|
1
|
Showalter AE, Martini AC, Nierenberg D,
Hosang K, Fahmi NA, Gopalan P, Khaled AS, Zhang W and Khaled AR:
Investigating Chaperonin-Containing TCP-1 subunit 2 as an essential
component of the chaperonin complex for tumorigenesis. Sci Rep.
10:7982020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Valpuesta JM, Martin-Benito J,
Gomez-Puertas P, Carrascosa JL and Willison KR: Structure and
function of a protein folding machine: The eukaryotic cytosolic
chaperonin CCT. FEBS Lett. 529:11–16. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Huang X, Wang X, Cheng C, Cai J, He S,
Wang H, Liu F, Zhu C, Ding Z, Huang X, et al: Chaperonin containing
TCP1, subunit 8 (CCT8) is upregulated in hepatocellular carcinoma
and promotes HCC proliferation. APMIS. 122:1070–1079.
2014.PubMed/NCBI
|
|
4
|
Tracy CM, Gray AJ, Cuellar J, Shaw TS,
Howlett AC, Taylor RM, Prince JT, Ahn NG, Valpuesta JM and
Willardson BM: Programmed cell death protein 5 interacts with the
cytosolic chaperonin containing tailless complex polypeptide 1
(CCT) to regulate beta-tubulin folding. J Biol Chem. 289:4490–4502.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Li W, Liu J and Zhao H: Prognostic power
of a chaperonin containing TCP-1 subunit genes panel for
hepatocellular carcinoma. Front Genet. 12:6688712021. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Roh SH, Kasembeli M, Bakthavatsalam D,
Chiu W and Tweardy DJ: Contribution of the type II chaperonin,
TRiC/CCT, to oncogenesis. Int J Mol Sci. 16:26706–26720. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Brackley KI and Grantham J: Activities of
the chaperonin containing TCP-1 (CCT): Implications for cell cycle
progression and cytoskeletal organisation. Cell Stress Chaperones.
14:23–31. 2009. View Article : Google Scholar :
|
|
8
|
Yam AY, Xia Y, Lin HT, Burlingame A,
Gerstein M and Frydman J: Defining the TRiC/CCT interactome links
chaperonin function to stabilization of newly made proteins with
complex topologies. Nat Struct Mol Biol. 15:1255–1262. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wang Y, Liu P, Zhang Z, Wang J, Cheng Z
and Fan C: Identification of CCT3 as a prognostic factor and
correlates with cell survival and invasion of head and neck
squamous cell carcinoma. Biosci Rep. 41:BSR202111372021. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Xu G, Bu S, Wang X, Zhang H and Ge H:
Suppression of CCT3 inhibits the proliferation and migration in
breast cancer cells. Cancer Cell Int. 20:2182020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Lopez T, Dalton K and Frydman J: The
mechanism and function of group II chaperonins. J Mol Biol.
427:2919–2930. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Weng H, Feng X, Lan Y and Zheng Z: TCP1
regulates PI3K/AKT/mTOR signaling pathway to promote proliferation
of ovarian cancer cells. J Ovarian Res. 14:822021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Dou L and Zhang X: Upregulation of CCT3
promotes cervical cancer progression through FN1. Mol Med Rep.
24:8562021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Li Y, Liu C, Zhang X, Huang X, Liang S,
Xing F and Tian H: CCT5 induces epithelial-mesenchymal transition
to promote gastric cancer lymph node metastasis by activating the
Wnt/β-catenin signalling pathway. Br J Cancer. 126:1684–1694. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Peng X, Chen G, Lv B and Lv J:
MicroRNA-148a/152 cluster restrains tumor stem cell phenotype of
colon cancer via modulating CCT6A. Anticancer Drugs. 33:e610–e621.
2022. View Article : Google Scholar
|
|
16
|
Cox A, Nierenberg D, Camargo O, Lee E,
Khaled AS, Mazar J, Boohaker RJ, Westmoreland TJ and Khaled AR:
Chaperonin containing TCP-1 (CCT/TRiC) is a novel therapeutic and
diagnostic target for neuroblastoma. Front Oncol. 12:9750882022.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wang Z: Regulation of cell cycle
progression by growth factor-induced cell signaling. Cells.
10:33272021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zatulovskiy E, Zhang S, Berenson DF,
Topacio BR and Skotheim JM: Cell growth dilutes the cell cycle
inhibitor Rb to trigger cell division. Science. 369:466–471. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hume S, Dianov GL and Ramadan K: A unified
model for the G1/S cell cycle transition. Nucleic Acids Res.
48:12483–12501. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Temiz E, Koyuncu İ and Sahin E: CCT3
suppression prompts apoptotic machinery through oxidative stress
and energy deprivation in breast and prostate cancers. Free Radic
Biol Med. 165:88–99. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chen S, Tian Y, Ju A, Li B, Fu Y and Luo
Y: Suppression of CCT3 inhibits tumor progression by impairing ATP
production and cytoplasmic translation in lung adenocarcinoma. Int
J Mol Sci. 23:39832022. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Huang W, Hu H, Zhang Q, Wu X, Wei F, Yang
F, Gan L, Wang N, Yang X and Guo AY: Regulatory networks in
mechanotransduction reveal key genes in promoting cancer cell
stemness and proliferation. Oncogene. 38:6818–6834. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhang Y, Wang Y, Wei Y, Wu J, Zhang P,
Shen S, Saiyin H, Wumaier R, Yang X, Wang C and Yu L: Molecular
chaperone CCT3 supports proper mitotic progression and cell
proliferation in hepatocellular carcinoma cells. Cancer Lett.
372:101–109. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Chen X, Chen X, Huang Y, Lin J, Wu Y and
Chen Y: TCP1 increases drug resistance in acute myeloid leukemia by
suppressing autophagy via activating AKT/mTOR signaling. Cell Death
Dis. 12:10582021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wang K, He J, Tu C, Xu H, Zhang X, Lv Y
and Song C: Upregulation of CCT3 predicts poor prognosis and
promotes cell proliferation via inhibition of ferroptosis and
activation of AKT signaling in lung adenocarcinoma. BMC Mol Cell
Biol. 23:252022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Fu R, Jiang S, Guan Z, Li J, Zhang X and
Chen H: Comprehensive analysis of the expression of chaperonin
containing TCP1 subunits (CCTs) and their influence on prognosis in
hepatocellular carcinoma. Transl Cancer Res. 9:1867–1883. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Meng Y, Yang L, Wei X, Luo H, Hu Y, Tao X,
He J, Zheng X, Xu Q, Luo K, et al: CCT5 interacts with cyclin D1
promoting lung adenocarcinoma cell migration and invasion. Biochem
Biophys Res Commun. 567:222–229. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Guest ST, Kratche ZR, Bollig-Fischer A,
Haddad R and Ethier SP: Two members of the TRiC chaperonin complex,
CCT2 and TCP1 are essential for survival of breast cancer cells and
are linked to driving oncogenes. Exp Cell Res. 332:223–235. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Li H, Wang L, Cao F, Yu D, Yang J, Yu X,
Dong J, Qin JJ and Guan X: Design, synthesis, and biological
characterization of a potent STAT3 degrader for the treatment of
gastric cancer. Front Pharmacol. 13:9444552022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kasembeli M, Lau WC, Roh SH, Eckols TK,
Frydman J, Chiu W and Tweardy DJ: Modulation of STAT3 folding and
function by TRiC/CCT chaperonin. PLoS Biol. 12:e10018442014.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Vallin J, Córdoba-Beldad CM and Grantham
J: Sequestration of the transcription factor STAT3 by the molecular
chaperone CCT: A potential mechanism for modulation of STAT3
phosphorylation. J Mol Biol. 433:1669582021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Bocchini CE, Nahmod K, Katsonis P, Kim S,
Kasembeli MM, Freeman A, Lichtarge O, Makedonas G and Tweardy DJ:
Protein stabilization improves STAT3 function in autosomal dominant
hyper-IgE syndrome. Blood. 128:3061–3072. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Carr AC, Khaled AS, Bassiouni R, Flores O,
Nierenberg D, Bhatti H, Vishnubhotla P, Manuel JP, Santra S and
Khaled AR: Targeting chaperonin containing TCP1 (CCT) as a
molecular therapeutic for small cell lung cancer. Oncotarget.
8:110273–110288. 2017. View Article : Google Scholar
|
|
34
|
Qian T, Cui L, Liu Y, Cheng Z, Quan L,
Zeng T, Huang W, Dai Y, Chen J, Liu L, et al: High expression of
chaperonin-containing TCP1 subunit 3 may induce dismal prognosis in
multiple myeloma. Pharmacogenomics J. 20:563–573. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Danni X, Jiangzheng Z, Huamao S, Yinglian
P, Changcheng Y and Yanda L: Chaperonin containing TCP1 subunit 3
(CCT3) promotes cisplatin resistance of lung adenocarcinoma cells
through targeting the Janus kinase 2/signal transducers and
activators of transcription 3 (JAK2/STAT3) pathway. Bioengineered.
12:7335–7347. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Cui X, Hu ZP, Li Z, Gao PJ and Zhu JY:
Overexpression of chaperonin containing TCP1, subunit 3 predicts
poor prognosis in hepatocellular carcinoma. World J Gastroenterol.
21:8588–8604. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Morimoto E, Inagaki K, Komatsubara M,
Terasaka T, Itoh Y, Fujisawa S, Sasaki E, Nishiyama Y, Hara T and
Wada J: Effects of Wnt-β-Catenin signaling and sclerostin on the
phenotypes of rat pheochromocytoma PC12 cells. J Endocr Soc.
6:bvac1212022. View Article : Google Scholar
|
|
38
|
Li W, Xu Y, Wang X, Cao G, Bu W, Wang X,
Fang Z, Xu Y, Dong M and Tao Q: circCCT3 modulates vascular
endothelial growth factor A and Wnt signaling to enhance colorectal
cancer metastasis through sponging miR-613. DNA Cell Biol.
39:118–125. 2020. View Article : Google Scholar
|
|
39
|
Qu H, Zhu F, Dong H, Hu X and Han M:
Upregulation of CCT-3 induces breast cancer cell proliferation
through miR-223 competition and Wnt/β-Catenin signaling pathway
activation. Front Oncol. 10:5331762020. View Article : Google Scholar
|
|
40
|
Tang N, Cai X, Peng L, Liu H and Chen Y:
TCP1 regulates Wnt7b/β-catenin pathway through P53 to influence the
proliferation and migration of hepatocellular carcinoma cells.
Signal Transduct Target Ther. 5:1692020. View Article : Google Scholar
|
|
41
|
Wang Q, Huang WR, Chih WY, Chuang KP,
Chang CD, Wu Y, Huang Y and Liu HJ: Cdc20 and molecular chaperone
CCT2 and CCT5 are required for the Muscovy duck reovirus
p10.8-induced cell cycle arrest and apoptosis. Vet Microbiol.
235:151–163. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Rivlin N, Katz S, Doody M, Sheffer M,
Horesh S, Molchadsky A, Koifman G, Shetzer Y, Goldfinger N, Rotter
V and Geiger T: Rescue of embryonic stem cells from cellular
transformation by proteomic stabilization of mutant p53 and
conversion into WT conformation. Proc Natl Acad Sci USA.
111:7006–7011. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Trinidad AG, Muller PA, Cuellar J, Klejnot
M, Nobis M, Valpuesta JM and Vousden KH: Interaction of p53 with
the CCT complex promotes protein folding and wild-type p53
activity. Mol Cell. 50:805–817. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Monteith J and McMahon SB: p53: The TRiC
is knowing when to fold 'em. Mol Cell. 50:781–782. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Arsic N, Slatter T, Gadea G, Villain E,
Fournet A, Kazantseva M, Allemand F, Sibille N, Seveno M, de Rossi
S, et al: Δ133p53β isoform pro-invasive activity is regulated
through an aggregation-dependent mechanism in cancer cells. Nat
Commun. 12:54632021. View Article : Google Scholar
|
|
46
|
Lee SC and Chan J: Proteomic
identification of chaperonin-containing tail-less complex
polypeptide-1 gamma subunit as a p53-responsive protein in colon
cancer cells. Cancer Genomics Proteomics. 9:101–108.
2012.PubMed/NCBI
|
|
47
|
Ooe A, Kato K and Noguchi S: Possible
involvement of CCT5, RGS3, and YKT6 genes up-regulated in
p53-mutated tumors in resistance to docetaxel in human breast
cancers. Breast Cancer Res Treat. 101:305–315. 2007. View Article : Google Scholar
|
|
48
|
Liu Q, Liu J, He N, Zhang M, Wu L, Chen X,
Zhu J, Ran F, Chen Q and Zhang H: CRISPR/Cas12a coupling with
magnetic nanoparticles and cascaded strand displacement reaction
for ultrasensitive fluorescence determination of exosomal miR-21.
Molecules. 27:53382022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ke L, Ma H, Zhang Q, Wang Y, Xia P, Yu L,
Lv W and Hu J: The pattern of lymph node metastasis in peripheral
pulmonary nodules patients and risk prediction models. Front Surg.
9:9813132022. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Shao F, Chen Y, Xu H, Chen X, Zhou J, Wu
Y, Tang Y, Wang Z, Zhang R, Lange T, et al: Metabolic obesity
phenotypes and risk of lung cancer: A prospective cohort study of
450,482 UK biobank participants. Nutrients. 14:33702022. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Villalobos-Manzo R, Ríos-Castro E,
Hernández-Hernández JM, Oza G, Medina MA and Tapia-Ramírez J:
Identification of transferrin receptor 1 (TfR1) overexpressed in
lung cancer cells, and internalization of magnetic Au-CoFe(2)O(4)
core-shell nanoparticles functionalized with its ligand in a
cellular model of small cell lung cancer (SCLC). Pharmaceutics.
14:17152022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Xu M and Gong J: Prognostic signature,
immune features, and therapeutic responses of a novel
ubiquitination-related gene signature in lung adenocarcinoma. J
Oncol. 2022:25246492022. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Platini H, Ferdinand E, Kohar K, Prayogo
SA, Amirah S, Komariah M and Maulana S: Neutrophil-to-lymphocyte
ratio and platelet-to-lymphocyte ratio as prognostic markers for
advanced non-small-cell lung cancer treated with immunotherapy: A
systematic review and meta-analysis. Medicina (Kaunas).
58:10692022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhou F, Qian C, Chen T and Zang X:
MiR-96-5p facilitates lung adenocarcinoma cell phenotypes by
inhibiting FHL1. Comput Math Methods Med. 2022:78912222022.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Hu S, Cao P, Kong K, Han P, Yue J, Deng Y,
Li F and Zhao B: circCNN2 accelerates cell proliferation and
invasion in lung squamous cell carcinoma via regulating
miR-184/E2F1 and Activating MAPK signaling pathway. Dis Markers.
2022:63290972022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Barak D, Engelberg S, Assaraf YG and
Livney YD: Selective targeting and eradication of various human
non-small cell lung cancer cell lines using self-assembled
aptamer-decorated nanoparticles. Pharmaceutics. 14:16502022.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Skonieczna M, Kasprzycka A, Jelen M and
Morak-Mlodawska B: Tri- and pentacyclic azaphenothiazine as
pro-apoptotic agents in lung carcinoma with a protective potential
to healthy cell lines. Molecules. 27:52552022. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Cui XY, Park SH and Park WH: Anti-cancer
effects of auranofin in human lung cancer cells by increasing
intracellular ROS levels and depleting GSH levels. Molecules.
27:52072022. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Shi H, Zhang Y, Wang Y, Fang P, Liu Y and
Li W: Restraint of chaperonin containing T-complex protein-1
subunit 3 has antitumor roles in non-small cell lung cancer via
affection of YAP1. Toxicol Appl Pharmacol. 439:1159262022.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Liu YJ, Chang YJ, Kuo YT and Liang PH:
Targeting β-tubulin/CCT-β complex induces apoptosis and suppresses
migration and invasion of highly metastatic lung adenocarcinoma.
Carcinogenesis. 41:699–710. 2020. View Article : Google Scholar
|
|
61
|
Ying Z, Tian H, Li Y, Lian R, Li W, Wu S,
Zhang HZ, Wu J, Liu L, Song J, et al: CCT6A suppresses SMAD2 and
promotes prometastatic TGF-β signaling. J Clin Invest.
127:1725–1740. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wang H, Wang X, Xu L, Lin Y and Zhang J:
CCT6A and CHCHD2 are coamplified with EGFR and associated with the
unfavorable clinical outcomes of lung adenocarcinoma. Dis Markers.
2022:15601992022.PubMed/NCBI
|
|
63
|
Zhang T, Shi W, Tian K and Kong Y:
Chaperonin containing t-complex polypeptide 1 subunit 6A correlates
with lymph node metastasis, abnormal carcinoembryonic antigen and
poor survival profiles in non-small cell lung carcinoma. World J
Surg Oncol. 18:1562020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Tewelde B, Tamire M and Kaba M: Breast
self-examination practice and predictors among female secondary
school teachers in Addis Ababa, Ethiopia: Using the health belief
model. BMC Womens Health. 22:3172022. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Liu N, Yang DW, Wu YX, Xue WQ, Li DH,
Zhang JB, He YQ and Jia WH: Burden, trends, and risk factors for
breast cancer in China from 1990 to 2019 and its predictions until
2034: An up-to-date overview and comparison with those in Japan and
South Korea. BMC Cancer. 22:8262022. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
de Freitas GB, Penteado L, Miranda MM,
Filassi JR, Baracat EC and Linhares IM: The circulating 70 kDa heat
shock protein (HSPA1A) level is a potential biomarker for breast
carcinoma and its progression. Sci Rep. 12:130122022. View Article : Google Scholar
|
|
67
|
Tang M, O'Grady S, Crown J and Duffy MJ:
MYC as a therapeutic target for the treatment of triple-negative
breast cancer: Preclinical investigations with the novel MYC
inhibitor, MYCi975. Breast Cancer Res Treat. 195:105–115. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Tam S, Al-Zubaidi Y, Rahman MK, Bourget K,
Zhou F and Murray M: The ixabepilone and vandetanib combination
shows synergistic activity in docetaxel-resistant MDA-MB-231 breast
cancer cells. Pharmacol Rep. 74:998–1010. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kotani H, Masuda N, Yamashita T, Naito Y,
Taira T, Inoue K, Takahashi M, Yonemori K, Toyoizumi S, Mori Y, et
al: Efficacy and safety of talazoparib in Japanese patients with
germline BRCA-mutated locally advanced or metastatic breast cancer:
Results of the phase 1 dose-expansion study. Breast Cancer.
29:1088–1098. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Xu WX, Song W, Jiang MP, Yang SJ, Zhang J,
Wang DD and Tang JH: Systematic characterization of expression
profiles and prognostic values of the eight subunits of the
chaperonin TRiC in breast cancer. Front Genet. 12:6378872021.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Huang K, Zeng Y, Xie Y, Huang L and Wu Y:
Bioinformatics analysis of the prognostic value of CCT6A and
associated signalling pathways in breast cancer. Mol Med Rep.
19:4344–4352. 2019.PubMed/NCBI
|
|
72
|
Macario AJL and Conway de Macario E:
Chaperonins in cancer: Expression, function, and migration in
extracellular vesicles. Semin Cancer Biol. 86(Pt 1): 26–35. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Liu Q, Qi Y, Kong X, Wang X, Zhang W, Zhai
J, Yang Y, Fang Y and Wang J: Molecular and clinical
characterization of CCT2 expression and prognosis via large-scale
transcriptome profile of breast cancer. Front Oncol. 11:6144972021.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ghozlan H, Showalter A, Lee E, Zhu X and
Khaled AR: Chaperonin-Containing TCP1 Complex (CCT) promotes breast
cancer growth through correlations with key cell cycle regulators.
Front Oncol. 11:6638772021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Bassiouni R, Nemec KN, Iketani A, Flores
O, Showalter A, Khaled AS, Vishnubhotla P, Sprung RW Jr, Kaittanis
C, Perez JM and Khaled AR: Chaperonin Containing TCP-1 protein
level in breast cancer cells predicts therapeutic application of a
cytotoxic peptide. Clin Cancer Res. 22:4366–4379. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Satriano L, Lewinska M, Rodrigues PM,
Banales JM and Andersen JB: Metabolic rearrangements in primary
liver cancers: Cause and consequences. Nat Rev Gastroenterol
Hepatol. 16:748–766. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Trefts E, Gannon M and Wasserman DH: The
liver. Curr Biol. 27:R1147–R1151. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Cheng ML, Nakib D, Perciani CT and
MacParland SA: The immune niche of the liver. Clin Sci (Lond).
135:2445–2466. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Villanueva A: Hepatocellular carcinoma. N
Engl J Med. 380:1450–1462. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Gao YX, Yang TW, Yin JM, Yang PX, Kou BX,
Chai MY, Liu XN and Chen DX: Progress and prospects of biomarkers
in primary liver cancer (Review). Int J Oncol. 57:54–66.
2020.PubMed/NCBI
|
|
81
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Hepatocellular carcinoma. Nat Rev Dis
Primers. 7:72021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Moon H, Park H, Chae MJ, Choi HJ, Kim DY
and Ro SW: Activated TAZ induces liver cancer in collaboration with
EGFR/HER2 signaling pathways. BMC Cancer. 22:4232022. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Keenan BP, Fong L and Kelley RK:
Immunotherapy in hepatocellular carcinoma: The complex interface
between inflammation, fibrosis, and the immune response. J
Immunother Cancer. 7:2672019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wang H, Lu Z and Zhao X: Tumorigenesis,
diagnosis, and therapeutic potential of exosomes in liver cancer. J
Hematol Oncol. 12:1332019. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Mintz KJ and Leblanc RM: The use of
nanotechnology to combat liver cancer: Progress and perspectives.
Biochim Biophys Acta Rev Cancer. 1876:1886212021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Anwanwan D, Singh SK, Singh S, Saikam V
and Singh R: Challenges in liver cancer and possible treatment
approaches. Biochim Biophys Acta Rev Cancer. 1873:1883142010.
View Article : Google Scholar
|
|
88
|
Rebouissou S and Nault JC: Advances in
molecular classification and precision oncology in hepatocellular
carcinoma. J Hepatol. 72:215–229. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Qian EN, Han SY, Ding SZ and Lv X:
Expression and diagnostic value of CCT3 and IQGAP3 in
hepatocellular carcinoma. Cancer Cell Int. 16:552016. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wang F, Wang R, Li Q, Qu X, Hao Y, Yang J,
Zhao H, Wang Q, Li G, Zhang F, et al: A transcriptome profile in
hepatocellular carcinomas based on integrated analysis of
microarray studies. Diagn Pathol. 12:42017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Yunna C, Mengru H, Lei W and Weidong C:
Macrophage M1/M2 polarization. Eur J Pharmacol. 877:1730902020.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Wong N, Chan A, Lee SW, Lam E, To KF, Lai
PB, Li XN, Liew CT and Johnson PJ: Positional mapping for amplified
DNA sequences on 1q21-q22 in hepatocellular carcinoma indicates
candidate genes over-expression. J Hepatol. 38:298–306. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Liu J, Huang L, Zhu Y, He Y, Zhang W, Lei
T, Xuan J, Xiao B, Li L, Zhou Q and Sun Z: Exploring the expression
and prognostic value of the TCP1 ring complex in hepatocellular
carcinoma and overexpressing its subunit 5 Promotes HCC
tumorigenesis. Front Oncol. 11:7396602021. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zeng G, Wang J and Huang Y, Lian Y, Chen
D, Wei H, Lin C and Huang Y: Overexpressing CCT6A contributes to
cancer cell growth by affecting the G1-To-S phase transition and
predicts a negative prognosis in hepatocellular carcinoma. Onco
Targets Ther. 12:10427–10439. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Shaath H, Vishnubalaji R, Elango R,
Kardousha A, Islam Z, Qureshi R, Alam T, Kolatkar PR and Alajez NM:
Long non-coding RNA and RNA-binding protein interactions in cancer:
Experimental and machine learning approaches. Semin Cancer Biol.
86(Pt 3): 325–345. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Pereira B, Billaud M and Almeida R:
RNA-Binding proteins in cancer: Old players and new actors. Trends
Cancer. 3:506–528. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Iino K, Mitobe Y, Ikeda K, Takayama KI,
Suzuki T, Kawabata H, Suzuki Y, Horie-Inoue K and Inoue S:
RNA-binding protein NONO promotes breast cancer proliferation by
post-transcriptional regulation of SKP2 and E2F8. Cancer Sci.
111:148–159. 2020. View Article : Google Scholar
|
|
98
|
Sondergaard JN, Sommerauer C, Atanasoai I,
Hinte LC, Geng K, Guiducci G, Brautigam L, Aouadi M, Stojic L,
Barragan I and Kutter C: CCT3-LINC00326 axis regulates
hepatocarcinogenic lipid metabolism. Gut. 71:2081–2092. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhang Z, Xu L and Sun C: Comprehensive
characterization of cancer genes in hepatocellular carcinoma
genomes. Oncol Lett. 15:1503–1510. 2018.PubMed/NCBI
|
|
100
|
Xu J, Zhang Y, Liu C, Yan P and Yang Z:
Roles of the miR-139-5p/CCT5 axis in hepatocellular carcinoma: A
bioinformatic analysis. Int J Med Sci. 18:3556–3564. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zayegh O, Hmidi ZS, Nawlo AA, Al-Mouakeh
A, Amin B, Banjah B, Chammout A and Alsayid M: Awareness and
knowledge of colorectal cancer screening among medical students at
the university of aleppo: A cross-sectional study. Avicenna J Med.
12:54–60. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Cummings A, Foster R, Calman L, Permyakova
NV, Bridges J, Wiseman T, Corbett T, Smith PWF and Foster C:
Quality of life and health status in older adults (>/=65 years)
up to five years following colorectal cancer treatment: Findings
from the ColoREctal Wellbeing (CREW) cohort study. PLoS One.
17:e02700332022. View Article : Google Scholar
|
|
103
|
La Vecchia S and Sebastián C: Metabolic
pathways regulating colorectal cancer initiation and progression.
Semin Cell Dev Biol. 98:63–70. 2020. View Article : Google Scholar
|
|
104
|
Liu X, Yang K, Li Z and Liu J: MMP2
polymorphisms and colorectal cancer susceptibility in a Chinese Han
Population. Int J Gen Med. 15:6009–6019. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Pan S, Mei W, Huang L, Tao Y, Xu J and
Ruan Y: Prediction of postoperative survival in young colorectal
cancer patients: A cohort study based on the SEER database. J
Immunol Res. 2022:27366762022. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Li J, Ma X, Chakravarti D, Shalapour S and
DePinho RA: Genetic and biological hallmarks of colorectal cancer.
Genes Dev. 35:787–820. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Dienstmann R, Vermeulen L, Guinney J,
Kopetz S, Tejpar S and Tabernero J: Consensus molecular subtypes
and the evolution of precision medicine in colorectal cancer. Nat
Rev Cancer. 17:79–92. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Watson AJ and Collins PD: Colon cancer: A
civilization disorder. Dig Dis. 29:222–228. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Goldstein DA, Zeichner SB, Bartnik CM,
Neustadter E and Flowers CR: Metastatic colorectal cancer: A
systematic review of the value of current therapies. Clin
Colorectal Cancer. 15:1–6. 2016. View Article : Google Scholar :
|
|
110
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Qian-Lin Z, Ting-Feng W, Qi-Feng C,
Min-Hua Z and Ai-Guo L: Inhibition of cytosolic chaperonin CCTζ-1
expression depletes proliferation of colorectal carcinoma in vitro.
J Surg Oncol. 102:419–423. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Coghlin C, Carpenter B, Dundas SR, Lawrie
LC, Telfer C and Murray GI: Characterization and over-expression of
chaperonin t-complex proteins in colorectal cancer. J Pathol.
210:351–357. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Yokota S, Yamamoto Y, Shimizu K, Momoi H,
Kamikawa T, Yamaoka Y, Yanagi H, Yura T and Kubota H: Increased
expression of cytosolic chaperonin CCT in human hepatocellular and
colonic carcinoma. Cell Stress Chaperones. 6:345–350. 2001.
View Article : Google Scholar
|
|
114
|
Yang X, Tong Y, Ye W and Chen L: HOXB2
increases the proliferation and invasiveness of colon cancer cells
through the upregulation of CCT6A. Mol Med Rep. 25:1742022.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Liu YJ, Kumar V, Lin YF and Liang PH:
Disrupting CCT-β : β-tubulin selectively kills CCT-β overexpressed
cancer cells through MAPKs activation. Cell Death Dis. 8:e30522017.
View Article : Google Scholar
|
|
116
|
Park SH, Jeong S, Kim BR, Jeong YA, Kim
JL, Na YJ, Jo MJ, Yun HK, Kim DY, Kim BG, et al: Activating CCT2
triggers Gli-1 activation during hypoxic condition in colorectal
cancer. Oncogene. 39:136–150. 2020. View Article : Google Scholar
|
|
117
|
Sun H, Wang Y, Jing HY, Yang XY, Shi XX,
Zhang JH, Yu YX, Gao L, Wang XY, Li WH and Yu L:
Chaperonin-Containing TCP1 Subunit 6A Is a prognostic potential
biomarker that correlates with the presence of immune infiltrates
in colorectal cancer. Front Genet. 12:6298562021. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Hu J, Han C, Zhong J, Liu H, Liu R, Luo W,
Chen P and Ling F: Dynamic network biomarker of pre-exhausted
CD8(+) T cells contributed to T cell exhaustion in colorectal
cancer. Front Immunol. 12:6911422021. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Lu L, Li ZJ, Li LF, Wu WK, Shen J, Zhang
L, Chan RL, Yu L, Liu YW, Ren SX, et al: Vascular-targeted TNFα
improves tumor blood vessel function and enhances antitumor
immunity and chemotherapy in colorectal cancer. J Control Release.
210:134–146. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Lu L, Li ZJ, Li LF, Shen J, Zhang L, Li
MX, Xiao ZG, Wang JH and Cho CH: A novel vascular-targeting peptide
for gastric cancer delivers low-dose TNFα to normalize the blood
vessels and improve the anti-cancer efficiency of 5-fluorouracil.
Peptides. 97:54–63. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Liao Q, Ren Y, Yang Y, Zhu X, Zhi Y, Zhang
Y, Chen Y, Ding Y and Zhao L: CCT8 recovers WTp53-suppressed cell
cycle evolution and EMT to promote colorectal cancer progression.
Oncogenesis. 10:842021. View Article : Google Scholar : PubMed/NCBI
|