Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
October-2023 Volume 63 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2023 Volume 63 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of miR‑181a‑5p in cancer (Review)

  • Authors:
    • Junxin Li
    • Jing Shen
    • Yueshui Zhao
    • Fukuan Du
    • Mingxing Li
    • Xu Wu
    • Yu Chen
    • Shurong Wang
    • Zhangang Xiao
    • Zhigui Wu
  • View Affiliations / Copyright

    Affiliations: Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 108
    |
    Published online on: August 3, 2023
       https://doi.org/10.3892/ijo.2023.5556
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

MicroRNAs (miRNAs) are non‑coding RNAs (ncRNAs) that can post‑transcriptionally suppress targeted genes. Dysregulated miRNAs are associated with a variety of diseases. MiR‑181a‑5p is a conserved miRNA with the ability to regulate pathological processes, such as angiogenesis, inflammatory response and obesity. Numerous studies have demonstrated that miR‑181a‑5p exerts regulatory influence on cancer development and progression, acting as an oncomiR or tumor inhibitor in various cancer types by impacting multiple hallmarks of tumor. Generally, miR‑181a‑5p binds to target RNA sequences with partial complementarity, resulting in suppression of the targeted genes of miR‑181a‑5p. However, the precise role of miR‑181a‑5p in cancer remains incompletely understood. The present review aims to provide a comprehensive summary of recent research on miR‑181a‑5p, focusing on its involvement in different types of cancer and its potential as a diagnostic and prognostic biomarker, as well as its function in chemoresistance.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI

2 

Lagos-Quintana M, Rauhut R, Lendeckel W and Tuschl T: Identification of novel genes coding for small expressed RNAs. Science. 294:853–858. 2001. View Article : Google Scholar : PubMed/NCBI

3 

Lau NC, Lim LP, Weinstein EG and Bartel DP: An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 294:858–862. 2001. View Article : Google Scholar : PubMed/NCBI

4 

Lee RC and Ambros V: An extensive class of small RNAs in Caenorhabditis elegans. Science. 294:862–864. 2001. View Article : Google Scholar : PubMed/NCBI

5 

Cable J, Heard E, Hirose T, Prasanth KV, Chen LL, Henninger JE, Quinodoz SA, Spector DL, Diermeier SD, Porman AM, et al: Noncoding RNAs: Biology and applications-a keystone symposia report. Ann N Y Acad Sci. 1506:118–141. 2021. View Article : Google Scholar : PubMed/NCBI

6 

Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS and Haussler D: Ultraconserved elements in the human genome. Science. 304:1321–1325. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR and Ruvkun G: The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 403:901–906. 2000. View Article : Google Scholar : PubMed/NCBI

8 

Hill M and Tran N: miRNA interplay: Mechanisms and consequences in cancer. Dis Model Mech. 14:dmm0476622021. View Article : Google Scholar : PubMed/NCBI

9 

Rivera-Barahona A, Pérez B, Richard E and Desviat LR: Role of miRNAs in human disease and inborn errors of metabolism. J Inherit Metab Dis. 40:471–480. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Rupaimoole R and Slack FJ: MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Jeffries J, Zhou W, Hsu AY and Deng Q: miRNA-223 at the crossroads of inflammation and cancer. Cancer Lett. 451:136–141. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Zhang L, Liao Y and Tang L: MicroRNA-34 family: A potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res. 38:532019. View Article : Google Scholar : PubMed/NCBI

13 

Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Rani V and Sengar RS: Biogenesis and mechanisms of microRNA-mediated gene regulation. Biotechnol Bioeng. 119:685–692. 2022. View Article : Google Scholar : PubMed/NCBI

15 

Su Y, Yuan J, Zhang F, Lei Q, Zhang T, Li K, Guo J, Hong Y, Bu G, Lv X, et al: MicroRNA-181a-5p and microRNA-181a-3p cooperatively restrict vascular inflammation and atherosclerosis. Cell Death Dis. 10:3652019. View Article : Google Scholar : PubMed/NCBI

16 

Zhao H, Guo Y, Sun Y, Zhang N and Wang X: miR-181a/b-5p ameliorates inflammatory response in monocrotaline-induced pulmonary arterial hypertension by targeting endocan. J Cell Physiol. 235:4422–4433. 2020. View Article : Google Scholar

17 

Lozano-Bartolomé J, Llauradó G, Portero-Otin M, Altuna-Coy A, Rojo-Martínez G, Vendrell J, Jorba R, Rodríguez-Gallego E and Chacón MR: Altered expression of miR-181a-5p and miR-23a-3p Is associated with obesity and TNFα-induced insulin resistance. J Clin Endocrinol Metab. 103:1447–1458. 2018. View Article : Google Scholar

18 

Korhan P, Erdal E and Atabey N: MiR-181a-5p is downregulated in hepatocellular carcinoma and suppresses motility, invasion and branching-morphogenesis by directly targeting c-Met. Biochem Biophys Res Commun. 450:1304–1312. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Jiang M, Zhang W, Zhang R, Liu P, Ye Y, Yu W, Guo X and Yu J: Cancer exosome-derived miR-9 and miR-181a promote the development of early-stage MDSCs via interfering with SOCS3 and PIAS3 respectively in breast cancer. Oncogene. 39:4681–4694. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Yang Z, Wan X, Gu Z, Zhang H, Yang X, He L, Miao R, Zhong Y and Zhao H: Evolution of the mir-181 microRNA family. Comput Biol Med. 52:82–87. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Smillie CL, Sirey T and Ponting CP: Complexities of post-transcriptional regulation and the modeling of ceRNA crosstalk. Crit Rev Biochem Mol Biol. 53:231–245. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Salmena L, Poliseno L, Tay Y, Kats L and Pandolfi PP: A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell. 146:353–358. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Shen H, Wang L, Xiong J, Ren C, Gao C, Ding W, Zhu D, Ma D and Wang H: Long non-coding RNA CCAT1 promotes cervical cancer cell proliferation and invasion by regulating the miR-181a-5p/MMP14 axis. Cell Cycle. 18:1110–1121. 2019. View Article : Google Scholar : PubMed/NCBI

24 

Shang A, Wang W, Gu C, Chen W, Lu W, Sun Z and Li D: Long non-coding RNA CCAT1 promotes colorectal cancer progression by regulating miR-181a-5p expression. Aging (Albany NY). 12:8301–8320. 2020. View Article : Google Scholar : PubMed/NCBI

25 

Li S, Yang J, Xia Y, Fan Q and Yang KP: Long noncoding RNA NEAT1 promotes proliferation and invasion via targeting miR-181a-5p in non-small cell lung cancer. Oncol Res. 26:289–296. 2018. View Article : Google Scholar

26 

Hai Ping P, Feng Bo T, Li L, Nan Hui Y and Hong Z: IL-1β/NF-kb signaling promotes colorectal cancer cell growth through miR-181a/PTEN axis. Arch Biochem Biophys. 604:20–26. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Zhang X, Li X, Tan F, Yu N and Pei H: STAT1 inhibits MiR-181a expression to suppress colorectal cancer cell proliferation through PTEN/Akt. J Cell Biochem. 118:3435–3443. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Shi L, Li X, Wu Z, Li X, Nie J, Guo M, Mei Q and Han W: DNA methylation-mediated repression of miR-181a/135a/302c expression promotes the microsatellite-unstable colorectal cancer development and 5-FU resistance via targeting PLAG1. J Genet Genomics. 45:205–214. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Wang Y, Cen A, Yang Y, Ye H, Li J, Liu S and Zhao L: miR-181a, delivered by hypoxic PTC-secreted exosomes, inhibits DACT2 by downregulating MLL3, leading to YAP-VEGF-mediated angiogenesis. Mol Ther Nucleic Acids. 24:610–621. 2021. View Article : Google Scholar :

30 

Sun X, Wei L, Chen Q and Terek RM: MicroRNA regulates vascular endothelial growth factor expression in chondrosarcoma cells. Clin Orthop Relat Res. 473:907–913. 2015. View Article : Google Scholar :

31 

Hanahan D: Hallmarks of cancer: New dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI

32 

Svoronos AA, Engelman DM and Slack FJ: OncomiR or tumor suppressor? The duplicity of MicroRNAs in cancer. Cancer Res. 76:3666–3670. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar

34 

Han P, Li JW, Zhang BM, Lv JC, Li YM, Gu XY, Yu ZW, Jia YH, Bai XF, Li L, et al: The lncRNA CRNDE promotes colorectal cancer cell proliferation and chemoresistance via miR-181a-5p-mediated regulation of Wnt/β-catenin signaling. Mol Cancer. 16:92017. View Article : Google Scholar

35 

Lv SY, Shan TD, Pan XT, Tian ZB, Liu XS, Liu FG, Sun XG, Xue HG, Li XH, Han Y, et al: The lncRNA ZEB1-AS1 sponges miR-181a-5p to promote colorectal cancer cell proliferation by regulating Wnt/β-catenin signaling. Cell Cycle. 17:1245–1254. 2018. View Article : Google Scholar :

36 

Sun C, Shen C, Zhang Y and Hu C: LncRNA ANRIL negatively regulated chitooligosaccharide-induced radiosensitivity in colon cancer cells by sponging miR-181a-5p. Adv Clin Exp Med. 30:55–65. 2021. View Article : Google Scholar : PubMed/NCBI

37 

Chang L, Yuan Y, Li C, Guo T, Qi H, Xiao Y, Dong X, Liu Z and Liu Q: Upregulation of SNHG6 regulates ZEB1 expression by competitively binding miR-101-3p and interacting with UPF1 in hepatocellular carcinoma. Cancer Lett. 383:183–194. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Yu C, Sun J, Leng X and Yang J: Long noncoding RNA SNHG6 functions as a competing endogenous RNA by sponging miR-181a-5p to regulate E2F5 expression in colorectal cancer. Cancer Manag Res. 11:611–624. 2019. View Article : Google Scholar : PubMed/NCBI

39 

Chi J, Liu S, Wu Z, Shi Y, Shi C, Zhang T, Xiong B, Zeng Y and Dong X: circNSUN2 promotes the malignant biological behavior of colorectal cancer cells via the miR-181a-5p/ROCK2 axis. Oncol Rep. 46:1422021. View Article : Google Scholar :

40 

Zhao S, Mi Y, Zheng B, Wei P, Gu Y, Zhang Z, Xu Y, Cai S, Li X and Li D: Highly-metastatic colorectal cancer cell released miR-181a-5p-rich extracellular vesicles promote liver metastasis by activating hepatic stellate cells and remodelling the tumour microenvironment. J Extracell Vesicles. 11:e121862022. View Article : Google Scholar : PubMed/NCBI

41 

Ji D, Chen Z, Li M, Zhan T, Yao Y, Zhang Z, Xi J, Yan L and Gu J: MicroRNA-181a promotes tumor growth and liver metastasis in colorectal cancer by targeting the tumor suppressor WIF-1. Mol Cancer. 13:862014. View Article : Google Scholar : PubMed/NCBI

42 

Li Z, Wang H, Xu Z, Sun Y and Han J: Expression and mechanism of microRNA-181A on incidence and survival in late liver metastases of colorectal cancer. Oncol Rep. 35:1403–1408. 2016. View Article : Google Scholar

43 

Wei Z, Cui L, Mei Z, Liu M and Zhang D: miR-181a mediates metabolic shift in colon cancer cells via the PTEN/AKT pathway. FEBS Lett. 588:1773–1779. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Sun W, Wang X, Li J, You C, Lu P, Feng H, Kong Y, Zhang H, Liu Y, Jiao R, et al: MicroRNA-181a promotes angiogenesis in colorectal cancer by targeting SRCIN1 to promote the SRC/VEGF signaling pathway. Cell Death Dis. 9:4382018. View Article : Google Scholar : PubMed/NCBI

45 

Zhang Q, Wang C, Li R, Liu J, Wang J, Wang T and Wang B: The BAP31/miR-181a-5p/RECK axis promotes angiogenesis in colorectal cancer via fibroblast activation. Front Oncol. 13:10569032023. View Article : Google Scholar :

46 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

47 

Chen G, Shen ZL, Wang L, Lv CY, Huang XE and Zhou RP: Hsa-miR-181a-5p expression and effects on cell proliferation in gastric cancer. Asian Pac J Cancer Prev. 14:3871–3875. 2013. View Article : Google Scholar

48 

Ge S, Zhang H, Deng T, Sun W, Ning T, Fan Q, Wang Y, Wang X, Zhang Q, Zhou Z, et al: MiR-181a, a new regulator of TGF-β signaling, can promote cell migration and proliferation in gastric cancer. Invest New Drugs. 37:923–934. 2019. View Article : Google Scholar

49 

Yu J, Qi J, Sun X, Wang W, Wei G, Wu Y, Gao Q and Zheng J: MicroRNA-181a promotes cell proliferation and inhibits apoptosis in gastric cancer by targeting RASSF1A. Oncol Rep. 40:1959–1970. 2018.

50 

Ding L, Tian Y, Wang L, Bi M, Teng D and Hong S: Hypermethylated long noncoding RNA MEG3 promotes the progression of gastric cancer. Aging (Albany NY). 11:8139–8155. 2019. View Article : Google Scholar

51 

Liu Z, Sun F, Hong Y, Liu Y, Fen M, Yin K, Ge X, Wang F, Chen X and Guan W: MEG2 is regulated by miR-181a-5p and functions as a tumour suppressor gene to suppress the proliferation and migration of gastric cancer cells. Mol Cancer. 16:1332017. View Article : Google Scholar : PubMed/NCBI

52 

Mi Y, Zhang D, Jiang W, Weng J, Zhou C, Huang K, Tang H, Yu Y, Liu X, Cui W, et al: miR-181a-5p promotes the progression of gastric cancer via RASSF6-mediated MAPK signalling activation. Cancer Lett. 389:11–22. 2017. View Article : Google Scholar

53 

Lu Q, Chen Y, Sun D, Wang S, Ding K, Liu M, Zhang Y, Miao Y, Liu H and Zhou F: MicroRNA-181a functions as an oncogene in gastric cancer by targeting caprin-1. Front Pharmacol. 9:15652019. View Article : Google Scholar :

54 

Zhao J, Nie Y, Wang H and Lin Y: MiR-181a suppresses autophagy and sensitizes gastric cancer cells to cisplatin. Gene. 576:828–833. 2016. View Article : Google Scholar

55 

Lin F, Li Y, Yan S, Liu S, Qian W, Shen D, Lin Q and Mao W: MicroRNA-181a inhibits tumor proliferation, invasiveness, and metastasis and is downregulated in gastric cancer. Oncol Res. 22:75–84. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Lu Z, Luo T, Pang T, Du Z, Yin X, Cui H, Fang G and Xue X: MALAT1 promotes gastric adenocarcinoma through the MALAT1/miR-181a-5p/AKT3 axis. Open Biol. 9:1900952019. View Article : Google Scholar : PubMed/NCBI

57 

Zhuang X, Chen Y, Wu Z, Xu Q, Chen M, Shao M, Cao X, Zhou Y, Xie M, Shi Y, et al: Mitochondrial miR-181a-5p promotes glucose metabolism reprogramming in liver cancer by regulating the electron transport chain. Carcinogenesis. 41:972–983. 2020. View Article : Google Scholar

58 

Bi JG, Zheng JF, Li Q, Bao SY, Yu XF, Xu P and Liao CX: MicroRNA-181a-5p suppresses cell proliferation by targeting Egr1 and inhibiting Egr1/TGF-β/Smad pathway in hepatocellular carcinoma. Int J Biochem Cell Biol. 106:107–116. 2019. View Article : Google Scholar

59 

Guo J, Ma Y, Peng X, Jin H and Liu J: LncRNA CCAT1 promotes autophagy via regulating ATG7 by sponging miR-181 in hepatocellular carcinoma. J Cell Biochem. 120:17975–17983. 2019. View Article : Google Scholar

60 

Chang S, Chen B, Wang X, Wu K and Sun Y: Long non-coding RNA XIST regulates PTEN expression by sponging miR-181a and promotes hepatocellular carcinoma progression. BMC Cancer. 17:2482017. View Article : Google Scholar : PubMed/NCBI

61 

Yang S, Wang P, Wang S, Cong A, Zhang Q, Shen W, Li X, Zhang W and Han G: miRNA-181a-5p enhances the sensitivity of cells to cisplatin in esophageal adenocarcinoma by targeting CBLB. Cancer Manag Res. 12:4981–4990. 2020. View Article : Google Scholar : PubMed/NCBI

62 

Ilic M and Ilic I: Epidemiology of pancreatic cancer. World J Gastroenterol. 22:9694–9705. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Liu J, Xu D, Wang Q, Zheng D, Jiang X and Xu L: LPS induced miR-181a promotes pancreatic cancer cell migration via targeting PTEN and MAP2K4. Dig Dis Sci. 59:1452–1460. 2014. View Article : Google Scholar : PubMed/NCBI

64 

Wang L, Bi R, Li L, Zhou K and Yin H: lncRNA ANRIL aggravates the chemoresistance of pancreatic cancer cells to gemcitabine by targeting inhibition of miR-181a and targeting HMGB1-induced autophagy. Aging (Albany NY). 13:19272–19281. 2021. View Article : Google Scholar

65 

Harðardottir H, Jonsson S, Gunnarsson O, Hilmarsdottir B, Asmundsson J, Gudmundsdottir I, Saevarsdottir VY, Hansdottir S, Hannesson P and Gudbjartsson T: Advances in lung cancer diagnosis and treatment-a review. Laeknabladid. 108:17–29. 2022.In Icelandic.

66 

Duma N, Santana-Davila R and Molina JR: Non-small cell lung cancer: Epidemiology, screening, diagnosis, and treatment. Mayo Clin Proc. 94:1623–1640. 2019. View Article : Google Scholar : PubMed/NCBI

67 

Ma Z, Qiu X, Wang D, Li Y, Zhang B, Yuan T, Wei J, Zhao B, Zhao X, Lou J, et al: MiR-181a-5p inhibits cell proliferation and migration by targeting Kras in non-small cell lung cancer A549 cells. Acta Biochim Biophys Sin (Shanghai). 47:630–638. 2015. View Article : Google Scholar

68 

Shi Q, Zhou Z, Ye N, Chen Q, Zheng X and Fang M: MiR-181a inhibits non-small cell lung cancer cell proliferation by targeting CDK1. Cancer Biomark. 20:539–546. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Wang L, Zhang L and Wang L: SNHG7 contributes to the progression of non-small-cell lung cancer via the SNHG7/miR-181a-5p/E2F7 axis. Cancer Manag Res. 12:3211–3222. 2020. View Article : Google Scholar : PubMed/NCBI

70 

Cao Y, Zhao D, Li P, Wang L, Qiao B, Qin X, Li L and Wang Y: MicroRNA-181a-5p impedes IL-17-induced nonsmall cell lung cancer proliferation and migration through targeting VCAM-1. Cell Physiol Biochem. 42:346–356. 2017. View Article : Google Scholar

71 

Li L, Ye D, Liu L, Li X, Liu J, Su S, Lu W and Yu Z: Long noncoding RNA SNHG7 accelerates proliferation, migration and invasion of non-small cell lung cancer cells by suppressing miR-181a-5p through AKT/mTOR signaling pathway. Cancer Manag Res. 12:8303–8312. 2020. View Article : Google Scholar :

72 

Zhang LX, Gao J, Long X, Zhang PF, Yang X, Zhu SQ, Pei X, Qiu BQ, Chen SW, Lu F, et al: The circular RNA circHMGB2 drives immunosuppression and anti-PD-1 resistance in lung adenocarcinomas and squamous cell carcinomas via the miR-181a-5p/CARM1 axis. Mol Cancer. 21:1102022. View Article : Google Scholar : PubMed/NCBI

73 

Fu S, Fu Y, Chen F, Hu Y, Quan B and Zhang J: Overexpression of MYCT1 inhibits proliferation and induces apoptosis in human acute myeloid leukemia HL-60 and KG-1a cells in vitro and in vivo. Front Pharmacol. 9:10452018. View Article : Google Scholar :

74 

Wang HT, Tong X, Zhang ZX, Sun YY, Yan W, Xu ZM and Fu WN: MYCT1 represses apoptosis of laryngeal cancerous cells through the MAX/miR-181a/NPM1 pathway. FEBS J. 286:3892–3908. 2019. View Article : Google Scholar : PubMed/NCBI

75 

Hao YR, Zhang DJ, Fu ZM, Guo YY and Guan GF: Long non-coding RNA ANRIL promotes proliferation, clonogenicity, invasion and migration of laryngeal squamous cell carcinoma by regulating miR-181a/Snai2 axis. Regen Ther. 11:282–289. 2019. View Article : Google Scholar :

76 

Wilkinson L and Gathani T: Understanding breast cancer as a global health concern. Br J Radiol. 95:202110332022. View Article : Google Scholar :

77 

Strotbek M, Schmid S, Sánchez-González I, Boerries M, Busch H and Olayioye MA: miR-181 elevates Akt signaling by co-targeting PHLPP2 and INPP4B phosphatases in luminal breast cancer. Int J Cancer. 140:2310–2320. 2017. View Article : Google Scholar : PubMed/NCBI

78 

Taylor MA, Sossey-Alaoui K, Thompson CL, Danielpour D and Schiemann WP: TGF-β upregulates miR-181a expression to promote breast cancer metastasis. J Clin Invest. 123:150–163. 2013. View Article : Google Scholar

79 

Liu K, Xie F, Gao A, Zhang R, Zhang L, Xiao Z, Hu Q, Huang W, Huang Q, Lin B, et al: SOX2 regulates multiple malignant processes of breast cancer development through the SOX2/miR-181a-5p, miR-30e-5p/TUSC3 axis. Mol Cancer. 16:622017. View Article : Google Scholar : PubMed/NCBI

80 

Zhai Z, Mu T, Zhao L, Li Y, Zhu D and Pan Y: MiR-181a-5p facilitates proliferation, invasion, and glycolysis of breast cancer through NDRG2-mediated activation of PTEN/AKT pathway. Bioengineered. 13:83–95. 2022. View Article : Google Scholar :

81 

Alexandrova E, Lamberti J, Saggese P, Pecoraro G, Memoli D, Cappa VM, Ravo M, Iorio R, Tarallo R, Rizzo F, et al: Small non-coding RNA profiling identifies miR-181a-5p as a mediator of estrogen receptor beta-induced inhibition of cholesterol biosynthesis in triple-negative breast cancer. Cells. 9:8742020. View Article : Google Scholar : PubMed/NCBI

82 

Gu M, Wang L, Yang C, Li X, Jia C, Croteau S, Ruan X and Hardy P: Micro-RNA-181a suppresses progestin-promoted breast cancer cell growth. Maturitas. 114:60–66. 2018. View Article : Google Scholar : PubMed/NCBI

83 

Cai G, Wang Y, Houda T, Yang C, Wang L, Gu M, Mueck A, Croteau S, Ruan X and Hardy P: MicroRNA-181a suppresses norethisterone-promoted tumorigenesis of breast epithelial MCF10A cells through the PGRMC1/EGFR-PI3K/Akt/mTOR signaling pathway. Transl Oncol. 14:1010682021. View Article : Google Scholar

84 

Liu Y, Cheng T, Du Y, Hu X and Xia W: LncRNA LUCAT1/miR-181a-5p axis promotes proliferation and invasion of breast cancer via targeting KLF6 and KLF15. BMC Mol Cell Biol. 21:692020. View Article : Google Scholar : PubMed/NCBI

85 

Tsu V and Jerónimo J: Saving the world's women from cervical cancer. N Engl J Med. 374:2509–2511. 2016. View Article : Google Scholar : PubMed/NCBI

86 

Yang M, Zhai X, Ge T, Yang C and Lou G: miR-181a-5p promotes proliferation and invasion and inhibits apoptosis of cervical cancer cells via regulating inositol polyphosphate-5-phosphatase A (INPP5A). Oncol Res. 26:703–712. 2018. View Article : Google Scholar

87 

Xu H, Zhu J, Hu C, Song H and Li Y: Inhibition of microRNA-181a may suppress proliferation and invasion and promote apoptosis of cervical cancer cells through the PTEN/Akt/FOXO1 pathway. J Physiol Biochem. 72:721–732. 2016. View Article : Google Scholar : PubMed/NCBI

88 

Ke G, Liang L, Yang JM, Huang X, Han D, Huang S, Zhao Y, Zha R, He X and Wu X: MiR-181a confers resistance of cervical cancer to radiation therapy through targeting the pro-apoptotic PRKCD gene. Oncogene. 32:3019–3027. 2013. View Article : Google Scholar

89 

Luo C and Qiu J: miR-181a inhibits cervical cancer development via downregulating GRP78. Oncol Res. 25:1341–1348. 2017. View Article : Google Scholar

90 

Zhu L, Zhang Q, Li S, Jiang S, Cui J and Dang G: Interference of the long noncoding RNA CDKN2B-AS1 upregulates miR-181a-5p/TGFβI axis to restrain the metastasis and promote apoptosis and senescence of cervical cancer cells. Cancer Med. 8:1721–1730. 2019. View Article : Google Scholar : PubMed/NCBI

91 

Zhang L, Liu SK, Song L and Yao HR: SP1-induced up-regulation of lncRNA LUCAT1 promotes proliferation, migration and invasion of cervical cancer by sponging miR-181a. Artif Cells Nanomed Biotechnol. 47:555–564. 2019. View Article : Google Scholar

92 

Hu Z, Zhu D, Wang W, Li W, Jia W, Zeng X, Ding W, Yu L, Wang X, Wang L, et al: Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism. Nat Genet. 47:158–163. 2015. View Article : Google Scholar : PubMed/NCBI

93 

Felix AS, Scott McMeekin D, Mutch D, Walker JL, Creasman WT, Cohn DE, Ali S, Moore RG, Downs LS, Ioffe OB, et al: Associations between etiologic factors and mortality after endometrial cancer diagnosis: The NRG oncology/gynecologic oncology group 210 trial. Gynecol Oncol. 139:70–76. 2015. View Article : Google Scholar : PubMed/NCBI

94 

Geletina NS, Kobelev VS, Babayants EV, Feng L, Pustylnyak VO and Gulyaeva LF: PTEN negative correlates with miR-181a in tumour tissues of non-obese endometrial cancer patients. Gene. 655:20–24. 2018. View Article : Google Scholar : PubMed/NCBI

95 

Yu J, Jiang L, Gao Y, Sun Q, Liu B, Hu Y and Han X: LncRNA CCAT1 negatively regulates miR-181a-5p to promote endometrial carcinoma cell proliferation and migration. Exp Ther Med. 17:4259–4266. 2019.PubMed/NCBI

96 

Dong P, Xiong Y, Konno Y, Ihira K, Kobayashi N, Yue J and Watari H: Long non-coding RNA DLEU2 drives EMT and glycolysis in endometrial cancer through HK2 by competitively binding with miR-455 and by modulating the EZH2/miR-181a pathway. J Exp Clin Cancer Res. 40:2162021. View Article : Google Scholar : PubMed/NCBI

97 

Parikh A, Lee C, Joseph P, Marchini S, Baccarini A, Kolev V, Romualdi C, Fruscio R, Shah H, Wang F, et al: microRNA-181a has a critical role in ovarian cancer progression through the regulation of the epithelial-mesenchymal transition. Nat Commun. 5:29772014. View Article : Google Scholar

98 

Belur Nagaraj A, Knarr M, Sekhar S, Connor RS, Joseph P, Kovalenko O, Fleming A, Surti A, Nurmemmedov E, Beltrame L, et al: The miR-181a-SFRP4 axis regulates Wnt activation to drive stemness and platinum resistance in ovarian cancer. Cancer Res. 81:2044–2055. 2021. View Article : Google Scholar : PubMed/NCBI

99 

Zhou CK, Check DP, Lortet-Tieulent J, Laversanne M, Jemal A, Ferlay J, Bray F, Cook MB and Devesa SS: Prostate cancer incidence in 43 populations worldwide: An analysis of time trends overall and by age group. Int J Cancer. 138:1388–1400. 2016. View Article : Google Scholar :

100 

Ding X, Xu X, He XF, Yuan Y, Chen C, Shen XY, Su S, Chen Z, Xu ST and Huang YH: Muscleblind-like 1 antisense RNA 1 inhibits cell proliferation, invasion, and migration of prostate cancer by sponging miR-181a-5p and regulating PTEN/PI3K/AKT/mTOR signaling. Bioengineered. 12:803–814. 2021. View Article : Google Scholar

101 

Liang J, Li X, Li Y, Wei J, Daniels G, Zhong X, Wang J, Sfanos K, Melamed J, Zhao J and Lee P: LEF1 targeting EMT in prostate cancer invasion is mediated by miR-181a. Am J Cancer Res. 5:1124–1132. 2015.

102 

Hu W, Yan F, Ru Y, Xia M, Yan G, Zhang M, Wang H, Wu G, Yao L, Shen L, et al: MIIP inhibits EMT and cell invasion in prostate cancer through miR-181a/b-5p-KLF17 axis. Am J Cancer Res. 10:630–647. 2020.PubMed/NCBI

103 

Mao W, Huang X, Wang L, Zhang Z, Liu M, Li Y, Luo M, Yao X, Fan J and Geng J: Circular RNA hsa_circ_0068871 regulates FGFR3 expression and activates STAT3 by targeting miR-181a-5p to promote bladder cancer progression. J Exp Clin Cancer Res. 38:1692019. View Article : Google Scholar : PubMed/NCBI

104 

Lai Y, Zhao L, Hu J, Quan J, Chen P, Xu J, Guan X, Lai Y and Ni L: microRNA-181a-5p functions as an oncogene in renal cell carcinoma. Mol Med Rep. 17:8510–8517. 2018.PubMed/NCBI

105 

Lei Z, Ma X, Li H, Zhang Y, Gao Y, Fan Y, Li X, Chen L, Xie Y, Chen J, et al: Up-regulation of miR-181a in clear cell renal cell carcinoma is associated with lower KLF6 expression, enhanced cell proliferation, accelerated cell cycle transition, and diminished apoptosis. Urol Oncol. 36:93.e23–93.e37. 2018. View Article : Google Scholar

106 

Coca-Pelaz A, Shah JP, Hernandez-Prera JC, Ghossein RA, Rodrigo JP, Hartl DM, Olsen KD, Shaha AR, Zafereo M, Suarez C, et al: Papillary thyroid cancer-aggressive variants and impact on management: A narrative review. Adv Ther. 37:3112–3128. 2020. View Article : Google Scholar :

107 

Wang Y, Ye H, Yang Y, Li J, Cen A and Zhao L: microRNA-181a promotes the oncogene S100A2 and enhances papillary thyroid carcinoma growth by mediating the expression of histone demethylase KDM5C. J Endocrinol Invest. 45:17–28. 2022. View Article : Google Scholar

108 

Sun CX, Liu BJ, Su Y, Shi GW, Wang Y and Chi JF: MiR-181a promotes cell proliferation and migration through targeting KLF15 in papillary thyroid cancer. Clin Transl Oncol. 24:66–75. 2022. View Article : Google Scholar

109 

Le F, Li HM, Lv QL, Chen JJ, Lin QX, Ji YL and Yi B: lncRNA ZNF674-AS1 inhibits the migration, invasion and epithelial-mesenchymal transition of thyroid cancer cells by modulating the miR-181a/SOCS4 axis. Mol Cell Endocrinol. 544:1115512022. View Article : Google Scholar : PubMed/NCBI

110 

Gierlikowski W, Broniarek K, Cheda Ł, Rogulski Z and Kotlarek-Łysakowska M: MiR-181a-5p regulates NIS expression in papillary thyroid carcinoma. Int J Mol Sci. 22:60672021. View Article : Google Scholar : PubMed/NCBI

111 

Ju R, Huang Y, Guo Z, Han L, Ji S, Zhao L and Long J: The circular RNAs differential expression profiles in the metastasis of salivary adenoid cystic carcinoma cells. Mol Cell Biochem. 476:1269–1282. 2021. View Article : Google Scholar

112 

Nabhan M, Louka ML, Khairy E, Tash F, Ali-Labib R and El-Habashy S: MicroRNA-181a and its target Smad 7 as potential biomarkers for tracking child acute lymphoblastic leukemia. Gene. 628:253–258. 2017. View Article : Google Scholar : PubMed/NCBI

113 

Liu X, Liao W, Peng H, Luo X, Luo Z, Jiang H and Xu L: miR-181a promotes G1/S transition and cell proliferation in pediatric acute myeloid leukemia by targeting ATM. J Cancer Res Clin Oncol. 142:77–87. 2016. View Article : Google Scholar

114 

Lyu X, Li J, Yun X, Huang R, Deng X, Wang Y, Chen Y and Xiao G: miR-181a-5p, an inducer of Wnt-signaling, facilitates cell proliferation in acute lymphoblastic leukemia. Oncol Rep. 37:1469–1476. 2017. View Article : Google Scholar

115 

Assmann JLJC, Leon LG, Stavast CJ, van den Bogaerdt SE, Schilperoord-Vermeulen J, Sandberg Y, Bellido M, Erkeland SJ, Feith DJ, Loughran TP Jr and Langerak AW: miR-181a is a novel player in the STAT3-mediated survival network of TCRαβ+ CD8+ T large granular lymphocyte leukemia. Leukemia. 36:983–993. 2022. View Article : Google Scholar

116 

Fei J, Li Y, Zhu X and Luo X: miR-181a post-transcriptionally downregulates oncogenic RalA and contributes to growth inhibition and apoptosis in chronic myelogenous leukemia (CML). PLoS One. 7:e328342012. View Article : Google Scholar : PubMed/NCBI

117 

Sun Y, Jiang T, Jia Y, Zou J, Wang X and Gu W: LncRNA MALAT1/miR-181a-5p affects the proliferation and adhesion of myeloma cells via regulation of Hippo-YAP signaling pathway. Cell Cycle. 18:2509–2523. 2019. View Article : Google Scholar : PubMed/NCBI

118 

Chen L, Hu N, Wang C, Zhao H and Gu Y: Long non-coding RNA CCAT1 promotes multiple myeloma progression by acting as a molecular sponge of miR-181a-5p to modulate HOXA1 expression. Cell Cycle. 17:319–329. 2018. View Article : Google Scholar :

119 

Martelli M, Ferreri AJ, Agostinelli C, Di Rocco A, Pfreundschuh M and Pileri SA: Diffuse large B-cell lymphoma. Crit Rev Oncol Hematol. 87:146–171. 2013. View Article : Google Scholar

120 

Kozloski GA, Jiang X, Bhatt S, Ruiz J, Vega F, Shaknovich R, Melnick A and Lossos IS: miR-181a negatively regulates NF-κB signaling and affects activated B-cell-like diffuse large B-cell lymphoma pathogenesis. Blood. 127:2856–2866. 2016. View Article : Google Scholar : PubMed/NCBI

121 

Bao Z, Wang Y, Wang Q, Fang S, Shan X, Wang J and Jiang T: Intratumor heterogeneity, microenvironment, and mechanisms of drug resistance in glioma recurrence and evolution. Front Med. 15:551–561. 2021. View Article : Google Scholar : PubMed/NCBI

122 

Lei B, Huang Y, Zhou Z, Zhao Y, Thapa AJ, Li W, Cai W and Deng Y: Circular RNA hsa_circ_0076248 promotes oncogenesis of glioma by sponging miR-181a to modulate SIRT1 expression. J Cell Biochem. 120:6698–6708. 2019. View Article : Google Scholar

123 

Hanif F, Muzaffar K, Perveen K, Malhi SM and Simjee SU: Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev. 18:3–9. 2017.PubMed/NCBI

124 

Rezaei T, Hejazi M, Mansoori B, Mohammadi A, Amini M, Mosafer J, Rezaei S, Mokhtarzadeh A and Baradaran B: microRNA-181a mediates the chemo-sensitivity of glioblastoma to carmustine and regulates cell proliferation, migration, and apoptosis. Eur J Pharmacol. 888:1734832020. View Article : Google Scholar : PubMed/NCBI

125 

Huang SX, Zhao ZY, Weng GH, He XY, Wu CJ, Fu CY, Sui ZY, Ma YS and Liu T: Upregulation of miR-181a suppresses the formation of glioblastoma stem cells by targeting the Notch2 oncogene and correlates with good prognosis in patients with glioblastoma multiforme. Biochem Biophys Res Commun. 486:1129–1136. 2017. View Article : Google Scholar

126 

Marisetty A, Wei J, Kong LY, Ott M, Fang D, Sabbagh A and Heimberger AB: MiR-181 family modulates osteopontin in glioblastoma multiforme. Cancers (Basel). 12:38132020. View Article : Google Scholar : PubMed/NCBI

127 

Ma J, Yao Y, Wang P, Liu Y, Zhao L, Li Z, Li Z and Xue Y: MiR-181a regulates blood-tumor barrier permeability by targeting Krüppel-like factor 6. J Cereb Blood Flow Metab. 34:1826–1836. 2014. View Article : Google Scholar : PubMed/NCBI

128 

Liao Y, Shen L, Zhao H, Liu Q, Fu J, Guo Y, Peng R and Cheng L: LncRNA CASC2 interacts with miR-181a to modulate glioma growth and resistance to TMZ through PTEN pathway. J Cell Biochem. 118:1889–1899. 2017. View Article : Google Scholar

129 

Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L and Weiss WA: Neuroblastoma. Nat Rev Dis Primers. 2:160782016. View Article : Google Scholar

130 

Liu X, Peng H, Liao W, Luo A, Cai M, He J, Zhang X, Luo Z, Jiang H and Xu L: MiR-181a/b induce the growth, invasion, and metastasis of neuroblastoma cells through targeting ABI1. Mol Carcinog. 57:1237–1250. 2018. View Article : Google Scholar

131 

Orr BA: Pathology, diagnostics, and classification of medulloblastoma. Brain Pathol. 30:664–678. 2020. View Article : Google Scholar : PubMed/NCBI

132 

Zhu LY, Wu XY, Liu XD, Zheng DF, Li HS, Yang B, Zhang J and Chang Q: Aggressive medulloblastoma-derived exosomal miRNAs promote in vitro invasion and migration of tumor cells via Ras/MAPK pathway. J Neuropathol Exp Neurol. 79:734–745. 2020. View Article : Google Scholar : PubMed/NCBI

133 

Wang Z, Wang X, Zhou H, Dan X, Jiang L and Wu Y: Long non-coding RNA CASC2 inhibits tumorigenesis via the miR-181a/PLXNC1 axis in melanoma. Acta Biochim Biophys Sin (Shanghai). 50:263–272. 2018. View Article : Google Scholar : PubMed/NCBI

134 

Zhang S, Wan H and Zhang X: LncRNA LHFPL3-AS1 contributes to tumorigenesis of melanoma stem cells via the miR-181a-5p/BCL2 pathway. Cell Death Dis. 11:9502020. View Article : Google Scholar : PubMed/NCBI

135 

Waldman A and Schmults C: Cutaneous squamous cell carcinoma. Hematol Oncol Clin North Am. 33:1–12. 2019. View Article : Google Scholar

136 

Chitsazzadeh V, Nguyen TN, de Mingo Pulido A, Bittencourt BB, Du L, Adelmann CH, Ortiz Rivera I, Nguyen KA, Guerra LD, Davis A, et al: miR-181a promotes multiple protumorigenic functions by targeting TGFβR3. J Invest Dermatol. 142:1956–1965.e2. 2022. View Article : Google Scholar

137 

Neu J, Dziunycz PJ, Dzung A, Lefort K, Falke M, Denzler R, Freiberger SN, Iotzova-Weiss G, Kuzmanov A, Levesque MP, et al: miR-181a decelerates proliferation in cutaneous squamous cell carcinoma by targeting the proto-oncogene KRAS. PLoS One. 12:e01850282017. View Article : Google Scholar : PubMed/NCBI

138 

Mirabello L, Troisi RJ and Savage SA: Osteosarcoma incidence and survival rates from 1973 to 2004: Data from the surveillance, epidemiology, and end results program. Cancer. 115:1531–1543. 2009. View Article : Google Scholar : PubMed/NCBI

139 

Ba Z, Gu L, Hao S, Wang X, Cheng Z and Nie G: Downregulation of lncRNA CASC2 facilitates osteosarcoma growth and invasion through miR-181a. Cell Prolif. 51:e124092018. View Article : Google Scholar

140 

Zhao A, Liu W, Cui X, Wang N, Wang Y, Sun L, Xue H, Wu L, Cui S, Yang Y and Bai R: lncRNA TUSC7 inhibits osteosarcoma progression through the miR-181a/RASSF6 axis. Int J Mol Med. 47:583–594. 2021. View Article : Google Scholar :

141 

Mutlu S, Mutlu H, Kirkbes S, Eroglu S, Kabukcuoglu YS, Kabukcuoglu F, Duymus TM, ISık M and Ulasli M: The expression of miR-181a-5p and miR-371b-5p in chondrosarcoma. Eur Rev Med Pharmacol Sci. 19:2384–2388. 2015.PubMed/NCBI

142 

Sun X, Charbonneau C, Wei L, Chen Q and Terek RM: miR-181a targets RGS16 to promote chondrosarcoma growth, angiogenesis, and metastasis. Mol Cancer Res. 13:1347–1357. 2015. View Article : Google Scholar :

143 

Ho PTB, Clark IM and Le LTT: MicroRNA-based diagnosis and therapy. Int J Mol Sci. 23:71672022. View Article : Google Scholar : PubMed/NCBI

144 

Guo LJ and Zhang QY: Decreased serum miR-181a is a potential new tool for breast cancer screening. Int J Mol Med. 30:680–686. 2012. View Article : Google Scholar : PubMed/NCBI

145 

Zhang H, Zhu M, Shan X, Zhou X, Wang T, Zhang J, Tao J, Cheng W, Chen G, Li J, et al: A panel of seven-miRNA signature in plasma as potential biomarker for colorectal cancer diagnosis. Gene. 687:246–254. 2019. View Article : Google Scholar

146 

Lin Z, Chen Y, Lin Y, Lin H, Li H, Su X, Fang Z, Wang J, Wei Q, Teng J and Zhang Z: Potential miRNA biomarkers for the diagnosis and prognosis of esophageal cancer detected by a novel absolute quantitative RT-qPCR method. Sci Rep. 10:200652020. View Article : Google Scholar :

147 

He S, Zeng S, Zhou ZW, He ZX and Zhou SF: Hsa-microRNA-181a is a regulator of a number of cancer genes and a biomarker for endometrial carcinoma in patients: A bioinformatic and clinical study and the therapeutic implication. Drug Des Devel Ther. 9:1103–1175. 2015.PubMed/NCBI

148 

Shan X, Zhang H, Zhang L, Zhou X, Wang T, Zhang J, Shu Y, Zhu W, Wen W and Liu P: Identification of four plasma microRNAs as potential biomarkers in the diagnosis of male lung squamous cell carcinoma patients in China. Cancer Med. 7:2370–2381. 2018. View Article : Google Scholar :

149 

Nishimura J, Handa R, Yamamoto H, Tanaka F, Shibata K, Mimori K, Takemasa I, Mizushima T, Ikeda M, Sekimoto M, et al: microRNA-181a is associated with poor prognosis of colorectal cancer. Oncol Rep. 28:2221–2226. 2012. View Article : Google Scholar

150 

Panoutsopoulou K, Avgeris M, Magkou P, Mavridis K, Dreyer T, Dorn J, Obermayr E, Reinthaller A, Michaelidou K, Mahner S, et al: miR-181a overexpression predicts the poor treatment response and early-progression of serous ovarian cancer patients. Int J Cancer. 147:3560–3573. 2020. View Article : Google Scholar : PubMed/NCBI

151 

Papadimitriou MA, Papanota AM, Adamopoulos PG, Pilala KM, Liacos CI, Malandrakis P, Mavrianou-Koutsoukou N, Patseas D, Eleutherakis-Papaiakovou E, Gavriatopoulou M, et al miRNA-seq and clinical evaluation in multiple myeloma: miR-181a overexpression predicts short-term disease progression and poor post-treatment outcome. Br J Cancer. 126:79–90. 2022. View Article : Google Scholar

152 

Meijer LL, Garajová I, Caparello C, Le Large TYS, Frampton AE, Vasile E, Funel N, Kazemier G and Giovannetti E: Plasma miR-181a-5p downregulation predicts response and improved survival after FOLFIRINOX in pancreatic ductal adenocarcinoma. Ann Surg. 271:1137–1147. 2020. View Article : Google Scholar

153 

Egyed B, Kutszegi N, Sági JC, Gézsi A, Rzepiel A, Visnovitz T, Lőrincz P, Müller J, Zombori M, Szalai C, et al: MicroRNA-181a as novel liquid biopsy marker of central nervous system involvement in pediatric acute lymphoblastic leukemia. J Transl Med. 18:2502020. View Article : Google Scholar :

154 

Xue WX, Zhang MY, Rui Li, Liu X, Yin YH and Qu YQ: Serum miR-1228-3p and miR-181a-5p as noninvasive biomarkers for non-small cell lung cancer diagnosis and prognosis. Biomed Res Int. 2020:96018762020. View Article : Google Scholar : PubMed/NCBI

155 

Gao W, Yu Y, Cao H, Shen H, Li X, Pan S and Shu Y: Deregulated expression of miR-21, miR-143 and miR-181a in non small cell lung cancer is related to clinicopathologic characteristics or patient prognosis. Biomed Pharmacother. 64:399–408. 2010. View Article : Google Scholar

156 

Schwind S, Maharry K, Radmacher MD, Mrózek K, Holland KB, Margeson D, Whitman SP, Hickey C, Becker H, Metzeler KH, et al: Prognostic significance of expression of a single microRNA, miR-181a, in cytogenetically normal acute myeloid leukemia: A cancer and leukemia group B study. J Clin Oncol. 28:5257–5264. 2010. View Article : Google Scholar : PubMed/NCBI

157 

Wang Y, Fang YX, Dong B, Du X, Wang J, Wang X, Gao WQ and Xue W: Discovery of extracellular vesicles derived miR-181a-5p in patient's serum as an indicator for bone-metastatic prostate cancer. Theranostics. 11:878–892. 2021. View Article : Google Scholar : PubMed/NCBI

158 

Bjørnetrø T, Redalen KR, Meltzer S, Thusyanthan NS, Samiappan R, Jegerschöld C, Handeland KR and Ree AH: An experimental strategy unveiling exosomal microRNAs 486-5p, 181a-5p and 30d-5p from hypoxic tumour cells as circulating indicators of high-risk rectal cancer. J Extracell Vesicles. 8:15672192019. View Article : Google Scholar : PubMed/NCBI

159 

Leonetti A, Capula M, Minari R, Mazzaschi G, Gregori A, El Hassouni B, Papini F, Bordi P, Verzè M, Avan A, et al: Dynamic evaluation of circulating miRNA profile in EGFR-mutated NSCLC patients treated with EGFR-TKIs. Cells. 10:15202021. View Article : Google Scholar :

160 

Pichler M, Winter E, Ress AL, Bauernhofer T, Gerger A, Kiesslich T, Lax S, Samonigg H and Hoefler G: miR-181a is associated with poor clinical outcome in patients with colorectal cancer treated with EGFR inhibitor. J Clin Pathol. 67:198–203. 2014. View Article : Google Scholar

161 

Robak P, Dróżdż I, Jarych D, Mikulski D, Węgłowska E, Siemieniuk-Ryś M, Misiewicz M, Stawiski K, Fendler W, Szemraj J, et al: The value of serum MicroRNA expression signature in predicting refractoriness to bortezomib-based therapy in multiple myeloma patients. Cancers (Basel). 12:25692020. View Article : Google Scholar : PubMed/NCBI

162 

Nishida N, Arizumi T, Hagiwara S, Ida H, Sakurai T and Kudo M: MicroRNAs for the prediction of early response to sorafenib treatment in human hepatocellular carcinoma. Liver Cancer. 6:113–125. 2017. View Article : Google Scholar : PubMed/NCBI

163 

Seipel K, Messerli C, Wiedemann G, Bacher U and Pabst T: MN1, FOXP1 and hsa-miR-181a-5p as prognostic markers in acute myeloid leukemia patients treated with intensive induction chemotherapy and autologous stem cell transplantation. Leuk Res. 89:1062962020. View Article : Google Scholar

164 

Danza K, Silvestris N, Simone G, Signorile M, Saragoni L, Brunetti O, Monti M, Mazzotta A, De Summa S, Mangia A and Tommasi S: Role of miR-27a, miR-181a and miR-20b in gastric cancer hypoxia-induced chemoresistance. Cancer Biol Ther. 17:400–406. 2016. View Article : Google Scholar : PubMed/NCBI

165 

Petrillo M, Zannoni GF, Beltrame L, Martinelli E, DiFeo A, Paracchini L, Craparotta I, Mannarino L, Vizzielli G, Scambia G, et al: Identification of high-grade serous ovarian cancer miRNA species associated with survival and drug response in patients receiving neoadjuvant chemotherapy: A retrospective longitudinal analysis using matched tumor biopsies. Ann Oncol. 27:625–634. 2016. View Article : Google Scholar : PubMed/NCBI

166 

Shi L, Zhu W, Huang Y, Zhuo L, Wang S, Chen S, Zhang B and Ke B: Cancer-associated fibroblast-derived exosomal microRNA-20a suppresses the PTEN/PI3K-AKT pathway to promote the progression and chemoresistance of non-small cell lung cancer. Clin Transl Med. 12:e9892022. View Article : Google Scholar : PubMed/NCBI

167 

Novoa Díaz MB, Martín MJ and Gentili C: Tumor microenvironment involvement in colorectal cancer progression via Wnt/β-catenin pathway: Providing understanding of the complex mechanisms of chemoresistance. World J Gastroenterol. 28:3027–3046. 2022. View Article : Google Scholar

168 

Kousar K, Ahmad T, Abduh MS, Kanwal B, Shah SS, Naseer F and Anjum S: miRNAs in regulation of tumor microenvironment, chemotherapy resistance, immunotherapy modulation and miRNA therapeutics in cancer. Int J Mol Sci. 23:138222022. View Article : Google Scholar : PubMed/NCBI

169 

Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G and Calin GA: microRNA therapeutics in cancer-an emerging concept. EBioMedicine. 12:34–42. 2016. View Article : Google Scholar : PubMed/NCBI

170 

Zhang C, Xu C, Gao X and Yao Q: Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics. 12:2115–2132. 2022. View Article : Google Scholar

171 

Zhao X, Wang J, Zhu R, Zhang J and Zhang Y: DLX6-AS1 activated by H3K4me1 enhanced secondary cisplatin resistance of lung squamous cell carcinoma through modulating miR-181a-5p/miR-382-5p/CELF1 axis. Sci Rep. 11:210142021. View Article : Google Scholar :

172 

Sun J: VDR/vitamin D receptor regulates autophagic activity through ATG16L1. Autophagy. 12:1057–1058. 2016. View Article : Google Scholar

173 

Lin J, Chen X, Sun M, Qu X, Wang Y, Li C, Li X, Zhao L, Su Z and Ye H: Upregulation of microRNA-181a-5p increases the sensitivity of HS578T breast cancer cells to cisplatin by inducing vitamin D receptor-mediated cell autophagy. Oncol Lett. 21:2472021. View Article : Google Scholar : PubMed/NCBI

174 

Galluzzi L, Morselli E, Vitale I, Kepp O, Senovilla L, Criollo A, Servant N, Paccard C, Hupé P, Robert T, et al: miR-181a and miR-630 regulate cisplatin-induced cancer cell death. Cancer Res. 70:1793–1803. 2010. View Article : Google Scholar : PubMed/NCBI

175 

Hu X, Lou T, Yuan C, Wang Y, Tu X, Wang Y and Zhang T: Effects of lncRNA ANRIL-knockdown on the proliferation, apoptosis and cell cycle of gastric cancer cells. Oncol Lett. 22:6212021. View Article : Google Scholar : PubMed/NCBI

176 

Wu J, Ma C, Tang X, Shi Y, Liu Z, Chai X, Tang Q, Li L and Hann SS: The regulation and interaction of PVT1 and miR181a-5p contributes to the repression of SP1 expression by the combination of XJD decoction and cisplatin in human lung cancer cells. Biomed Pharmacother. 121:1096322020. View Article : Google Scholar

177 

Bai H, Cao Z, Deng C, Zhou L and Wang C: miR-181a sensitizes resistant leukaemia HL-60/Ara-C cells to Ara-C by inducing apoptosis. J Cancer Res Clin Oncol. 138:595–602. 2012. View Article : Google Scholar

178 

Ping W, Gao Y, Fan X, Li W, Deng Y and Fu X: MiR-181a contributes gefitinib resistance in non-small cell lung cancer cells by targeting GAS7. Biochem Biophys Res Commun. 495:2482–2489. 2018. View Article : Google Scholar

179 

Barbato A, Iuliano A, Volpe M, D'Alterio R, Brillante S, Massa F, De Cegli R, Carrella S, Salati M, Russo A, et al: Integrated genomics identifies miR-181/TFAM pathway as a critical driver of drug resistance in melanoma. Int J Mol Sci. 22:18012021. View Article : Google Scholar : PubMed/NCBI

180 

Tabatabaei SN, Derbali RM, Yang C, Superstein R, Hamel P, Chain JL and Hardy P: Co-delivery of miR-181a and melphalan by lipid nanoparticles for treatment of seeded retinoblastoma. J Control Release. 298:177–185. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li J, Shen J, Zhao Y, Du F, Li M, Wu X, Chen Y, Wang S, Xiao Z, Wu Z, Wu Z, et al: Role of miR‑181a‑5p in cancer (Review). Int J Oncol 63: 108, 2023.
APA
Li, J., Shen, J., Zhao, Y., Du, F., Li, M., Wu, X. ... Wu, Z. (2023). Role of miR‑181a‑5p in cancer (Review). International Journal of Oncology, 63, 108. https://doi.org/10.3892/ijo.2023.5556
MLA
Li, J., Shen, J., Zhao, Y., Du, F., Li, M., Wu, X., Chen, Y., Wang, S., Xiao, Z., Wu, Z."Role of miR‑181a‑5p in cancer (Review)". International Journal of Oncology 63.4 (2023): 108.
Chicago
Li, J., Shen, J., Zhao, Y., Du, F., Li, M., Wu, X., Chen, Y., Wang, S., Xiao, Z., Wu, Z."Role of miR‑181a‑5p in cancer (Review)". International Journal of Oncology 63, no. 4 (2023): 108. https://doi.org/10.3892/ijo.2023.5556
Copy and paste a formatted citation
x
Spandidos Publications style
Li J, Shen J, Zhao Y, Du F, Li M, Wu X, Chen Y, Wang S, Xiao Z, Wu Z, Wu Z, et al: Role of miR‑181a‑5p in cancer (Review). Int J Oncol 63: 108, 2023.
APA
Li, J., Shen, J., Zhao, Y., Du, F., Li, M., Wu, X. ... Wu, Z. (2023). Role of miR‑181a‑5p in cancer (Review). International Journal of Oncology, 63, 108. https://doi.org/10.3892/ijo.2023.5556
MLA
Li, J., Shen, J., Zhao, Y., Du, F., Li, M., Wu, X., Chen, Y., Wang, S., Xiao, Z., Wu, Z."Role of miR‑181a‑5p in cancer (Review)". International Journal of Oncology 63.4 (2023): 108.
Chicago
Li, J., Shen, J., Zhao, Y., Du, F., Li, M., Wu, X., Chen, Y., Wang, S., Xiao, Z., Wu, Z."Role of miR‑181a‑5p in cancer (Review)". International Journal of Oncology 63, no. 4 (2023): 108. https://doi.org/10.3892/ijo.2023.5556
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team