Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
June-2023 Volume 62 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2023 Volume 62 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Cancer testis antigen subfamilies: Attractive targets for therapeutic vaccine (Review)

  • Authors:
    • Shengnan Ren
    • Zhanyi Zhang
    • Mengyuan Li
    • Daren Wang
    • Ruijie Guo
    • Xuedong Fang
    • Fangfang Chen
  • View Affiliations / Copyright

    Affiliations: Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China, Bethune Third Clinical Medical College, Jilin University, Changchun, Jilin 130021, P.R. China, Traditional Chinese Medicine College, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China, Department of Gastrointestinal, Colorectal and Anal Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
    Copyright: © Ren et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 71
    |
    Published online on: May 5, 2023
       https://doi.org/10.3892/ijo.2023.5519
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer‑testis antigen (CTA) is a well‑accepted optimal target library for cancer diagnosis and treatment. Most CTAs are located on the X chromosome and aggregate into large gene families, such as the melanoma antigen, synovial sarcoma X and G antigen families. Members of the CTA subfamily are usually co‑expressed in tumor tissues and share similar structural characteristics and biological functions. As cancer vaccines are recommended to induce specific antitumor responses, CTAs, particularly CTA subfamilies, are widely used in the design of cancer vaccines. To date, DNA, mRNA and peptide vaccines have been commonly used to generate tumor‑specific CTAs in vivo and induce anticancer effects. Despite promising results in preclinical studies, the antitumor efficacy of CTA‑based vaccines is limited in clinical trials, which may be partially attributed to weak immunogenicity, low efficacy of antigen delivery and presentation processes, as well as a suppressive immune microenvironment. Recently, the development of nanomaterials has enhanced the cancer vaccination cascade, improved the antitumor performance and reduced off‑target effects. The present study provided an in‑depth review of the structural characteristics and biofunctions of the CTA subfamilies, summarised the design and utilisation of CTA‑based vaccine platforms and provided recommendations for developing nanomaterial‑derived CTA‑targeted vaccines.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Gibbs ZA and Whitehurst AW: Emerging contributions of cancer/testis antigens to neoplastic behaviors. Trends Cancer. 4:701–712. 2018.

2 

Saxena M, van der Burg SH, Melief CJM and Bhardwaj N: Therapeutic cancer vaccines. Nat Rev Cancer. 21:360–378. 2021.

3 

Florke Gee RR, Chen H, Lee AK, Daly CA, Wilander BA, Fon Tacer K and Potts PR: Emerging roles of the MAGE protein family in stress response pathways. J Biol Chem. 295:16121–16155. 2020.

4 

Lian Y, Meng L, Ding P and Sang M: Epigenetic regulation of MAGE family in human cancer progression-DNA methylation, histone modification, and non-coding RNAs. Clin Epigenetics. 10:1152018.

5 

Marchand M, van Baren N, Weynants P, Brichard V, Dréno B, Tessier MH, Rankin E, Parmiani G, Arienti F, Humblet Y, et al: Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int J Cancer. 80:219–230. 1999.

6 

Parvizpour S, Razmara J, Pourseif MM and Omidi Y: In silico design of a triple-negative breast cancer vaccine by targeting cancer testis antigens. Bioimpacts. 9:45–56. 2019.

7 

Vansteenkiste JF, Cho BC, Vanakesa T, De Pas T, Zielinski M, Kim MS, Jassem J, Yoshimura M, Dahabreh J, Nakayama H, et al: Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 17:822–835. 2016.

8 

Miao L, Zhang Y and Huang L: mRNA vaccine for cancer immunotherapy. Mol Cancer. 20:412021.

9 

Sahin U and Türeci O: Personalized vaccines for cancer immunotherapy. Science. 359:1355–1360. 2018.

10 

Chen F, Wang Y, Gao J, Saeed M, Li T, Wang W and Yu H: Nanobiomaterial-based vaccination immunotherapy of cancer. Biomaterials. 270:1207092021.

11 

Polla Ravi S, Shamiya Y, Chakraborty A, Elias C and Paul A: Biomaterials, biological molecules, and polymers in developing vaccines. Trends Pharmacol Sci. 42:813–828. 2021.

12 

Xiao L, Huang Y, Yang Y, Miao Z, Zhu J, Zhong M, Feng C, Tang W, Zhou J, Wang L, et al: Biomimetic cytomembrane nanovaccines prevent breast cancer development in the long term. Nanoscale. 13:3594–3601. 2021.

13 

Verma P, Biswas S, Yadav N, Khatri A, Siddiqui H, Panda JJ, Rawat BS, Tailor P and Chauhan VS: Delivery of a cancer-testis antigen-derived peptide using conformationally restricted dipeptide-based self-assembled nanotubes. Mol Pharm. 18:3832–3842. 2021.

14 

Huang W, Zhang Q, Li W, Yuan M, Zhou J, Hua L, Chen Y, Ye C and Ma Y: Development of novel nanoantibiotics using an outer membrane vesicle-based drug efflux mechanism. J Control Release. 317:1–22. 2020.

15 

Jian W, Li X, Kang J, Lei Y, Bai Y and Xue Y: Antitumor effect of recombinant Mycobacterium smegmatis expressing MAGEA3 and SSX2 fusion proteins. Exp Ther Med. 16:2160–2166. 2018.

16 

Sebastian M, Schröder A, Scheel B, Hong HS, Muth A, von Boehmer L, Zippelius A, Mayer F, Reck M, Atanackovic D, et al: A phase I/IIa study of the mRNA-based cancer immunotherapy CV9201 in patients with stage IIIB/IV non-small cell lung cancer. Cancer Immunol Immunother. 68:799–812. 2019.

17 

Neek M, Tucker JA, Kim TI, Molino NM, Nelson EL and Wang SW: Co-delivery of human cancer-testis antigens with adjuvant in protein nanoparticles induces higher cell-mediated immune responses. Biomaterials. 156:194–203. 2018.

18 

van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A and Boon T: A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. J Immunol. 178:2617–2621. 2007.

19 

van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A and Boon T: A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 254:1643–1647. 1991.

20 

Chomez P, De Backer O, Bertrand M, De Plaen E, Boon T and Lucas S: An overview of the MAGE gene family with the identification of all human members of the family. Cancer Res. 61:5544–5551. 2001.

21 

Barker PA and Salehi A: The MAGE proteins: Emerging roles in cell cycle progression, apoptosis, and neurogenetic disease. J Neurosci Res. 67:705–712. 2002.

22 

Lee AK and Potts PR: A comprehensive guide to the MAGE family of ubiquitin ligases. J Mol Biol. 429:1114–1142. 2017.

23 

Simpson AJG, Caballero OL, Jungbluth A, Chen YT and Old LJ: Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer. 5:615–625. 2005.

24 

De Plaen E, Arden K, Traversari C, Gaforio JJ, Szikora JP, De Smet C, Brasseur F, van der Bruggen P, Lethé B, Lurquin C, et al: Structure, chromosomal localization, and expression of 12 genes of the MAGE family. Immunogenetics. 40:360–369. 1994.

25 

Rogner UC, Wilke K, Steck E, Korn B and Poustka A: The melanoma antigen gene (MAGE) family is clustered in the chromosomal band Xq28. Genomics. 29:725–731. 1995.

26 

Li S, Shi X, Li J and Zhou X: Pathogenicity of the MAGE family. Oncol Lett. 22:8442021.

27 

van den Elsen GA, Tobben L, Ahmed AI, Verkes RJ, Kramers C, Marijnissen RM, Olde Rikkert MG and van der Marck MA: Effects of tetrahydrocannabinol on balance and gait in patients with dementia: A randomised controlled crossover trial. J Psychopharmacol. 31:184–191. 2017.

28 

Kerkar SP, Wang ZF, Lasota J, Park T, Patel K, Groh E, Rosenberg SA and Miettinen MM: MAGE-A is more highly expressed than NY-ESO-1 in a systematic immunohistochemical analysis of 3668 cases. J Immunother. 39:181–187. 2016.

29 

Fon Tacer K, Montoya MC, Oatley MJ, Lord T, Oatley JM, Klein J, Ravichandran R, Tillman H, Kim M, Connelly JP, et al: MAGE cancer-testis antigens protect the mammalian germline under environmental stress. Sci Adv. 5:eaav48322019.

30 

Hao YH, Doyle JM, Ramanathan S, Gomez TS, Jia D, Xu M, Chen ZJ, Billadeau DD, Rosen MK and Potts PR: Regulation of WASH-dependent actin polymerization and protein trafficking by ubiquitination. Cell. 152:1051–1064. 2013.

31 

Liu S, Sang M, Xu Y, Gu L, Liu F and Shan B: Expression of MAGE-A1, -A9, -A11 in laryngeal squamous cell carcinoma and their prognostic significance: A retrospective clinical study. Acta Otolaryngol. 136:506–513. 2016.

32 

Hou SY, Sang MX, Geng CZ, Liu WH, Lü WH, Xu YY and Shan BE: Expressions of MAGE-A9 and MAGE-A11 in breast cancer and their expression mechanism. Arch Med Res. 45:44–51. 2014.

33 

Guo L, Sang M, Liu Q, Fan X, Zhang X and Shan B: The expression and clinical significance of melanoma-associated antigen-A1, -A3 and -A11 in glioma. Oncol Lett. 6:55–62. 2013.

34 

De Smet C, Loriot A and Boon T: Promoter-dependent mechanism leading to selective hypomethylation within the 5' region of gene MAGE-A1 in tumor cells. Mol Cell Biol. 24:4781–4790. 2004.

35 

Wischnewski F, Pantel K and Schwarzenbach H: Promoter demethylation and histone acetylation mediate gene expression of MAGE-A1, -A2, -A3, and -A12 in human cancer cells. Mol Cancer Res. 4:339–349. 2006.

36 

Laiseca JE, Ladelfa MF, Cotignola J, Peche LY, Pascucci FA, Castaño BA, Galigniana MD, Schneider C and Monte M: Functional interaction between co-expressed MAGE-A proteins. PLoS One. 12:e01783702017.

37 

Mahmoud AM: Cancer testis antigens as immunogenic and oncogenic targets in breast cancer. Immunotherapy. 10:769–778. 2018.

38 

Salmaninejad A, Zamani MR, Pourvahedi M, Golchehre Z, Hosseini Bereshneh A and Rezaei N: Cancer/testis antigens: Expression, regulation, tumor invasion, and use in immunotherapy of cancers. Immunol Invest. 45:619–640. 2016.

39 

Õunap K, Kurg K, Võsa L, Maiväli Ü, Teras M, Planken A, Ustav M and Kurg R: Antibody response against cancer-testis antigens MAGEA4 and MAGEA10 in patients with melanoma. Oncol Lett. 16:211–218. 2018.

40 

Djureinovic D, Dodig-Crnković T, Hellström C, Holgersson G, Bergqvist M, Mattsson JSM, Pontén F, Ståhle E, Schwenk JM and Micke P: Detection of autoantibodies against cancer-testis antigens in non-small cell lung cancer. Lung Cancer. 125:157–163. 2018.

41 

Mischo A, Kubuschok B, Ertan K, Preuss KD, Romeike B, Regitz E, Schormann C, de Bruijn D, Wadle A, Neumann F, et al: Prospective study on the expression of cancer testis genes and antibody responses in 100 consecutive patients with primary breast cancer. Int J Cancer. 118:696–703. 2006.

42 

Zang C, Zhao Y, Qin L, Liu G, Sun J, Li K, Zhao Y, Sheng S, Zhang H, He N, et al: Distinct tumour antigen-specific T-cell immune response profiles at different hepatocellular carcinoma stages. BMC Cancer. 21:10072021.

43 

Connerotte T, Van Pel A, Godelaine D, Tartour E, Schuler-Thurner B, Lucas S, Thielemans K, Schuler G and Coulie PG: Functions of Anti-MAGE T-cells induced in melanoma patients under different vaccination modalities. Cancer Res. 68:3931–3940. 2008.

44 

Huang LQ, Brasseur F, Serrano A, De Plaen E, van der Bruggen P, Boon T and Van Pel A: Cytolytic T lymphocytes recognize an antigen encoded by MAGE-A10 on a human melanoma. J Immunol. 162:6849–6854. 1999.

45 

Gure AO, Chua R, Williamson B, Gonen M, Ferrera CA, Gnjatic S, Ritter G, Simpson AJ, Chen YT, Old LJ and Altorki NK: Cancer-testis genes are coordinately expressed and are markers of poor outcome in non-small cell lung cancer. Clin Cancer Res. 11:8055–8062. 2005.

46 

Zhang S, Zhai X, Wang G, Feng J, Zhu H, Xu L, Mao G and Huang J: High expression of MAGE-A9 in tumor and stromal cells of non-small cell lung cancer was correlated with patient poor survival. Int J Clin Exp Patho. 8:541–550. 2015.

47 

Qi Y, Cao KX, Xing FC, Zhang CY, Huang Q, Wu K, Wen FB, Zhao S and Li X: High expression of MAGE-A9 is associated with unfavorable survival in esophageal squamous cell carcinoma. Oncol Lett. 14:3415–3420. 2017.

48 

Sang M, Wang L, Ding C, Zhou X, Wang B, Wang L, Lian Y and Shan B: Melanoma-associated antigen genes-an update. Cancer Lett. 302:85–90. 2011.

49 

Doyle JM, Gao J, Wang J, Yang M and Potts PR: MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol Cell. 39:963–974. 2010.

50 

Xiao TZ, Suh Y and Longley BJ: MAGE proteins regulate KRAB zinc finger transcription factors and KAP1 E3 ligase activity. Arch Biochem Biophys. 563:136–144. 2014.

51 

Su S, Chen X, Geng J, Minges JT, Grossman G and Wilson EM: Melanoma antigen-A11 regulates substrate-specificity of Skp2-mediated protein degradation. Mol Cell Endocrinol. 439:1–9. 2017.

52 

Cui J, Wang L, Zhong W, Chen Z, Chen J, Yang H and Liu G: Development and validation of epigenetic signature predict survival for patients with laryngeal squamous cell carcinoma. DNA Cell Biol. 40:247–264. 2021.

53 

Cui J, Chen Y, Ou Y, Liu G, Wen Q, Zhu W, Liang L, Chen Z, Yang H, Wang L and Wei M: Cancer germline antigen gene MAGEB2 promotes cell invasion and correlates with immune microenvironment and immunotherapeutic efficiency in laryngeal cancer. Clin Immunol. 240:1090452022.

54 

Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cadwell K, Cecconi F, Choi AMK, et al: Autophagy in major human diseases. EMBO J. 40:e1088632021.

55 

Ravichandran R, Kodali K, Peng J and Potts PR: Regulation of MAGE-A3/6 by the CRL4-DCAF12 ubiquitin ligase and nutrient availability. EMBO Rep. 20:e473522019.

56 

Güre AO, Wei IJ, Old LJ and Chen YT: The SSX gene family: Characterization of 9 complete genes. Int J Cancer. 101:448–453. 2002.

57 

Crew AJ, Clark J, Fisher C, Gill S, Grimer R, Chand A, Shipley J, Gusterson BA and Cooper CS: Fusion of SYT to two genes, SSX1 and SSX2, encoding proteins with homology to the Kruppel-associated box in human synovial sarcoma. EMBO J. 14:2333–2340. 1995.

58 

Skytting B, Nilsson G, Brodin B, Xie Y, Lundeberg J, Uhlén M and Larsson O: A novel fusion gene, SYT-SSX4, in synovial sarcoma. J Natl Cancer Inst. 91:974–975. 1999.

59 

Feng X, Huang YL, Zhang Z, Wang N, Yao Q, Pang LJ, Li F and Qi Y: The role of SYT-SSX fusion gene in tumorigenesis of synovial sarcoma. Pathol Res Pract. 222:1534162021.

60 

Fligman I, Lonardo F, Jhanwar SC, Gerald WL, Woodruff J and Ladanyi M: Molecular diagnosis of synovial sarcoma and characterization of a variant SYT-SSX2 fusion transcript. Am J Pathol. 147:1592–1599. 1995.

61 

dos Santos NR, Torensma R, de Vries TJ, Schreurs MW, de Bruijn DR, Kater-Baats E, Ruiter DJ, Adema GJ, van Muijen GN and van Kessel AG: Heterogeneous expression of the SSX cancer/testis antigens in human melanoma lesions and cell lines. Cancer Res. 60:1654–1662. 2000.

62 

Lim FL, Soulez M, Koczan D, Thiesen HJ and Knight JC: A KRAB-related domain and a novel transcription repression domain in proteins encoded by SSX genes that are disrupted in human sarcomas. Oncogene. 17:2013–2018. 1998.

63 

dos Santos NR, de Bruijn DR, Kater-Baats E, Otte AP and van Kessel AG: Delineation of the protein domains responsible for SYT, SSX, and SYT-SSX nuclear localization. Exp Cell Res. 256:192–202. 2000.

64 

Cronwright G, Le Blanc K, Götherström C, Darcy P, Ehnman M and Brodin B: Cancer/testis antigen expression in human mesenchymal stem cells: Down-regulation of SSX impairs cell migration and matrix metalloproteinase 2 expression. Cancer Res. 65:2207–2215. 2005.

65 

Anderson WJ, Maclean FM, Acosta AM and Hirsch MS: Expression of the C-terminal region of the SSX protein is a useful diagnostic biomarker for spermatocytic tumour. Histopathology. 79:700–707. 2021.

66 

Johansen S and Gjerstorff MF: Interaction between polycomb and SSX proteins in pericentromeric heterochromatin function and its implication in cancer. Cells. 9:2262020.

67 

Wei R, Dean DC, Thanindratarn P, Hornicek FJ, Guo W and Duan ZF: Cancer testis antigens in sarcoma: Expression, function and immunotherapeutic application. Cancer Lett. 479:54–60. 2020.

68 

Türeci O, Chen YT, Sahin U, Güre AO, Zwick C, Villena C, Tsang S, Seitz G, Old LJ and Pfreundschuh M: Expression of SSX genes in human tumors. Int J Cancer. 77:19–23. 1998.

69 

Jones PA and Gonzalgo ML: Altered DNA methylation and genome instability: A new pathway to cancer? Proc Natl Acad Sci USA. 94:2103–2105. 1997.

70 

Atanackovic D, Arfsten J, Cao Y, Gnjatic S, Schnieders F, Bartels K, Schilling G, Faltz C, Wolschke C, Dierlamm J, et al: Cancer-testis antigens are commonly expressed in multiple myeloma and induce systemic immunity following allogeneic stem cell transplantation. Blood. 109:1103–1112. 2007.

71 

Neumann F, Kubuschok B, Ertan K, Schormann C, Stevanovic S, Preuss KD, Schmidt W and Pfreundschuh M: A peptide epitope derived from the cancer testis antigen HOM-MEL-40/SSX2 capable of inducing CD4+ and CD8+ T-cell as well as B-cell responses. Cancer Immunol Immunother. 60:1333–1346. 2011.

72 

Hasegawa K, Koizumi F, Noguchi Y, Hongo A, Mizutani Y, Kodama J, Hiramatsu Y and Nakayama E: SSX expression in gynecological cancers and antibody response in patients. Cancer Immun. 4:162004.

73 

Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL, Weiner LM and Matrisian LM: The prioritization of cancer antigens: A national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res. 15:5323–5337. 2009.

74 

McBride MJ, Pulice JL, Beird HC, Ingram DR, D'Avino AR, Shern JF, Charville GW, Hornick JL, Nakayama RT, Garcia-Rivera EM, et al: The SS18-SSX fusion oncoprotein hijacks BAF complex targeting and function to drive synovial sarcoma. Cancer Cell. 33:1128–1141.e7. 2018.

75 

Banito A, Li X, Laporte AN, Roe JS, Sanchez-Vega F, Huang CH, Dancsok AR, Hatzi K, Chen CC, Tschaharganeh DF, et al: The SS18-SSX oncoprotein hijacks KDM2B-PRC1 1 to drive synovial sarcoma. Cancer Cell. 33:527–541.e8. 2018.

76 

Déjardin J: Switching between epigenetic states at pericentromeric heterochromatin. Trends Genet. 31:661–672. 2015.

77 

Schwartz YB, Kahn TG, Nix DA, Li XY, Bourgon R, Biggin M and Pirrotta V: Genome-wide analysis of polycomb targets in drosophila melanogaster. Nat Genet. 38:700–705. 2006.

78 

Barco R, Garcia CB and Eid JE: The synovial sarcoma-associated SYT-SSX2 oncogene antagonizes the polycomb complex protein Bmi1. PLoS One. 4:e50602009.

79 

Wang J, Wang H, Hou W, Liu H, Zou Y, Zhang H, Hou L, McNutt MA and Zhang B: Subnuclear distribution of SSX regulates its function. Mol Cell Biochem. 381:17–29. 2013.

80 

Gjerstorff MF and Ditzel HJ: An overview of the GAGE cancer/testis antigen family with the inclusion of newly identified members. Tissue Antigens. 71:187–192. 2008.

81 

Gjerstorff MF, Johansen LE, Nielsen O, Kock K and Ditzel HJ: Restriction of GAGE protein expression to subpopulations of cancer cells is independent of genotype and may limit the use of GAGE proteins as targets for cancer immunotherapy. Br J Cancer. 94:1864–1873. 2006.

82 

Gjerstorff MF, Kock K, Nielsen O and Ditzel HJ: MAGE-A1, GAGE and NY-ESO-1 cancer/testis antigen expression during human gonadal development. Hum Reprod. 22:953–960. 2007.

83 

Gordeeva O: Cancer-testis antigens: Unique cancer stem cell biomarkers and targets for cancer therapy. Semin Cancer Biol. 53:75–89. 2018.

84 

Tabatabaei Yazdi SA, Safaei M, Gholamin M, Abdollahi A, Nili F, Jabbari Nooghabi M, Anvari K and Mojarrad M: Expression and prognostic significance of cancer/testis antigens, MAGE-E1, GAGE, and SOX-6, in glioblastoma: An immunohistochemistry evaluation. Iran J Pathol. 16:128–136. 2021.

85 

Götte K, Usener D, Riedel F, Hörmann K, Schadendorf D and Eichmüller S: Tumor-associated antigens as possible targets for immune therapy in head and neck cancer: Comparative mRNA expression analysis of RAGE and GAGE genes. Acta Otolaryngol. 122:546–552. 2002.

86 

Chao NX, Li LZ, Luo GR, Zhong WG, Huang RS, Fan R and Zhao FL: Cancer-testis antigen GAGE-1 expression and serum immunoreactivity in hepatocellular carcinoma. Niger J Clin Pract. 21:1361–1367. 2018.

87 

Zhang SQ, Zhou XL, Yu H and Yu YH: Expression of tumor-specific antigen MAGE, GAGE and BAGE in ovarian cancer tissues and cell lines. BMC Cancer. 10:1632010.

88 

Kutilin DS: Regulation of gene expression of cancer/testis antigens in colorectal cancer patients. Mol Biol. 54:520–534. 2020.

89 

Zhang R, Ma L, Li W, Zhou S and Xu S: Diagnostic value of multiple tumor-associated autoantibodies in lung cancer. Onco Targets Ther. 12:457–469. 2019.

90 

Ghafouri-Fard S, Seifi-Alan M, Shamsi R and Esfandiary A: Immunotherapy in multiple myeloma using cancer-testis antigens. Iran J Cancer Prev. 8:e37552015.

91 

Melo DH, Mamede RCM, Neder L, Silva WA Jr, Barros-Filho MC, Kowalski LP, Pinto CAL, Zago MA, Figueiredo DLA and Jungbluth AA: Expression of cancer/testis antigens MAGE-A, MAGE-C1, GAGE and CTAG1B in benign and malignant thyroid diseases. Oncol Lett. 14:6485–6496. 2017.

92 

Sun F, Chan E, Wu Z, Yang X, Marquez VE and Yu Q: Combinatorial pharmacologic approaches target EZH2-mediated gene repression in breast cancer cells. Mol Cancer Ther. 8:3191–3202. 2009.

93 

Bazhin AV, Wiedemann N, Schnölzer M, Schadendorf D and Eichmüller SB: Expression of GAGE family proteins in malignant melanoma. Cancer Lett. 251:258–267. 2007.

94 

Gjerstorff MF, Rösner HI, Pedersen CB, Greve KB, Schmidt S, Wilson KL, Mollenhauer J, Besir H, Poulsen FM, Møllegaard NE and Ditzel HJ: GAGE cancer-germline antigens are recruited to the nuclear envelope by germ cell-less (GCL). PLoS One. 7:e458192012.

95 

Kular RK, Yehiely F, Kotlo KU, Cilensek ZM, Bedi R and Deiss LP: GAGE, an antiapoptotic protein binds and modulates the expression of nucleophosmin/B23 and interferon regulatory factor 1. J Interferon Cytokine Res. 29:645–655. 2009.

96 

Nin DS, Wujanto C, Tan TZ, Lim D, Damen JMA, Wu KY, Dai ZM, Lee ZW, Idres SB, Leong YH, et al: GAGE mediates radio resistance in cervical cancers via the regulation of chromatin accessibility. Cell Rep. 36:1096212021.

97 

Zendman AJW, Van Kraats AA, Weidle UH, Ruiter DJ and Van Muijen GN: The XAGE family of cancer/testis-associated genes: alignment and expression profile in normal tissues, melanoma lesions and Ewing's sarcoma. Int J Cancer. 99:361–369. 2002.

98 

Xie C and Wang GM: XAGE-1b cancer/testis antigen is a potential target for immunotherapy in prostate cancer. Urol Int. 94:354–362. 2015.

99 

Nakagawa K, Noguchi Y, Uenaka A, Sato S, Okumura H, Tanaka M, Shimono M, Ali Eldib AM, Ono T, Ohara N, et al: XAGE-1 expression in non-small cell lung cancer and antibody response in patients. Clin Cancer Res. 11:5496–5503. 2005.

100 

Pan Z, Tang B, Hou Z, Zhang J, Liu H, Yang Y, Huang G, Yang Y and Zhou W: XAGE-1b expression is associated with the diagnosis and early recurrence of hepatocellular carcinoma. Mol Clin Oncol. 2:1155–1159. 2014.

101 

Gong L, Peng J, Cui Z, Chen P, Han H, Zhang D and Leng X: Hepatocellular carcinoma patients highly and specifically expressing XAGE-1 exhibit prolonged survival. Oncol Lett. 1:1083–1088. 2010.

102 

Koizumi F, Noguchi Y, Saika T, Nakagawa K, Sato S, Eldib AM, Nasu Y, Kumon H and Nakayama E: XAGE-1 mRNA expression in prostate cancer and antibody response in patients. Microbiol Immunol. 49:471–476. 2005.

103 

Mori M, Funakoshi T, Kameyama K, Kawakami Y, Sato E, Nakayama E, Amagai M and Tanese K: Lack of XAGE-1b and NY-ESO-1 in metastatic lymph nodes may predict the potential survival of stage III melanoma patients. J Dermatol. 44:671–680. 2017.

104 

Tarek MM, Shafei AE, Ali MA and Mansour MM: Computational prediction of vaccine potential epitopes and 3-dimensional structure of XAGE-1b for non-small cell lung cancer immunotherapy. Biomed J. 41:118–128. 2018.

105 

Talebian Yazdi M, Loof NM, Franken KL, Taube C, Oostendorp J, Hiemstra PS, Welters MJ and van der Burg SH: Local and systemic XAGE-1b-specific immunity in patients with lung adenocarcinoma. Cancer Immunol Immunother. 64:1109–1121. 2015.

106 

Zhou B, Li T, Liu Y and Zhu N: Preliminary study on XAGE-1b gene and its mechanism for promoting tumor cell growth. Biomed Rep. 1:567–572. 2013.

107 

Brinkmann U, Vasmatzis G, Lee B, Yerushalmi N, Essand M and Pastan I: PAGE-1, an X chromosome-linked GAGE-like gene that is expressed in normal and neoplastic prostate, testis, and uterus. Proc Natl Acad Sci USA. 95:10757–10762. 1998.

108 

Kulkarni P, Dunker AK, Weninger K and Orban J: Prostate-associated gene 4 (PAGE4), an intrinsically disordered cancer/testis antigen, is a novel therapeutic target for prostate cancer. Asian J Androl. 18:695–703. 2016.

109 

Suyama T, Shiraishi T, Zeng Y, Yu W, Parekh N, Vessella RL, Luo J, Getzenberg RH and Kulkarni P: Expression of cancer/testis antigens in prostate cancer is associated with disease progression. Prostate. 70:1778–1787. 2010.

110 

Zeng Y, Gao D, Kim JJ, Shiraishi T, Terada N, Kakehi Y, Kong C, Getzenberg RH and Kulkarni P: Prostate-associated gene 4 (PAGE4) protects cells against stress by elevating p21 and suppressing reactive oxygen species production. Am J Clin Exp Urol. 1:39–52. 2013.

111 

Yilmaz-Ozcan S, Sade A, Kucukkaraduman B, Kaygusuz Y, Senses KM, Banerjee S and Gure AO: Epigenetic mechanisms underlying the dynamic expression of cancer-testis genes, PAGE2, -2B and SPANX-B, during mesenchymal-to-epithelial transition. PLoS One. 9:e1079052014.

112 

Hellman M, Tossavainen H, Rappu P, Heino J and Permi P: Characterization of intrinsically disordered prostate associated gene (PAGE5) at single residue resolution by NMR spectroscopy. PLoS One. 6:e266332011.

113 

Salgia R, Jolly MK, Dorff T, Lau C, Weninger K, Orban J and Kulkarni P: Prostate-associated gene 4 (PAGE4): Leveraging the conformational dynamics of a dancing protein cloud as a therapeutic target. J Clin Med. 7:1562018.

114 

Uversky VN: Dancing protein clouds: The strange biology and chaotic physics of intrinsically disordered proteins. J Biol Chem. 291:6681–6688. 2016.

115 

Monika FJ, Simon I, Friedrich P and Tompa P: Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. Biophys J. 88:560a2005.

116 

Sampson N, Ruiz C, Zenzmaier C, Bubendorf L and Berger P: PAGE4 positivity is associated with attenuated AR signaling and predicts patient survival in hormone-naive prostate cancer. Am J Pathol. 181:1443–1454. 2012.

117 

Lv C, Fu S, Dong Q, Yu Z, Zhang G, Kong C, Fu C and Zeng Y: PAGE4 promotes prostate cancer cells survive under oxidative stress through modulating MAPK/JNK/ERK pathway. J Exp Clin Cancer Res. 38:242019.

118 

Rajagopalan K, Qiu R, Mooney SM, Rao S, Shiraishi T, Sacho E, Huang H, Shapiro E, Weninger KR and Kulkarni P: The stress-response protein prostate-associated gene 4, interacts with c-Jun and potentiates its transactivation. Biochim Biophys Acta. 1842:154–163. 2014.

119 

Tavakoli Koudehi A, Mahjoubi B, Mirzaei R, Shabani S and Mahjoubi F: AKAP4, SPAG9 and NY-ESO-1 in Iranian colorectal cancer patients as probable diagnostic and prognostic biomarkers. Asian Pac J Cancer Prev. 19:463–469. 2018.

120 

Chen YT, Scanlan MJ, Sahin U, Türeci O, Gure AO, Tsang S, Williamson B, Stockert E, Pfreundschuh M and Old LJ: A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA. 94:1914–1918. 1997.

121 

Raza A, Merhi M, Inchakalody VP, Krishnankutty R, Relecom A, Uddin S and Dermime S: Unleashing the immune response to NY-ESO-1 cancer testis antigen as a potential target for cancer immunotherapy. J Transl Med. 18:1402020.

122 

Smith SM and Iwenofu OH: NY-ESO-1: A promising cancer testis antigen for sarcoma immunotherapy and diagnosis. Chin Clin Oncol. 7:442018.

123 

Pollack SM: The potential of the CMB305 vaccine regimen to target NY-ESO-1 and improve outcomes for synovial sarcoma and myxoid/round cell liposarcoma patients. Expert Rev Vaccines. 17:107–114. 2018.

124 

Jo U, Roh J, Song MJ, Cho KJ, Kim W and Song JS: NY-ESO-1 as a diagnostic and prognostic marker for myxoid liposarcoma. Am J Transl Res. 14:1268–1278. 2022.

125 

Hashimoto K, Nishimura S, Ito T, Oka N, Kakinoki R and Akagi M: Clinicopathological assessment of cancer/testis antigens NY-ESO-1 and MAGE-A4 in osteosarcoma. Eur J Histochem. 66:33772022.

126 

Nagata Y, Kageyama S, Ishikawa T, Kokura S, Okayama T, Abe T, Murakami M, Otsuka K, Ariyoshi T, Kojima T, et al: Prognostic significance of NY-ESO-1 antigen and PIGR expression in esophageal tumors of CHP-NY-ESO-1-vaccinated patients as adjuvant therapy. Cancer Immunol Immunother. 71:2743–2755. 2022.

127 

Čeprnja T, Mrklić I, Perić Balja M, Marušić Z, Blažićević V, Spagnoli GC, Juretić A, Čapkun V, Tečić Vuger A, Vrdoljak E and Tomić S: Prognostic significance of lymphocyte infiltrate localization in triple-negative breast cancer. J Pers Med. 12:9412022.

128 

Liu MY, Su H, Huang HL and Chen JQ: Cancer stem-like cells with increased expression of NY-ESO-1 initiate breast cancer metastasis. Oncol Lett. 18:3664–3672. 2019.

129 

van Rhee F, Szmania SM, Zhan F, Gupta SK, Pomtree M, Lin P, Batchu RB, Moreno A, Spagnoli G, Shaughnessy J and Tricot G: NY-ESO-1 is highly expressed in poor-prognosis multiple myeloma and induces spontaneous humoral and cellular immune responses. Blood. 105:3939–3944. 2005.

130 

Iura K, Kohashi K, Hotokebuchi Y, Ishii T, Maekawa A, Yamada Y, Yamamoto H, Iwamoto Y and Oda Y: Cancer-testis antigens PRAME and NY-ESO-1 correlate with tumour grade and poor prognosis in myxoid liposarcoma. J Pathol Clin Res. 1:144–159. 2015.

131 

Giavina-Bianchi M, Giavina-Bianchi P, Sotto MN, Muzikansky A, Kalil J, Festa-Neto C and Duncan LM: Increased NY-ESO-1 expression and reduced infiltrating CD3+ T cells in cutaneous melanoma. J Immunol Res. 2015:7613782015.

132 

Wang H, Chen D, Wang R, Quan W, Xia D, Mei J, Xu J and Liu C: NY-ESO-1 expression in solid tumors predicts prognosis: A systematic review and meta-analysis. Medicine (Baltimore). 98:e179902019.

133 

Gnjatic S, Nishikawa H, Jungbluth AA, Güre AO, Ritter G, Jäger E, Knuth A, Chen YT and Old LJ: NY-ESO-1: review of an immunogenic tumor antigen. Adv Cancer Res. 95:1–30. 2006.

134 

Thomas R, Al-Khadairi G, Roelands J, et al: NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives. Frontiers in immunology. 9:9472018.

135 

Astaneh M, Dashti S and Esfahani ZT: Humoral immune responses against cancer-testis antigens in human malignancies. Hum Antibodies. 27:237–240. 2019.

136 

Jäger E, Gnjatic S, Nagata Y, Stockert E, Jäger D, Karbach J, Neumann A, Rieckenberg J, Chen YT, Ritter G, et al: Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers. Proc Natl Acad Sci USA. 97:12198–12203. 2000.

137 

Jäger E, Nagata Y, Gnjatic S, Wada H, Stockert E, Karbach J, Dunbar PR, Lee SY, Jungbluth A, Jäger D, et al: Monitoring CD8 T cell responses to NY-ESO-1: Correlation of humoral and cellular immune responses. Proc Natl Acad Sci USA. 97:4760–4765. 2000.

138 

Barrow C, Browning J, MacGregor D, Davis ID, Sturrock S, Jungbluth AA and Cebon J: Tumor antigen expression in melanoma varies according to antigen and stage. Clin Cancer Res. 12:764–771. 2006.

139 

Li F, Zhao F, Li M, Pan M, Shi F, Xu H, Zheng D, Wang L and Dou J: Decreasing New York esophageal squamous cell carcinoma 1 expression inhibits multiple myeloma growth and osteolytic lesions. J Cell Physiol. 235:2183–2194. 2020.

140 

Wang H, Xia Y, Yu J, Guan H, Wu Z, Ban D and Wang M: Expression of New York esophageal squamous cell carcinoma 1 and its association with Foxp3 and indoleamine-2,3-dioxygenase in microenvironment of nonsmall cell lung cancer. HLA. 94:39–48. 2019.

141 

Ko TY, Kim JI and Lee SH: Relationship between cancer stem cell marker CD133 and cancer germline antigen genes in NCI-H292 lung cancer cells. Korean J Thorac Cardiovasc Surg. 53:22–27. 2020.

142 

Gong W, Hoffmann JM, Stock S, Wang L, Liu Y, Schubert ML, Neuber B, Hückelhoven-Krauss A, Gern U, Schmitt A, et al: Comparison of IL-2 vs IL-7/IL-15 for the generation of NY-ESO-1-specific T cells. Cancer Immunol Immunother. 68:1195–1209. 2019.

143 

Hirayama M, Tomita Y, Yuno A, Tsukamoto H, Senju S, Imamura Y, Sayem MA, Irie A, Yoshitake Y, Fukuma D, et al: An oncofetal antigen, IMP-3-derived long peptides induce immune responses of both helper T cells and CTLs. Oncoimmunology. 5:e11233682016.

144 

Hayashi R, Nagato T, Kumai T, Ohara K, Ohara M, Ohkuri T, Hirata-Nozaki Y, Harabuchi S, Kosaka A, Nagata M, et al: Expression of placenta-specific 1 and its potential for eliciting anti-tumor helper T-cell responses in head and neck squamous cell carcinoma. Oncoimmunology. 10:18565452020.

145 

Minhas V, Kumar R, Moitra T, Singh R, Panda AK and Gupta SK: Immunogenicity and contraceptive efficacy of recombinant fusion protein encompassing Sp17 spermatozoa-specific protein and GnRH: Relevance of adjuvants and microparticles based delivery to minimize number of injections. Am J Reprod Immunol. 83:e132182020.

146 

Taheri-Anganeh M, Savardashtaki A, Vafadar A, Movahedpour A, Shabaninejad Z, Maleksabet A, Amiri A, Ghasemi Y and Irajie C: In silico design and evaluation of PRAME+FliCΔD2D3 as a new breast cancer vaccine candidate. Iran J Med Sci. 46:52–60. 2021.

147 

Matteo M, Greco P, Levi Setti PE, Morenghi E, De Rosario F, Massenzio F, Albani E, Totaro P and Liso A: Preliminary evidence for high anti-PLAC1 antibody levels in infertile patients with repeated unexplained implantation failure. Placenta. 34:335–339. 2013.

148 

Fan C, Qu H, Wang X, Sobhani N, Wang L, Liu S, Xiong W, Zeng Z and Li Y: Cancer/testis antigens: From serology to mRNA cancer vaccine. Semin Cancer Biol. 76:218–231. 2021.

149 

Kono K, Mizukami Y, Daigo Y, Takano A, Masuda K, Yoshida K, Tsunoda T, Kawaguchi Y, Nakamura Y and Fujii H: Vaccination with multiple peptides derived from novel cancer-testis antigens can induce specific T-cell responses and clinical responses in advanced esophageal cancer. Cancer Sci. 100:1502–1509. 2009.

150 

Lopes A, Vandermeulen G and Préat V: Cancer DNA vaccines: Current preclinical and clinical developments and future perspectives. J Exp Clin Cancer Res. 38:1462019.

151 

Herrada AA, Rojas-Colonelli N, González-Figueroa P, Roco J, Oyarce C, Ligtenberg MA and Lladser A: Harnessing DNA-induced immune responses for improving cancer vaccines. Hum Vaccin Immunother. 8:1682–1693. 2012.

152 

Rezaei T, Davoudian E, Khalili S, Amini M, Hejazi M, de la Guardia M and Mokhtarzadeh A: Strategies in DNA vaccine for melanoma cancer. Pigment Cell Melanoma Res. 34:869–891. 2021.

153 

Wu Y, Sang M, Liu F, Zhang J, Li W, Li Z, Gu L, Zheng Y, Li J and Shan B: Epigenetic modulation combined with PD-1/PD-L1 blockade enhances immunotherapy based on MAGE-A11 antigen-specific CD8+T cells against esophageal carcinoma. Carcinogenesis. 41:894–903. 2020.

154 

Jahanafrooz Z, Baradaran B, Mosafer J, Hashemzaei M, Rezaei T, Mokhtarzadeh A and Hamblin MR: Comparison of DNA and mRNA vaccines against cancer. Drug Discov Today. 25:552–560. 2020.

155 

Heine A, Juranek S and Brossart P: Clinical and immunological effects of mRNA vaccines in malignant diseases. Mol Cancer. 20:522021.

156 

Sahin U, Muik A, Derhovanessian E, Vogler I, Kranz LM, Vormehr M, Baum A, Pascal K, Quandt J, Maurus D, et al: COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature. 586:594–599. 2020.

157 

Liu W, Tang H, Li L, Wang X, Yu Z and Li J: Peptide-based therapeutic cancer vaccine: Current trends in clinical application. Cell Prolif. 54:e130252021.

158 

Nelde A, Rammensee HG and Walz JS: The peptide vaccine of the future. Mol Cell Proteomics. 20:1000222021.

159 

Iinuma H, Fukushima R, Inaba T, Tamura J, Inoue T, Ogawa E, Horikawa M, Ikeda Y, Matsutani N, Takeda K, et al: Phase I clinical study of multiple epitope peptide vaccine combined with chemoradiation therapy in esophageal cancer patients. J Transl Med. 12:842014.

160 

Kono K, Iinuma H, Akutsu Y, Tanaka H, Hayashi N, Uchikado Y, Noguchi T, Fujii H, Okinaka K, Fukushima R, et al: Multicenter, phase II clinical trial of cancer vaccination for advanced esophageal cancer with three peptides derived from novel cancer-testis antigens. J Transl Med. 10:1412012.

161 

Schwartzentruber DJ, Lawson DH, Richards JM, Conry RM, Miller DM, Treisman J, Gailani F, Riley L, Conlon K, Pockaj B, et al: gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med. 364:2119–2127. 2011.

162 

Suzuki H, Fukuhara M, Yamaura T, Mutoh S, Okabe N, Yaginuma H, Hasegawa T, Yonechi A, Osugi J, Hoshino M, et al: Multiple therapeutic peptide vaccines consisting of combined novel cancer testis antigens and anti-angiogenic peptides for patients with non-small cell lung cancer. J Transl Med. 11:972013.

163 

Kotsakis A, Papadimitraki E, Vetsika EK, Aggouraki D, Dermitzaki EK, Hatzidaki D, Kentepozidis N, Mavroudis D and Georgoulias V: A phase II trial evaluating the clinical and immunologic response of HLA-A2(+) non-small cell lung cancer patients vaccinated with an hTERT cryptic peptide. Lung Cancer. 86:59–66. 2014.

164 

Yoshitake Y, Fukuma D, Yuno A, Hirayama M, Nakayama H, Tanaka T, Nagata M, Takamune Y, Kawahara K, Nakagawa Y, et al: Phase II clinical trial of multiple peptide vaccination for advanced head and neck cancer patients revealed induction of immune responses and improved OS. Clin Cancer Res. 21:312–321. 2015.

165 

Okuyama R, Aruga A, Hatori T, Takeda K and Yamamoto M: Immunological responses to a multi-peptide vaccine targeting cancer-testis antigens and VEGFRs in advanced pancreatic cancer patients. Oncoimmunology. 2:e270102013.

166 

Smith HA, Rekoske BT and McNeel DG: DNA vaccines encoding altered peptide ligands for SSX2 enhance epitope-specific CD8+ T-cell immune responses. Vaccine. 32:1707–1715. 2014.

167 

Li L and Petrovsky N: Molecular mechanisms for enhanced DNA vaccine immunogenicity. Expert Rev Vaccines. 15:313–329. 2016.

168 

Duperret EK, Liu S, Paik M, Trautz A, Stoltz R, Liu X, Ze K, Perales-Puchalt A, Reed C, Yan J, et al: A designer cross-reactive DNA immunotherapeutic vaccine that targets multiple MAGE-A family members simultaneously for cancer therapy. Clin Cancer Res. 24:6015–6027. 2018.

169 

Smith HA, Cronk RJ, Lang JM and McNeel DG: Expression and immunotherapeutic targeting of the SSX family of cancer-testis antigens in prostate cancer. Cancer Res. 71:6785–6795. 2011.

170 

Smith HA and McNeel DG: Vaccines targeting the cancer-testis antigen SSX-2 elicit HLA-A2 epitope-specific cytolytic T cells. J Immunother. 34:569–580. 2011.

171 

Martínez-Puente DH, Pérez-Trujillo JJ, Zavala-Flores LM, García-García A, Villanueva-Olivo A, Rodríguez-Rocha H, Valdés J, Saucedo-Cárdenas O, Montes de Oca-Luna R and Loera-Arias MJ: Plasmid DNA for therapeutic applications in cancer. Pharmaceutics. 14:18612022.

172 

Disis MLN, Guthrie KA, Liu Y, Coveler AL, Higgins DM, Childs JS, Dang Y and Salazar LG: Safety and outcomes of a plasmid DNA vaccine encoding the ERBB2 intracellular domain in patients with advanced-Stage ERBB2-positive breast cancer: A phase 1 nonrandomized clinical trial. JAMA Oncol. 9:71–78. 2023.

173 

Huang X, Zhang G, Tang TY, Gao X and Liang TB: Personalized pancreatic cancer therapy: From the perspective of mRNA vaccine. Mil Med Res. 9:532022.

174 

Rekoske BT, Smith HA, Olson BM, Maricque BB and McNeel DG: PD-1 or PD-L1 blockade restores antitumor efficacy following SSX2 epitope-modified DNA vaccine immunization. Cancer Immunol Res. 3:946–955. 2015.

175 

Sobhani N, Scaggiante B, Morris R, Chai D, Catalano M, Tardiel-Cyril DR, Neeli P, Roviello G, Mondani G and Li Y: Therapeutic cancer vaccines: From biological mechanisms and engineering to ongoing clinical trials. Cancer Treat Rev. 109:1024292022.

176 

Zhang R, Billingsley MM and Mitchell MJ: Biomaterials for vaccine-based cancer immunotherapy. J Control Release. 292:256–276. 2018.

177 

Zhang C, Ma Y, Zhang J, Kuo JC, Zhang Z, Xie H, Zhu J and Liu T: Modification of lipid-based nanoparticles: An efficient delivery system for nucleic acid-based immunotherapy. Molecules. 27:19432022.

178 

Papachristofilou A, Hipp MM, Klinkhardt U, Früh M, Sebastian M, Weiss C, Pless M, Cathomas R, Hilbe W, Pall G, et al: Phase Ib evaluation of a self-adjuvanted protamine formulated mRNA-based active cancer immunotherapy, BI1361849 (CV9202), combined with local radiation treatment in patients with stage IV non-small cell lung cancer. J Immunother Cancer. 7:382019.

179 

Sahin U, Oehm P, Derhovanessian E, Jabulowsky RA, Vormehr M, Gold M, Maurus D, Schwarck-Kokarakis D, Kuhn AN, Omokoko T, et al: An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature. 585:107–112. 2020.

180 

Van Hoecke L, Verbeke R, Dewitte H, Lentacker I, Vermaelen K, Breckpot K and Van Lint S: mRNA in cancer immunotherapy: Beyond a source of antigen. Mol Cancer. 20:482021.

181 

Chen J, Chen J and Xu Q: Current developments and challenges of mRNA vaccines. Annu Rev Biomed Eng. 24:85–109. 2022.

182 

He Q, Gao H, Tan D, Zhang H and Wang JZ: mRNA cancer vaccines: Advances, trends and challenges. Acta Pharm Sin B. 12:2969–2989. 2022.

183 

Palmer CD, Rappaport AR, Davis MJ, Hart MG, Scallan CD, Hong SJ, Gitlin L, Kraemer LD, Kounlavouth S, Yang A, et al: Individualized, heterologous chimpanzee adenovirus and self-amplifying mRNA neoantigen vaccine for advanced metastatic solid tumors: Phase 1 trial interim results. Nat Med. 28:1619–1629. 2022.

184 

Lorentzen CL, Haanen JB, Met Ö and Svane IM: Clinical advances and ongoing trials on mRNA vaccines for cancer treatment. Lancet Oncol. 23:e450–e458. 2022.

185 

Roy DG, Geoffroy K, Marguerie M, Khan ST, Martin NT, Kmiecik J, Bobbala D, Aitken AS, de Souza CT, Stephenson KB, et al: Adjuvant oncolytic virotherapy for personalized anti-cancer vaccination. Nat Commun. 12:26262021.

186 

Duan LJ, Wang Q, Zhang C, Yang DX and Zhang XY: Potentialities and challenges of mRNA vaccine in cancer immunotherapy. Front Immunol. 13:236472022.

187 

Slingluff CL Jr, Petroni GR, Olson WC, Smolkin ME, Chianese-Bullock KA, Mauldin IS, Smith KT, Deacon DH, Varhegyi NE, Donnelly SB, et al: A randomized pilot trial testing the safety and immunologic effects of a MAGE-A3 protein plus AS15 immunostimulant administered into muscle or into dermal/subcutaneous sites. Cancer Immunol Immunother. 65:25–36. 2016.

188 

Abd-Aziz N and Poh CL: Development of peptide-based vaccines for cancer. J Oncol. 2022:97493632022.

189 

Bae J, Parayath N, Ma W, Amiji M, Munshi N and Anderson KC: BCMA peptide-engineered nanoparticles enhance induction and function of antigen-specific CD8+ cytotoxic T lymphocytes against multiple myeloma: Clinical applications. Leukemia. 34:19712020.

190 

Kruit WH, Suciu S, Dreno B, Mortier L, Robert C, Chiarion-Sileni V, Maio M, Testori A, Dorval T, Grob JJ, et al: Selection of immunostimulant AS15 for active immunization with MAGE-A3 protein: Results of a randomized phase II study of the European organisation for research and treatment of cancer melanoma group in metastatic melanoma. J Clin Oncol. 31:2413–2420. 2013.

191 

Goepfert PA, Tomaras GD, Horton H, Montefiori D, Ferrari G, Deers M, Voss G, Koutsoukos M, Pedneault L, Vandepapeliere P, et al: Durable HIV-1 antibody and T-cell responses elicited by an adjuvanted multi-protein recombinant vaccine in uninfected human volunteers. Vaccine. 25:510–518. 2007.

192 

Du G and Sun X: Engineering nanoparticulate vaccines for enhancing antigen cross-presentation. Curr Opin Biotechnol. 66:113–122. 2020.

193 

Warrier VU, Makandar AI, Garg M, Sethi G, Kant R, Pal JK, Yuba E and Gupta RK: Engineering anti-cancer nanovaccine based on antigen cross-presentation. Biosci Rep. 39:BSR201932202019.

194 

Miyamoto A, Honjo T, Masui M, Kinoshita R, Kumon H, Kakimi K and Futami J: Engineering cancer/testis antigens with reversible S-cationization to evaluate antigen spreading. Front Oncol. 12:8693932022.

195 

Zhang Y, Lin S, Wang XY and Zhu G: Nanovaccines for cancer immunotherapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 11:e15592019.

196 

Wen R, Umeano AC, Kou Y, Xu J and Farooqi AA: Nanoparticle systems for cancer vaccine. Nanomedicine (Lond). 14:627–648. 2019.

197 

Yang J, Li ZH, Zhou JJ, Chen RF, Cheng LZ, Zhou QB and Yang LQ: Preparation and antitumor effects of nanovaccines with MAGE-3 peptides in transplanted gastric cancer in mice. Chin J Cancer. 29:359–364. 2010.

198 

Somaiah N, Block MS, Kim JW, Shapiro GI, Do KT, Hwu P, Eder JP, Jones RL, Lu H, Ter Meulen JH, et al: First-in-class, first-in-human study evaluating LV305, a dendritic-cell tropic lentiviral vector, in sarcoma and other solid tumors expressing NY-ESO-1. Clin Cancer Res. 25:5808–5817. 2019.

199 

Deng Z, Tian Y, Song J, An G and Yang P: mRNA vaccines: The dawn of a new era of cancer immunotherapy. Front Immunol. 13:8871252022.

200 

Chen W, Wu Y, Deng J, Yang Z, Chen J, Tan Q, Guo M and Jin Y: Phospholipid-membrane-based nanovesicles acting as vaccines for tumor immunotherapy: Classification, mechanisms and applications. Pharmaceutics. 14:24462022.

201 

Wadman M: Public needs to prep for vaccine side effects. Science. 370:10222020.

202 

Kudo K, Miki Y, Carreras J, Nakayama S, Nakamoto Y, Ito M, Nagashima E, Yamamoto K, Higuchi H, Morita SY, et al: Secreted phospholipase A2 modifies extracellular vesicles and accelerates B cell lymphoma. Cell Metab. 34:615–633.e8. 2022.

203 

Cheng Y, Jiao X, Fan W, Yang Z, Wen Y and Chen X: Controllable synthesis of versatile mesoporous organosilica nanoparticles as precision cancer theranostics. Biomaterials. 256:1201912020.

204 

Li J, Lu W, Yang Y, Xiang R, Ling Y, Yu C and Zhou Y: Hybrid nanomaterials for cancer immunotherapy. Adv Sci (Weinh). 10:e22049322023.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ren S, Zhang Z, Li M, Wang D, Guo R, Fang X and Chen F: Cancer testis antigen subfamilies: Attractive targets for therapeutic vaccine (Review). Int J Oncol 62: 71, 2023.
APA
Ren, S., Zhang, Z., Li, M., Wang, D., Guo, R., Fang, X., & Chen, F. (2023). Cancer testis antigen subfamilies: Attractive targets for therapeutic vaccine (Review). International Journal of Oncology, 62, 71. https://doi.org/10.3892/ijo.2023.5519
MLA
Ren, S., Zhang, Z., Li, M., Wang, D., Guo, R., Fang, X., Chen, F."Cancer testis antigen subfamilies: Attractive targets for therapeutic vaccine (Review)". International Journal of Oncology 62.6 (2023): 71.
Chicago
Ren, S., Zhang, Z., Li, M., Wang, D., Guo, R., Fang, X., Chen, F."Cancer testis antigen subfamilies: Attractive targets for therapeutic vaccine (Review)". International Journal of Oncology 62, no. 6 (2023): 71. https://doi.org/10.3892/ijo.2023.5519
Copy and paste a formatted citation
x
Spandidos Publications style
Ren S, Zhang Z, Li M, Wang D, Guo R, Fang X and Chen F: Cancer testis antigen subfamilies: Attractive targets for therapeutic vaccine (Review). Int J Oncol 62: 71, 2023.
APA
Ren, S., Zhang, Z., Li, M., Wang, D., Guo, R., Fang, X., & Chen, F. (2023). Cancer testis antigen subfamilies: Attractive targets for therapeutic vaccine (Review). International Journal of Oncology, 62, 71. https://doi.org/10.3892/ijo.2023.5519
MLA
Ren, S., Zhang, Z., Li, M., Wang, D., Guo, R., Fang, X., Chen, F."Cancer testis antigen subfamilies: Attractive targets for therapeutic vaccine (Review)". International Journal of Oncology 62.6 (2023): 71.
Chicago
Ren, S., Zhang, Z., Li, M., Wang, D., Guo, R., Fang, X., Chen, F."Cancer testis antigen subfamilies: Attractive targets for therapeutic vaccine (Review)". International Journal of Oncology 62, no. 6 (2023): 71. https://doi.org/10.3892/ijo.2023.5519
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team