng M, Yuan H, Liu S, Hu Z and Xiao H: Exosome-transmitted LINC00461 promotes multiple myeloma cell proliferation and suppresses apoptosis by modulating microRNA/BCL-2 expression. Cytotherapy. 21:96–106. 2019. | |
Chu M, Fan Y, Wu L, Ma X, Sao J, Yao Y, Zhuang W and Zhang C: Knockdown of lncRNA BDNF-AS inhibited the progression of multiple myeloma by targeting the miR-125a/b-5p-BCL2axis. Immun Ageing. 19:32022. | |
Yang Y and Chen L: Downregulation of lncRNA UCA1 facilitates apoptosis and reduces proliferation in multiple myeloma via regulation of the miR-1271-5p/HGF axis. J Chin Med Assoc. 82:699–709. 2019. | |
Li QY, Chen L, Hu N and Zhao H: Long non-coding RNA FEZF1-AS1 promotes cell growth in multiple myeloma via miR-610/Akt3 axis. Biomed Pharmacother. 103:1727–1732. 2018. | |
Chen L, Hu N, Wang C, Zhao H and Gu Y: Long non-coding RNA CCAT1 promotes multiple myeloma progression by acting as a molecular sponge of miR-181a-5p to modulate HOXA1 expression. Cell Cycle. 17:319–329. 2018. | |
Fu Y, Liu X, Zhang F, Jiang S, Liu J and Luo Y: Bortezomib-inducible long non-coding RNA myocardial infarction associated transcript is an oncogene in multiple myeloma that suppresses miR-29b. Cell Death Dis. 10:3192019. | |
Sun Y, Pan J, Zhang N, Wei W, Yu S and Ai L: Knockdown of long non-coding RNA H19 inhibits multiple myeloma cell growth via NF-κB pathway. Sci Rep. 7:180792017. | |
Shen X, Shen P, Yang Q, Yin Q, Wang F, Cong H, Wang X and Ju S: Knockdown of long non-coding RNA PCAT-1 inhibits myeloma cell growth and drug resistance via p38 and JNK MAPK pathways. J Cancer. 10:6502–6510. 2019. | |
Handa H, Honma K, Oda T, Kobayashi N, Kuroda Y, Kimura-Masuda K, Watanabe S, Ishihara R, Murakami Y, Masuda Y, et al: Long Noncoding RNA PVT1 is regulated by bromodomain protein BRD4 in multiple myeloma and is associated with disease progression. Int J Mol Sci. 21:71212020. | |
Ronchetti D, Todoerti K, Vinci C, Favasuli V, Agnelli L, Manzoni M, Pelizzoni F, Chiaramonte R, Platonova N, Giuliani N, et al: Expression pattern and biological significance of the lncRNA ST3GAL6-AS1 in multiple myeloma. Cancers (Basel). 12:7822020. | |
Geng W, Guo X, Zhang L, Ma Y, Wang L, Liu Z, Ji H and Xiong Y: Resveratrol inhibits proliferation, migration and invasion of multiple myeloma cells via NEAT1-mediated Wnt/β-catenin signaling pathway. Biomed Pharmacother. 107:484–494. 2018. | |
Zhu BZ and Lin L: Effects of lncRNA HOTAIR on proliferation and apoptosis of myeloma cells through NF-κB pathway. Eur Rev Med Pharmacol Sci. 23:10042–10048. 2019. | |
Liu Z, Gao H, Peng Q and Yang Y: Long noncoding RNA LUCAT1 promotes multiple myeloma cell growth by regulating the TGF-β signaling pathway. Technol Cancer Res Treat. 19:15330338209457702020. | |
Shen Q, Jiang Q, Cong Z, Zhou Y, Huang X, Zhu L, Xu X and Qian J: Knockdown of lncRNA AL928768.3 inhibits multiple myeloma cell proliferation by inducing cell cycle arrest in G0/G1 phase. Ann Transl Med. 10:1722022. | |
Chen R, Zhang X and Wang C: LncRNA HOXB-AS1 promotes cell growth in multiple myeloma via FUT4 mRNA stability by ELAVL1. J Cell Biochem. 121:4043–4051. 2020. | |
Jia H, Liu Y, Lv S, Qiao R, Zhang X, Niu F, Shang W, Liu S, Dong J and Zhang Z: LBX2-AS1 as a novel diagnostic biomarker and therapeutic target facilitates multiple myeloma progression by enhancing mRNA stability of LBX2. Front Mol Biosci. 8:7065702021. | |
Halazonetis TD, Gorgoulis VG and Bartek J: An oncogene-induced DNA damage model for cancer development. Science. 319:1352–1355. 2008. | |
Kar S: Unraveling cell-cycle dynamics in cancer. Cell Systems. 2:8–10. 2016. | |
Basu AK: DNA damage, mutagenesis and cancer. Int J Mol Sci. 19:9702018. | |
Larsen BD, Benada J, Yung PYK, Bell RAV, Pappas G, Urban V, Ahlskog JK, Kuo TT, Janscak P, Megeney LA, et al: Cancer cells use self-inflicted DNA breaks to evade growth limits imposed by genotoxic stress. Science. 376:476–483. 2022. | |
Hu Y, Lin J, Fang H, Fang J, Li C, Chen W, Liu S, Ondrejka S, Gong Z, Reu F, et al: Targeting the MALAT1/PARP1/LIG3 complex induces DNA damage and apoptosis in multiple myeloma. Leukemia. 32:2250–2262. 2018. | |
Sharma S, Javadekar SM, Pandey M, Srivastava M, Kumari R and Raghavan SC: Homology and enzymatic requirements of microhomology-dependent alternative end joining. Cell Death Dis. 6:e16972015. | |
Huambachano O, Herrera F, Rancourt A and Satoh MS: Double-stranded DNA binding domain of poly(ADP-ribose) polymerase-1 and molecular insight into the regulation of its activity. J Biol Chem. 286:7149–7160. 2011. | |
Taiana E, Favasuli V, Ronchetti D, Todoerti K, Pelizzoni F, Manzoni M, Barbieri M, Fabris S, Silvestris I, Gallo Cantafio ME, et al: Long non-coding RNA NEAT1 targeting impairs the DNA repair machinery and triggers anti-tumor activity in multiple myeloma. Leukemia. 34:234–244. 2020. | |
Gao D, Lv AE, Li HP, Han DH and Zhang YP: LncRNA MALAT-1 elevates HMGB1 to promote autophagy resulting in inhibition of tumor cell apoptosis in multiple myeloma. J Cell Biochem. 118:3341–3348. 2017. | |
Yang X, Huang H, Wang X, Liu H, Liu H and Lin Z: Knockdown of lncRNA SNHG16 suppresses multiple myeloma cell proliferation by sponging miR-342-3p. Cancer Cell Int. 20:382020. | |
Hamidi H and Ivaska J: Every step of the way: Integrins in cancer progression and metastasis. Nat Rev Cancer. 18:533–548. 2018. | |
Ganapathy-Kanniappan S and Geschwind JF: Tumor glycolysis as a target for cancer therapy: Progress and prospects. Mol Cancer. 12:1522013. | |
Liu N, Feng S, Li H, Chen X, Bai S and Liu Y: Long non-coding RNA MALAT1 facilitates the tumorigenesis, invasion and glycolysis of multiple myeloma via miR-1271-5p/SOX13 axis. J Cancer Res Clin Oncol. 146:367–379. 2020. | |
Tianhua Y, Dianqiu L, Xuanhe Z, Zhe Z and Dongmei G: Long non-coding RNA Sox2 overlapping transcript (SOX2OT) promotes multiple myeloma progression via microRNA-143-3p/c-MET axis. J Cell Mol Med. 24:5185–5194. 2020. | |
He X, Fan X, Zhang B, Wu L and Wu X: Expression of LINC01606 in multiple myeloma and its effect on cell invasion and migration. Am J Transl Res. 13:8777–8786. 2021. | |
Shen Y, Feng Y, Li F, Jia Y, Peng Y, Zhao W, Hu J and He A: lncRNA ST3GAL6-AS1 promotes invasion by inhibiting hnRNPA2B1-mediated ST3GAL6 expression in multiple myeloma. Int J Oncol. 58:52021. | |
Xiao Y and Yu D: Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 221:1077532021. | |
Hinshaw DC and Shevde LA: The tumor microenvironment innately modulates cancer progression. Cancer Res. 79:4557–4566. 2019. | |
Gao Y, Fang P, Li WJ, Zhang J, Wang GP, Jiang DF and Chen FP: LncRNA NEAT1 sponges miR-214 to regulate M2 macrophage polarization by regulation of B7-H3 in multiple myeloma. Mol Immunol. 117:20–28. 2020. | |
Wang Z, He J, Bach DH, Huang YH, Li Z, Liu H, Lin P and Yang J: Induction of m6A methylation in adipocyte exosomal LncRNAs mediates myeloma drug resistance. J Exp Clin Cancer Res. 41:42022. | |
Wu L, Xia L, Chen X, Ruan M, Li L and Xia R: Long non-coding RNA LINC01003 suppresses the development of multiple myeloma by targeting miR-33a-5p/PIM1 axis. Leuk Res. 106:1065652021. | |
Yang N, Chen J, Zhang H, Wang X, Yao H, Peng Y and Zhang W: LncRNA OIP5-AS1 loss-induced microRNA-410 accumulation regulates cell proliferation and apoptosis by targeting KLF10 via activating PTEN/PI3K/AKT pathway in multiple myeloma. Cell Death Dis. 8:e29752017. | |
Wang Y, Wang H, Ruan J, Zheng W, Yang Z and Pan W: Long non-coding RNA OIP5-AS1 suppresses multiple myeloma progression by sponging miR-27a-3p to activate TSC1 expression. Cancer Cell Int. 20:1552020. | |
Wu L, Xia L, Jiang H, Hu Y, Li L, Xu L and Xia R: Long non-coding RNA DANCR represses the viability, migration and invasion of multiple myeloma cells by sponging miR-135b-5p to target KLF9. Mol Med Rep. 24:6492021. | |
Jiang Y, Chen J and Chen G: Long noncoding RNA IRAIN acts as tumor suppressor via miR-125b in multiple myeloma. Oncol Lett. 18:6787–6794. 2019. | |
Pu J, Huang H, Su J, Yuan J, Cong H, Wang X and Ju S: Decreased expression of long noncoding RNA XLOC_013703 promotes cell growth via NF-κB pathway in multiple myeloma. IUBMB Life. 71:1240–1251. 2019. | |
Li Z, Kumar S, Jin DY, Calin GA, Chng WJ, Siu KL, Poon MW and Chim CS: Epigenetic silencing of long non-coding RNA BM742401 in multiple myeloma: Impact on prognosis and myeloma dissemination. Cancer Cell Int. 20:4032020. | |
Fechtner K, Hillengass J, Delorme S, Heiss C, Neben K, Goldschmidt H, Kauczor HU and Weber MA: Staging monoclonal plasma cell disease: Comparison of the Durie-Salmon and the Durie-Salmon PLUS staging systems. Radiology. 257:195–204. 2010. | |
Shen Y, Feng Y, Chen H, Huang L, Wang F, Bai J, Yang Y, Wang J, Zhao W, Jia Y, et al: Focusing on long non-coding RNA dysregulation in newly diagnosed multiple myeloma. Life Sci. 196:133–142. 2018. | |
Pan Y, Chen H, Shen X, Wang X, Ju S, Lu M and Cong H: Serum level of long noncoding RNA H19 as a diagnostic biomarker of multiple myeloma. Clin Chim Acta. 480:199–205. 2018. | |
Yin Q, Shen X, Cui X and Ju S: Elevated serum lncRNA TUG1 levels are a potential diagnostic biomarker of multiple myeloma. Exp Hematol. 79:47–55.e42. 2019. | |
Xiao G, Li Y, Wang Y, Zhao B, Zou Z, Hou S, Jia X, Liu X, Yao Y, Wan J, et al: LncRNA PRAL is closely related to clinical prognosis of multiple myeloma and the bortezomib sensitivity. Exp Cell Res. 370:254–263. 2018. | |
Cowan AJ, Green DJ, Kwok M, Lee S, Coffey DG, Holmberg LA, Tuazon S, Gopal AK and Libby EN: Diagnosis and management of multiple myeloma: A review. JAMA. 327:464–477. 2022. | |
Rossi D, Fangazio M, De Paoli L, Puma A, Riccomagno P, Pinto V, Zigrossi P, Ramponi A, Monga G and Gaidano G: Beta-2-microglobulin is an independent predictor of progression in asymptomatic multiple myeloma. Cancer. 116:2188–2200. 2010. | |
Kim JE, Yoo C, Lee DH, Kim SW, Lee JS and Suh C: Serum albumin level is a significant prognostic factor reflecting disease severity in symptomatic multiple myeloma. Ann Hematol. 89:391–397. 2010. | |
Kyle RA, Gertz MA, Witzig TE, Lust JA, Lacy MQ, Dispenzieri A, Fonseca R, Rajkumar SV, Offord JR, Larson DR, et al: Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc. 78:21–33. 2003. | |
Greipp PR, San Miguel J, Durie BG, Crowley JJ, Barlogie B, Bladé J, Boccadoro M, Child JA, Avet-Loiseau H, Kyle RA, et al: International staging system for multiple myeloma. J Clin Oncol. 23:3412–34202. 2005. | |
Yin Y, Yang W, Zhang L, Liu K and Luo Z: Long non-coding RNA ANRIL and its target microRNAs (microRNA-34a, microRNA-125a and microRNA-186) relate to risk stratification and prognosis in multiple myeloma. Hematology. 26:160–169. 2021. | |
Yu H, Peng S, Chen X, Han S and Luo J: Long non-coding RNA NEAT1 serves as a novel biomarker for treatment response and survival profiles via microRNA-125a in multiple myeloma. J Clin Lab Anal. 34:e233992020. | |
Sedlarikova L, Gromesova B, Kubaczkova V, Radova L, Filipova J, Jarkovsky J, Brozova L, Velichova R, Almasi M, Penka M, et al: Deregulated expression of long non-coding RNA UCA1 in multiple myeloma. Eur J Haematol. 99:223–233. 2017. | |
Zhao P and Zhao X: Baseline lncRNA PCAT1 high expression and its longitude increment during induction therapy predict worse prognosis in multiple myeloma patients. J Clin Lab Anal. 35:e239242021. | |
Dong H, Jiang S, Fu Y, Luo Y, Gui R and Liu J: Upregulation of lncRNA NR_046683 serves as a prognostic biomarker and potential drug target for multiple myeloma. Front Pharmacol. 10:452019. | |
Zhou F and Guo L: Lncrna ANGPTL1-3 and its target microRNA-30a exhibit potency as biomarkers for bortezomib response and prognosis in multiple myeloma patients. Hematology. 27:596–602. 2022. | |
Xu H, Yin Q, Shen X and Ju S: Long non-coding RNA CCAT2 as a potential serum biomarker for diagnosis and prognosis of multiple myeloma. Ann Hematol. 99:2159–2171. 2020. | |
Dimopoulos MA, Barlogie B, Smith TL and Alexanian R: High serum lactate dehydrogenase level as a marker for drug resistance and short survival in multiple myeloma. Ann Intern Med. 115:931–935. 1991. | |
Shouval R, Teper O, Fein JA, Danylesko I, Shem Tov N, Yerushalmi R, Avigdor A, Vasilev E, Magen H, Nagler A, et al: LDH and renal function are prognostic factors for long-term outcomes of multiple myeloma patients undergoing allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 55:1736–1743. 2020. | |
Palumbo A, Avet-Loiseau H, Oliva S, Lokhorst HM, Goldschmidt H, Rosinol L, Richardson P, Caltagirone S, Lahuerta JJ, Facon T, et al: Revised international staging system for multiple myeloma: A report from international myeloma working group. J Clin Oncol. 33:2863–2869. 2015. | |
Sedlarikova L, Bollova B, Radova L, Brozova L, Jarkovsky J, Almasi M, Penka M, Kuglík P, Sandecká V, Stork M, et al: Circulating exosomal long noncoding RNA PRINS-First findings in monoclonal gammopathies. Hematol Oncol. 36:786–791. 2018. | |
Terpos E, Zamagni E, Lentzsch S, Drake MT, García-Sanz R, Abildgaard N, Ntanasis-Stathopoulos I, Schjesvold F, de la Rubia J, Kyriakou C, et al: Treatment of multiple myeloma-related bone disease: Recommendations from the Bone Working Group of the International Myeloma Working Group. Lancet Oncol. 22:e119–e130. 2021. | |
Dimopoulos MA, Sonneveld P, Leung N, Merlini G, Ludwig H, Kastritis E, Goldschmidt H, Joshua D, Orlowski RZ, Powles R, et al: International Myeloma working group recommendations for the diagnosis and management of myeloma-related renal impairment. J Clin Oncol. 34:1544–1557. 2016. | |
Sonneveld P, Avet-Loiseau H, Lonial S, Usmani S, Siegel D, Anderson KC, Chng WJ, Moreau P, Attal M, Kyle RA, et al: Treatment of multiple myeloma with high-risk cytogenetics: A consensus of the International Myeloma Working Group. Blood. 127:2955–2962. 2016. | |
Röllig C, Knop S and Bornhäuser M: Multiple myeloma. Lancet. 385:2197–2208. 2015. | |
Yang LH, Du P, Liu W, An LK, Li J, Zhu WY, Yuan S, Wang L and Zang L: LncRNA ANRIL promotes multiple myeloma progression and bortezomib resistance by EZH2-mediated epigenetically silencing of PTEN. Neoplasma. 68:788–797. 2021. | |
Paiva B, van Dongen JJ and Orfao A: New criteria for response assessment: Role of minimal residual disease in multiple myeloma. Blood. 125:3059–3068. 2015. | |
Gay F, Larocca A, Wijermans P, Cavallo F, Rossi D, Schaafsma R, Genuardi M, Romano A, Liberati AM, Siniscalchi A, et al: Complete response correlates with long-term progression-free and overall survival in elderly myeloma treated with novel agents: Analysis of 1175 patients. Blood. 117:3025–3031. 2011. | |
Ignatiadis M, Sledge GW and Jeffrey SS: Liquid biopsy enters the clinic-implementation issues and future challenges. Nat Rev Clin Oncol. 18:297–312. 2021. | |
Allegra A, Cancemi G, Mirabile G, Tonacci A, Musolino C and Gangemi S: Circulating tumour cells, cell free DNA and tumour-educated platelets as reliable prognostic and management biomarkers for the liquid biopsy in multiple myeloma. Cancers (Basel). 14:41362022. | |
Wallington-Beddoe CT and Mynott RL: Prognostic and predictive biomarker developments in multiple myeloma. J Hematol Oncol. 14:1512021. | |
Shen X, Zhang Y, Wu X, Guo Y, Shi W, Qi J, Cong H, Wang X, Wu X and Ju S: Upregulated lncRNA-PCAT1 is closely related to clinical diagnosis of multiple myeloma as a predictive biomarker in serum. Cancer Biomark. 18:257–263. 2017. | |
Guan R, Wang W, Fu B, Pang Y, Lou Y and Li H: Increased lncRNA HOTAIR expression promotes the chemoresistance of multiple myeloma to dexamethasone by regulating cell viability and apoptosis by mediating the JAK2/STAT3 signaling pathway. Mol Med Rep. 20:3917–3923. 2019. | |
Yu W, Hurley J, Roberts D, Chakrabortty SK, Enderle D, Noerholm M, Breakefield XO and Skog JK: Exosome-based liquid biopsies in cancer: Opportunities and challenges. Ann Oncol. 32:466–477. 2021. | |
Kumar SK, Rajkumar V, Kyle RA, van Duin M, Sonneveld P, Mateos MV, Gay F and Anderson KC: Multiple myeloma. Nat Rev Dis Primers. 3:170462017. | |
Kumar SK, Dispenzieri A, Lacy MQ, Gertz MA, Buadi FK, Pandey S, Kapoor P, Dingli D, Hayman SR, Leung N, et al: Continued improvement in survival in multiple myeloma: Changes in early mortality and outcomes in older patients. Leukemia. 28:1122–1128. 2014. | |
Dimopoulos MA, Richardson PG, Moreau P and Anderson KC: Current treatment landscape for relapsed and/or refractory multiple myeloma. Nat Rev Clin Oncol. 12:42–54. 2015. | |
Obeng EA, Carlson LM, Gutman DM, Harrington WJ Jr, Lee KP and Boise LH: Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood. 107:4907–4916. 2006. | |
Davis LN and Sherbenou DW: Emerging therapeutic strategies to overcome drug resistance in multiple myeloma. Cancers (Basel). 13:16862021. | |
Chen D, Frezza M, Schmitt S, Kanwar J and Dou QP: Bortezomib as the first proteasome inhibitor anticancer drug: Current status and future perspectives. Curr Cancer Drug Targets. 11:239–253. 2011. | |
Pinto V, Bergantim R, Caires HR, Seca H, Guimarães JE and Vasconcelos MH: Multiple myeloma: Available therapies and causes of drug resistance. Cancers (Basel). 12:4072020. | |
Yang X, Ye H, He M, Zhou X, Sun N, Guo W, Lin X, Huang H, Lin Y, Yao R, et al: LncRNA PDIA3P interacts with c-Myc to regulate cell proliferation via induction of pentose phosphate pathway in multiple myeloma. Biochem Biophys Res Commun. 498:207–213. 2018. | |
Pan Y, Zhang Y, Liu W, Huang Y, Shen X, Jing R, Pu J, Wang X, Ju S, Cong H, et al: LncRNA H19 overexpression induces bortezomib resistance in multiple myeloma by targeting MCL-1 via miR-29b-3p. Cell Death Dis. 10:1062019. | |
Che F, Ye X, Wang Y, Ma S and Wang X: Lnc NEAT1/miR-29b-3p/Sp1 form a positive feedback loop and modulate bortezomib resistance in human multiple myeloma cells. Eur J Pharmacol. 891:1737522021. | |
Chauhan D and Anderson KC: Mechanisms of cell death and survival in multiple myeloma (MM): Therapeutic implications. Apoptosis. 8:337–343. 2003. | |
Wu Y and Wang H: LncRNA NEAT1 promotes dexamethasone resistance in multiple myeloma by targeting miR-193a/MCL1 pathway. J Biochem Mol Toxicol. 32:2018 View Article : Google Scholar | |
David A, Zocchi S, Talbot A, Choisy C, Ohnona A, Lion J, Cuccuini W, Soulier J, Arnulf B, Bories JC, et al: The long non-coding RNA CRNDE regulates growth of multiple myeloma cells via an effect on IL6 signalling. Leukemia. 35:1710–1721. 2021. | |
Voorhees PM, Jakubowiak AJ, Kumar SK, Kanapuru B, Baines AC, Bhatnagar V, Ershler R, Theoret MR, Gormley NJ and Pazdur R: Perspectives on drug development in multiple myeloma-looking forward to 2025. Clin Cancer Res. 28:23–26. 2022. | |
Gupta A, Andresen JL, Manan RS and Langer R: Nucleic acid delivery for therapeutic applications. Adv Drug Deliv Rev. 178:1138342021. | |
Kulkarni JA, Witzigmann D, Thomson SB, Chen S, Leavitt BR, Cullis PR and van der Meel R: The current landscape of nucleic acid therapeutics. Nat Nanotechnol. 16:630–643. 2021. | |
K C RB, Thapa B, Valencia-Serna J, Aliabadi HM and Uludağ H: Nucleic acid combinations: A new frontier for cancer treatment. J Control Release. 256:153–169. 2017. | |
Amodio N, Stamato MA, Juli G, Morelli E, Fulciniti M, Manzoni M, Taiana E, Agnelli L, Cantafio MEG, Romeo E, et al: Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity. Leukemia. 32:1948–1957. 2018. | |
Anashkina AA, Leberfarb EY and Orlov YL: Recent trends in cancer genomics and bioinformatics tools development. Int J Mol Sci. 22:121462021. | |
Zheng H, Talukder A, Li X and Hu H: A systematic evaluation of the computational tools for lncRNA identification. Brief Bioinform. 22:bbab2852021. | |
Duan Y, Zhang W, Cheng Y, Shi M and Xia XQ: A systematic evaluation of bioinformatics tools for identification of long noncoding RNAs. RNA. 27:80–98. 2021. | |
Herman AB, Tsitsipatis D and Gorospe M: Integrated lncRNA function upon genomic and epigenomic regulation. Mol Cell. 82:2252–2266. 2022. | |
Volders PJ, Anckaert J, Verheggen K, Nuytens J, Martens L, Mestdagh P and Vandesompele J: LNCipedia 5: Towards a reference set of human long non-coding RNAs. Nucleic Acids Res. 47:D135–D139. 2019. | |
Ma L, Cao J, Liu L, Du Q, Li Z, Zou D, Bajic VB and Zhang Z: LncBook: A curated knowledgebase of human long non-coding RNAs. Nucleic Acids Res. 47:D128–D134. 2019. | |
Chen J, Zhang J, Gao Y, Li Y, Feng C, Song C, Ning Z, Zhou X, Zhao J, Feng M, et al: LncSEA: A platform for long non-coding RNA related sets and enrichment analysis. Nucleic Acids Res. 49:D969–D980. 2021. | |
Li Z, Liu L, Jiang S, Li Q, Feng C, Du Q, Zou D, Xiao J, Zhang Z and Ma L: LncExpDB: An expression database of human long non-coding RNAs. Nucleic Acids Res. 49:D962–D968. 2021. | |
Xie F, Liu S, Wang J, Xuan J, Zhang X, Qu L, Zheng L and Yang J: deepBase v3.0: Expression atlas and interactive analysis of ncRNAs from thousands of deep-sequencing data. Nucleic Acids Res. 49:D877–D883. 2021. | |
Li J, Han L, Roebuck P, Diao L, Liu L, Yuan Y, Weinstein JN and Liang H: TANRIC: An interactive open platform to explore the function of lncRNAs in cancer. Cancer Res. 75:3728–3737. 2015. | |
Zheng Y, Xu Q, Liu M, Hu H, Xie Y, Zuo Z and Ren J: lnCAR: A Comprehensive resource for lncRNAs from cancer arrays. Cancer Res. 79:2076–2083. 2019. | |
Bao Z, Yang Z, Huang Z, Zhou Y, Cui Q and Dong D: LncRNADisease 2.0: An updated database of long non-coding RNA-associated diseases. Nucleic Acids Res. 47:D1034–D1037. 2019. | |
Li Y, Li L, Wang Z, Pan T, Sahni N, Jin X, Wang G, Li J, Zheng X, Zhang Y, et al: LncMAP: Pan-cancer atlas of long noncoding RNA-mediated transcriptional network perturbations. Nucleic Acids Res. 46:1113–1123. 2018. | |
Gong J, Liu W, Zhang J, Miao X and Guo AY: lncRNASNP: A database of SNPs in lncRNAs and their potential functions in human and mouse. Nucleic Acids Res. 43:D181–D186. 2015. | |
Zhi H, Li X, Wang P, Gao Y, Gao B, Zhou D, Zhang Y, Guo M, Yue M, Shen W, et al: Lnc2Meth: A manually curated database of regulatory relationships between long non-coding RNAs and DNA methylation associated with human disease. Nucleic Acids Res. 46:D133–D138. 2018. | |
Todoerti K, Ronchetti D, Puccio N, Silvestris I, Favasuli V, Amodio N, Gentile M, Morabito F, Neri A and Taiana E: Dissecting the biological relevance and clinical impact of lncRNA MIAT in multiple myeloma. Cancers (Basel). 13:55182021. | |
Zhou M, Zhao H, Wang Z, Cheng L, Yang L, Shi H, Yang H and Sun J: Identification and validation of potential prognostic lncRNA biomarkers for predicting survival in patients with multiple myeloma. J Exp Clin Cancer Res. 34:1022015. |