|
1
|
Wong KCW, Hui EP, Lo KW, Lam WKJ, Johnson
D, Li L, Tao Q, Chan KCA, To KF, King AD, et al: Nasopharyngeal
carcinoma: An evolving paradigm. Nat Rev Clin Oncol. 18:679–695.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Renaud S, Lefebvre A, Mordon S, Moralès O
and Delhem N: Novel therapies boosting T cell immunity in epstein
barr virus-associated nasopharyngeal carcinoma. Int J Mol Sci.
21:42922020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Marks JE, Phillips JL and Menck HR: The
National Cancer Data Base report on the relationship of race and
national origin to the histology of nasopharyngeal carcinoma.
Cancer. 83:582–588. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Wang HY, Chang YL, To KF, Hwang JS, Mai
HQ, Feng YF, Chang ET, Wang CP, Kam MK, Cheah SL, et al: A new
prognostic histopathologic classification of nasopharyngeal
carcinoma. Chin J Cancer. 35:412016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Tsao SW, Yip YL, Tsang CM, Pang PS, Lau
VM, Zhang G and Lo KW: Etiological factors of nasopharyngeal
carcinoma. Oral Oncol. 50:330–338. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Liu Z, Chang ET, Liu Q, Cai Y, Zhang Z,
Chen G, Xie SH, Cao SM, Shao JY, Jia WH, et al: Oral hygiene and
risk of nasopharyngeal carcinoma-A Population-based case-control
study in China. Cancer Epidemiol Biomarkers Prev. 25:1201–1207.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Chang ET, Liu Z, Hildesheim A, Liu Q, Cai
Y, Zhang Z, Chen G, Xie SH, Cao SM, Shao JY, et al: Active and
passive smoking and risk of nasopharyngeal carcinoma: A
population-based case-control study in Southern China. Am J
Epidemiol. 185:1272–1280. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Xu M, Yao Y, Chen H, Zhang S, Cao SM,
Zhang Z, Luo B, Liu Z, Li Z, Xiang T, et al: Genome sequencing
analysis identifies Epstein-Barr virus subtypes associated with
high risk of nasopharyngeal carcinoma. Nat Genet. 51:1131–1136.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Lo KW, Chung GT and To KF: Deciphering the
molecular genetic basis of NPC through molecular, cytogenetic, and
epigenetic approaches. Semin Cancer Biol. 22:79–86. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Tsang CM, Lui VWY, Bruce JP, Pugh TJ and
Lo KW: Translational genomics of nasopharyngeal cancer. Semin
Cancer Biol. 61:84–100. 2020. View Article : Google Scholar
|
|
12
|
Chen YP, Chan ATC, Le QT, Blanchard P, Sun
Y and Ma J: Nasopharyngeal carcinoma. Lancet. 394:64–80. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Huang H, Miao J, Xiao X, Hu J, Zhang G,
Peng Y, Lu S, Liang Y, Huang S, Han F, et al: Impact on xerostomia
for nasopharyngeal carcinoma patients treated with superficial
parotid lobe-sparing intensity-modulated radiation therapy
(SPLS-IMRT): A prospective phase II randomized controlled study.
Radiother Oncol. 175:1–9. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Huang H, Miao J, Zhao C and Wang L:
Response to Gargi S Sarode, Sachin C Sarode, and Rahul Anand's
Letter to the Editor of Radiotherapy and Oncology regarding the
paper titled 'Impact on xerostomia for nasopharyngeal carcinoma
patients treated with superficial parotid lobe-sparing
intensity-modulated radiation therapy (SPLS-IMRT): A prospective
phase II randomized controlled study' by Huang et al. Radiother
Oncol. 177:2532022. View Article : Google Scholar
|
|
15
|
Wang L, Miao J, Huang H, Chen B, Xiao X,
Zhu M, Liang Y, Xiao W, Huang S, Peng Y, et al: Long-term
survivals, toxicities and the role of chemotherapy in Early-stage
nasopharyngeal carcinoma patients treated with Intensity-modulated
radiation therapy: A retrospective study with 15-year Follow-up.
Cancer Res Treat. 54:118–129. 2022. View Article : Google Scholar :
|
|
16
|
Pan JJ, Ng WT, Zong JF, Chan LL,
O'Sullivan B, Lin SJ, Sze HC, Chen YB, Choi HC, Guo QJ, et al:
Proposal for the 8th edition of the AJCC/UICC staging system for
nasopharyngeal cancer in the era of intensity-modulated
radiotherapy. Cancer. 122:546–558. 2016. View Article : Google Scholar
|
|
17
|
Chen L, Zhang Y, Lai SZ, Li WF, Hu WH, Sun
R, Liu LZ, Zhang F, Peng H, Du XJ, et al: 10-year results of
therapeutic ratio by Intensity-modulated radiotherapy versus
two-dimensional radiotherapy in patients with nasopharyngeal
carcinoma. Oncologist. 24:e38–e45. 2019. View Article : Google Scholar
|
|
18
|
Zhang L, Huang Y, Hong S, Yang Y, Yu G,
Jia J, Peng P, Wu X, Lin Q, Xi X, et al: Gemcitabine plus cisplatin
versus fluorouracil plus cisplatin in recurrent or metastatic
nasopharyngeal carcinoma: A multicentre, randomised, open-label,
phase 3 trial. Lancet. 388:1883–1892. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hong S, Zhang Y, Yu G, Peng P, Peng J, Jia
J, Wu X, Huang Y, Yang Y, Lin Q, et al: Gemcitabine plus cisplatin
versus fluorouracil plus cisplatin as First-line therapy for
recurrent or metastatic nasopharyngeal carcinoma: Final overall
survival analysis of GEM20110714 phase III study. J Clin Oncol.
39:3273–3282. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Hua YJ, Han F, Lu LX, Mai HQ, Guo X, Hong
MH, Lu TX and Zhao C: Long-term treatment outcome of recurrent
nasopharyngeal carcinoma treated with salvage intensity modulated
radiotherapy. Eur J Cancer. 48:3422–3428. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Xiao W, Liu S, Tian Y, Guan Y, Huang S,
Lin C, Zhao C, Lu T and Han F: Prognostic significance of tumor
volume in locally recurrent nasopharyngeal carcinoma treated with
salvage intensity-modulated radiotherapy. PLoS One.
10:e01253512015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Palucka AK and Coussens LM: The basis of
oncoimmunology. Cell. 164:1233–1247. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Smith C, Wakisaka N, Crough T, Peet J,
Yoshizaki T, Beagley L and Khanna R: Discerning regulation of cis-
and trans-presentation of CD8+ T-cell epitopes by EBV-encoded
oncogene LMP-1 through self-aggregation. Blood. 113:6148–6152.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Münz C, Bickham KL, Subklewe M, Tsang ML,
Chahroudi A, Kurilla MG, Zhang D, O'Donnell M and Steinman RM:
Human CD4(+) T lymphocytes consistently respond to the latent
Epstein-Barr virus nuclear antigen EBNA1. J Exp Med. 191:1649–1660.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lee AZE, Tan LSY and Lim CM:
Cellular-based immunotherapy in Epstein-Barr virus induced
nasopharyngeal cancer. Oral Oncol. 84:61–70. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Outh-Gauer S, Alt M, Le Tourneau C,
Augustin J, Broudin C, Gasne C, Denize T, Mirghani H, Fabre E,
Ménard M, et al: Immunotherapy in head and neck cancers: A new
challenge for immunologists, pathologists and clinicians. Cancer
Treat Rev. 65:54–64. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Agathanggelou A, Niedobitek G, Chen R,
Nicholls J, Yin W and Young LS: Expression of immune regulatory
molecules in Epstein-Barr virus-associated nasopharyngeal
carcinomas with prominent lymphoid stroma. Evidence for a
functional interaction between epithelial tumor cells and
infiltrating lymphoid cells. Am J Pathol. 147:1152–1160.
1995.PubMed/NCBI
|
|
28
|
Cui X and Snapper CM: Epstein Barr Virus:
Development of vaccines and immune cell therapy for EBV-associated
diseases. Front Immunol. 12:7344712021. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wang L, Tian WD, Xu X, Nie B, Lu J, Liu X,
Zhang B, Dong Q, Sunwoo JB, Li G, et al: Epstein-Barr virus nuclear
antigen 1 (EBNA1) protein induction of epithelial-mesenchymal
transition in nasopharyngeal carcinoma cells. Cancer. 120:363–372.
2014. View Article : Google Scholar
|
|
30
|
Fu T, Voo KS and Wang RF: Critical role of
EBNA1-specific CD4+ T cells in the control of mouse
Burkitt lymphoma in vivo. J Clin Invest. 114:542–550. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Young LS, Yap LF and Murray PG:
Epstein-Barr virus: More than 50 years old and still providing
surprises. Nat Rev Cancer. 16:789–802. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Yoshizaki T, Kondo S, Endo K, Nakanishi Y,
Aga M, Kobayashi E, Hirai N, Sugimoto H, Hatano M, Ueno T, et al:
Modulation of the tumor microenvironment by Epstein-Barr virus
latent membrane protein 1 in nasopharyngeal carcinoma. Cancer Sci.
109:272–278. 2018. View Article : Google Scholar :
|
|
33
|
Lin CL, Lo WF, Lee TH, Ren Y, Hwang SL,
Cheng YF, Chen CL, Chang YS, Lee SP, Rickinson AB, et al:
Immunization with Epstein-Barr Virus (EBV) peptide-pulsed dendritic
cells induces functional CD8+ T-cell immunity and may lead to tumor
regression in patients with EBV-positive nasopharyngeal carcinoma.
Cancer Res. 62:6952–6958. 2002.PubMed/NCBI
|
|
34
|
Le QT, Colevas AD, O'Sullivan B, Lee AWM,
Lee N, Ma B, Siu LL, Waldron J, Lim CM, Riaz N, et al: Current
treatment landscape of nasopharyngeal carcinoma and potential
trials evaluating the value of immunotherapy. J Natl Cancer Inst.
111:655–663. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Gourzones C, Barjon C and Busson P:
Host-tumor interactions in nasopharyngeal carcinomas. Semin Cancer
Biol. 22:127–136. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Li YY, Chung GT, Lui VW, To KF, Ma BB,
Chow C, Woo JK, Yip KY, Seo J, Hui EP, et al: Exome and genome
sequencing of nasopharynx cancer identifies NF-κB pathway
activating mutations. Nat Commun. 8:141212017. View Article : Google Scholar
|
|
37
|
Chen YP, Yin JH, Li WF, Li HJ, Chen DP,
Zhang CJ, Lv JW, Wang YQ, Li XM, Li JY, et al: Single-cell
transcriptomics reveals regulators underlying immune cell diversity
and immune subtypes associated with prognosis in nasopharyngeal
carcinoma. Cell Res. 30:1024–1042. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Pardoll DM: The blockade of immune
checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Francisco LM, Sage PT and Sharpe AH: The
PD-1 pathway in tolerance and autoimmunity. Immunol Rev.
236:219–242. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Okazaki T, Chikuma S, Iwai Y, Fagarasan S
and Honjo T: A rheostat for immune responses: The unique properties
of PD-1 and their advantages for clinical application. Nat Immunol.
14:1212–1218. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Farkona S, Diamandis EP and Blasutig IM:
Cancer immunotherapy: The beginning of the end of cancer? BMC Med.
14:732016. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Khalil DN, Smith EL, Brentjens RJ and
Wolchok JD: The future of cancer treatment: Immunomodulation, CARs
and combination immunotherapy. Nat Rev Clin Oncol. 13:273–290.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Chen L and Han X: Anti-PD-1/PD-L1 therapy
of human cancer: Past, present, and future. J Clin Investigation.
125:3384–3391. 2015. View Article : Google Scholar
|
|
44
|
Hsu C, Lee SH, Ejadi S, Even C, Cohen RB,
Le Tourneau C, Mehnert JM, Algazi A, van Brummelen EMJ, Saraf S, et
al: Safety and antitumor activity of pembrolizumab in patients with
programmed death-ligand 1-positive nasopharyngeal carcinoma:
Results of the KEYNOTE-028 Study. J Clin Oncol. 35:4050–4056. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ma BBY, Lim WT, Goh BC, Hui EP, Lo KW,
Pettinger A, Foster NR, Riess JW, Agulnik M, Chang AYC, et al:
Antitumor activity of nivolumab in recurrent and metastatic
nasopharyngeal carcinoma: An international, multicenter study of
the mayo clinic phase 2 consortium (NCI-9742). J Clin Oncol.
36:1412–1418. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Yang Y, Zhou T, Chen X, Li J, Pan J, He X,
Lin L, Shi YR, Feng W, Xiong J, et al: Efficacy, safety, and
biomarker analysis of camrelizumab in previously treated recurrent
or metastatic nasopharyngeal carcinoma (CAPTAIN study). J
Immunother Cancer. 9:e0037902021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Fang W, Yang Y, Ma Y, Hong S, Lin L, He X,
Xiong J, Li P, Zhao H, Huang Y, et al: Camrelizumab (SHR-1210)
alone or in combination with gemcitabine plus cisplatin for
nasopharyngeal carcinoma: Results from two single-arm, phase 1
trials. Lancet Oncol. 19:1338–1350. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ma Y, Fang W, Zhang Y, Yang Y, Hong S,
Zhao Y, Tendolkar A, Chen L, Xu D, Sheng J, et al: A Phase I/II
Open-label study of nivolumab in previously treated advanced or
recurrent nasopharyngeal carcinoma and other solid tumors.
Oncologist. 24:891–e431. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Shen L, Guo J, Zhang Q, Pan H, Yuan Y, Bai
Y, Liu T, Zhou Q, Zhao J, Shu Y, et al: Tislelizumab in Chinese
patients with advanced solid tumors: An open-label,
non-comparative, phase 1/2 study. J Immunother Cancer.
8:e0004372020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wang FH, Wei XL, Feng J, Li Q, Xu N, Hu
XC, Liao W, Jiang Y, Lin XY, Zhang QY, et al: Efficacy, safety, and
correlative biomarkers of toripalimab in previously treated
recurrent or metastatic nasopharyngeal carcinoma: A phase II
clinical trial (POLARIS-02). J Clin Oncol. 39:704–712. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Even C, Wang HM, Li SH, Ngan RK,
Dechaphunkul A, Zhang L, Yen CJ, Chan PC, Chakrabandhu S, Ma BBY,
et al: Phase II, randomized study of spartalizumab (PDR001), an
Anti-PD-1 antibody, versus chemotherapy in patients with
recurrent/metastatic nasopharyngeal cancer. Clin Cancer Res.
27:6413–6423. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ding X, Zhang WJ, You R, Zou X, Wang ZQ,
Ouyang YF, Peng L, Liu YP, Duan CY, Yang Q, et al: Camrelizumab
plus apatinib in patients with recurrent or metastatic
nasopharyngeal carcinoma: An Open-label, Single-arm, phase II
study. J Clin Oncol. 41:2571–2582. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yang Y, Qu S, Li J, Hu C, Xu M, Li W, Zhou
T, Shen L, Wu H, Lang J, et al: Camrelizumab versus placebo in
combination with gemcitabine and cisplatin as first-line treatment
for recurrent or metastatic nasopharyngeal carcinoma (CAPTAIN-1st):
A multi-centre, randomised, double-blind, phase 3 trial. Lancet
Oncol. 22:1162–1174. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Mai HQ, Chen QY, Chen D, Hu C, Yang K, Wen
J, Li J, Shi YR, Jin F, Xu R, et al: Toripalimab or placebo plus
chemotherapy as first-line treatment in advanced nasopharyngeal
carcinoma: A multicenter randomized phase 3 trial. Nat Med.
27:1536–1543. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Hua Y, You R, Wang Z, Huang P, Lin M,
Ouyang Y, Xie Y, Zou X, Liu Y, Duan C, et al: Toripalimab plus
intensity-modulated radiotherapy for recurrent nasopharyngeal
carcinoma: An open-label single-arm, phase II trial. J Immunother
Cancer. 9:e0032902021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhou X, Niu X, Liu P, Ou D, Zhu Y and Wang
X: Is immune therapy plus chemotherapy more effective than immune
therapy alone for unresectable recurrent nasopharyngeal carcinoma?
Front Immunol. 12:7626632021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Postow MA, Callahan MK and Wolchok JD:
Immune checkpoint blockade in cancer therapy. J Clin Oncol.
33:1974–1982. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Buchbinder E and Hodi FS: Cytotoxic T
lymphocyte antigen-4 and immune checkpoint blockade. J Clin
Investigation. 125:3377–3383. 2015. View Article : Google Scholar
|
|
59
|
Yang Y, Li X, Ma Z, Wang C, Yang Q,
Byrne-Steele M, Hong R, Min Q, Zhou G, Cheng Y, et al: CTLA-4
expression by B-1a B cells is essential for immune tolerance. Nat
Commun. 12:5252021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Larkin J, Chiarion-Sileni V, Gonzalez R,
Grob JJ, Rutkowski P, Lao CD, Cowey CL, Schadendorf D, Wagstaff J,
Dummer R, et al: Five-year survival with combined nivolumab and
ipilimumab in advanced melanoma. N Engl J Med. 381:1535–1546. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
El-Khoueiry AB, Sangro B, Yau T, Crocenzi
TS, Kudo M, Hsu C, Kim TY, Choo SP, Trojan J, Welling THR, et al:
Nivolumab in patients with advanced hepatocellular carcinoma
(CheckMate 040): An open-label, non-comparative, phase 1/2 dose
escalation and expansion trial. Lancet. 389:2492–2502. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kelley RK, Sangro B, Harris W, Ikeda M,
Okusaka T, Kang YK, Qin S, Tai DW, Lim HY, Yau T, et al: Safety,
Efficacy, and pharmacodynamics of tremelimumab plus durvalumab for
patients with unresectable hepatocellular carcinoma: Randomized
expansion of a phase I/II study. J Clin Oncol. 39:2991–3001. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Xiao M, Qi F, Chen X, Luo Z, Zhang L,
Zheng C, Hu S, Jiang X, Zhou M and Tang J: Functional polymorphism
of cytotoxic T-lymphocyte antigen 4 and nasopharyngeal carcinoma
susceptibility in a Chinese population. Int J Immunogenet.
37:27–32. 2010. View Article : Google Scholar
|
|
64
|
Ahmed MM, Gebriel MG, Morad EA, Saber IM,
Elwan A, Salah M, Fakhr AE, Shalaby AM and Alabiad MA: Expression
of immune checkpoint regulators, cytotoxic T-lymphocyte Antigen-4,
and programmed Death-Ligand 1 in Epstein-Barr Virus-associated
Nasopharyngeal Carcinoma. Appl Immunohistochem Mol Morphol.
29:401–408. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Yu X, Huang X, Chen X, Liu J, Wu C, Pu Q,
Wang Y, Kang X and Zhou L: Characterization of a novel anti-human
lymphocyte activation gene 3 (LAG-3) antibody for cancer
immunotherapy. MAbs. 11:1139–1148. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Woo SR, Turnis ME, Goldberg MV, Bankoti J,
Selby M, Nirschl CJ, Bettini ML, Gravano DM, Vogel P, Liu CL, et
al: Immune inhibitory molecules LAG-3 and PD-1 synergistically
regulate T-cell function to promote tumoral immune escape. Cancer
Res. 72:917–927. 2012. View Article : Google Scholar
|
|
67
|
Anderson AC, Joller N and Kuchroo VK:
Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized
functions in immune regulation. Immunity. 44:989–1004. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Tawbi HA, Schadendorf D, Lipson EJ,
Ascierto PA, Matamala L, Castillo Gutiérrez E, Rutkowski P, Gogas
HJ, Lao CD, De Menezes JJ, et al: Relatlimab and nivolumab versus
nivolumab in untreated advanced melanoma. N Engl J Med. 386:24–34.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Solinas C, De Silva P, Bron D,
Willard-Gallo K and Sangiolo D: Significance of TIM3 expression in
cancer: From biology to the clinic. Semin Oncol. 46:372–379. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Chen TC, Chen CH, Wang CP, Lin PH, Yang
TL, Lou PJ, Ko JY, Wu CT and Chang YL: The immunologic advantage of
recurrent nasopharyngeal carcinoma from the viewpoint of
Galectin-9/Tim-3-related changes in the tumour microenvironment.
Sci Rep. 7:103492017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Das M, Zhu C and Kuchroo VK: Tim-3 and its
role in regulating anti-tumor immunity. Immunol Rev. 276:97–111.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yang R, Sun L, Li CF, Wang YH, Yao J, Li
H, Yan M, Chang WC, Hsu JM, Cha JH, et al: Galectin-9 interacts
with PD-1 and TIM-3 to regulate T cell death and is a target for
cancer immunotherapy. Nat Commun. 12:8322021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhang CX, Huang DJ, Baloche V, Zhang L, Xu
JX, Li BW, Zhao XR, He J, Mai HQ, Chen QY, et al: Galectin-9
promotes a suppressive microenvironment in human cancer by
enhancing STING degradation. Oncogenesis. 9:652020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Rotte A, Jin JY and Lemaire V: Mechanistic
overview of immune checkpoints to support the rational design of
their combinations in cancer immunotherapy. Ann Oncol. 29:71–83.
2018. View Article : Google Scholar
|
|
75
|
Shannon-Lowe C and Rowe M: Epstein Barr
virus entry; kissing and conjugation. Curr Opin Virol. 4:78–84.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Cohen JI: Vaccine development for
epstein-barr virus. Adv Exp Med Biol. 1045:477–493. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Jean-Pierre V, Lupo J, Buisson M, Morand P
and Germi R: Main targets of interest for the development of a
prophylactic or therapeutic epstein-barr virus vaccine. Front
Microbiol. 12:7016112021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Cui X, Cao Z, Sen G, Chattopadhyay G,
Fuller DH, Fuller JT, Snapper DM, Snow AL, Mond JJ and Snapper CM:
A novel tetrameric gp350 1-470 as a potential Epstein-Barr virus
vaccine. Vaccine. 31:3039–3045. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Cui X, Cao Z, Chen Q, Arjunaraja S, Snow
AL and Snapper CM: Rabbits immunized with Epstein-Barr virus gH/gL
or gB recombinant proteins elicit higher serum virus neutralizing
activity than gp350. Vaccine. 34:4050–4055. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Cui X, Cao Z, Ishikawa Y, Cui S, Imadome
KI and Snapper CM: Immunization with Epstein-barr virus core fusion
machinery envelope proteins elicit high titers of neutralizing
activities and protect humanized mice from lethal dose EBV
challenge. Vaccines (Basel). 9:2852021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Dasari V, Sinha D, Neller MA, Smith C and
Khanna R: Prophylactic and therapeutic strategies for Epstein-Barr
virus-associated diseases: Emerging strategies for clinical
development. Expert Rev Vaccines. 18:457–474. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Li F, Song D, Lu Y, Zhu H, Chen Z and He
X: Delayed-type hypersensitivity (DTH) immune response related with
EBV-DNA in nasopharyngeal carcinoma treated with autologous
dendritic cell vaccination after radiotherapy. J Immunother.
36:208–214. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Chia WK, Wang WW, Teo M, Tai WM, Lim WT,
Tan EH, Leong SS, Sun L, Chen JJ, Gottschalk S, et al: A phase II
study evaluating the safety and efficacy of an
adenovirus-ΔLMP1-LMP2 transduced dendritic cell vaccine in patients
with advanced metastatic nasopharyngeal carcinoma. Ann Oncol.
23:997–1005. 2012. View Article : Google Scholar
|
|
84
|
Hui EP, Taylor GS, Jia H, Ma BB, Chan SL,
Ho R, Wong WL, Wilson S, Johnson BF, Edwards C, et al: Phase I
trial of recombinant modified vaccinia ankara encoding Epstein-Barr
viral tumor antigens in nasopharyngeal carcinoma patients. Cancer
Res. 73:1676–1688. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Taylor GS, Jia H, Harrington K, Lee LW,
Turner J, Ladell K, Price DA, Tanday M, Matthews J, Roberts C, et
al: A recombinant modified vaccinia ankara vaccine encoding
Epstein-Barr Virus (EBV) target antigens: A phase I trial in UK
patients with EBV-positive cancer. Clin Cancer Res. 20:5009–5022.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Liu X, Lu J, He ML, Li Z, Zhang B, Zhou
LH, Li Q, Li G, Wang L, Tian WD, et al: Antitumor effects of
interferon-alpha on cell growth and metastasis in human
nasopharyngeal carcinoma. Curr Cancer Drug Targets. 12:561–570.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Andtbacka RH, Kaufman HL, Collichio F,
Amatruda T, Senzer N, Chesney J, Delman KA, Spitler LE, Puzanov I,
Agarwala SS, et al: Talimogene laherparepvec improves durable
response rate in patients with advanced melanoma. J Clin Oncol.
33:2780–2788. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Liu RY, Zhou L, Zhang YL, Huang BJ, Ke ML,
Chen JM, Li LX, Fu X, Wu JX and Huang W: An oncolytic adenovirus
enhances antiangiogenic and antitumoral effects of a
replication-deficient adenovirus encoding endostatin by rescuing
its selective replication in nasopharyngeal carcinoma cells.
Biochem Biophys Res Commun. 442:171–176. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Wang JN, Hu P, Zeng MS and Liu RB:
Anti-tumor effect of oncolytic herpes simplex virus G47delta on
human nasopharyngeal carcinoma. Chin J Cancer. 30:831–841. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Chua D, Huang J, Zheng B, Lau SY, Luk W,
Kwong DL, Sham JS, Moss D, Yuen KY, Im SW, et al: Adoptive transfer
of autologous Epstein-Barr virus-specific cytotoxic T cells for
nasopharyngeal carcinoma. Int J Cancer. 94:73–80. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Comoli P, De Palma R, Siena S, Nocera A,
Basso S, Del Galdo F, Schiavo R, Carminati O, Tagliamacco A, Abbate
GF, et al: Adoptive transfer of allogeneic Epstein-Barr virus
(EBV)-specific cytotoxic T cells with in vitro antitumor activity
boosts LMP2-specific immune response in a patient with EBV-related
nasopharyngeal carcinoma. Ann Oncol. 15:113–117. 2004. View Article : Google Scholar
|
|
92
|
Straathof KC, Bollard CM, Popat U, Huls
MH, Lopez T, Morriss MC, Gresik MV, Gee AP, Russell HV, Brenner MK,
et al: Treatment of nasopharyngeal carcinoma with Epstein-Barr
virus-specific T lymphocytes. Blood. 105:1898–1904. 2005.
View Article : Google Scholar
|
|
93
|
Comoli P, Pedrazzoli P, Maccario R, Basso
S, Carminati O, Labirio M, Schiavo R, Secondino S, Frasson C,
Perotti C, et al: Cell therapy of stage IV nasopharyngeal carcinoma
with autologous Epstein-Barr virus-targeted cytotoxic T
lymphocytes. J Clin Oncol. 23:8942–8949. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Louis CU, Straathof K, Bollard CM,
Ennamuri S, Gerken C, Lopez TT, Huls MH, Sheehan A, Wu MF, Liu H,
et al: Adoptive transfer of EBV-specific T cells results in
sustained clinical responses in patients with locoregional
nasopharyngeal carcinoma. J Immunother. 33:983–990. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Lutzky VP, Crooks P, Morrison L, Stevens
N, Davis JE, Corban M, Hall D, Panizza B, Coman WB, Coman S, et al:
Cytotoxic T cell adoptive immunotherapy as a treatment for
nasopharyngeal carcinoma. Clin Vaccine Immunol. 21:256–259. 2014.
View Article : Google Scholar :
|
|
96
|
Eom HS, Choi BK, Lee Y, Lee H, Yun T, Kim
YH, Lee JJ and Kwon BS: Phase I clinical trial of 4-1BB-based
adoptive T-cell therapy for epstein-barr virus (EBV)-positive
tumors. J Immunother. 39:140–148. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Louis CU, Straathof K, Bollard CM, Gerken
C, Huls MH, Gresik MV, Wu MF, Weiss HL, Gee AP, Brenner MK, et al:
Enhancing the in vivo expansion of adoptively transferred
EBV-specific CTL with lymphodepleting CD45 monoclonal antibodies in
NPC patients. Blood. 113:2442–2450. 2009. View Article : Google Scholar :
|
|
98
|
Secondino S, Zecca M, Licitra L, Gurrado
A, Schiavetto I, Bossi P, Locati L, Schiavo R, Basso S, Baldanti F,
et al: T-cell therapy for EBV-associated nasopharyngeal carcinoma:
Preparative lymphodepleting chemotherapy does not improve clinical
results. Ann Oncol. 23:435–441. 2012. View Article : Google Scholar
|
|
99
|
Smith C, Tsang J, Beagley L, Chua D, Lee
V, Li V, Moss DJ, Coman W, Chan KH, Nicholls J, et al: Effective
treatment of metastatic forms of Epstein-Barr virus-associated
nasopharyngeal carcinoma with a novel adenovirus-based adoptive
immunotherapy. Cancer Res. 72:1116–1125. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Smith C, Lee V, Schuessler A, Beagley L,
Rehan S, Tsang J, Li V, Tiu R, Smith D, Neller MA, et al:
Pre-emptive and therapeutic adoptive immunotherapy for
nasopharyngeal carcinoma: Phenotype and effector function of T
cells impact on clinical response. Oncoimmunol. 6:e12733112017.
View Article : Google Scholar
|
|
101
|
Huang J, Fogg M, Wirth LJ, Daley H, Ritz
J, Posner MR, Wang FC and Lorch JH: Epstein-Barr virus-specific
adoptive immunotherapy for recurrent, metastatic nasopharyngeal
carcinoma. Cancer. 123:2642–2650. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Chia WK, Teo M, Wang WW, Lee B, Ang SF,
Tai WM, Chee CL, Ng J, Kan R, Lim WT, et al: Adoptive T-cell
transfer and chemotherapy in the first-line treatment of metastatic
and/or locally recurrent nasopharyngeal carcinoma. Mol Ther.
22:132–139. 2014. View Article : Google Scholar :
|
|
103
|
Al-Rajhi N, Soudy H, Ahmed SA, Elhassan T,
Mohammed SF, Khoja HA and Ghebeh H: CD3+T-lymphocyte infiltration
is an independent prognostic factor for advanced nasopharyngeal
carcinoma. BMC Cancer. 20:2402020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Li J, Chen QY, He J, Li ZL, Tang XF, Chen
SP, Xie CM, Li YQ, Huang LX, Ye SB, et al: Phase I trial of
adoptively transferred tumor-infiltrating lymphocyte immunotherapy
following concurrent chemoradiotherapy in patients with
locoregionally advanced nasopharyngeal carcinoma. Oncoimmunology.
4:e9765072015. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Introna M: CIK as therapeutic agents
against tumors. J Autoimmun. 85:32–44. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Li JJ, Gu MF, Pan K, Liu LZ, Zhang H, Shen
WX and Xia JC: Autologous cytokine-induced killer cell transfusion
in combination with gemcitabine plus cisplatin regimen chemotherapy
for metastatic nasopharyngeal carcinoma. J Immunother. 35:189–195.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Li Y, Pan K, Liu LZ, Li YQ, Gu MF, Zhang
H, Shen WX, Xia JC and Li JJ: Sequential Cytokine-induced killer
cell immunotherapy enhances the efficacy of the gemcitabine plus
cisplatin chemotherapy regimen for metastatic nasopharyngeal
carcinoma. PLoS One. 10:e01306202015. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Lim CM, Liou A, Poon M, Koh LP, Tan LK,
Loh KS, Petersson BF, Ting E, Campana D, Goh BC, et al: Phase I
study of expanded natural killer cells in combination with
cetuximab for recurrent/metastatic nasopharyngeal carcinoma. Cancer
Immunol Immunother. 71:2277–2286. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Depil S, Duchateau P, Grupp SA, Mufti G
and Poirot L: 'Off-the-shelf' allogeneic CAR T cells: Development
and challenges. Nat Rev Drug Discov. 19:185–199. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Neelapu SS, Locke FL, Bartlett NL, Lekakis
LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T,
Lin Y, et al: Axicabtagene Ciloleucel CAR T-Cell Therapy in
Refractory Large B-Cell Lymphoma. The New England journal of
medicine. 2017.377:2531–44. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Maude SL, Laetsch TW, Buechner J, Rives S,
Boyer M, Bittencourt H, Bader P, Verneris MR, Stefanski HE, Myers
GD, et al: Tisagenlecleucel in Children and Young adults with
B-cell lymphoblastic leukemia. N Engl J Med. 378:439–448. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Wang M, Munoz J, Goy A, Locke FL, Jacobson
CA, Hill BT, Timmerman JM, Holmes H, Jaglowski S, Flinn IW, et al:
KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell
lymphoma. N Engl J Med. 382:1331–1342. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Kamdar M, Solomon SR, Arnason J, Johnston
PB, Glass B, Bachanova V, Ibrahimi S, Mielke S, Mutsaers P, Hernan
dez-Ilizaliturri F, et al: Lisocabtagene maraleucel versus standard
of care with salvage chemotherapy followed by autologous stem cell
transplantation as second-line treatment in patients with relapsed
or refractory large B-cell lymphoma (TRANSFORM): Results from an
interim analysis of an open-label, randomised, phase 3 trial.
Lancet. 399:2294–2308. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Munshi NC, Anderson LD Jr, Shah N, Madduri
D, Berdeja J, Lonial S, Raje N, Lin Y, Siegel D, Oriol A, et al:
Idecabtagene Vicleucel in relapsed and refractory multiple myeloma.
N Engl J Med. 384:705–716. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Berdeja JG, Madduri D, Usmani SZ,
Jakubowiak A, Agha M, Cohen AD, Stewart AK, Hari P, Htut M,
Lesokhin A, et al: Ciltacabtagene autoleucel, a B-cell maturation
antigen-directed chimeric antigen receptor T-cell therapy in
patients with relapsed or refractory multiple myeloma
(CARTITUDE-1): A phase 1b/2 open-label study. Lancet. 398:314–324.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Brown CE and Mackall CL: CAR T cell
therapy: Inroads to response and resistance. Nat Rev Immunol.
19:73–74. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Guo X, Zheng H, Luo W, Zhang Q, Liu J and
Yao K: 5T4-specific chimeric antigen receptor modification promotes
the immune efficacy of cytokine-induced killer cells against
nasopharyngeal carcinoma stem cell-like cells. Sci Rep. 7:48592017.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Chen Y, Chen RJ, Huang XC, Tang GX, Kuai
XW, Zhang MJ, Zhang DW, Tang Q, Zhu J and Feng ZQ: Construction of
latent membrane protein 2A chimeric antigen receptor-T cells and
their lethal effects on nasopharyngeal carcinoma cells. Zhonghua Er
Bi Yan Hou Tou Jing Wai Ke Za Zhi. 53:925–930. 2018.In Chinese.
PubMed/NCBI
|
|
119
|
Tang X, Zhou Y, Li W, Tang Q, Chen R, Zhu
J and Feng Z: T cells expressing a LMP1-specific chimeric antigen
receptor mediate antitumor effects against LMP1-positive
nasopharyngeal carcinoma cells in vitro and in vivo. J Biomed Res.
28:468–475. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Tang X, Tang Q, Mao Y, Huang X, Jia L, Zhu
J and Feng Z: CD137 Co-stimulation improves the antitumor effect of
LMP1-specific chimeric antigen receptor T cells in vitro and in
vivo. Onco Targets Ther. 12:9341–9350. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Liu H, Pan C, Song W, Liu D, Li Z and
Zheng L: Novel strategies for immuno-oncology breakthroughs with
cell therapy. Biomarker Res. 9:622021. View Article : Google Scholar
|
|
122
|
Tsimberidou AM, Van Morris K, Vo HH, Eck
S, Lin YF, Rivas JM and Andersson BS: T-cell receptor-based
therapy: An innovative therapeutic approach for solid tumors. J
Hematol Oncol. 14:1022021. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Zhang Y, Liu Z, Wei W and Li Y: TCR
engineered T cells for solid tumor immunotherapy. Exp Hematol
Oncol. 11:382022. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Nathan P, Hassel JC, Rutkowski P, Baurain
JF, Butler MO, Schlaak M, Sullivan RJ, Ochsenreither S, Dummer R,
Kirkwood JM, et al: Overall survival benefit with tebentafusp in
metastatic uveal melanoma. N Engl J Med. 385:1196–1206. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Xie G, Dong H, Liang Y, Ham JD, Rizwan R
and Chen J: CAR-NK cells: A promising cellular immunotherapy for
cancer. EBioMedicine. 59:1029752020. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Klichinsky M, Ruella M, Shestova O, Lu XM,
Best A, Zeeman M, Schmierer M, Gabrusiewicz K, Anderson NR, Petty
NE, et al: Human chimeric antigen receptor macrophages for cancer
immunotherapy. Nat Biotechnol. 38:947–953. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Turrini R, Merlo A, Martorelli D, Faè DA,
Sommaggio R, Montagner IM, Barbieri V, Marin O, Zanovello P,
Dolcetti R, et al: A BARF1-specific mAb as a new immunotherapeutic
tool for the management of EBV-related tumors. Oncoimmunology.
6:e13043382017. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Ahmed M, Lopez-Albaitero A, Pankov D,
Santich BH, Liu H, Yan S, Xiang J, Wang P, Hasan AN, Selvakumar A,
et al: TCR-mimic bispecific antibodies targeting LMP2A show potent
activity against EBV malignancies. JCI Insight. 3:e978052018.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Smith C, McGrath M, Neller MA, Matthews
KK, Crooks P, Le Texier L, Panizza B, Porceddu S and Khanna R:
Complete response to PD-1 blockade following EBV-specific T-cell
therapy in metastatic nasopharyngeal carcinoma. NPJ Precision
Oncol. 5:242021. View Article : Google Scholar
|
|
130
|
Rezaei R, Esmaeili Gouvarchin Ghaleh H,
Farzanehpour M, Dorostkar R, Ranjbar R, Bolandian M, Mirzaei
Nodooshan M and Ghorbani Alvanegh A: Combination therapy with CAR T
cells and oncolytic viruses: A new era in cancer immunotherapy.
Cancer Gene Ther. 29:647–660. 2022. View Article : Google Scholar
|