|
1
|
Xia C, Dong X, Li H, Cao M, Sun D, He S,
Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China
and United States, 2022: Profiles, trends, and determinants. Chin
Med J (Engl). 135:584–590. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Tonnus W, Meyer C, Paliege A, Belavgeni A,
von Mässenhausen A, Bornstein SR, Hugo C, Becker JU and Linkermann
A: The pathological features of regulated necrosis. J Pathol.
247:697–707. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Ding J, Wang K, Liu W, She Y, Sun Q, Shi
J, Sun H, Wang DC and Shao F: Pore-forming activity and structural
autoinhibition of the gasdermin family. Nature. 535:111–116. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tanaka S, Mizushina Y, Kato Y, Tamura M
and Shiroishi T: Functional conservation of Gsdma cluster genes
specifically duplicated in the mouse genome. G3 (Bethesda).
3:1843–1850. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Zou J, Zheng Y, Huang Y, Tang D, Kang R
and Chen R: The versatile gasdermin family: Their function and
roles in diseases. Front Immunol. 12:7515332021. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Rieckmann JC, Geiger R, Hornburg D, Wolf
T, Kveler K, Jarrossay D, Sallusto F, Shen-Orr SS, Lanzavecchia A,
Mann M and Meissner F: Social network architecture of human immune
cells unveiled by quantitative proteomics. Nat Immunol. 18:583–593.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Lunny DP, Weed E, Nolan PM, Marquardt A,
Augustin M and Porter RM: Mutations in gasdermin 3 cause aberrant
differentiation of the hair follicle and sebaceous gland. J Invest
Dermatol. 124:615–621. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wang Q, Wang Y, Ding J, Wang C, Zhou X,
Gao W, Huang H, Shao F and Liu Z: A bioorthogonal system reveals
antitumour immune function of pyroptosis. Nature. 579:421–426.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Saeki N, Kuwahara Y, Sasaki H, Satoh H and
Shiroishi T: Gasdermin (Gsdm) localizing to mouse Chromosome 11 is
predominantly expressed in upper gastrointestinal tract but
significantly suppressed in human gastric cancer cells. Mamm
Genome. 11:718–724. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Saeki N, Usui T, Aoyagi K, Kim DH, Sato M,
Mabuchi T, Yanagihara K, Ogawa K, Sakamoto H, Yoshida T and Sasaki
H: Distinctive expression and function of four GSDM family genes
(GSDMA-D) in normal and malignant upper gastrointestinal
epithelium. Genes Chromosomes Cancer. 48:261–271. 2009. View Article : Google Scholar
|
|
11
|
Saeki N, Kim DH, Usui T, Aoyagi K, Tatsuta
T, Aoki K, Yanagihara K, Tamura M, Mizushima H, Sakamoto H, et al:
GASDERMIN, suppressed frequently in gastric cancer, is a target of
LMO1 in TGF-beta-dependent apoptotic signalling. Oncogene.
26:6488–6498. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Peng LS, Duan SL, Li RQ, Wang D, Han YY,
Huang T, Yu YP, Ou CL and Wang JP: Prognostic value and immune
infiltration of the gasdermin family in lung adenocarcinoma. Front
Oncol. 12:10438622022. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Yao L, Li J, Xu Z, Yan Y and Hu K: GSDMs
are potential therapeutic targets and prognostic biomarkers in
clear cell renal cell carcinoma. Aging (Albany NY). 14:2758–2774.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Yang C, Liu J, Zhao S, Ying J, Liu Y, Ma
L, Shang Q, Meng X, Feng K, Zheng B, et al: Establishment and
validation of a gasdermin signature to evaluate the immune status
and direct risk-group classification in luminal-B breast cancer.
Clin Transl Med. 11:e6142021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ye Y, Dai Q and Qi H: A novel defined
pyroptosis-related gene signature for predicting the prognosis of
ovarian cancer. Cell Death Discov. 7:712021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Tamura M, Tanaka S, Fujii T, Aoki A,
Komiyama H, Ezawa K, Sumiyama K, Sagai T and Shiroishi T: Members
of a novel gene family, Gsdm, are expressed exclusively in the
epithelium of the skin and gastrointestinal tract in a highly
tissue-specific manner. Genomics. 89:618–629. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Chao KL, Kulakova L and Herzberg O: Gene
polymorphism linked to increased asthma and IBD risk alters
gasdermin-B structure, a sulfatide and phosphoinositide binding
protein. Proc Natl Acad Sci USA. 114:E1128–E1137. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ruan J: Structural insight of gasdermin
family driving pyroptotic cell death. Adv Exp Med Biol.
1172:189–205. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Chen Q, Shi P, Wang Y, Zou D, Wu X, Wang
D, Hu Q, Zou Y, Huang Z, Ren J, et al: GSDMB promotes non-canonical
pyroptosis by enhancing caspase-4 activity. J Mol Cell Biol.
11:496–508. 2019. View Article : Google Scholar :
|
|
20
|
Zhou Z, He H, Wang K, Shi X, Wang Y, Su Y,
Wang Y, Li D, Liu W, Zhang Y, et al: Granzyme A from cytotoxic
lymphocytes cleaves GSDMB to trigger pyroptosis in target cells.
Science. 368:eaaz75482020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lutkowska A, Roszak A, Lianeri M, Sowinska
A, Sotiri E and Jagodzinski PP: Analysis of rs8067378 polymorphism
in the risk of uterine cervical cancer from a polish population and
its impact on gasdermin B expression. Mol Diagn Ther. 21:199–207.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Hergueta-Redondo M, Sarrio D,
Molina-Crespo A, Megias D, Mota A, Rojo-Sebastian A, García-Sanz P,
Morales S, Abril S, Cano A, et al: Gasdermin-B promotes invasion
and metastasis in breast cancer cells. PLoS One. 9:e900992014.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Hergueta-Redondo M, Sarrio D,
Molina-Crespo A, Vicario R, Bernadó-Morales C, Martínez L,
Rojo-Sebastián A, Serra-Musach J, Mota A, Martínez-Ramírez Á, et
al: Gasdermin B expression predicts poor clinical outcome in
HER2-positive breast cancer. Oncotarget. 7:56295–56308. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Gamez-Chiachio M, Molina-Crespo A,
Ramos-Nebot C, Martinez-Val J, Martinez L, Gassner K, Llobet FJ,
Soriano M, Hernandez A, Cordani M, et al: Gasdermin B
over-expression modulates HER2-targeted therapy resistance by
inducing protective autophagy through Rab7 activation. J Exp Clin
Cancer Res. 41:2852022. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Molina-Crespo A, Cadete A, Sarrio D,
Gámez-Chiachio M, Martinez L, Chao K, Olivera A, Gonella A, Díaz E,
Palacios J, et al: Intracellular delivery of an antibody targeting
gasdermin-B Reduces HER2 breast cancer aggressiveness. Clin Cancer
Res. 25:4846–4858. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Komiyama H, Aoki A, Tanaka S, Maekawa H,
Kato Y, Wada R, Maekawa T, Tamura M and Shiroishi T: Alu-derived
cis-element regulates tumorigenesis-dependent gastric expression of
GASDERMIN B (GSDMB). Genes Genet Syst. 85:75–83. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Saeki N, Komatsuzaki R, Chiwaki F,
Yanagihara K and Sasaki H: A GSDMB enhancer-driven HSV thymidine
kinase-expressing vector for controlling occult peritoneal
dissemination of gastric cancer cells. BMC Cancer. 15:4392015.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Li S, Li X, Zhang S, Feng Y, Jia T, Zhu M,
Fang L, Gong L, Dong S, Kong X, et al: Association Between GSDMB
gene polymorphism and cervical cancer in the Northeast Chinese Han
Population. Front Genet. 13:8607272022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
He H, Yi L, Zhang B, Yan B, Xiao M, Ren J,
Zi D, Zhu L, Zhong Z, Zhao X, et al: USP24-GSDMB complex promotes
bladder cancer proliferation via activation of the STAT3 pathway.
Int J Biol Sci. 17:2417–2429. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Cui Y, Zhou Z, Chai Y and Zhang Y:
Upregulated GSDMB in clear cell renal cell carcinoma is associated
with immune infiltrates and poor prognosis. J Immunol Res.
2021:77535532021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Orning P, Lien E and Fitzgerald KA:
Gasdermins and their role in immunity and inflammation. J Exp Med.
216:2453–2465. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Watabe K, Ito A, Asada H, Endo Y,
Kobayashi T, Nakamoto K, Itami S, Takao S, Shinomura Y, Aikou T, et
al: Structure, expression and chromosome mapping of MLZE, a novel
gene which is preferentially expressed in metastatic melanoma
cells. Jpn J Cancer Res. 92:140–151. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Hou J, Zhao R, Xia W, Chang CW, You Y, Hsu
JM, Nie L, Chen Y, Wang YC, Liu C, et al: PD-L1-mediated gasdermin
C expression switches apoptosis to pyroptosis in cancer cells and
facilitates tumour necrosis. Nat Cell Biol. 22:1264–1275. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Xu D, Ji Z and Qiang L: Molecular
characteristics, clinical implication, and cancer immunity
interactions of pyroptosis-related genes in breast cancer. Front
Med (Lausanne). 8:7026382021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Sun K, Chen RX, Li JZ and Luo ZX:
LINC00511/hsa-miR-573 axis-mediated high expression of Gasdermin C
associates with dismal prognosis and tumor immune infiltration of
breast cancer. Sci Rep. 12:147882022. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhang JY, Zhou B, Sun RY, Ai YL, Cheng K,
Li FN, Wang BR, Liu FJ, Jiang ZH, Wang WJ, et al: The metabolite
α-KG induces GSDMC-dependent pyroptosis through death receptor
6-activated caspase-8. Cell Res. 31:980–997. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wei J, Xu Z, Chen X, Wang X, Zeng S, Qian
L, Yang X, Ou C, Lin W, Gong Z and Yan Y: Overexpression of GSDMC
is a prognostic factor for predicting a poor outcome in lung
adenocarcinoma. Mol Med Rep. 21:360–370. 2020.PubMed/NCBI
|
|
38
|
Miguchi M, Hinoi T, Shimomura M, Adachi T,
Saito Y, Niitsu H, Kochi M, Sada H, Sotomaru Y, Ikenoue T, et al:
Gasdermin C is upregulated by inactivation of transforming growth
factor beta receptor type II in the presence of mutated Apc,
promoting colorectal cancer proliferation. PLoS One.
11:e01664222016. View Article : Google Scholar
|
|
39
|
Pereira BS, Wisnieski F, Calcagno DQ,
Santos LC, Gigek CO, Chen ES, Rasmussen LT, Payão SLM, Almeida RS,
Pinto CA, et al: Genetic and transcriptional analysis of 8q24.21
cluster in gastric cancer. Anticancer Res. 42:4381–4394. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yan C, Niu Y, Li F, Zhao W and Ma L:
System analysis based on the pyroptosis-related genes identifies
GSDMC as a novel therapy target for pancreatic adenocarcinoma. J
Transl Med. 20:4552022. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Berkel C and Cacan E: Differential
expression and copy number variation of gasdermin (GSDM) family
members, pore-forming proteins in pyroptosis, in normal and
malignant serous ovarian tissue. Inflammation. 44:2203–2216. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Kayagaki N, Stowe IB, Lee BL, O'Rourke K,
Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT,
et al: Caspase-11 cleaves gasdermin D for non-canonical
inflammasome signalling. Nature. 526:666–671. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Shi J, Zhao Y, Wang K, Shi X, Wang Y,
Huang H, Zhuang Y, Cai T, Wang F and Shao F: Cleavage of GSDMD by
inflammatory caspases determines pyroptotic cell death. Nature.
526:660–665. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Burdette BE, Esparza AN, Zhu H and Wang S:
Gasdermin D in pyroptosis. Acta Pharm Sin B. 11:2768–2782. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Broz P and Dixit VM: Inflammasomes:
Mechanism of assembly, regulation and signalling. Nat Rev Immunol.
16:407–420. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Benaoudia S, Martin A, Puig Gamez M, Gay
G, Lagrange B, Cornut M, Krasnykov K, Claude JB, Bourgeois CF,
Hughes S, et al: A genome-wide screen identifies IRF2 as a key
regulator of caspase-4 in human cells. EMBO Rep. 20:e482352019.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Kayagaki N, Lee BL, Stowe IB, Kornfeld OS,
O'Rourke K, Mirrashidi KM, Haley B, Watanabe C, Roose-Girma M,
Modrusan Z, et al: IRF2 transcriptionally induces GSDMD expression
for pyroptosis. Sci Signal. 12:eaax49172019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Demarco B, Grayczyk JP, Bjanes E, Le Roy
D, Tonnus W, Assenmacher CA, Radaelli E, Fettrelet T, Mack V,
Linkermann A, et al: Caspase-8-dependent gasdermin D cleavage
promotes antimicrobial defense but confers susceptibility to
TNF-induced lethality. Sci Adv. 6:eabc34652020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Brubaker SW, Brewer SM, Massis LM, Napier
BA and Monack DM: A Rapid Caspase-11 Response Induced by IFNү
priming is independent of guanylate binding proteins. iScience.
23:1016122020. View Article : Google Scholar
|
|
50
|
Zhang C, Zhao C, Chen X, Tao R, Wang S,
Meng G, Liu X, Shao C and Su X: Induction of ASC pyroptosis
requires gasdermin D or caspase-1/11-dependent mediators and IFNβ
from pyroptotic macrophages. Cell Death Dis. 11:4702020. View Article : Google Scholar
|
|
51
|
Fagerberg L, Hallstrom BM, Oksvold P,
Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S,
Danielsson A, Edlund K, et al: Analysis of the human
tissue-specific expression by genome-wide integration of
transcriptomics and antibody-based proteomics. Mol Cell Proteomics.
13:397–406. 2014. View Article : Google Scholar :
|
|
52
|
Zhang J, Chen Y and He Q: Distinct
characteristics of dasatinib-induced pyroptosis in gasdermin
E-expressing human lung cancer A549 cells and neuroblastoma SH-SY5Y
cells. Oncol Lett. 20:145–154. 2020. View Article : Google Scholar
|
|
53
|
Xi G, Gao J, Wan B, Zhan P, Xu W, Lv T and
Song Y: GSDMD is required for effector CD8(+) T cell responses to
lung cancer cells. Int Immunopharmacol. 74:1057132019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Traughber CA, Deshpande GM, Neupane K,
Bhandari N, Khan MR, McMullen MR, Swaidani S, Opoku E, Muppala S,
Smith JD, et al: Myeloid-cell-specific role of Gasdermin D in
promoting lung cancer progression in mice. iScience. 26:1060762023.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Gao J, Qiu X, Xi G, Liu H, Zhang F, Lv T
and Song Y: Downregulation of GSDMD attenuates tumor proliferation
via the intrinsic mitochondrial apoptotic pathway and inhibition of
EGFR/Akt signaling and predicts a good prognosis in non-small cell
lung cancer. Oncol Rep. 40:1971–1984. 2018.PubMed/NCBI
|
|
56
|
Peng J, Jiang H, Guo J, Huang J, Yuan Q,
Xie J and Xiao K: CD147 Expression is associated with tumor
proliferation in bladder cancer via GSDMD. Biomed Res Int.
2020:76389752020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wang L, Li K, Lin X, Yao Z, Wang S, Xiong
X, Ning Z, Wang J, Xu X, Jiang Y, et al: Metformin induces human
esophageal carcinoma cell pyroptosis by targeting the miR-497/PELP1
axis. Cancer Lett. 450:22–31. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Pizato N, Luzete BC, Kiffer LFMV, Corrêa
LH, de Oliveira Santos I, Assumpção JAF, Ito MK and Magalhães KG:
Omega-3 docosahexaenoic acid induces pyroptosis cell death in
triple-negative breast cancer cells. Sci Rep. 8:19522018.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Yan H, Luo B, Wu X, Guan F, Yu X, Zhao L,
Ke X, Wu J and Yuan J: Cisplatin induces pyroptosis via activation
of MEG3/NLRP3/caspase-1/GSDMD pathway in triple-negative breast
cancer. Int J Biol Sci. 17:2606–2621. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yang Y, Liu PY, Bao W, Chen SJ, Wu FS and
Zhu PY: Hydrogen inhibits endometrial cancer growth via a
ROS/NLRP3/caspase-1/GSDMD-mediated pyroptotic pathway. BMC Cancer.
20:282020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Shen X, Zhang Q, He Z, Xiao S, Li H and
Huang Z: Overexpression of gasdermin D promotes invasion of adenoid
cystic carcinoma. Int J Clin Exp Pathol. 13:1802–1811.
2020.PubMed/NCBI
|
|
62
|
Lv T, Xiong X, Yan W, Liu M, Xu H and He
Q: Targeting of GSDMD sensitizes HCC to anti-PD-1 by activating
cGAS pathway and downregulating PD-L1 expression. J Immunother
Cancer. 10:e0047632022. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yamagishi R, Kamachi F, Nakamura M,
Yamazaki S, Kamiya T, Takasugi M, Cheng Y, Nonaka Y, Yukawa-Muto Y,
Thuy LTT, et al: Gasdermin D-mediated release of IL-33 from
senescent hepatic stellate cells promotes obesity-associated
hepatocellular carcinoma. Sci Immunol. 7:eabl72092022. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Fang Y, Tian S, Pan Y, Li W, Wang Q, Tang
Y, Yu T, Wu X, Shi Y, Ma P and Shu Y: Pyroptosis: A new frontier in
cancer. Biomed Pharmacother. 121:1095952020. View Article : Google Scholar
|
|
65
|
Qiao L, Wu X, Zhang J, Liu L, Sui X, Zhang
R, Liu W, Shen F, Sun Y and Xi X: α-NETA induces pyroptosis of
epithelial ovarian cancer cells through the GSDMD/caspase-4
pathway. FASEB J. 33:12760–12767. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wang WJ, Chen D, Jiang MZ, Xu B, Li XW,
Chu Y, Zhang YJ, Mao R, Liang J and Fan DM: Downregulation of
gasdermin D promotes gastric cancer proliferation by regulating
cell cycle-related proteins. J Dig Dis. 19:74–83. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Tanaka S, Orita H, Kataoka T, Miyazaki M,
Saeki H, Wada R, Brock MV, Fukunaga T, Amano T and Shiroishi T:
Gasdermin D represses inflammation-induced colon cancer development
by regulating apoptosis. Carcinogenesis. 44:341–349. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wang J, Kang Y, Li Y, Sun L, Zhang J, Qian
S, Luo K, Jiang Y, Sun L and Xu F: Gasdermin D in different
subcellular locations predicts diverse progression, immune
microenvironment and prognosis in colorectal cancer. J Inflamm Res.
14:6223–6235. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Masuda Y, Futamura M, Kamino H, Nakamura
Y, Kitamura N, Ohnishi S, Miyamoto Y, Ichikawa H, Ohta T, Ohki M,
et al: The potential role of DFNA5, a hearing impairment gene, in
p53-mediated cellular response to DNA damage. J Hum Genet.
51:652–664. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ouyang X, Zhou J, Lin L, Zhang Z, Luo S
and Hu D: Pyroptosis, inflammasome, and gasdermins in tumor
immunity. Innate Immun. 29:3–13. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zhang Z, Zhang Y, Xia S, Kong Q, Li S, Liu
X, Junqueira C, Meza-Sosa KF, Mok TMY, Ansara J, et al: Gasdermin E
suppresses tumour growth by activating anti-tumour immunity.
Nature. 579:415–420. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wang Y, Gao W, Shi X, Ding J, Liu W, He H,
Wang K and Shao F: Chemotherapy drugs induce pyroptosis through
caspase-3 cleavage of a gasdermin. Nature. 547:99–103. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Rogers C, Fernandes-Alnemri T, Mayes L,
Alnemri D, Cingolani G and Alnemri ES: Cleavage of DFNA5 by
caspase-3 during apoptosis mediates progression to secondary
necrotic/pyroptotic cell death. Nat Commun. 8:141282017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Jia C, Zhang Z, Tang J, Cai MC, Zang J,
Shi K, Sun Y, Wu J, Shi H, Shi W, et al: Epithelial-Mesenchymal
transition induces GSDME transcriptional activation for
inflammatory pyroptosis. Front Cell Dev Biol. 9:7813652021.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Vernon M, Wilski NA, Kotas D, Cai W,
Pomante D, Tiago M, Alnemri ES and Aplin AE: Raptinal induces
gasdermin E-Dependent pyroptosis in naive and therapy-resistant
melanoma. Mol Cancer Res. 20:1811–1821. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Hu J, Pei W, Jiang M, Huang Y, Dong F,
Jiang Z, Xu Y and Li Z: DFNA5 regulates immune cells infiltration
and exhaustion. Cancer Cell Int. 22:1072022. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Wu M, Wang Y, Yang D, Gong Y, Rao F, Liu
R, Danna Y, Li J, Fan J, Chen J, et al: A PLK1 kinase inhibitor
enhances the chemosensitivity of cisplatin by inducing pyroptosis
in oesophageal squamous cell carcinoma. EBioMedicine. 41:244–255.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Liu Z, Liu H, Dong Q, Li H, Zhang B, Liu
Y, Zhong L and Tang H: Prognostic role of DFNA5 in head and neck
squamous cell carcinoma revealed by systematic expression analysis.
BMC Cancer. 21:9512021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Yin J, Che G, Wang W, Chen S and Liu J:
Investigating the prognostic significance of pyroptosis-related
genes in gastric cancer and their impact on cells' biological
functions. Front Oncol. 12:8612842022. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Rogers C, Erkes DA, Nardone A, Aplin AE,
Fernandes-Alnemri T and Alnemri ES: Gasdermin pores permeabilize
mitochondria to augment caspase-3 activation during apoptosis and
inflammasome activation. Nat Commun. 10:16892019. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Liu Z, Li Y, Zhu Y, Li N, Li W, Shang C,
Song G, Li S, Cong J, Li T, et al: Apoptin induces pyroptosis of
colorectal cancer cells via the GSDME-dependent pathway. Int J Biol
Sci. 18:717–730. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhang Z, Zhang H, Li D, Zhou X, Qin Q and
Zhang Q: Caspase-3-mediated GSDME induced Pyroptosis in breast
cancer cells through the ROS/JNK signalling pathway. J Cell Mol
Med. 25:8159–8168. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
An H, Heo JS, Kim P, Lian Z, Lee S, Park
J, Hong E, Pang K, Park Y, Ooshima A, et al: Tetraarsenic hexoxide
enhances generation of mitochondrial ROS to promote pyroptosis by
inducing the activation of caspase-3/GSDME in triple-negative
breast cancer cells. Cell Death Dis. 12:1592021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
de Beeck KO, Van Laer L and Van Camp G:
DFNA5, a gene involved in hearing loss and cancer: A review. Ann
Otol Rhinol Laryngol. 121:197–207. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Akino K, Toyota M, Suzuki H, Imai T,
Maruyama R, Kusano M, Nishikawa N, Watanabe Y, Sasaki Y, Abe T, et
al: Identification of DFNA5 as a target of epigenetic inactivation
in gastric cancer. Cancer Sci. 98:88–95. 2007. View Article : Google Scholar
|
|
86
|
Ibrahim J, Op de Beeck K, Fransen E,
Fransen E, Croes L, Beyens M, Suls A, Vanden Berghe W, Peeters M
and Van Camp G: Methylation analysis of Gasdermin E shows great
promise as a biomarker for colorectal cancer. Cancer Med.
8:2133–2145. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Liu X, Xia S, Zhang Z, Wu H and Lieberman
J: Channelling inflammation: Gasdermins in physiology and disease.
Nat Rev Drug Discov. 20:384–405. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Guo J, Yu J, Mu M, Chen Z, Xu Z, Zhao C,
Yang K, Zheng J, Qin X, Zhao W and Sun X: DFNA5 inhibits colorectal
cancer proliferation by suppressing the mTORC1/2 signaling pathways
via upregulation of DEPTOR. Cell Cycle. 21:2165–2178. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Tan G, Lin C, Huang C, Chen B, Chen J, Shi
Y and Zhi F: Radiosensitivity of colorectal cancer and
radiation-induced gut damages are regulated by gasdermin E. Cancer
Lett. 529:1–10. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Di M, Miao J, Pan Q, Wu Z, Chen B, Wang M,
Zhao J, Huang H, Bai J, Wang Q, et al: OTUD4-mediated GSDME
deubiquitination enhances radiosensitivity in nasopharyngeal
carcinoma by inducing pyroptosis. J Exp Clin Cancer Res.
41:3282022. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Li F, Xia Q, Ren L, Nie Y, Ren H, Guo X,
Yu J, Xing Y and Chen Z: GSDME increases chemotherapeutic drug
sensitivity by inducing pyroptosis in retinoblastoma cells. Oxid
Med Cell Longev. 2022:23718072022.PubMed/NCBI
|
|
92
|
Xie B, Liu T, Chen S, Zhang Y, He D, Shao
Q, Zhang Z and Wang C: Combination of DNA demethylation and
chemotherapy to trigger cell pyroptosis for inhalation treatment of
lung cancer. Nanoscale. 13:18608–18615. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Shen X, Wang H, Weng C, Jiang H and Chen
J: Caspase 3/GSDME-dependent pyroptosis contributes to chemotherapy
drug-induced nephrotoxicity. Cell Death Dis. 12:1862021. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Mai FY, He P, Ye JZ, Xu LH, Ouyang DY, Li
CG, Zeng QZ, Zeng CY, Zhang CC, He XH and Hu B: Caspase-3-mediated
GSDME activation contributes to cisplatin- and doxorubicin-induced
secondary necrosis in mouse macrophages. Cell Prolif.
52:e126632019. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Delmaghani S, del Castillo FJ, Michel V,
Leibovici M, Aghaie A, Ron U, Van Laer L, Ben-Tal N, Van Camp G,
Weil D, et al: Mutations in the gene encoding pejvakin, a newly
identified protein of the afferent auditory pathway, cause DFNB59
auditory neuropathy. Nat Genet. 38:770–778. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Zheng Z, Deng W, Lou X, Bai Y, Wang J,
Zeng H, Gong S and Liu X: Gasdermins: Pore-forming activities and
beyond. Acta Biochim Biophys Sin (Shanghai). 52:467–474. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Orning P, Weng D, Starheim K, Ratner D,
Best Z, Lee B, Brooks A, Xia S, Wu H, Kelliher MA, et al: Pathogen
blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin
D and cell death. Science. 362:1064–1069. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Evavold CL, Ruan J, Tan Y, Xia S, Wu H and
Kagan JC: The pore-forming protein gasdermin D regulates
interleukin-1 secretion from living macrophages. Immunity. 48:35–44
e6. 2018. View Article : Google Scholar
|
|
99
|
Mu M, Yu Q, Zhang Q, Guo J, Wang X, Sun X
and Yu J: A pan-cancer analysis of molecular characteristics and
oncogenic role of gasdermins. Cancer Cell Int. 22:802022.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zheng Y, Yuan D, Zhang F and Tang R: A
systematic pan-cancer analysis of the gasdermin (GSDM) family of
genes and their correlation with prognosis, the tumor
microenvironment, and drug sensitivity. Front Genet. 13:9267962022.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Huo CL, Deng Y and Sun ZG: A comprehensive
analysis of gasdermin family gene as therapeutic targets in
pan-cancer. Sci Rep. 12:133292022. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Liu Y, Fang Y, Chen X, Wang Z, Liang X,
Zhang T, Liu M, Zhou N, Lv J, Tang K, et al: Gasdermin E-mediated
target cell pyroptosis by CAR T cells triggers cytokine release
syndrome. Sci Immunol. 5:eaax79692020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Xia X, Wang X, Cheng Z, Qin W, Lei L,
Jiang J and Hu J: The role of pyroptosis in cancer: Pro-cancer or
pro-'host'? Cell Death Dis. 10:6502019. View Article : Google Scholar
|
|
104
|
Karki R and Kanneganti TD: Diverging
inflammasome signals in tumorigenesis and potential targeting. Nat
Rev Cancer. 19:197–214. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Ruan J, Xia S, Liu X, Lieberman J and Wu
H: Cryo-EM structure of the gasdermin A3 membrane pore. Nature.
557:62–67. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Xia S, Zhang Z, Magupalli VG, Pablo JL,
Dong Y, Vora SM, Wang L, Fu TM, Jacobson MP, Greka A, et al:
Gasdermin D pore structure reveals preferential release of mature
interleukin-1. Nature. 593:607–611. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Liu Z, Wang C, Yang J, Zhou B, Yang R,
Ramachandran R, Abbott DW and Xiao TS: Crystal structures of the
full-length murine and human gasdermin D reveal mechanisms of
autoinhibition, lipid binding, and oligomerization. Immunity.
51:43–49 e4. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Johnson DC, Taabazuing CY, Okondo MC, Chui
AJ, Rao SD, Brown FC, Reed C, Peguero E, de Stanchina E and Kentsis
A and Bachovchin DA: DPP8/DPP9 inhibitor-induced pyroptosis for
treatment of acute myeloid leukemia. Nat Med. 24:1151–1156. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Johnson DC, Okondo MC, Orth EL, Rao SD,
Huang HC, Ball DP and Bachovchin DA: DPP8/9 inhibitors activate the
CARD8 inflammasome in resting lymphocytes. Cell Death Dis.
11:6282020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Li F, Aljahdali I and Ling X: Cancer
therapeutics using survivin BIRC5 as a target: what can we do after
over two decades of study? J Exp Clin Cancer Res. 38:3682019.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Yue E, Tuguzbaeva G, Chen X, Qin Y, Li A,
Sun X, Dong C, Liu Y, Yu Y, Zahra SM, et al: Anthocyanin is
involved in the activation of pyroptosis in oral squamous cell
carcinoma. Phytomedicine. 56:286–294. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Zhang CC, Li CG, Wang YF, Xu LH, He XH,
Zeng QZ, Zeng CY, Mai FY, Hu B and Ouyang DY: Chemotherapeutic
paclitaxel and cisplatin differentially induce pyroptosis in A549
lung cancer cells via caspase-3/GSDME activation. Apoptosis.
24:312–325. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Yu P, Wang HY, Tian M, Li AX, Chen XS,
Wang XL, Zhang Y and Cheng Y: Eukaryotic elongation factor-2 kinase
regulates the cross-talk between autophagy and pyroptosis in
doxorubicin-treated human melanoma cells in vitro. Acta Pharmacol
Sin. 40:1237–1244. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Yu J, Li S, Qi J, Chen Z, Wu Y, Guo J,
Wang K, Sun X and Zheng J: Cleavage of GSDME by caspase-3
determines lobaplatin-induced pyroptosis in colon cancer cells.
Cell Death Dis. 10:1932019. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Rathkey JK, Zhao J, Liu Z, Chen Y, Yang J,
Kondolf HC, Benson BL, Chirieleison SM, Huang AY, Dubyak GR, et al:
Chemical disruption of the pyroptotic pore-forming protein
gasdermin D inhibits inflammatory cell death and sepsis. Sci
Immunol. 3:eaat27382018. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Zhou Y, Zhang Y, Wang H, Zhang X, Chen Y
and Chen G: Microglial pyroptosis in hippocampus mediates
sevolfurane-induced cognitive impairment in aged mice via ROS-NLRP3
inf lammasome pathway. Int Immunopharmacol. 116:1097252023.
View Article : Google Scholar
|
|
117
|
Hu JJ, Liu X, Xia S, Zhang Z, Zhang Y,
Zhao J, Ruan J, Luo X, Lou X, Bai Y, et al: FDA-approved disulfiram
inhibits pyroptosis by blocking gasdermin D pore formation. Nat
Immunol. 21:736–745. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Li J, Zhuang L, Luo X, Liang J, Sun E and
He Y: Protection of MCC950 against Alzheimer's disease via
inhibiting neuronal pyroptosis in SAMP8 mice. Exp Brain Res.
238:2603–2614. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Tian D, Xing Y, Gao W, Zhang H, Song Y,
Tian Y and Dai Z: Sevoflurane aggravates the progress of
Alzheimer's disease through NLRP3/Caspase-1/Gasdermin D pathway.
Front Cell Dev Biol. 9:8014222022. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Cai W, Wu Z, Lai J, Yao J, Zeng Y, Fang Z,
Lin W, Chen J, Xu C and Chen X: LDC7559 inhibits microglial
activation and GSDMD-dependent pyroptosis after subarachnoid
hemorrhage. Front Immunol. 14:11173102023. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Yu E, Zhang E, Lv X, Yan L, Lin Z,
Siaw-Debrah F, Zhang Y, Yang S, Ruan L, ZhuGe Q and Ni H: LDC7559
Exerts neuroprotective effects by inhibiting GSDMD-Dependent
pyroptosis of microglia in mice with traumatic brain injury. J
Neurotrauma. 40:742–757. 2023. View Article : Google Scholar
|