Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
November-2023 Volume 63 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2023 Volume 63 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
Review Open Access

Roles of salt‑inducible kinases in cancer (Review)

  • Authors:
    • Shenghui Feng
    • Fangyi Wei
    • Haoran Shi
    • Shen Chen
    • Bangqi Wang
    • Deqiang Huang
    • Lingyu Luo
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China, Department of Gastroenterology, Research Institute of Digestive Diseases, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
    Copyright: © Feng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 118
    |
    Published online on: August 25, 2023
       https://doi.org/10.3892/ijo.2023.5566
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Salt inducible kinases (SIKs) with three subtypes SIK1, SIK2 and SIK3, belong to the AMP‑activated protein kinase family. They are expressed ubiquitously in humans. Under normal circumstances, SIK1 regulates adrenocortical function in response to high salt or adrenocorticotropic hormone stimulation, SIK2 is involved in cell metabolism, controlling insulin signaling and gluconeogenesis and SIK3 coordinates with the mTOR complex, promoting cancer. The dysregulation of SIKs has been widely detected in various types of cancers. Based on most of the existing studies, SIK1 is mostly considered a tumor inhibitor, SIK2 and SIK3 are usually associated with tumor promotion. However, the functions of SIKs have shown contradictory in certain tumors, suggesting that SIKs cannot be simply classified as oncogenes or tumor suppressor genes. The present review provided a comprehensive summary of the roles of SIKs in the initiation and progression of different cancers, aiming to elucidate their clinical value and discuss potential strategies for targeting SIKs in cancer therapy.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Sun Z, Jiang Q, Li J and Guo J: The potent roles of salt-inducible kinases (SIKs) in metabolic homeostasis and tumorigenesis. Signal Transduct Target Ther. 5:1502020. View Article : Google Scholar : PubMed/NCBI

2 

Wang Z, Takemori H, Halder SK, Nonaka Y and Okamoto M: Cloning of a novel kinase (SIK) of the SNF1/AMPK family from high salt diet-treated rat adrenal. FEBS Lett. 453:135–1339. 1999. View Article : Google Scholar : PubMed/NCBI

3 

Lin X, Takemori H, Katoh Y, Doi J, Horike N, Makino A, Nonaka Y and Okamoto M: Salt-inducible kinase is involved in the ACTH/cAMP-dependent protein kinase signaling in Y1 mouse adrenocortical tumor cells. Mol Endocrinol. 15:1264–1276. 2001. View Article : Google Scholar : PubMed/NCBI

4 

Horike N, Takemori H, Katoh Y, Doi J, Min L, Asano T, Sun XJ, Yamamoto H, Kasayama S, Muraoka M, et al: Adipose-specific expression, phosphorylation of Ser794 in insulin receptor substrate-1, and activation in diabetic animals of salt-inducible kinase-2. J Biol Chem. 278:18440–1847. 2003. View Article : Google Scholar : PubMed/NCBI

5 

Katoh Y, Takemori H, Horike N, Doi J, Muraoka M, Min L and Okamoto M: Salt-inducible kinase (SIK) isoforms: Their involvement in steroidogenesis and adipogenesis. Mol Cell Endocrinol. 217:109–112. 2004. View Article : Google Scholar : PubMed/NCBI

6 

Chen F, Chen L, Qin Q and Sun X: Salt-inducible Kinase 2: An oncogenic signal transmitter and potential target for cancer therapy. Front Oncol. 9:182019. View Article : Google Scholar : PubMed/NCBI

7 

Feldman JD, Vician L, Crispino M, Hoe W, Baudry M and Herschman HR: The salt-inducible kinase, SIK, is induced by depolarization in brain. J Neurochem. 74:2227–2238. 2000. View Article : Google Scholar : PubMed/NCBI

8 

Küser-Abali G, Ozcan F, Ugurlu A, Uysal A, Fuss SH and Bugra-Bilge K: SIK2 is involved in the negative modulation of insulin-dependent muller cell survival and implicated in hyperglycemia-induced cell death. Invest Ophthalmol Vis Sci. 54:3526–3537. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Bricambert J, Miranda J, Benhamed F, Girard J, Postic C and Dentin R: Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J Clin Invest. 120:4316–4331. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Wein MN, Foretz M, Fisher DE, Xavier RJ and Kronenberg HM: Salt-inducible kinases: Physiology, regulation by cAMP, and therapeutic potential. Trends Endocrinol Metab. 29:723–735. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Berggreen C, Henriksson E, Jones HA, Morrice N and Göransson O: cAMP-elevation mediated by β-adrenergic stimulation inhibits salt-inducible kinase (SIK) 3 activity in adipocytes. Cell Signal. 24:1863–1871. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Itoh Y, Sanosaka M, Fuchino H, Yahara Y, Kumagai A, Takemoto D, Kagawa M, Doi J, Ohta M, Tsumaki N, et al: Salt-inducible Kinase 3 signaling is important for the gluconeogenic programs in mouse hepatocytes. J Biol Chem. 290:17879–1793. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Amara S, Majors C, Roy B, Hill S, Rose KL, Myles EL and Tiriveedhi V: Critical role of SIK3 in mediating high salt and IL-17 synergy leading to breast cancer cell proliferation. PLoS One. 12:e01800972017. View Article : Google Scholar : PubMed/NCBI

14 

Li Y, Yu J, Jia M, Ma P and Dong C: Salt-inducible kinase 2 functions as a tumor suppressor in hepatocellular carcinoma. Environ Toxicol. 36:2530–2540. 2021. View Article : Google Scholar : PubMed/NCBI

15 

Charoenfuprasert S, Yang YY, Lee YC, Chao KC, Chu PY, Lai CR, Hsu KF, Chang KC, Chen YC, Chen LT, et al: Identification of salt-inducible kinase 3 as a novel tumor antigen associated with tumorigenesis of ovarian cancer. Oncogene. 30:3570–3584. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Xin L, Liu C, Liu Y, Mansel RE, Ruge F, Davies E, Jiang WG and Martin TA: SIKs suppress tumor function and regulate drug resistance in breast cancer. Am J Cancer Res. 11:3537–3557. 2021.PubMed/NCBI

17 

Hollstein PE, Eichner LJ, Brun SN, Kamireddy A, Svensson RU, Vera LI, Ross DS, Rymoff TJ, Hutchins A, Galvez HM, et al: The AMPK-related Kinases SIK1 and SIK3 mediate key tumor-suppressive effects of LKB1 in NSCLC. Cancer Discov. 9:1606–1627. 2019. View Article : Google Scholar : PubMed/NCBI

18 

Hong B, Zhang J and Yang W: Activation of the LKB1-SIK1 signaling pathway inhibits the TGF-β-mediated epithelial-mesenchymal transition and apoptosis resistance of ovarian carcinoma cells. Mol Med Rep. 17:2837–2844. 2018.

19 

Cheng H, Liu P, Wang ZC, Zou L, Santiago S, Garbitt V, Gjoerup OV, Iglehart JD, Miron A, Richardson AL, et al: SIK1 couples LKB1 to p53-dependent anoikis and suppresses metastasis. Sci Signal. 2:ra352009. View Article : Google Scholar : PubMed/NCBI

20 

Yang L, Xie N, Huang J, Huang H, Xu S, Wang Z and Cai J: SIK1-LNC represses the proliferative, migrative, and invasive abilities of lung cancer cells. Onco Targets Ther. 11:4197–4206. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Selvik LK, Rao S, Steigedal TS, Haltbakk I, Misund K, Bruland T, Prestvik WS, Lægreid A and Thommesen L: Salt-inducible kinase 1 (SIK1) is induced by gastrin and inhibits migration of gastric adenocarcinoma cells. PLoS One. 9:e1124852014. View Article : Google Scholar : PubMed/NCBI

22 

Shi X, Yu X, Wang J, Bian S, Li Q, Fu F, Zou X, Zhang L, Bast RC Jr, Lu Z, et al: SIK2 promotes ovarian cancer cell motility and metastasis by phosphorylating MYLK. Mol Oncol. 16:2558–2574. 2022. View Article : Google Scholar :

23 

Sorrentino A, Menevse AN, Michels T, Volpin V, Durst FC, Sax J, Xydia M, Hussein A, Stamova S, Spoerl S, et al: Salt-inducible kinase 3 protects tumor cells from cytotoxic T-cell attack by promoting TNF-induced NF-κB activation. J Immunother Cancer. 10:e0042582022. View Article : Google Scholar

24 

Taub M, Springate JE and Cutuli F: Targeting of renal proximal tubule Na,K-ATPase by salt-inducible kinase. Biochem Biophys Res Commun. 393:339–344. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Darling NJ and Cohen P: Nuts and bolts of the salt-inducible kinases (SIKs). Biochem J. 478:1377–1397. 2021. View Article : Google Scholar : PubMed/NCBI

26 

Sakamoto K, Bultot L and Göransson O: The Salt-inducible kinases: Emerging metabolic regulators. Trends Endocrinol Metab. 29:827–840. 2018. View Article : Google Scholar : PubMed/NCBI

27 

Lizcano JM, Göransson O, Toth R, Deak M, Morrice NA, Boudeau J, Hawley SA, Udd L, Mäkelä TP, Hardie DG and Alessi DR: LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 23:833–843. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Takemori H, Katoh Y, Horike N, Doi J and Okamoto M: ACTH-induced nucleocytoplasmic translocation of salt-inducible kinase. Implication in the protein kinase A-activated gene transcription in mouse adrenocortical tumor cells. J Biol Chem. 277:42334–42343. 2002. View Article : Google Scholar : PubMed/NCBI

29 

Patel K, Foretz M, Marion A, Campbell DG, Gourlay R, Boudaba N, Tournier E, Titchenell P, Peggie M, Deak M, et al: The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver. Nat Commu. 5:45352014. View Article : Google Scholar

30 

MacKenzie KF, Clark K, Naqvi S, McGuire VA, Nöehren G, Kristariyanto Y, van den Bosch M, Mudaliar M, McCarthy PC, Pattison MJ, et al: PGE(2) induces macrophage IL-10 production and a regulatory-like phenotype via a protein kinase A-SIK-CRTC3 pathway. J Immunol. 190:565–577. 2013. View Article : Google Scholar :

31 

Sonntag T, Vaughan JM and Montminy M: 14-3-3 proteins mediate inhibitory effects of cAMP on salt-inducible kinases (SIKs). FEBS J. 285:467–480. 2018. View Article : Google Scholar :

32 

Berdeaux R, Goebel N, Banaszynski L, Takemori H, Wandless T, Shelton GD and Montminy M: SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nat Med. 13:597–603. 2007. View Article : Google Scholar : PubMed/NCBI

33 

Jaleel M, Villa F, Deak M, Toth R, Prescott AR, Van Aalten DM and Alessi DR: The ubiquitin-associated domain of AMPK-related kinases regulates conformation and LKB1-mediated phosphorylation and activation. Biochem J. 394:545–555. 2006. View Article : Google Scholar :

34 

Al-Hakim AK, Göransson O, Deak M, Toth R, Campbell DG, Morrice NA, Prescott AR and Alessi DR: 14-3-3 cooperates with LKB1 to regulate the activity and localization of QSK and SIK. J Cell Sci. 118:5661–5673. 2005. View Article : Google Scholar : PubMed/NCBI

35 

Bertorello AM and Zhu JK: SIK1/SOS2 networks: Decoding sodium signals via calcium-responsive protein kinase pathways. Pflugers Arch. 458:613–619. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Sasaki T, Takemori H, Yagita Y, Terasaki Y, Uebi T, Horike N, Takagi H, Susumu T, Teraoka H, Kusano K, et al: SIK2 is a key regulator for neuronal survival after ischemia via TORC1-CREB. Neuron. 69:106–119. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Hashimoto YK, Satoh T, Okamoto M and Takemori H: Importance of autophosphorylation at Ser186 in the A-loop of salt inducible kinase 1 for its sustained kinase activity. J Cell Biochem. 104:1724–1739. 2008. View Article : Google Scholar : PubMed/NCBI

38 

Fiol CJ, Mahrenholz AM, Wang Y, Roeske RW and Roach PJ: Formation of protein kinase recognition sites by covalent modification of the substrate. Molecular mechanism for the synergistic action of casein Kinase II and glycogen synthase kinase 3. J Biol Chem. 262:14042–14048. 1987. View Article : Google Scholar : PubMed/NCBI

39 

Koo SH, Flechner L, Qi L, Zhang X, Screaton RA, Jeffries S, Hedrick S, Xu W, Boussouar F, Brindle P, et al: The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature. 437:1109–1111. 2005. View Article : Google Scholar

40 

Liu W, Feldman JD, Machado HB, Vician LJ and Herschman HR: Expression of depolarization-induced immediate early gene proteins in PC12 cells. J Eur Res. 72:670–678. 2003.

41 

Jagannath A, Butler R, Godinho SIH, Couch Y, Brown LA, Vasudevan SR, Flanagan KC, Anthony D, Churchill GC, Wood MJA, et al: The CRTC1-SIK1 pathway regulates entrainment of the circadian clock. Cell. 154:1100–1111. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Alotaibi D, Amara S, Johnson TL and Tiriveedhi V: Potential anticancer effect of prostratin through SIK3 inhibition. Oncol Lett. 15:3252–3258. 2018.PubMed/NCBI

43 

Panni S, Lovering RC, Porras P and Orchard S: Non-coding RNA regulatory networks. Biochim Biophys Acta Gene Regul Mech. 1863:1944172020. View Article : Google Scholar

44 

Huang C, Liu J, Xu L, Hu W, Wang J, Wang M and Yao X: MicroRNA-17 promotes cell proliferation and migration in human colorectal cancer by downregulating SIK1. Cancer Manag Res. 11:3521–3534. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Ren ZG, Dong SX, Han P and Qi J: miR-203 promotes proliferation, migration and invasion by degrading SIK1 in pancreatic cancer. Oncol Rep. 35:1365–1374. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Chen JL, Chen F, Zhang TT and Liu NF: Suppression of SIK1 by miR-141 in human ovarian cancer cell lines and tissues. Int J Mol Med. 37:1601–1610. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Bai X, Yang M and Xu Y: MicroRNA-373 promotes cell migration via targeting salt-inducible kinase 1 expression in melanoma. Exp Ther Med. 16:4759–4764. 2018.PubMed/NCBI

48 

Huang S, Xue P, Han X, Zhang C, Yang L, Liu L, Wang X, Li H, Fu J and Zhou Y: Exosomal miR-130b-3p targets SIK1 to inhibit medulloblastoma tumorigenesis. Cell Death Dis. 11:4082020. View Article : Google Scholar : PubMed/NCBI

49 

Wei S, Qi L and Wang L: Overexpression of circ_CELSR1 facilitates paclitaxel resistance of ovarian cancer by regulating miR-149-5p/SIK2 axis. Anticancer Drugs. 32:496–507. 2021. View Article : Google Scholar : PubMed/NCBI

50 

Sun Z, Niu S, Xu F, Zhao W, Ma R and Chen M: CircAMOTL1 promotes tumorigenesis through miR-526b/SIK2 axis in cervical cancer. Front Cell Dev Biol. 8:5681902020. View Article : Google Scholar :

51 

Liu Y, Gao S, Chen X, Liu M, Mao C and Fang X: Overexpression of miR-203 sensitizes paclitaxel (Taxol)-resistant colorectal cancer cells through targeting the salt-inducible kinase 2 (SIK2). Tumor Biol. 37:12231–12239. 2016. View Article : Google Scholar

52 

Xia B, Lin M, Dong W, Chen H, Li B, Zhang X, Hou Y and Lou G: Upregulation of miR-874-3p and miR-874-5p inhibits epithelial ovarian cancer malignancy via SIK2. J Biochem Mol Toxicol. 32:e221682018. View Article : Google Scholar : PubMed/NCBI

53 

Li ZY, Wang XL, Dang Y, Zhu XZ, Zhang YH, Cai BX and Zheng L: Long non-coding RNA UCA1 promotes the progression of paclitaxel resistance in ovarian cancer by regulating the miR-654-5p/SIK2 axis. Eur Rev Med Pharmacol Sci. 24:591–603. 2020.PubMed/NCBI

54 

Peng J, Hou F, Zhu W, Li J and Teng Z: lncRNA NR2F1-AS1 Regulates miR-17/SIK1 axis to suppress the invasion and migration of cervical squamous cell carcinoma cells. Reprod Sci. 27:1534–1539. 2020. View Article : Google Scholar : PubMed/NCBI

55 

Bawa P, Zackaria S, Verma M, Gupta S, Srivatsan R, Chaudhary B and Srinivasan S: Integrative analysis of normal long intergenic Non-Coding RNAs in prostate cancer. PLoS One. 10:e01221432015. View Article : Google Scholar : PubMed/NCBI

56 

Huang J, Lin F, Xu C and Xu Y: LINC00662 facilitates osteosarcoma progression via sponging miR-103a-3p and regulating SIK2 expression. J Tissue Eng Regen Med. 15:1082–1091. 2021. View Article : Google Scholar : PubMed/NCBI

57 

Zhou WY, Cai ZR, Liu J, Wang DS, Ju HQ and Xu RH: Circular RNA: Metabolism, functions and interactions with proteins. Mol Cancer. 19:1722020. View Article : Google Scholar : PubMed/NCBI

58 

Jin Y and Wang H: Circ_0078607 inhibits the progression of ovarian cancer via regulating the miR-32-5p/SIK1 network. J Ovarian Res. 15:32022. View Article : Google Scholar : PubMed/NCBI

59 

Zang X, Jiang J, Gu J, Chen Y, Wang M, Zhang Y, Fu M, Shi H, Cai H, Qian H, et al: Circular RNA EIF4G3 suppresses gastric cancer progression through inhibition of β-catenin by promoting δ-catenin ubiquitin degradation and upregulating SIK1. Mol Cancer. 21:1412022. View Article : Google Scholar

60 

Clark K, MacKenzie KF, Petkevicius K, Kristariyanto Y, Zhang J, Choi HG, Peggie M, Plater L, Pedrioli PG, McIver E, et al: Phosphorylation of CRTC3 by the salt-inducible kinases controls the interconversion of classically activated and regulatory macrophages. Proc Natl Acad Sci USA. 109:16986–16991. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Screaton RA, Conkright MD, Katoh Y, Best JL, Canettieri G, Jeffries S, Guzman E, Niessen S, Yates JR III, Takemori H, et al: The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell. 119:61–74. 2004. View Article : Google Scholar : PubMed/NCBI

62 

Altarejos JY and Montminy M: CREB and the CRTC co-activators: Sensors for hormonal and metabolic signals. Natu Rev Mol Cell Biol. 12:141–151. 2011. View Article : Google Scholar

63 

Henriksson E, Jones HA, Patel K, Peggie M, Morrice N, Sakamoto K and Göransson O: The AMPK-related kinase SIK2 is regulated by cAMP via phosphorylation at Ser358 in adipocytes. Biochemical J. 444:503–514. 2012. View Article : Google Scholar

64 

Luo Q, Viste K, Urday-Zaa JC, Senthil Kumar G, Tsai WW, Talai A, Mayo KE, Montminy M and Radhakrishnan I: Mechanism of CREB recognition and coactivation by the CREB-regulated transcriptional coactivator CRTC2. Proc Natl Acad Sci USA. 109:20865–20870. 2012. View Article : Google Scholar : PubMed/NCBI

65 

van der Linden AM, Nolan KM and Sengupta P: KIN-29 SIK regulates chemoreceptor gene expression via an MEF2 transcription factor and a class II HDAC. EMBO J. 26:358–370. 2007. View Article : Google Scholar

66 

Chan JK, Sun L, Yang XJ, Zhu G and Wu Z: Functional characterization of an amino-terminal region of HDAC4 that possesses MEF2 binding and transcriptional repressive activity. J Biol Chem. 278:23515–23521. 2003. View Article : Google Scholar : PubMed/NCBI

67 

Alessi DR, Sakamoto K and Bayascas JR: LKB1-dependent signaling pathways. Ann Rev Biochemistry. 75:137–163. 2006. View Article : Google Scholar

68 

Ponnusamy L and Manoharan R: Distinctive role of SIK1 and SIK3 isoforms in aerobic glycolysis and cell growth of breast cancer through the regulation of p53 and mTOR signaling pathways. Biochim Biophys Acta Mol Cell Res. 1868:1189752021. View Article : Google Scholar : PubMed/NCBI

69 

Schwartzenberg-Bar-Yoseph F, Armoni M and Karnieli E: The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res. 64:2627–2633. 2004. View Article : Google Scholar : PubMed/NCBI

70 

Kowanetz M, Lönn P, Vanlandewijck M, Kowanetz K, Heldin CH and Moustakas A: TGFbeta induces SIK to negatively regulate type I receptor kinase signaling. J Cell Biol. 182:655–662. 2008. View Article : Google Scholar : PubMed/NCBI

71 

Yao YH, Cui Y, Qiu XN, Zhang LZ, Zhang W, Li H and Yu JM: Attenuated LKB1-SIK1 signaling promotes epithelial-mesenchymal transition and radioresistance of non-small cell lung cancer cells. Chin J Cancer. 35:502016. View Article : Google Scholar : PubMed/NCBI

72 

Sánchez-Tilló E, Siles L, de Barrios O, Cuatrecasas M, Vaquero EC, Castells A and Postigo A: Expanding roles of ZEB factors in tumorigenesis and tumor progression. Am J Cancer Res. 1:897–912. 2011.PubMed/NCBI

73 

Zhang P, Sun Y and Ma L: ZEB1: At the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle. 14:481–487. 2015. View Article : Google Scholar : PubMed/NCBI

74 

Gradek F, Lopez-Charcas O, Chadet S, Poisson L, Ouldamer L, Goupille C, Jourdan ML, Chevalier S, Moussata D, Besson P and Roger S: Sodium channel Nav1.5 controls epithelial-to-mesenchymal transition and invasiveness in breast cancer cells through its regulation by the Salt-inducible Kinase-1. Sci Rep. 9:186522019. View Article : Google Scholar

75 

Cameron IL, Smith NK, Pool TB and Sparks RL: Intracellular concentration of sodium and other elements as related to mitogenesis and oncogenesis in vivo. Cancer Res. 40:1493–1500. 1980.PubMed/NCBI

76 

Yang M, Kozminski DJ, Wold LA, Modak R, Calhoun JD, Isom LL and Brackenbury WJ: Therapeutic potential for phenytoin: Targeting Na(v)1.5 sodium channels to reduce migration and invasion in metastatic breast cancer. Breast Cancer Res Treat. 134:603–615. 2012. View Article : Google Scholar : PubMed/NCBI

77 

Fraser SP, Diss JK, Chioni AM, Mycielska ME, Pan H, Yamaci RF, Pani F, Siwy Z, Krasowska M, Grzywna Z, et al: Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res. 11:5381–5389. 2005. View Article : Google Scholar : PubMed/NCBI

78 

Nelson M, Yang M, Millican-Slater R and Brackenbury WJ: Nav1.5 regulates breast tumor growth and metastatic dissemination in vivo. Oncotarget. 6:32914–32929. 2015. View Article : Google Scholar : PubMed/NCBI

79 

Lei Y, Chen L, Zhang G, Shan A, Ye C, Liang B, Sun J, Liao X, Zhu C, Chen Y, et al: MicroRNAs target the Wnt/β-catenin signaling pathway to regulate epithelial-mesenchymal transition in cancer (Review). Oncol Rep. 44:1299–1313. 2020.PubMed/NCBI

80 

Chen L, Mai W, Chen M, Hu J, Zhuo Z, Lei X, Deng L, Liu J, Yao N, Huang M, et al: Arenobufagin inhibits prostate cancer epithelial-mesenchymal transition and metastasis by down-regulating β-catenin. Pharmacol Res. 123:130–142. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Qu C, He D, Lu X, Dong L, Zhu Y, Zhao Q, Jiang X, Chang P, Jiang X, Wang L, et al: Salt-inducible Kinase (SIK1) regulates HCC progression and WNT/beta-catenin activation. J Hepatol. 64:1076–1089. 2016. View Article : Google Scholar : PubMed/NCBI

82 

Qu C and Qu Y: Down-regulation of salt-inducible kinase 1 (SIK1) is mediated by RNF2 in hepatocarcinogenesis. Oncotarget. 8:3144–3155. 2017. View Article : Google Scholar :

83 

Gajula RP, Chettiar ST, Williams RD, Thiyagarajan S, Kato Y, Aziz K, Wang R, Gandhi N, Wild AT, Vesuna F, et al: The twist box domain is required for Twist1-induced prostate cancer metastasis. Mol Cancer Res. 11:1387–1400. 2013. View Article : Google Scholar : PubMed/NCBI

84 

Zhu QQ, Ma C, Wang Q, Song Y and Lv T: The role of TWIST1 in epithelial-mesenchymal transition and cancers. Tumor Biol. 37:185–197. 2016. View Article : Google Scholar

85 

Du WQ, Zheng JN and Pei DS: The diverse oncogenic and tumor suppressor roles of salt-inducible kinase (SIK) in cancer. Expert Opin Ther Targets. 20:477–485. 2016. View Article : Google Scholar

86 

Fu X, Tang Y, Wu W, Ouyang Y, Tan D and Huang Y: Exosomal microRNA-25 released from cancer cells targets SIK1 to promote hepatocellular carcinoma tumorigenesis. Dig Liver Dis. 54:954–963. 2022. View Article : Google Scholar

87 

Hartono AB, Kang HJ, Shi L, Phipps W, Ungerleider N, Giardina A, Chen W, Spraggon L, Somwar R, Moroz K, et al: Salt-Inducible Kinase 1 is a potential therapeutic target in desmoplastic small round cell tumor. Oncogenesis. 11:182022. View Article : Google Scholar : PubMed/NCBI

88 

Joshi K, Shah VJ and Maddika S: GINS complex protein Sld5 recruits SIK1 to activate MCM helicase during DNA replication. Cell Signal. 28:1852–1862. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Ahmed AA, Lu Z, Jennings NB, Etemadmoghadam D, Capalbo L, Jacamo RO, Barbosa-Morais N, Le XF; Australian Ovarian Cancer Study Group; Vivas-Mejia P, et al: SIK2 is a centrosome kinase required for bipolar mitotic spindle formation that provides a potential target for therapy in ovarian cancer. Cancer Cell. 18:109–121. 2010. View Article : Google Scholar : PubMed/NCBI

90 

Raab M, Rak M, Tesch R, Gasimli K, Becker S, Knapp S, Strebhardt K and Sanhaji M: The small-molecule inhibitor MRIA9 reveals novel insights into the cell cycle roles of SIK2 in ovarian cancer cells. Cancers (Basel). 13:36582021. View Article : Google Scholar : PubMed/NCBI

91 

Sun XP, Dong X, Lin L, Jiang X, Wei Z, Zhai B, Sun B, Zhang Q, Wang X, Jiang H, et al: Up-regulation of survivin by AKT and hypoxia-inducible factor 1α contributes to cisplatin resistance in gastric cancer. FEBS J. 281:115–128. 2014. View Article : Google Scholar

92 

Giodini A, Kallio MJ, Wall NR, Gorbsky GJ, Tognin S, Marchisio PC, Symons M and Altieri DC: Regulation of microtubule stability and mitotic progression by survivin. Cancer Res. 62:2462–2467. 2002.PubMed/NCBI

93 

Shojaei F, Yazdani-Nafchi F, Banitalebi-Dehkordi M, Chehelgerdi M and Khorramian-Ghahfarokhi M: Trace of survivin in cancer. Eur J Cancer Prevention. 28:365–372. 2019. View Article : Google Scholar

94 

Vader G, Kauw JJ, Medema RH and Lens SM: Survivin mediates targeting of the chromosomal passenger complex to the centromere and midbody. EMBO Rep. 7:85–92. 2006. View Article : Google Scholar

95 

Ryan BM, O'Donovan N and Duffy MJ: Survivin: A new target for anti-cancer therapy. Cancer Treatment Rev. 35:553–562. 2009. View Article : Google Scholar

96 

Bon H, Wadhwa K, Schreiner A, Osborne M, Carroll T, Ramos-Montoya A, Ross-Adams H, Visser M, Hoffmann R, Ahmed AA, et al: Salt-inducible kinase 2 regulates mitotic progression and transcription in prostate cancer. Mol Cancer Res. 13:620–635. 2015. View Article : Google Scholar :

97 

Nagel S, Leich E, Quentmeier H, Meyer C, Kaufmann M, Zaborski M, Rosenwald A, Drexler HG and Macleod RA: Amplification at 11q23 targets protein kinase SIK2 in diffuse large B-cell lymphoma. Leuk Lymphoma. 51:881–891. 2010. View Article : Google Scholar : PubMed/NCBI

98 

Lu F, Zheng Y, Donkor PO, Zou P and Mu P: Downregulation of CREB promotes cell proliferation by mediating G1/S phase transition in hodgkin lymphoma. Oncol Res. 24:171–179. 2016. View Article : Google Scholar : PubMed/NCBI

99 

Melnikova VO, Dobroff AS, Zigler M, Villares GJ, Braeuer RR, Wang H, Huang L and Bar-Eli M: CREB inhibits AP-2alpha expression to regulate the malignant phenotype of melanoma. PLoS One. 5:e124522010. View Article : Google Scholar : PubMed/NCBI

100 

Wehr MC, Holder MV, Gailite I, Saunders RE, Maile TM, Ciirdaeva E, Instrell R, Jiang M, Howell M, Rossner MJ and Tapon N: Salt-inducible kinases regulate growth through the Hippo signaling pathway in Drosophila. Nat Cell Biol. 15:61–71. 2013. View Article : Google Scholar :

101 

Overholtzer M, Zhang J, Smolen GA, Muir B, Li W, Sgroi DC, Brugge JS and Haber DA: Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci USA. 103:12405–12410. 2006. View Article : Google Scholar : PubMed/NCBI

102 

Fukushi A, Kim HD, Chang YC and Kim CH: Revisited metabolic control and reprogramming cancers by means of the warburg effect in tumor cells. Int J Mol Sci. 23:100372022. View Article : Google Scholar : PubMed/NCBI

103 

Gao T, Zhang X, Zhao J, Zhou F, Wang Y, Zhao Z, Xing J, Chen B, Li J and Liu S: SIK2 promotes reprogramming of glucose metabolism through PI3K/AKT/HIF-1alpha pathway and Drp1-mediated mitochondrial fission in ovarian cancer. Cancer Lett. 469:89–101. 2020. View Article : Google Scholar

104 

Röhrig F and Schulze A: The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 16:732–749. 2016. View Article : Google Scholar : PubMed/NCBI

105 

Corbet C and Feron O: Emerging roles of lipid metabolism in cancer progression. Curr Opin Clin Nutr Metab Care. 20:254–260. 2017. View Article : Google Scholar : PubMed/NCBI

106 

Ni X, Feng Y and Fu X: Role of saltinducible kinase 2 in the malignant behavior and glycolysis of colorectal cancer cells. Mol Med Rep. 24:8222021. View Article : Google Scholar

107 

Qi ZX, Cai JJ, Chen LC, Yue Q, Gong Y, Yao Y and Mao Y: TRIM28 as an independent prognostic marker plays critical roles in glioma progression. J Neurooncol. 126:19–26. 2016. View Article : Google Scholar

108 

Miranda F, Mannion D, Liu S, Zheng Y, Mangala LS, Redondo C, Herrero-Gonzalez S, Xu R, Taylor C, Chedom DF, et al: Salt-inducible kinase 2 couples ovarian cancer cell metabolism with survival at the adipocyte-rich metastatic niche. Cancer Cell. 30:273–289. 2016. View Article : Google Scholar : PubMed/NCBI

109 

Zhao J, Zhang X, Gao T, Wang S, Hou Y, Yuan P, Yang Y, Yang T, Xing J, Li J and Liu S: SIK2 enhances synthesis of fatty acid and cholesterol in ovarian cancer cells and tumor growth through PI3K/Akt signaling pathway. Cell Death Dis. 11:252020. View Article : Google Scholar : PubMed/NCBI

110 

Martinez Calejman C, Trefely S, Entwisle SW, Luciano A, Jung SM, Hsiao W, Torres A, Hung CM, Li H, Snyder NW, et al: mTORC2-AKT signaling to ATP-citrate lyase drives brown adipogenesis and de novo lipogenesis. Nat Commun. 11:5752020. View Article : Google Scholar :

111 

Zhang MX, Wang H and Sun GP: Tumor-suppressor Fbxw7 targets SIK2 for degradation to interfere with TORC2-AKT signaling in pancreatic cancer. Cell Biol Int. 44:1900–1910. 2020. View Article : Google Scholar : PubMed/NCBI

112 

Airley RE, McHugh P, Evans AR, Harris B, Winchester L, Buffa FM, Al-Tameemi W, Leek R and Harris AL: Role of carbohydrate response element-binding protein (ChREBP) in generating an aerobic metabolic phenotype and in breast cancer progression. Br J Cancer. 110:715–723. 2014. View Article : Google Scholar :

113 

Dai XM, Zhang YH, Lin XH, Huang XX, Zhang Y, Xue CR, Chen WN, Ye JX, Lin XJ and Lin X: SIK2 represses AKT/GSK3β/β-catenin signaling and suppresses gastric cancer by inhibiting autophagic degradation of protein phosphatases. Mol Oncol. 15:228–245. 2021. View Article : Google Scholar

114 

Rong Z, Zhang L, Li Z, Xiao Z, Duan Y, Ren X, Zi Y, Gao J, Mu Y, Guan Y, et al: SIK2 maintains breast cancer stemness by phosphorylating LRP6 and activating Wnt/β-catenin signaling. Oncogene. 41:2390–2403. 2022. View Article : Google Scholar

115 

Dittmer J: Breast cancer stem cells: Features, key drivers and treatment options. Semin Cancer Biol. 53:59–74. 2018. View Article : Google Scholar : PubMed/NCBI

116 

Raisch J, Côté-Biron A and Rivard N: A Role for the WNT Co-receptor LRP6 in pathogenesis and therapy of epithelial cancers. Cancers (Basel). 11:11622019. View Article : Google Scholar : PubMed/NCBI

117 

Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI

118 

Jackson HW, Fischer JR, Zanotelli VRT, Ali HR, Mechera R, Soysal SD, Moch H, Muenst S, Varga Z, Weber WP and Bodenmiller B: The single-cell pathology landscape of breast cancer. Nature. 578:615–620. 2020. View Article : Google Scholar

119 

Maxfield KE, Macion J, Vankayalapati H and Whitehurst AW: SIK2 Restricts autophagic flux to support triple-negative breast cancer survival. Mol Cell Biol. 36:3048–3057. 2016. View Article : Google Scholar : PubMed/NCBI

120 

Pradeep S, Kim SW, Wu SY, Nishimura M, Chaluvally-Raghavan P, Miyake T, Pecot CV, Kim SJ, Choi HJ, Bischoff FZ, et al: Hematogenous metastasis of ovarian cancer: Rethinking mode of spread. Cancer Cell. 26:77–91. 2014. View Article : Google Scholar :

121 

Yeung TL, Leung CS, Yip KP, Au Yeung CL, Wong ST and Mok SC: Cellular and molecular processes in ovarian cancer metastasis. A review in the Theme: Cell and molecular processes in cancer metastasis. Am J Physiol Cell Physiol. 309:C444–C456. 2015. View Article : Google Scholar : PubMed/NCBI

122 

Zhou Q, Gensch C and Liao JK: Rho-associated coiled-coil-forming kinases (ROCKs): Potential targets for the treatment of atherosclerosis and vascular disease. Trends Pharmacol Sci. 32:167–173. 2011. View Article : Google Scholar : PubMed/NCBI

123 

Madsen CD, Hooper S, Tozluoglu M, Bruckbauer A, Fletcher G, Erler JT, Bates PA, Thompson B and Sahai E: STRIPAK components determine mode of cancer cell migration and metastasis. Nat Cell Biol. 17:68–80. 2015. View Article : Google Scholar

124 

Ponnusamy L, Kothandan G and Manoharan R: Berberine and Emodin abrogates breast cancer growth and facilitates apoptosis through inactivation of SIK3-induced mTOR and Akt signaling pathway. Biochim Biophys Acta Mol Basis Dis. 1866:1658972020. View Article : Google Scholar : PubMed/NCBI

125 

Deng C, Zhang P, Harper JW, Elledge SJ and Leder P: Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell. 82:675–684. 1995. View Article : Google Scholar : PubMed/NCBI

126 

Woo YM, Shin Y, Lee EJ, Lee S, Jeong SH, Kong HK, Park EY, Kim HK, Han J, Chang M and Park JH: Inhibition of aerobic glycolysis represses Akt/mTOR/HIF-1α axis and restores tamoxifen sensitivity in antiestrogen-resistant breast cancer cells. PLoS One. 10:e01322852015. View Article : Google Scholar

127 

Tarumoto Y, Lu B, Somerville TDD, Huang YH, Milazzo JP, Wu XS, Klingbeil O, El Demerdash O, Shi J and Vakoc CR: LKB1, Salt-inducible kinases, and MEF2C are linked dependencies in acute myeloid leukemia. Mol Cell. 69:1017–1027.e6. 2018. View Article : Google Scholar :

128 

Tarumoto Y, Lin S, Wang J, Milazzo JP, Xu Y, Lu B, Yang Z, Wei Y, Polyanskaya S, Wunderlich M, et al: Salt-inducible kinase inhibition suppresses acute myeloid leukemia progression in vivo. Blood. 135:56–70. 2020. View Article : Google Scholar :

129 

Crusz SM and Balkwill FR: Inflammation and cancer: Advances and new agents. Nat Rev Clin Oncol. 12:584–596. 2015. View Article : Google Scholar : PubMed/NCBI

130 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

131 

Stubbins RJ, Platzbecker U and Karsan A: Inflammation and myeloid malignancy: Quenching the flame. Blood. 140:1067–1074. 2022. View Article : Google Scholar : PubMed/NCBI

132 

Diakos CI, Charles KA, McMillan DC and Clarke SJ: Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 15:e493–e503. 2014. View Article : Google Scholar : PubMed/NCBI

133 

Candido J and Hagemann T: Cancer-related inflammation. J Clin Immunol. 33(Suppl 1): S79–S84. 2013. View Article : Google Scholar

134 

Mantovani A, Allavena P, Sica A and Balkwill F: Cancer-related inflammation. Nature. 454:436–444. 2008. View Article : Google Scholar : PubMed/NCBI

135 

Sun Y, Mao X, Fan C, Liu C, Guo A, Guan S, Jin Q, Li B, Yao F and Jin F: CXCL12-CXCR4 axis promotes the natural selection of breast cancer cell metastasis. Tumor Biol. 35:7765–7773. 2014. View Article : Google Scholar

136 

Yong Kim S, Jeong S, Chah KH, Jung E, Baek KH, Kim ST, Shim JH, Chun E and Lee KY: Salt-inducible kinases 1 and 3 negatively regulate Toll-like receptor 4-mediated signal. Mol Endocrinol. 27:1958–1968. 2013. View Article : Google Scholar : PubMed/NCBI

137 

Janssens S and Beyaert R: Role of Toll-like receptors in pathogen recognition. Clin Microbiol Rev. 16:637–646. 2003. View Article : Google Scholar :

138 

Kim SY, Jeong S, Jung E, Baik KH, Chang MH, Kim SA, Shim JH, Chun E and Lee KY: AMP-activated protein kinase-α1 as an activating kinase of TGF-β-activated kinase 1 has a key role in inflammatory signals. Cell Death Dis. 3:e3572012. View Article : Google Scholar

139 

West AP, Koblansky AA and Ghosh S: Recognition and signaling by toll-like receptors. Ann Rev Cell Dev Biol. 22:409–437. 2006. View Article : Google Scholar

140 

Kumari N, Dwarakanath BS, Das A and Bhatt AN: Role of interleukin-6 in cancer progression and therapeutic resistance. Tumor Biol. 37:11553–11572. 2016. View Article : Google Scholar

141 

Mannino MH, Zhu Z, Xiao H, Bai Q, Wakefield MR and Fang Y: The paradoxical role of IL-10 in immunity and cancer. Cancer Lett. 367:103–107. 2015. View Article : Google Scholar

142 

Sall J, Pettersson AM, Bjork C, Henriksson E, Wasserstrom S, Linder W, Zhou Y, Hansson O, Andersson DP, Ekelund M, et al: Salt-inducible kinase 2 and -3 are downregulated in adipose tissue from obese or insulin-resistant individuals: Implications for insulin signaling and glucose uptake in human adipocytes. Diabetologia. 60:314–323. 2017. View Article : Google Scholar

143 

Thommen DS and Schumacher TN: T cell dysfunction in cancer. Cancer Cell. 33:547–562. 2018. View Article : Google Scholar : PubMed/NCBI

144 

Nefla M, Darling NJ, van Gijsel Bonnello M, Cohen P and Arthur JSC: Salt inducible kinases 2 and 3 are required for thymic T cell development. Sci Rep. 11:215502021. View Article : Google Scholar : PubMed/NCBI

145 

Yunna C, Mengru H, Lei W and Weidong C: Macrophage M1/M2 polarization. Eur J Pharmacol. 877:1730902020. View Article : Google Scholar

146 

Darling NJ, Toth R, Arthur JS and Clark K: Inhibition of SIK2 and SIK3 during differentiation enhances the anti-inflammatory phenotype of macrophages. Biochem J. 474:521–537. 2017. View Article : Google Scholar

147 

Di Giorgio E and Brancolini C: Regulation of class IIa HDAC activities: It is not only matter of subcellular localization. Epigenomics. 8:251–269. 2016. View Article : Google Scholar

148 

Tesch R, Rak M, Raab M, Berger LM, Kronenberger T, Joerger AC, Berger BT, Abdi I, Hanke T, Poso A, et al: Structure-based design of selective salt-inducible kinase inhibitors. J Med Chem. 64:8142–8160. 2021. View Article : Google Scholar

149 

Zhou J, Alfraidi A, Zhang S, Santiago-O'Farrill JM, Yerramreddy Reddy VK, Alsaadi A, Ahmed AA, Yang H, Liu J, Mao W, et al: A novel compound ARN-3236 inhibits salt-inducible Kinase 2 and sensitizes ovarian cancer cell lines and xenografts to paclitaxel. Clin Cancer Res. 23:1945–1954. 2017. View Article : Google Scholar

150 

Fan D, Yang H, Mao W, Rask PJ, Pang L, Xu C, Vankayalapat H, Ahmed AA, Bast RC Jr and Lu Z: A novel salt inducible kinase 2 inhibitor, ARN-3261, sensitizes ovarian cancer cell lines and xenografts to carboplatin. Cancers (Basel). 13:4462021. View Article : Google Scholar : PubMed/NCBI

151 

Hua Y, Yin H, Liu X, Xie J, Zhan W, Liang G and Shen Y: Salt-inducible kinase 2-triggered release of its inhibitor from hydrogel to suppress ovarian cancer metastasis. Adv Sci (Weinh). 9:e22022602022. View Article : Google Scholar : PubMed/NCBI

152 

Dungl DA, Maginn EN and Stronach EA: Preventing damage limitation: Targeting DNA-PKcs and DNA double-strand break repair pathways for ovarian cancer therapy. Front Oncol. 5:2402015. View Article : Google Scholar : PubMed/NCBI

153 

Green3Bio I: First-in-Human Evaluation of GRN-300 in Subjects With Recurrent Ovarian, Primary Peritoneal, and Fallopian Tube Cancers. Available from: https://clinicaltrials.gov/study/NCT04711161.

154 

Lu Z, Mao W, Yang H, Santiago-O'Farrill JM, Rask PJ, Mondal J, Chen H, Ivan C, Liu X, Liu CG, et al: SIK2 inhibition enhances PARP inhibitor activity synergistically in ovarian and triple-negative breast cancers. J Clin Invest. 132:e1464712022. View Article : Google Scholar : PubMed/NCBI

155 

Xu C, Zhao H, Chen H and Yao Q: CXCR4 in breast cancer: Oncogenic role and therapeutic targeting. Drug Design Dev Ther. 9:4953–4964. 2015.

156 

Ponnusamy L, Natarajan SR, Thangaraj K and Manoharan R: Therapeutic aspects of AMPK in breast cancer: Progress, challenges, and future directions. Biochim Biophys Acta Rev Cancer. 1874:1883792020. View Article : Google Scholar : PubMed/NCBI

157 

Hartl C, Maser IP, Michels T, Milde R, Klein V, Beckhove P, Khandelwal N, Loferer H and Bissinger S: Abstract 3708: OMX-0407, a highly potent SIK3 inhibitor, sensitizes tumor cells to cell death and eradicates tumors in combination with PD-1 inhibition. Cancer Res. 82(12_Suppl): S37082022. View Article : Google Scholar

158 

Michels T, Bissinger S, Sennhenn P, Loferer H, Freire CM, Reidell O, Meier-Ewert S, Papadimitriou A, Beckhove P and Khandelwal N: Abstract 6698: A first-in-class SIK3 inhibitor, OMX-0370, effectively inhibits tumor growth in syngeneic tumor models, as single agent, by abolishing tumor resistance to immune-derived TNF. Cancer Res. 80(16_Suppl): S66982020. View Article : Google Scholar

159 

AG iT: A Study of OMX-0407 in patients with Previously Treated Solid Tumors That Can't be Removed Surgically. Available from: https://clinicaltrials.gov/study/NCT05826600.

160 

Sundberg TB, Liang Y, Wu H, Choi HG, Kim ND, Sim T, Johannessen L, Petrone A, Khor B, Graham DB, et al: Development of chemical probes for investigation of salt-inducible kinase function in vivo. ACS Chem Biol. 11:2105–2111. 2016. View Article : Google Scholar : PubMed/NCBI

161 

Chen H, Huang S, Han X, Zhang J, Shan C, Tsang YH, Ma HT and Poon RY: Salt-inducible kinase 3 is a novel mitotic regulator and a target for enhancing antimitotic therapeutic-mediated cell death. Cell Death Dis. 5:e11772014. View Article : Google Scholar : PubMed/NCBI

162 

Liang YL, Wu CH, Kang CY, Lin CN, Shih NY, Lin SH, Chen YC and Hsu KF: Downregulated Salt-inducible Kinase 3 expression promotes chemoresistance in serous ovarian cancer via the ATP-binding cassette protein ABCG2. J Cancer. 10:6025–6036. 2019. View Article : Google Scholar : PubMed/NCBI

163 

Shackelford DB and Shaw RJ: The LKB1-AMPK pathway: Metabolism and growth control in tumor suppression. Nat Rev Cancer. 9:563–575. 2009. View Article : Google Scholar : PubMed/NCBI

164 

Cai LY, Chen SJ, Xiao SH, Sun QJ, Ding CH, Zheng BN, Zhu XY, Liu SQ, Yang F, Yang YX, et al: Targeting p300/CBP attenuates hepatocellular carcinoma progression through epigenetic regulation of metabolism. Cancer Res. 81:860–872. 2021. View Article : Google Scholar

165 

Ono H, Basson MD and Ito H: P300 inhibition enhances gemcitabine-induced apoptosis of pancreatic cancer. Oncotarget. 7:51301–51310. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Feng S, Wei F, Shi H, Chen S, Wang B, Huang D and Luo L: Roles of salt‑inducible kinases in cancer (Review). Int J Oncol 63: 118, 2023.
APA
Feng, S., Wei, F., Shi, H., Chen, S., Wang, B., Huang, D., & Luo, L. (2023). Roles of salt‑inducible kinases in cancer (Review). International Journal of Oncology, 63, 118. https://doi.org/10.3892/ijo.2023.5566
MLA
Feng, S., Wei, F., Shi, H., Chen, S., Wang, B., Huang, D., Luo, L."Roles of salt‑inducible kinases in cancer (Review)". International Journal of Oncology 63.5 (2023): 118.
Chicago
Feng, S., Wei, F., Shi, H., Chen, S., Wang, B., Huang, D., Luo, L."Roles of salt‑inducible kinases in cancer (Review)". International Journal of Oncology 63, no. 5 (2023): 118. https://doi.org/10.3892/ijo.2023.5566
Copy and paste a formatted citation
x
Spandidos Publications style
Feng S, Wei F, Shi H, Chen S, Wang B, Huang D and Luo L: Roles of salt‑inducible kinases in cancer (Review). Int J Oncol 63: 118, 2023.
APA
Feng, S., Wei, F., Shi, H., Chen, S., Wang, B., Huang, D., & Luo, L. (2023). Roles of salt‑inducible kinases in cancer (Review). International Journal of Oncology, 63, 118. https://doi.org/10.3892/ijo.2023.5566
MLA
Feng, S., Wei, F., Shi, H., Chen, S., Wang, B., Huang, D., Luo, L."Roles of salt‑inducible kinases in cancer (Review)". International Journal of Oncology 63.5 (2023): 118.
Chicago
Feng, S., Wei, F., Shi, H., Chen, S., Wang, B., Huang, D., Luo, L."Roles of salt‑inducible kinases in cancer (Review)". International Journal of Oncology 63, no. 5 (2023): 118. https://doi.org/10.3892/ijo.2023.5566
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team