Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
November-2023 Volume 63 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2023 Volume 63 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Circular RNAs in osteosarcoma: An update of recent studies (Review)

Corrigendum in: /10.3892/ijo.2024.5696
  • Authors:
    • Le Zeng
    • Longzhou Liu
    • Wen-Juan Ni
    • Fuhua Xie
    • Xiao-Min Leng
  • View Affiliations / Copyright

    Affiliations: School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
  • Article Number: 123
    |
    Published online on: September 6, 2023
       https://doi.org/10.3892/ijo.2023.5571
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Osteosarcoma (OS) prevailing in children and adolescents mainly occurs at the metaphysis of long bones. As it is associated with a high invasive and metastatic ability, resistance to chemotherapy, and a low 5‑year survival rate, the diagnosis and treatment of OS post a global healthy issue. Over the past decades, RNA biology has shed new light onto the pathogenesis of OS. As a type of non‑coding RNAs, circular RNAs (circRNAs) have been found to play crucial roles in cellular activities. Recently, a large number of circRNAs have been identified in OS and some of them have been validated to be functional in OS. In the present review, abnormally expressed and different types of circRNAs in OS are summarized. Functional studies on circRNAs have revealed that circRNAs can regulate gene expression at different levels, such as gene transcription, precursor mRNA splicing, miRNA sponges and translation into proteins/peptides. Mechanistic analyses on circRNAs show that circRNAs can regulate JAK‑STAT3, NF‑κB, PI3K‑AKT, Wnt/β‑catenin signaling pathways during the occurrence and development of OS. Furthermore, the potential clinical applications of circRNAs are also emphasized. The present review focus on the current knowledge on the functions and mechanisms of circRNAs in the pathogenesis of OS, aiming to provide new insight into the OS diagnosis and treatment of OS.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Link MP, Goorin AM, Miser AW, Green AA, Pratt CB, Belasco JB, Pritchard J, Malpas JS, Baker AR, Kirkpatrick JA, et al: The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N Engl J Med. 314:1600–1606. 1986. View Article : Google Scholar : PubMed/NCBI

2 

Damron TA, Ward WG and Stewart A: Osteosarcoma, chondrosarcoma, and Ewing's sarcoma: National Cancer Data Base report. Clin Orthop Relat Res. 459:40–47. 2007. View Article : Google Scholar : PubMed/NCBI

3 

Meyers PA, Healey JH, Chou AJ, Wexler LH, Merola PR, Morris CD, Laquaglia MP, Kellick MG, Abramson SJ and Gorlick R: Addition of pamidronate to chemotherapy for the treatment of osteosarcoma. Cancer. 117:1736–1744. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Gaspar N, Occean B, Pacquement H, Bompas E, Bouvier C, Brisse HJ, Castex MP, Cheurfa N, Corradini N, Delaye J, et al: Results of methotrexate-etoposide-ifosfamide based regimen (M-EI) in osteosarcoma patients included in the French OS2006/sarcome-09 study. Eur J Cancer. 88:57–66. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Kansara M, Teng MW, Smyth MJ and Thomas DM: Translational biology of osteosarcoma. Nat Rev Cancer. 14:722–735. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Sadykova LR, Ntekim AI, Muyangwa-Semenova M, Rutland CS, Jeyapalan JN, Blatt N and Rizvanov AA: Epidemiology and risk factors of osteosarcoma. Cancer Invest. 38:259–269. 2020. View Article : Google Scholar : PubMed/NCBI

7 

Kushlinskii NE, Fridman MV and Braga EA: Molecular mechanisms and microRNAs in osteosarcoma pathogenesis. Biochemistry (Mosc). 81:315–328. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Saraf AJ, Fenger JM and Roberts RD: Osteosarcoma: Accelerating progress makes for a hopeful future. Front Oncol. 8:42018. View Article : Google Scholar : PubMed/NCBI

9 

Chong ZX, Yeap SK and Ho WY: Unraveling the roles of miRNAs in regulating epithelial-to-mesenchymal transition (EMT) in osteosarcoma. Pharmacol Res. 172:1058182021. View Article : Google Scholar : PubMed/NCBI

10 

Zhang J, Yu X, Yan Y, Wang C and Wang W: PI3K/Akt signaling in osteosarcoma. Clin Chim Acta. 444:182–192. 2015. View Article : Google Scholar : PubMed/NCBI

11 

ENCODE Project Consortium, . Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET, et al: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 447:799–816. 2007. View Article : Google Scholar : PubMed/NCBI

12 

Lagos-Quintana M, Rauhut R, Lendeckel W and Tuschl T: Identification of novel genes coding for small expressed RNAs. Science. 294:853–858. 2001. View Article : Google Scholar : PubMed/NCBI

13 

Chen L and Yang L: Regulation of circRNA biogenesis. Rna Biol. 12:381–388. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Salzman J, Chen RE, Olsen MN, Wang PL and Brown PO: Cell-type specific features of circular RNA expression. PLoS Genet. 9:e10037772013. View Article : Google Scholar : PubMed/NCBI

15 

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Huang G, Liang M, Liu H, Huang J, Li P, Wang C, Zhang Y, Lin Y and Jiang X: CircRNA hsa_circRNA_104348 promotes hepatocellular carcinoma progression through modulating miR-187-3p/RTKN2 axis and activating Wnt/β-catenin pathway. Cell Death Dis. 11:10652020. View Article : Google Scholar : PubMed/NCBI

17 

Zheng X, Huang M, Xing L, Yang R, Wang X, Jiang R, Zhang L and Chen J: The circRNA circSEPT9 mediated by E2F1 and EIF4A3 facilitates the carcinogenesis and development of triple-negative breast cancer. Mol Cancer. 19:732020. View Article : Google Scholar : PubMed/NCBI

18 

Wang N, Lu K, Qu H, Wang H, Chen Y, Shan T, Ge X, Wei Y, Zhou P and Xia J: CircRBM33 regulates IL-6 to promote gastric cancer progression through targeting miR-149. Biomed Pharmacother. 125:1098762020. View Article : Google Scholar : PubMed/NCBI

19 

Zhou P, Xie W, Huang HL, Huang RQ, Tian C, Zhu HB, Dai YH and Li ZY: circRNA_100859 functions as an oncogene in colon cancer by sponging the miR-217-HIF-1α pathway. Aging (Albany NY). 12:13338–13353. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Xu H, Liu Y, Cheng P, Wang C, Liu Y, Zhou W, Xu Y and Ji G: CircRNA_0000392 promotes colorectal cancer progression through the miR-193a-5p/PIK3R3/AKT axis. J Exp Clin Cancer Res. 39:2832020. View Article : Google Scholar : PubMed/NCBI

21 

Arnaiz E, Sole C, Manterola L, Iparraguirre L, Otaegui D and Lawrie CH: CircRNAs and cancer: Biomarkers and master regulators. Semin Cancer Biol. 58:90–99. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Li X, Yang L and Chen L: The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 71:428–442. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, et al: Translation of CircRNAs. Mol Cell. 66:9–21.e7. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Li F, Tang H, Zhao S, Gao X, Yang L and Xu J: Circ-E-Cad encodes a protein that promotes the proliferation and migration of gastric cancer via the TGF-β/Smad/C-E-Cad/PI3K/AKT pathway. Mol Carcinog. 62:360–368. 2023. View Article : Google Scholar : PubMed/NCBI

26 

Li Y, Wang Z, Su P, Liang Y, Li Z, Zhang H, Song X, Han D, Wang X, Liu Y, et al: circ-EIF6 encodes EIF6-224aa to promote TNBC progression via stabilizing MYH9 and activating the Wnt/beta-catenin pathway. Mol Ther. 30:415–430. 2022. View Article : Google Scholar : PubMed/NCBI

27 

Cheng J, Li G, Wang W, Stovall DB, Sui G and Li D: Circular RNAs with protein-coding ability in oncogenesis. Biochim Biophys Acta Rev Cancer. 1878:1889092023. View Article : Google Scholar : PubMed/NCBI

28 

Sinha T, Panigrahi C, Das D and Chandra PA: Circular RNA translation, a path to hidden proteome. Wiley Interdiscip Rev RNA. 13:e16852022. View Article : Google Scholar : PubMed/NCBI

29 

Sanger HL, Klotz G, Riesner D, Gross HJ and Kleinschmidt AK: Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA. 73:3852–3856. 1976. View Article : Google Scholar : PubMed/NCBI

30 

Li Z, Li X, Xu D, Chen X, Li S, Zhang L, Chan MTV and Wu WKK: An update on the roles of circular RNAs in osteosarcoma. Cell Prolif. 54:e129362021. View Article : Google Scholar : PubMed/NCBI

31 

Kolakofsky D: Isolation and characterization of Sendai virus DI-RNAs. Cell. 8:547–555. 1976. View Article : Google Scholar : PubMed/NCBI

32 

Nigro JM, Cho KR, Fearon ER, Kern SE, Ruppert JM, Oliner JD, Kinzler KW and Vogelstein B: Scrambled exons. Cell. 64:607–613. 1991. View Article : Google Scholar : PubMed/NCBI

33 

Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, Goodfellow P and Lovell-Badge R: Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 73:1019–1030. 1993. View Article : Google Scholar : PubMed/NCBI

34 

Hsu MT and Coca-Prados M: Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 280:339–340. 1979. View Article : Google Scholar : PubMed/NCBI

35 

Cocquerelle C, Mascrez B, Hétuin D and Bailleul B: Mis-splicing yields circular RNA molecules. FASEB J. 7:155–160. 1993. View Article : Google Scholar : PubMed/NCBI

36 

Solé C and Lawrie CH: Circular RNAs and cancer: Opportunities and challenges. Adv Clin Chem. 99:87–146. 2020. View Article : Google Scholar : PubMed/NCBI

37 

Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Noto JJ, Schmidt CA and Matera AG: Engineering and expressing circular RNAs via tRNA splicing. Rna Biol. 14:978–984. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Talhouarne GJS and Gall JG: Lariat intronic RNAs in the cytoplasm of vertebrate cells. Proc Natl Acad Sci USA. 115:E7970–E7977. 2018. View Article : Google Scholar : PubMed/NCBI

41 

Lu Z, Filonov GS, Noto JJ, Schmidt CA, Hatkevich TL, Wen Y, Jaffrey SR and Matera AG: Metazoan tRNA introns generate stable circular RNAs in vivo. RNA. 21:1554–1565. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Chen X, Han P, Zhou T, Guo X, Song X and Li Y: circRNADb: A comprehensive database for human circular RNAs with protein-coding annotations. Sci Rep. 6:349852016. View Article : Google Scholar : PubMed/NCBI

43 

Tang Z, Li X, Zhao J, Qian F, Feng C, Li Y, Zhang J, Jiang Y, Yang Y, Wang Q and Li C: TRCirc: A resource for transcriptional regulation information of circRNAs. Brief Bioinform. 20:2327–2333. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Zhao X, Cai Y and Xu J: Circular RNAs: Biogenesis, mechanism, and function in human cancers. Int J Mol Sci. 20:39262019. View Article : Google Scholar : PubMed/NCBI

45 

Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ and Kjems J: miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30:4414–4422. 2011. View Article : Google Scholar : PubMed/NCBI

46 

Li B and Li X: Overexpression of hsa_circ_0007534 predicts unfavorable prognosis for osteosarcoma and regulates cell growth and apoptosis by affecting AKT/GSK-3β signaling pathway. Biomed Pharmacother. 107:860–866. 2018. View Article : Google Scholar : PubMed/NCBI

47 

Xu B, Yang T, Wang Z, Zhang Y, Liu S and Shen M: CircRNA CDR1as/miR-7 signals promote tumor growth of osteosarcoma with a potential therapeutic and diagnostic value. Cancer Manag Res. 10:4871–4880. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Zhang H, Yan J, Lang X and Zhuang Y: Expression of circ_001569 is upregulated in osteosarcoma and promotes cell proliferation and cisplatin resistance by activating the Wnt/β-catenin signaling pathway. Oncol Lett. 16:5856–5862. 2018.PubMed/NCBI

49 

Deng N, Li L, Gao J, Zhou J, Wang Y, Wang C and Liu Y: Hsa_circ_0009910 promotes carcinogenesis by promoting the expression of miR-449a target IL6R in osteosarcoma. Biochem Biophys Res Commun. 495:189–196. 2018. View Article : Google Scholar : PubMed/NCBI

50 

Wu Z, Shi W and Jiang C: Overexpressing circular RNA hsa_circ_0002052 impairs osteosarcoma progression via inhibiting Wnt/β-catenin pathway by regulating miR-1205/APC2 axis. Biochem Biophys Res Commun. 502:465–471. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Li X, Sun XH, Xu HY, Pan HS, Liu Y and He L: Circ_ORC2 enhances the regulatory effect of miR-19a on its target gene PTEN to affect osteosarcoma cell growth. Biochem Biophys Res Commun. 514:1172–1178. 2019. View Article : Google Scholar : PubMed/NCBI

52 

Li S, Pei Y, Wang W, Liu F, Zheng K and Zhang X: Circular RNA 0001785 regulates the pathogenesis of osteosarcoma as a ceRNA by sponging miR-1200 to upregulate HOXB2. Cell Cycle. 18:1281–1291. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Ren C, Liu J, Zheng B, Yan P, Sun Y and Yue B: The circular RNA circ-ITCH acts as a tumour suppressor in osteosarcoma via regulating miR-22. Artif Cells Nanomed Biotechnol. 47:3359–3367. 2019. View Article : Google Scholar : PubMed/NCBI

54 

Wang Z, Deng M, Chen L, Wang W, Liu G, Liu D, Han Z and Zhou Y: Circular RNA Circ-03955 promotes epithelial-mesenchymal transition in osteosarcoma by regulating miR-3662/metadherin pathway. Front Oncol. 10:5454602020. View Article : Google Scholar : PubMed/NCBI

55 

Ding S, Zhang G, Gao Y, Chen S and Cao C: Circular RNA hsa_circ_0005909 modulates osteosarcoma progression via the miR-936/HMGB1 axis. Cancer Cell Int. 20:3052020. View Article : Google Scholar : PubMed/NCBI

56 

Zhang PR, Ren J, Wan JS, Sun R and Li Y: Circular RNA hsa_circ_0002052 promotes osteosarcoma via modulating miR-382/STX6 axis. Hum Cell. 33:810–818. 2020. View Article : Google Scholar : PubMed/NCBI

57 

Du YX, Guo LX, Pan HS, Liang YM and Li X: Circ_ANKIB1 stabilizes the regulation of miR-19b on SOCS3/STAT3 pathway to promote osteosarcoma cell growth and invasion. Hum Cell. 33:252–260. 2020. View Article : Google Scholar : PubMed/NCBI

58 

Gao Y, Ma H, Gao Y, Tao K, Fu L, Ren R, Hu X, Kou M, Chen B, Shi J and Wen Y: CircRNA Circ_0001721 promotes the progression of osteosarcoma through miR-372-3p/MAPK7 axis. Cancer Manag Res. 12:8287–8302. 2020. View Article : Google Scholar : PubMed/NCBI

59 

Liu YP, Wan J, Long F, Tian J and Zhang C: circPVT1 facilitates invasion and metastasis by regulating miR-205-5p/c-FLIP axis in osteosarcoma. Cancer Manag Res. 12:1229–1240. 2020. View Article : Google Scholar : PubMed/NCBI

60 

Chen J, Liu G, Wu Y, Ma J, Wu H, Xie Z, Chen S, Yang Y, Wang S, Shen P, et al: CircMYO10 promotes osteosarcoma progression by regulating miR-370-3p/RUVBL1 axis to enhance the transcriptional activity of β-catenin/LEF1 complex via effects on chromatin remodeling. Mol Cancer. 18:1502019. View Article : Google Scholar : PubMed/NCBI

61 

Li S, Pei Y, Wang W, Liu F, Zheng K and Zhang X: Extracellular nanovesicles-transmitted circular RNA has_circ_0000190 suppresses osteosarcoma progression. J Cell Mol Med. 24:2202–2214. 2020. View Article : Google Scholar : PubMed/NCBI

62 

Sun D and Zhu D: Circular RNA hsa_circ_0001649 suppresses the growth of osteosarcoma cells via sponging multiple miRNAs. Cell Cycle. 19:2631–2643. 2020. View Article : Google Scholar : PubMed/NCBI

63 

Yang B, Li L, Tong G, Zeng Z, Tan J, Su Z, Liu Z, Lin J, Gao W, Chen J, et al: Circular RNA circ_001422 promotes the progression and metastasis of osteosarcoma via the miR-195-5p/FGF2/PI3K/Akt axis. J Exp Clin Cancer Res. 40:2352021. View Article : Google Scholar : PubMed/NCBI

64 

Zhang C, Na N, Liu L and Qiu Y: CircRNA hsa_circ_0005909 promotes cell proliferation of osteosarcoma cells by targeting miR-338-3p/HMGA1 axis. Cancer Manag Res. 13:795–803. 2021. View Article : Google Scholar : PubMed/NCBI

65 

Bai Y, Li Y, Bai J and Zhang Y: Hsa_circ_0004674 promotes osteosarcoma doxorubicin resistance by regulating the miR-342-3p/FBN1 axis. J Orthop Surg Res. 16:5102021. View Article : Google Scholar : PubMed/NCBI

66 

Li S, Liu F, Zheng K, Wang W, Qiu E, Pei Y, Wang S, Zhang J and Zhang X: CircDOCK1 promotes the tumorigenesis and cisplatin resistance of osteogenic sarcoma via the miR-339-3p/IGF1R axis. Mol Cancer. 20:1612021. View Article : Google Scholar : PubMed/NCBI

67 

Shi Z, Wang K, Xing Y and Yang X: CircNRIP1 encapsulated by bone marrow mesenchymal stem cell-derived extracellular vesicles aggravates osteosarcoma by modulating the miR-532-3p/AKT3/PI3K/AKT axis. Front Oncol. 11:6581392021. View Article : Google Scholar : PubMed/NCBI

68 

Feng ZH, Zheng L, Yao T, Tao SY, Wei XA, Zheng ZY, Zheng BJ, Zhang XY, Huang B, Liu JH, et al: EIF4A3-induced circular RNA PRKAR1B promotes osteosarcoma progression by miR-361-3p-mediated induction of FZD4 expression. Cell Death Dis. 12:10252021. View Article : Google Scholar : PubMed/NCBI

69 

Li JJ, Xiong MY, Sun TY, Ji CB, Guo RT, Li YW and Guo HY: CircFAM120B knockdown inhibits osteosarcoma tumorigenesis via the miR-1205/PTBP1 axis. Aging (Albany NY). 13:23831–23841. 2021. View Article : Google Scholar : PubMed/NCBI

70 

Gao Y, Liu C, Zhao X, Liu C, Bi W and Jia J: hsa_circ_0000006 induces tumorigenesis through miR-361-3p targeting immunoglobulin-like domains protein 1 (LRIG1) in osteosarcoma. Ann Transl Med. 9:12422021. View Article : Google Scholar : PubMed/NCBI

71 

Zhang M, Yu GY, Liu G and Liu WD: Circular RNA circ_0002137 regulated the progression of osteosarcoma through regulating miR-433-3p/IGF1R axis. J Cell Mol Med. 26:1806–1816. 2022. View Article : Google Scholar : PubMed/NCBI

72 

Wang W, Wang J, Li Y and Zhao Y: Circ_0051079 silencing inhibits the malignant phenotypes of osteosarcoma cells by the TRIM66/Wnt/β-catenin pathway in a miR-625-5p-dependent manner. J Bone Oncol. 35:1004362022. View Article : Google Scholar : PubMed/NCBI

73 

Liu Y, Yuan J, Zhang Q, Ren Z, Li G and Tian R: Circ_0016347 modulates proliferation, migration, invasion, cell cycle, and apoptosis of osteosarcoma cells via the miR-661/IL6R axis. Autoimmunity. 55:264–274. 2022. View Article : Google Scholar : PubMed/NCBI

74 

Liu Y, Qiu G, Luo Y, Li S, Xu Y, Zhang Y, Hu J, Li P, Pan H and Wang Y: Circular RNA ROCK1, a novel circRNA, suppresses osteosarcoma proliferation and migration via altering the miR-532-5p/PTEN axis. Exp Mol Med. 54:1024–1037. 2022. View Article : Google Scholar : PubMed/NCBI

75 

Peng L, Liu Q, Wu T, Li P, Cai Y, Wei X, Zeng Y, Ye J, Chen P, Huang J and Lin H: Hsa_circ_0087302, a circular RNA, affects the progression of osteosarcoma via the Wnt/β-catenin signaling pathway. Int J Med Sci. 19:1377–1387. 2022. View Article : Google Scholar : PubMed/NCBI

76 

Wang D, Wang Y, Wang H, Yang Y, Li L, Liu Y and Yin X: Hsa_circ_0000591 drives osteosarcoma glycolysis and progression by sequestering miR-194-5p and elevating HK2 expression. Clin Exp Pharmacol Physiol. 50:463–475. 2023. View Article : Google Scholar : PubMed/NCBI

77 

Li Z, Zheng L, Yang L, Chen D, Ren G, Yan X and Pu J: Hsa_circ_0020378 targets miR-556-5p/MAPK1 to regulate osteosarcoma cell proliferation and migration. Gene. 856:1471352023. View Article : Google Scholar : PubMed/NCBI

78 

Gong Z, Shen P, Wang H, Zhu J, Liang K, Wang K, Mi Y, Shen S, Fang X and Liu G: A novel circular RNA circRBMS3 regulates proliferation and metastasis of osteosarcoma by targeting miR-424-eIF4B/YRDC axis. Aging (Albany NY). 15:1564–1590. 2023. View Article : Google Scholar : PubMed/NCBI

79 

Trang NTN, Lai CY, Tsai HC, Huang YL, Liu SC, Tsai CH, Fong YC, Tzeng HE and Tang CH: Apelin promotes osteosarcoma metastasis by upregulating PLOD2 expression via the Hippo signaling pathway and hsa_circ_0000004/miR-1303 axis. Int J Biol Sci. 19:412–425. 2023. View Article : Google Scholar : PubMed/NCBI

80 

Luo Y, Yang B, Yuan X and Zheng J: Silencing circUSP48 suppresses osteosarcoma progression by regulating the miR-335/smad nuclear interacting protein 1 pathway. J Clin Lab Anal. 37:e248282023. View Article : Google Scholar : PubMed/NCBI

81 

Xu L, Duan J, Li M, Zhou C and Wang Q: Circ_0000253 promotes the progression of osteosarcoma via the miR-1236-3p/SP1 axis. J Pharm Pharmacol. 75:227–235. 2023. View Article : Google Scholar : PubMed/NCBI

82 

Qi X, Zhang DH, Wu N, Xiao JH, Wang X and Ma W: ceRNA in cancer: Possible functions and clinical implications. J Med Genet. 52:710–718. 2015. View Article : Google Scholar : PubMed/NCBI

83 

Liu T, Song Z and Gai Y: Circular RNA circ_0001649 acts as a prognostic biomarker and inhibits NSCLC progression via sponging miR-331-3p and miR-338-5p. Biochem Biophys Res Commun. 503:1503–1509. 2018. View Article : Google Scholar : PubMed/NCBI

84 

Jiang Y, Hou J, Zhang X, Xu G, Wang Y, Shen L, Wu Y, Li Y and Yao L: Circ-XPO1 upregulates XPO1 expression by sponging multiple miRNAs to facilitate osteosarcoma cell progression. Exp Mol Pathol. 117:1045532020. View Article : Google Scholar : PubMed/NCBI

85 

Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al: Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell. 66:22–37.e9. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Imataka H, Olsen HS and Sonenberg N: A new translational regulator with homology to eukaryotic translation initiation factor 4G. EMBO J. 16:817–825. 1997. View Article : Google Scholar : PubMed/NCBI

87 

Morino S, Imataka H, Svitkin YV, Pestova TV and Sonenberg N: Eukaryotic translation initiation factor 4E (eIF4E) binding site and the middle one-third of eIF4GI constitute the core domain for cap-dependent translation, and the C-terminal one-third functions as a modulatory region. Mol Cell Biol. 20:468–477. 2000. View Article : Google Scholar : PubMed/NCBI

88 

Liberman N, Gandin V, Svitkin YV, David M, Virgili G, Jaramillo M, Holcik M, Nagar B, Kimchi A and Sonenberg N: DAP5 associates with eIF2β and eIF4AI to promote internal ribosome entry site driven translation. Nucleic Acids Res. 43:3764–3775. 2015. View Article : Google Scholar : PubMed/NCBI

89 

Lamphear BJ, Kirchweger R, Skern T and Rhoads RE: Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation. J Biol Chem. 270:21975–21983. 1995. View Article : Google Scholar : PubMed/NCBI

90 

Hellen CU and Sarnow P: Internal ribosome entry sites in eukaryotic mRNA molecules. Gene Dev. 15:1593–1612. 2001. View Article : Google Scholar : PubMed/NCBI

91 

Zhang M, Zhao K, Xu X, Yang Y, Yan S, Wei P, Liu H, Xu J, Xiao F, Zhou H, et al: A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun. 9:44752018. View Article : Google Scholar : PubMed/NCBI

92 

Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27:626–641. 2017. View Article : Google Scholar : PubMed/NCBI

93 

He L, Man C, Xiang S, Yao L, Wang X and Fan Y: Circular RNAs' cap-independent translation protein and its roles in carcinomas. Mol Cancer. 20:1192021. View Article : Google Scholar : PubMed/NCBI

94 

Liu Y, Li Z, Zhang M, Zhou H, Wu X, Zhong J, Xiao F, Huang N, Yang X, Zeng R, et al: Rolling-translated EGFR variants sustain EGFR signaling and promote glioblastoma tumorigenicity. Neuro Oncol. 23:743–756. 2021. View Article : Google Scholar : PubMed/NCBI

95 

Ye F, Gao G, Zou Y, Zheng S, Zhang L, Ou X, Xie X and Tang H: circFBXW7 inhibits malignant progression by sponging miR-197-3p and encoding a 185-aa protein in triple-negative breast cancer. Mol Ther Nucleic Acids. 18:88–98. 2019. View Article : Google Scholar : PubMed/NCBI

96 

Pan Z, Cai J, Lin J, Zhou H, Peng J, Liang J, Xia L, Yin Q, Zou B, Zheng J, et al: A novel protein encoded by circFNDC3B inhibits tumor progression and EMT through regulating Snail in colon cancer. Mol Cancer. 19:712020. View Article : Google Scholar : PubMed/NCBI

97 

Weigelt CM, Sehgal R, Tain LS, Cheng J, Eßer J, Pahl A, Dieterich C, Grönke S and Partridge L: An insulin-sensitive circular RNA that regulates lifespan in Drosophila. Mol Cell. 79:268–279.e5. 2020. View Article : Google Scholar : PubMed/NCBI

98 

Duan JL, Chen W, Xie JJ, Zhang ML, Nie RC, Liang H, Mei J, Han K, Xiang ZC, Wang FW, et al: A novel peptide encoded by N6-methyladenosine modified circMAP3K4 prevents apoptosis in hepatocellular carcinoma. Mol Cancer. 21:932022. View Article : Google Scholar : PubMed/NCBI

99 

Song R, Ma S, Xu J, Ren X, Guo P, Liu H, Li P, Yin F, Liu M, Wang Q, et al: A novel polypeptide encoded by the circular RNA ZKSCAN1 suppresses HCC via degradation of mTOR. Mol Cancer. 22:162023. View Article : Google Scholar : PubMed/NCBI

100 

Peng Y, Xu Y, Zhang X, Deng S, Yuan Y, Luo X, Hossain MT, Zhu X, Du K, Hu F, et al: A novel protein AXIN1-295aa encoded by circAXIN1 activates the Wnt/β-catenin signaling pathway to promote gastric cancer progression. Mol Cancer. 20:1582021. View Article : Google Scholar : PubMed/NCBI

101 

Jiang T, Xia Y, Lv J, Li B, Li Y, Wang S, Xuan Z, Xie L, Qiu S, He Z, et al: A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol Cancer. 20:662021. View Article : Google Scholar : PubMed/NCBI

102 

Zhang C, Zhou X, Geng X, Zhang Y, Wang J, Wang Y, Jing J, Zhou X and Pan W: Circular RNA hsa_circ_0006401 promotes proliferation and metastasis in colorectal carcinoma. Cell Death Dis. 12:4432021. View Article : Google Scholar : PubMed/NCBI

103 

Liang ZX, Liu HS, Xiong L, Yang X, Wang FW, Zeng ZW, He XW, Wu XR and Lan P: A novel NF-κB regulator encoded by circPLCE1 inhibits colorectal carcinoma progression by promoting RPS3 ubiquitin-dependent degradation. Mol Cancer. 20:1032021. View Article : Google Scholar : PubMed/NCBI

104 

Gao X, Xia X, Li F, Zhang M, Zhou H, Wu X, Zhong J, Zhao Z, Zhao K, Liu D, et al: Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signalling. Nat Cell Biol. 23:278–291. 2021. View Article : Google Scholar : PubMed/NCBI

105 

Xia X, Li X, Li F, Wu X, Zhang M, Zhou H, Huang N, Yang X, Xiao F, Liu D, et al: A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent kinase-1. Mol Cancer. 18:1312019. View Article : Google Scholar : PubMed/NCBI

106 

Zheng X, Chen L, Zhou Y, Wang Q, Zheng Z, Xu B, Wu C, Zhou Q, Hu W, Wu C and Jiang J: A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Mol Cancer. 18:472019. View Article : Google Scholar : PubMed/NCBI

107 

Wang X, Jian W, Luo Q and Fang L: CircSEMA4B inhibits the progression of breast cancer by encoding a novel protein SEMA4B-211aa and regulating AKT phosphorylation. Cell Death Dis. 13:7942022. View Article : Google Scholar : PubMed/NCBI

108 

Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, Kim J, Noh JH, Kim KM, Martindale JL and Gorospe M: Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 14:361–369. 2017. View Article : Google Scholar : PubMed/NCBI

109 

Du WW, Yang W, Chen Y, Wu ZK, Foster FS, Yang Z, Li X and Yang BB: Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J. 38:1402–1412. 2017.PubMed/NCBI

110 

Li X, Liu CX, Xue W, Zhang Y, Jiang S, Yin QF, Wei J, Yao RW, Yang L and Chen LL: Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection. Mol Cell. 67:214–227.e7. 2017. View Article : Google Scholar : PubMed/NCBI

111 

Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI

112 

Conn VM, Hugouvieux V, Nayak A, Conos SA, Capovilla G, Cildir G, Jourdain A, Tergaonkar V, Schmid M, Zubieta C and Conn SJ: A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation. Nat Plants. 3:170532017. View Article : Google Scholar : PubMed/NCBI

113 

Liu CX and Chen LL: Circular RNAs: Characterization, cellular roles, and applications. Cell. 185:2016–2034. 2022. View Article : Google Scholar : PubMed/NCBI

114 

Hirano T, Ishihara K and Hibi M: Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene. 19:2548–2556. 2000. View Article : Google Scholar : PubMed/NCBI

115 

Liu Y, Liao S, Bennett S, Tang H, Song D, Wood D, Zhan X and Xu J: STAT3 and its targeting inhibitors in osteosarcoma. Cell Prolif. 54:e129742021. View Article : Google Scholar : PubMed/NCBI

116 

DiDonato JA, Mercurio F and Karin M: NF-κB and the link between inflammation and cancer. Immunol Rev. 246:379–400. 2012. View Article : Google Scholar : PubMed/NCBI

117 

Dolcet X, Llobet D, Pallares J and Matias-Guiu X: NF-kB in development and progression of human cancer. Virchows Arch. 446:475–482. 2005. View Article : Google Scholar : PubMed/NCBI

118 

Sims GP, Rowe DC, Rietdijk ST, Herbst R and Coyle AJ: HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol. 28:367–388. 2010. View Article : Google Scholar : PubMed/NCBI

119 

Porta C, Paglino C and Mosca A: Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol. 4:642014. View Article : Google Scholar : PubMed/NCBI

120 

Gill J and Gorlick R: Advancing therapy for osteosarcoma. Nat Rev Clin Oncol. 18:609–624. 2021. View Article : Google Scholar : PubMed/NCBI

121 

Xi Y and Chen Y: PTEN plays dual roles as a tumor suppressor in osteosarcoma cells. J Cell Biochem. 118:2684–2692. 2017. View Article : Google Scholar : PubMed/NCBI

122 

Liau SS, Jazag A and Whang EE: HMGA1 is a determinant of cellular invasiveness and in vivo metastatic potential in pancreatic adenocarcinoma. Cancer Res. 66:11613–11622. 2006. View Article : Google Scholar : PubMed/NCBI

123 

Cai Y, Cai T and Chen Y: Wnt pathway in osteosarcoma, from oncogenic to therapeutic. J Cell Biochem. 115:625–631. 2014. View Article : Google Scholar : PubMed/NCBI

124 

McQueen P, Ghaffar S, Guo Y, Rubin EM, Zi X and Hoang BH: The Wnt signaling pathway: Implications for therapy in osteosarcoma. Expert Rev Anticanc. 11:1223–1232. 2011. View Article : Google Scholar : PubMed/NCBI

125 

Guo Y, Zi X, Koontz Z, Kim A, Xie J, Gorlick R, Holcombe RF and Hoang BH: Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells. J Orthop Res. 25:964–971. 2007. View Article : Google Scholar : PubMed/NCBI

126 

Duan H, Yan Z, Chen W, Wu Y, Han J, Guo H and Qiao J: TET1 inhibits EMT of ovarian cancer cells through activating Wnt/β-catenin signaling inhibitors DKK1 and SFRP2. Gynecol Oncol. 147:408–417. 2017. View Article : Google Scholar : PubMed/NCBI

127 

Zhou X, Natino D, Qin Z, Wang D, Tian Z, Cai X, Wang B and He X: Identification and functional characterization of circRNA-0008717 as an oncogene in osteosarcoma through sponging miR-203. Oncotarget. 9:22288–22300. 2018. View Article : Google Scholar : PubMed/NCBI

128 

Kun-Peng Z, Xiao-Long M and Chun-Lin Z: Overexpressed circPVT1, a potential new circular RNA biomarker, contributes to doxorubicin and cisplatin resistance of osteosarcoma cells by regulating ABCB1. Int J Biol Sci. 14:321–330. 2018. View Article : Google Scholar : PubMed/NCBI

129 

Lei S and Xiang L: Up-regulation of circRNA hsa_circ_0003074 expression is a reliable diagnostic and prognostic biomarker in patients with osteosarcoma. Cancer Manag Res. 12:9315–9325. 2020. View Article : Google Scholar : PubMed/NCBI

130 

Lin Y, Jewell BE, Gingold J, Lu L, Zhao R, Wang LL and Lee DF: Osteosarcoma: Molecular pathogenesis and iPSC modeling. Trends Mol Med. 23:737–755. 2017. View Article : Google Scholar : PubMed/NCBI

131 

Corre I, Verrecchia F, Crenn V, Redini F and Trichet V: The osteosarcoma microenvironment: A complex but targetable ecosystem. Cells. 9:9762020. View Article : Google Scholar : PubMed/NCBI

132 

Meng X, Li X, Zhang P, Wang J, Zhou Y and Chen M: Circular RNA: An emerging key player in RNA world. Brief Bioinform. 18:547–557. 2017.PubMed/NCBI

133 

Xi Y, Fowdur M, Liu Y, Wu H, He M and Zhao J: Differential expression and bioinformatics analysis of circRNA in osteosarcoma. Biosci Rep. 39:BSR201815142019. View Article : Google Scholar : PubMed/NCBI

134 

Yanbin Z and Jing Z: CircSAMD4A accelerates cell proliferation of osteosarcoma by sponging miR-1244 and regulating MDM2 mRNA expression. Biochem Biophys Res Commun. 516:102–111. 2019. View Article : Google Scholar : PubMed/NCBI

135 

Xie C, Chen B, Wu B, Guo J, Shi Y and Cao Y: CircSAMD4A regulates cell progression and epithelial-mesenchymal transition by sponging miR-342-3p via the regulation of FZD7 expression in osteosarcoma. Int J Mol Med. 46:107–118. 2020.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zeng L, Liu L, Ni W, Xie F and Leng X: Circular RNAs in osteosarcoma: An update of recent studies (Review) Corrigendum in /10.3892/ijo.2024.5696. Int J Oncol 63: 123, 2023.
APA
Zeng, L., Liu, L., Ni, W., Xie, F., & Leng, X. (2023). Circular RNAs in osteosarcoma: An update of recent studies (Review) Corrigendum in /10.3892/ijo.2024.5696. International Journal of Oncology, 63, 123. https://doi.org/10.3892/ijo.2023.5571
MLA
Zeng, L., Liu, L., Ni, W., Xie, F., Leng, X."Circular RNAs in osteosarcoma: An update of recent studies (Review) Corrigendum in /10.3892/ijo.2024.5696". International Journal of Oncology 63.5 (2023): 123.
Chicago
Zeng, L., Liu, L., Ni, W., Xie, F., Leng, X."Circular RNAs in osteosarcoma: An update of recent studies (Review) Corrigendum in /10.3892/ijo.2024.5696". International Journal of Oncology 63, no. 5 (2023): 123. https://doi.org/10.3892/ijo.2023.5571
Copy and paste a formatted citation
x
Spandidos Publications style
Zeng L, Liu L, Ni W, Xie F and Leng X: Circular RNAs in osteosarcoma: An update of recent studies (Review) Corrigendum in /10.3892/ijo.2024.5696. Int J Oncol 63: 123, 2023.
APA
Zeng, L., Liu, L., Ni, W., Xie, F., & Leng, X. (2023). Circular RNAs in osteosarcoma: An update of recent studies (Review) Corrigendum in /10.3892/ijo.2024.5696. International Journal of Oncology, 63, 123. https://doi.org/10.3892/ijo.2023.5571
MLA
Zeng, L., Liu, L., Ni, W., Xie, F., Leng, X."Circular RNAs in osteosarcoma: An update of recent studies (Review) Corrigendum in /10.3892/ijo.2024.5696". International Journal of Oncology 63.5 (2023): 123.
Chicago
Zeng, L., Liu, L., Ni, W., Xie, F., Leng, X."Circular RNAs in osteosarcoma: An update of recent studies (Review) Corrigendum in /10.3892/ijo.2024.5696". International Journal of Oncology 63, no. 5 (2023): 123. https://doi.org/10.3892/ijo.2023.5571
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team