Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
December-2023 Volume 63 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2023 Volume 63 Issue 6

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Review Open Access

Tumor immune microenvironment and the current immunotherapy of cholangiocarcinoma (Review)

  • Authors:
    • Siqi Yang
    • Ruiqi Zou
    • Yushi Dai
    • Yafei Hu
    • Fuyu Li
    • Haijie Hu
  • View Affiliations / Copyright

    Affiliations: Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
    Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 137
    |
    Published online on: October 27, 2023
       https://doi.org/10.3892/ijo.2023.5585
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cholangiocarcinoma (CCA) is a highly heterogeneous malignancy originating from the epithelial system of the bile ducts, and its incidence in recent years is steadily increasing. The immune microenvironment of CCA is characterized by diversity and complexity, with a substantial presence of cancer‑associated fibroblasts and immune cell infiltration, which plays a key role in regulating the distinctive biological behavior of cholangiocarcinoma, including tumor growth, angiogenesis, lymphangiogenesis, invasion and metastasis. Despite the notable success of immunotherapy in the treatment of solid tumors in recent years, patients with CCA have responded poorly to immune checkpoint inhibitor therapy. The interaction of tumor cells with cellular components of the immune microenvironment can regulate the activity and function of immune cells and form an immunosuppressive microenvironment, which may cause ineffective immunotherapy. Therefore, the components of the tumor immune microenvironment appear to be novel targets for immune therapies. Combination therapy focusing on immune checkpoint inhibitors is a promising and valuable first‑line or translational treatment approach for intractable biliary tract malignancies. The present review discusses the compositional characteristics and regulatory factors of the CCA immune microenvironment and the possible immune escape mechanisms. In addition, a summary of the advances in immunotherapy for CCA is also provided. It is hoped that the present review may function as a valuable reference for the development of novel immunotherapeutic strategies for CCA.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Banales JM, Cardinale V, Carpino G, Marzioni M, Andersen JB, Invernizzi P, Lind GE, Folseraas T, Forbes SJ, Fouassier L, et al: Expert consensus document: Cholangiocarcinoma: Current knowledge and future perspectives consensus statement from the European network for the study of cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol. 13:261–280. 2016.

2 

Rizzo A, Carloni R, Frega G, Palloni A, Di Federico A, Ricci AD, De Luca R, Tavolari S and Brandi G: Intensive follow-up program and oncological outcomes of biliary tract cancer patients after curative-intent surgery: A twenty-year experience in a single tertiary medical center. Curr Oncol. 29:5084–5090. 2022.

3 

Cai Y, Cheng N, Ye H, Li F, Song P and Tang W: The current management of cholangiocarcinoma: A comparison of current guidelines. Biosci Trends. 10:92–102. 2016.

4 

Fabris L, Perugorria MJ, Mertens J, Björkström NK, Cramer T, Lleo A, Solinas A, Sänger H, Lukacs-Kornek V, Moncsek A, et al: The tumour microenvironment and immune milieu of cholangiocarcinoma. Liver Int. 39(Suppl 1): S63–S78. 2019.

5 

Xia T, Li K, Niu N, Shao Y, Ding D, Thomas DL, Jing H, Fujiwara K, Hu H, Osipov A, et al: Immune cell atlas of cholangiocarcinomas reveals distinct tumor microenvironments and associated prognoses. J Hematol Oncol. 15:372022.

6 

Liu D, Heij LR, Czigany Z, Dahl E, Lang SA, Ulmer TF, Luedde T, Neumann UP and Bednarsch J: The role of tumor-infiltrating lymphocytes in cholangiocarcinoma. J Exp Clin Cancer Res. 41:1272022.

7 

Mittal D, Gubin MM, Schreiber RD and Smyth MJ: New insights into cancer immunoediting and its three component phases-elimination, equilibrium and escape. Curr Opin Immunol. 27:16–25. 2014.

8 

O'Donnell JS, Teng MWL and Smyth MJ: Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol. 16:151–167. 2019.

9 

Gubin MM and Vesely MD: Cancer immunoediting in the era of immuno-oncology. Clin Cancer Res. 28:3917–3928. 2022.

10 

Kelley RK, Ueno M, Yoo C, Finn RS, Furuse J, Ren Z, Yau T, Klümpen HJ, Chan SL, Ozaka M, et al: Pembrolizumab in combination with gemcitabine and cisplatin compared with gemcitabine and cisplatin alone for patients with advanced biliary tract cancer (KEYNOTE-966): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 401:1853–1865. 2023.

11 

Sahai V, Griffith KA, Beg MS, Shaib WL, Mahalingam D, Zhen DB, Deming DA and Zalupski MM: A randomized phase 2 trial of nivolumab, gemcitabine, and cisplatin or nivolumab and ipilimumab in previously untreated advanced biliary cancer: BilT-01. Cancer. 128:3523–3530. 2022.

12 

Monge C, Pehrsson EC, Xie C, Duffy AG, Mabry D, Wood BJ, Kleiner DE, Steinberg SM, Figg WD, Redd B, et al: A phase II study of pembrolizumab in combination with capecitabine and oxaliplatin with molecular profiling in patients with advanced biliary tract carcinoma. Oncologist. 27:e273–e285. 2022.

13 

Sirica AE and Gores GJ: Desmoplastic stroma and cholangiocarcinoma: Clinical implications and therapeutic targeting. Hepatology. 59:2397–2402. 2014.

14 

Montori M, Scorzoni C, Argenziano ME, Balducci D, De Blasio F, Martini F, Buono T, Benedetti A, Marzioni M and Maroni L: Cancer-associated fibroblasts in cholangiocarcinoma: Current knowledge and possible implications for therapy. J Clin Med. 11:64982022.

15 

Okabe H, Beppu T, Hayashi H, Horino K, Masuda T, Komori H, Ishikawa S, Watanabe M, Takamori H, Iyama K and Baba H: Hepatic stellate cells may relate to progression of intrahepatic cholangiocarcinoma. Ann Surg Oncol. 16:2555–2564. 2009.

16 

Dranoff JA and Wells RG: Portal fibroblasts: Underappreciated mediators of biliary fibrosis. Hepatology. 51:1438–1444. 2010.

17 

Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, Baik GH, Shibata W, Diprete B, Betz KS, et al: Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 19:257–272. 2011.

18 

Affo S, Nair A, Brundu F, Ravichandra A, Bhattacharjee S, Matsuda M, Chin L, Filliol A, Wen W, Song X, et al: Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations. Cancer Cell. 39:866–882. 2021.

19 

Mertens JC, Fingas CD, Christensen JD, Smoot RL, Bronk SF, Werneburg NW, Gustafson MP, Dietz AB, Roberts LR, Sirica AE and Gores GJ: Therapeutic effects of deleting cancer-associated fibroblasts in cholangiocarcinoma. Cancer Res. 73:897–907. 2013.

20 

Zhang XF, Dong M, Pan YH, Chen JN, Huang XQ, Jin Y and Shao CK: Expression pattern of cancer-associated fibroblast and its clinical relevance in intrahepatic cholangiocarcinoma. Hum Pathol. 65:92–100. 2017.

21 

Itou RA, Uyama N, Hirota S, Kawada N, Wu S, Miyashita S, Nakamura I, Suzumura K, Sueoka H, Okada T, et al: Immunohistochemical characterization of cancer-associated fibroblasts at the primary sites and in the metastatic lymph nodes of human intrahepatic cholangiocarcinoma. Hum Pathol. 83:77–89. 2019.

22 

Sirica AE: The role of cancer-associated myofibroblasts in intrahepatic cholangiocarcinoma. Nat Rev Gastroenterol Hepatol. 9:44–54. 2011.

23 

Clapéron A, Mergey M, Aoudjehane L, Ho-Bouldoires TH, Wendum D, Prignon A, Merabtene F, Firrincieli D, Desbois-Mouthon C, Scatton O, et al: Hepatic myofibroblasts promote the progression of human cholangiocarcinoma through activation of epidermal growth factor receptor. Hepatology. 58:2001–2011. 2013.

24 

Clapéron A, Mergey M, Nguyen Ho-Bouldoires TH, Vignjevic D, Wendum D, Chrétien Y, Merabtene F, Frazao A, Paradis V, Housset C, et al: EGF/EGFR axis contributes to the progression of cholangiocarcinoma through the induction of an epithelial-mesenchymal transition. J Hepatol. 61:325–332. 2014.

25 

Ohira S, Sasaki M, Harada K, Sato Y, Zen Y, Isse K, Kozaka K, Ishikawa A, Oda K, Nimura Y and Nakanuma Y: Possible regulation of migration of intrahepatic cholangiocarcinoma cells by interaction of CXCR4 expressed in carcinoma cells with tumor necrosis factor-alpha and stromal-derived factor-1 released in stroma. Am J Pathol. 168:1155–1168. 2006.

26 

Gentilini A, Rombouts K, Galastri S, Caligiuri A, Mingarelli E, Mello T, Marra F, Mantero S, Roncalli M, Invernizzi P and Pinzani M: Role of the stromal-derived factor-1 (SDF-1)-CXCR4 axis in the interaction between hepatic stellate cells and cholangiocarcinoma. J Hepatol. 57:813–820. 2012.

27 

McCarthy JB, El-Ashry D and Turley EA: Hyaluronan, cancer-associated fibroblasts and the tumor microenvironment in malignant progression. Front Cell Dev Biol. 6:482018.

28 

Cyphert JM, Trempus CS and Garantziotis S: Size matters: Molecular weight specificity of hyaluronan effects in cell biology. Int J Cell Biol. 2015:5638182015.

29 

Tian X, Azpurua J, Hine C, Vaidya A, Myakishev-Rempel M, Ablaeva J, Mao Z, Nevo E, Gorbunova V and Seluanov A: High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature. 499:346–349. 2013.

30 

Zhang M, Yang H, Wan L, Wang Z, Wang H, Ge C, Liu Y, Hao Y, Zhang D, Shi G, et al: Single-cell transcriptomic architecture and intercellular crosstalk of human intrahepatic cholangiocarcinoma. J Hepatol. 73:1118–1130. 2020.

31 

Cadamuro M, Nardo G, Indraccolo S, Dall'olmo L, Sambado L, Moserle L, Franceschet I, Colledan M, Massani M, Stecca T, et al: Platelet-derived growth factor-D and Rho GTPases regulate recruitment of cancer-associated fibroblasts in cholangiocarcinoma. Hepatology. 58:1042–1053. 2013.

32 

Fingas CD, Bronk SF, Werneburg NW, Mott JL, Guicciardi ME, Cazanave SC, Mertens JC, Sirica AE and Gores GJ: Myofibroblast-derived PDGF-BB promotes Hedgehog survival signaling in cholangiocarcinoma cells. Hepatology. 54:2076–2088. 2011.

33 

Cadamuro M, Brivio S, Mertens J, Vismara M, Moncsek A, Milani C, Fingas C, Cristina Malerba M, Nardo G, Dall'Olmo L, et al: Platelet-derived growth factor-D enables liver myofibroblasts to promote tumor lymphangiogenesis in cholangiocarcinoma. J Hepatol. 70:700–709. 2019.

34 

Wang Z, An J, Zhu D, Chen H, Lin A, Kang J, Liu W and Kang X: Periostin: An emerging activator of multiple signaling pathways. J Cell Commun Signal. 16:515–530. 2022.

35 

Yue H, Li W, Chen R, Wang J, Lu X and Li J: Stromal POSTN induced by TGF-β1 facilitates the migration and invasion of ovarian cancer. Gynecol Oncol. 160:530–538. 2021.

36 

Chen G, Wang Y, Zhao X, Xie XZ, Zhao JG, Deng T, Chen ZY, Chen HB, Tong YF, Yang Z, et al: A positive feedback loop between periostin and TGFβ1 induces and maintains the stemness of hepatocellular carcinoma cells via AP-2α activation. J Exp Clin Cancer Res. 40:2182021.

37 

Yu B, Wu K, Wang X, Zhang J, Wang L, Jiang Y, Zhu X, Chen W and Yan M: Periostin secreted by cancer-associated fibroblasts promotes cancer stemness in head and neck cancer by activating protein tyrosine kinase 7. Cell Death Dis. 9:10822018.

38 

Ma H, Wang J, Zhao X, Wu T, Huang Z, Chen D, Liu Y and Ouyang G: Periostin promotes colorectal tumorigenesis through integrin-FAK-Src pathway-mediated YAP/TAZ activation. Cell Rep. 30:793–806.e6. 2020.

39 

Utispan K, Sonongbua J, Thuwajit P, Chau-In S, Pairojkul C, Wongkham S and Thuwajit C: Periostin activates integrin α5β1 through a PI3K/AKT-dependent pathway in invasion of cholangiocarcinoma. Int J Oncol. 41:1110–1118. 2012.

40 

Sonongbua J, Siritungyong S, Thongchot S, Kamolhan T, Utispan K, Thuwajit P, Pongpaibul A, Wongkham S and Thuwajit C: Periostin induces epithelial-to-mesenchymal transition via the integrin α5β1/TWIST-2 axis in cholangiocarcinoma. Oncol Rep. 43:1147–1158. 2020.

41 

Peng H, Zhu E and Zhang Y: Advances of cancer-associated fibroblasts in liver cancer. Biomark Res. 10:592022.

42 

Kunk PR, Dougherty SC, Lynch K, Whitehair R, Meneveau M, Obeid JM, Winters K, Ju JY, Stelow EB, Bauer TW, et al: Myeloid cell infiltration correlates with prognosis in cholangiocarcinoma and varies based on tumor location. J Immunother. 44:254–263. 2021.

43 

Hasita H, Komohara Y, Okabe H, Masuda T, Ohnishi K, Lei XF, Beppu T, Baba H and Takeya M: Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma. Cancer Sci. 101:1913–1919. 2010.

44 

Charbel A, Tavernar L, Albrecht T, Brinkmann F, Verheij J, Roos E, Vogel MN, Köhler B, Springfeld C, Brobeil A, et al: Spatiotemporal analysis of tumour-infiltrating immune cells in biliary carcinogenesis. Br J Cancer. 127:1603–1614. 2022.

45 

Tu J, Wu F, Chen L, Zheng L, Yang Y, Ying X, Song J, Chen C, Hu X, Zhao Z and Ji J: Long non-coding RNA PCAT6 induces M2 polarization of macrophages in cholangiocarcinoma via modulating miR-326 and RhoA-ROCK signaling pathway. Front Oncol. 10:6058772021.

46 

Kitano Y, Okabe H, Yamashita YI, Nakagawa S, Saito Y, Umezaki N, Tsukamoto M, Yamao T, Yamamura K, Arima K, et al: Tumour-infiltrating inflammatory and immune cells in patients with extrahepatic cholangiocarcinoma. Br J Cancer. 118:171–180. 2018.

47 

Paillet J, Kroemer G and Pol JG: Immune contexture of cholangiocarcinoma. Curr Opin Gastroenterol. 36:70–76. 2020.

48 

Yuan H, Lin Z, Liu Y, Jiang Y, Liu K, Tu M, Yao N, Qu C and Hong J: Intrahepatic cholangiocarcinoma induced M2-polarized tumor-associated macrophages facilitate tumor growth and invasiveness. Cancer Cell Int. 20:5862020.

49 

Bai R, Li Y, Jian L, Yang Y, Zhao L and Wei M: The hypoxia-driven crosstalk between tumor and tumor-associated macrophages: Mechanisms and clinical treatment strategies. Mol Cancer. 21:1772022.

50 

Loilome W, Bungkanjana P, Techasen A, Namwat N, Yongvanit P, Puapairoj A, Khuntikeo N and Riggins GJ: Activated macrophages promote Wnt/β-catenin signaling in cholangiocarcinoma cells. Tumour Biol. 35:5357–5367. 2014.

51 

Cheng H and Li Q: Sevoflurane inhibits cholangiocarcinoma via Wnt/β-catenin signaling pathway. BMC Gastroenterol. 23:2792023.

52 

Boulter L, Guest RV, Kendall TJ, Wilson DH, Wojtacha D, Robson AJ, Ridgway RA, Samuel K, Van Rooijen N, Barry ST, et al: WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. J Clin Invest. 125:1269–1285. 2015.

53 

Zhou SL, Dai Z, Zhou ZJ, Chen Q, Wang Z, Xiao YS, Hu ZQ, Huang XY, Yang GH, Shi YH, et al: CXCL5 contributes to tumor metastasis and recurrence of intrahepatic cholangiocarcinoma by recruiting infiltrative intratumoral neutrophils. Carcinogenesis. 35:597–605. 2014.

54 

Zhou Z, Wang P, Sun R, Li J, Hu Z, Xin H, Luo C, Zhou J, Fan J and Zhou S: Tumor-associated neutrophils and macrophages interaction contributes to intrahepatic cholangiocarcinoma progression by activating STAT3. J Immunother Cancer. 9:e0019462021.

55 

Pandey G: Tumor-associated macrophages in solid tumor: Friend or foe. Ann Transl Med. 8:10272020.

56 

Brandau S, Dumitru CA and Lang S: Protumor and antitumor functions of neutrophil granulocytes. Semin Immunopathol. 35:163–176. 2013.

57 

Ohms M, Möller S and Laskay T: An attempt to polarize human neutrophils toward N1 and N2 phenotypes in vitro. Front Immunol. 11:5322020.

58 

Jaillon S, Ponzetta A, Di Mitri D, Santoni A, Bonecchi R and Mantovani A: Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer. 20:485–503. 2020.

59 

Mao ZY, Zhu GQ, Xiong M, Ren L and Bai L: Prognostic value of neutrophil distribution in cholangiocarcinoma. World J Gastroenterol. 21:4961–4968. 2015.

60 

Branchi V, Jürgensen B, Esser L, Gonzalez-Carmona M, Weismüller TJ, Strassburg CP, Henn J, Semaan A, Lingohr P, Manekeller S, et al: Tumor infiltrating neutrophils are frequently found in adenocarcinomas of the biliary tract and their precursor lesions with possible impact on prognosis. J Pers Med. 11:2332021.

61 

Parker KH, Beury DW and Ostrand-Rosenberg S: Myeloid-derived suppressor cells: Critical cells driving immune suppression in the tumor microenvironment. Adv Cancer Res. 128:95–139. 2015.

62 

Desai R, Coxon AT and Dunn GP: Therapeutic applications of the cancer immunoediting hypothesis. Semin Cancer Biol. 78:63–77. 2022.

63 

Qin G, Liu S, Liu J, Hu H, Yang L, Zhao Q, Li C, Zhang B and Zhang Y: Overcoming resistance to immunotherapy by targeting GPR84 in myeloid-derived suppressor cells. Signal Transduct Target Ther. 8:1642023.

64 

Kalathil S, Lugade AA, Miller A, Iyer R and Thanavala Y: Higher frequencies of GARP(+)CTLA-4(+)Foxp3(+) T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality. Cancer Res. 73:2435–2444. 2013.

65 

Zhang Q, Ma C, Duan Y, Heinrich B, Rosato U, Diggs LP, Ma L, Roy S, Fu Q, Brown ZJ, et al: Gut microbiome directs hepatocytes to recruit MDSCs and promote cholangiocarcinoma. Cancer Discov. 11:1248–1267. 2021.

66 

Lin Y, Cai Q, Chen Y, Shi T, Liu W, Mao L, Deng B, Ying Z, Gao Y, Luo H, et al: CAFs shape myeloid-derived suppressor cells to promote stemness of intrahepatic cholangiocarcinoma through 5-lipoxygenase. Hepatology. 75:28–42. 2022.

67 

Loeuillard E, Yang J, Buckarma E, Wang J, Liu Y, Conboy C, Pavelko KD, Li Y, O'Brien D, Wang C, et al: Targeting tumor-associated macrophages and granulocytic myeloid-derived suppressor cells augments PD-1 blockade in cholangiocarcinoma. J Clin Invest. 130:5380–5396. 2020.

68 

Chiossone L, Dumas PY, Vienne M and Vivier E: Natural killer cells and other innate lymphoid cells in cancer. Nat Rev Immunol. 18:671–688. 2018.

69 

Hung TH, Hung JT, Wu CE, Huang Y, Lee CW, Yeh CT, Chung YH, Lo FY, Lai LC, Tung JK, et al: Globo H is a promising theranostic marker for intrahepatic cholangiocarcinoma. Hepatol Commun. 6:194–208. 2022.

70 

Morisaki T, Umebayashi M, Kiyota A, Koya N, Tanaka H, Onishi H and Katano M: Combining cetuximab with killer lymphocytes synergistically inhibits human cholangiocarcinoma cells in vitro. Anticancer Res. 32:2249–2256. 2012.

71 

Panwong S, Wathikthinnakon M, Kaewkod T, Sawasdee N, Tragoolpua Y, Yenchitsomanus PT and Panya A: Cordycepin sensitizes cholangiocarcinoma cells to be killed by natural killer-92 (NK-92) cells. Molecules. 26:59732021.

72 

Jung IH, Kim DH, Yoo DK, Baek SY, Jeong SH, Jung DE, Park SW and Chung YY: In Vivo study of natural killer (NK) cell cytotoxicity against cholangiocarcinoma in a nude mouse model. In Vivo. 32:771–781. 2018.

73 

Fukuda Y, Asaoka T, Eguchi H, Yokota Y, Kubo M, Kinoshita M, Urakawa S, Iwagami Y, Tomimaru Y, Akita H, et al: Endogenous CXCL9 affects prognosis by regulating tumor-infiltrating natural killer cells in intrahepatic cholangiocarcinoma. Cancer Sci. 111:323–333. 2020.

74 

Tsukagoshi M, Wada S, Yokobori T, Altan B, Ishii N, Watanabe A, Kubo N, Saito F, Araki K, Suzuki H, et al: Overexpression of natural killer group 2 member D ligands predicts favorable prognosis in cholangiocarcinoma. Cancer Sci. 107:116–122. 2016.

75 

Melum E, Karlsen TH, Schrumpf E, Bergquist A, Thorsby E, Boberg KM and Lie BA: Cholangiocarcinoma in primary sclerosing cholangitis is associated with NKG2D polymorphisms. Hepatology. 47:90–96. 2008.

76 

Asahi Y, Hatanaka KC, Hatanaka Y, Kamiyama T, Orimo T, Shimada S, Nagatsu A, Sakamoto Y, Kamachi H, Kobayashi N, et al: Prognostic impact of CD8+ T cell distribution and its association with the HLA class I expression in intrahepatic cholangiocarcinoma. Surg Today. 50:931–940. 2020.

77 

Kim HD, Kim JH, Ryu YM, Kim D, Lee S, Shin J, Hong SM, Kim KH, Jung DH, Song GW, et al: Spatial distribution and prognostic implications of tumor-infiltrating FoxP3-CD4+ T cells in biliary tract cancer. Cancer Res Treat. 53:162–171. 2021.

78 

Goeppert B, Frauenschuh L, Zucknick M, Stenzinger A, Andrulis M, Klauschen F, Joehrens K, Warth A, Renner M, Mehrabi A, et al: Prognostic impact of tumour-infiltrating immune cells on biliary tract cancer. Br J Cancer. 109:2665–2674. 2013.

79 

Ueno T, Tsuchikawa T, Hatanaka KC, Hatanaka Y, Mitsuhashi T, Nakanishi Y, Noji T, Nakamura T, Okamura K, Matsuno Y and Hirano S: Prognostic impact of programmed cell death ligand 1 (PD-L1) expression and its association with epithelial-mesenchymal transition in extrahepatic cholangiocarcinoma. Oncotarget. 9:20034–20047. 2018.

80 

Kasper HU, Drebber U, Stippel DL, Dienes HP and Gillessen A: Liver tumor infiltrating lymphocytes: Comparison of hepatocellular and cholangiolar carcinoma. World J Gastroenterol. 15:5053–5057. 2009.

81 

Kim HD, Jeong S, Park S, Lee YJ, Ju YS, Kim D, Song GW, Lee JH, Kim SY, Shin J, et al: Implication of CD69+ CD103+ tissue-resident-like CD8+ T cells as a potential immunotherapeutic target for cholangiocarcinoma. Liver Int. 41:764–776. 2021.

82 

Carnevale G, Carpino G, Cardinale V, Pisciotta A, Riccio M, Bertoni L, Gibellini L, De Biasi S, Nevi L, Costantini D, et al: Activation of Fas/FasL pathway and the role of c-FLIP in primary culture of human cholangiocarcinoma cells. Sci Rep. 7:144192017.

83 

Ye Y, Zhou L, Xie X, Jiang G, Xie H and Zheng S: Interaction of B7-H1 on intrahepatic cholangiocarcinoma cells with PD-1 on tumor-infiltrating T cells as a mechanism of immune evasion. J Surg Oncol. 100:500–504. 2009.

84 

Wu MJ, Shi L, Dubrot J, Merritt J, Vijay V, Wei TY, Kessler E, Olander KE, Adil R, Pankaj A, et al: Mutant IDH inhibits IFNγ-TET2 signaling to promote immunoevasion and tumor maintenance in cholangiocarcinoma. Cancer Discov. 12:812–835. 2022.

85 

Lu JC, Zeng HY, Sun QM, Meng QN, Huang XY, Zhang PF, Yang X, Peng R, Gao C, Wei CY, et al: Distinct PD-L1/PD1 profiles and clinical implications in intrahepatic cholangiocarcinoma patients with different risk factors. Theranostics. 9:4678–4687. 2019.

86 

Tian L, Ma J, Ma L, Zheng B, Liu L, Song D, Wang Y, Zhang Z, Gao Q, Song K and Wang X: PD-1/PD-L1 expression profiles within intrahepatic cholangiocarcinoma predict clinical outcome. World J Surg Oncol. 18:3032020.

87 

Vigano L, Soldani C, Franceschini B, Cimino M, Lleo A, Donadon M, Roncalli M, Aghemo A, Di Tommaso L and Torzilli G: Tumor-infiltrating lymphocytes and macrophages in intrahepatic cholangiocellular carcinoma. Impact on prognosis after complete surgery. J Gastrointest Surg. 23:2216–2224. 2019.

88 

Goeppert B, Roessler S, Renner M, Singer S, Mehrabi A, Vogel MN, Pathil A, Czink E, Köhler B, Springfeld C, et al: Mismatch repair deficiency is a rare but putative therapeutically relevant finding in non-liver fluke associated cholangiocarcinoma. Br J Cancer. 120:109–114. 2019.

89 

Whiteside TL: What are regulatory T cells (Treg) regulating in cancer and why? Semin Cancer Biol. 22:327–334. 2012.

90 

Tan YS, Sansanaphongpricha K, Xie Y, Donnelly CR, Luo X, Heath BR, Zhao X, Bellile E, Hu H, Chen H, et al: Mitigating SOX2-potentiated immune escape of head and neck squamous cell carcinoma with a STING-inducing nanosatellite vaccine. Clin Cancer Res. 24:4242–4255. 2018.

91 

Ma C, Peng C, Lu X, Ding X, Zhang S, Zou X and Zhang X: Downregulation of FOXP3 inhibits invasion and immune escape in cholangiocarcinoma. Biochem Biophys Res Commun. 458:234–239. 2015.

92 

Ma K, Sun Z, Li X, Guo J, Wang Q and Teng M: Forkhead box M1 recruits FoxP3+ Treg cells to induce immune escape in hilar cholangiocarcinoma. Immun Inflamm Dis. 10:e7272022.

93 

Sarkar T, Dhar S and Sa G: Tumor-infiltrating T-regulatory cells adapt to altered metabolism to promote tumor-immune escape. Curr Res Immunol. 2:132–141. 2021.

94 

Zhang G, Zheng G, Zhang H and Qiu L: MUC1 induces the accumulation of Foxp3+ Treg cells in the tumor microenvironment to promote the growth and metastasis of cholangiocarcinoma through the EGFR/PI3K/Akt signaling pathway. Int Immunopharmacol. 118:1100912023.

95 

Wang H, Li C, Jian Z, Ou Y and Ou J: TGF-β1 reduces miR-29a expression to promote tumorigenicity and metastasis of cholangiocarcinoma by targeting HDAC4. PLoS One. 10:e01367032015.

96 

Martín-Sierra C, Martins R, Laranjeira P, Abrantes AM, Oliveira RC, Tralhão JG, Botelho MF, Furtado E, Domingues R and Paiva A: Functional impairment of circulating FcεRI+ monocytes and myeloid dendritic cells in hepatocellular carcinoma and cholangiocarcinoma patients. Cytometry B Clin Cytom. 96:490–495. 2019.

97 

Böttcher JP and Reis e Sousa C: The role of type 1 conventional dendritic cells in cancer immunity. Trends Cancer. 4:784–792. 2018.

98 

Junking M, Grainok J, Thepmalee C, Wongkham S and Yenchitsomanus PT: Enhanced cytotoxic activity of effector T-cells against cholangiocarcinoma by dendritic cells pulsed with pooled mRNA. Tumour Biol. 39:10104283177333672017.

99 

Thepmalee C, Panya A, Sujjitjoon J, Sawasdee N, Poungvarin N, Junking M and Yenchitsomanus PT: Suppression of TGF-β and IL-10 receptors on self-differentiated dendritic cells by short-hairpin RNAs enhanced activation of effector T-cells against cholangiocarcinoma cells. Hum Vaccin Immunother. 16:2318–2327. 2020.

100 

Thepmalee C, Panya A, Junking M, Chieochansin T and Yenchitsomanus PT: Inhibition of IL-10 and TGF-β receptors on dendritic cells enhances activation of effector T-cells to kill cholangiocarcinoma cells. Hum Vaccin Immunother. 14:1423–1431. 2018.

101 

Sung E, Ko M, Won JY, Jo Y, Park E, Kim H, Choi E, Jung UJ, Jeon J, Kim Y, et al: LAG-3xPD-L1 bispecific antibody potentiates antitumor responses of T cells through dendritic cell activation. Mol Ther. 30:2800–2816. 2022.

102 

Zeng FL and Chen JF: Application of immune checkpoint inhibitors in the treatment of cholangiocarcinoma. Technol Cancer Res Treat. 20:153303382110399522021.

103 

Halpert MM, Konduri V, Liang D, Chen Y, Wing JB, Paust S, Levitt JM and Decker WK: Dendritic cell-secreted cytotoxic T-lymphocyte-associated protein-4 regulates the T-cell response by downmodulating bystander surface B7. Stem Cells Dev. 25:774–787. 2016.

104 

Sadeghlar F, Vogt A, Mohr RU, Mahn R, van Beekum K, Kornek M, Weismüller TJ, Branchi V, Matthaei H, Toma M, et al: Induction of cytotoxic effector cells towards cholangiocellular, pancreatic, and colorectal tumor cells by activation of the immune checkpoint CD40/CD40L on dendritic cells. Cancer Immunol Immunother. 70:1451–1464. 2021.

105 

Djureinovic D, Wang M and Kluger HM: Agonistic CD40 antibodies in cancer treatment. Cancers (Basel). 13:13022021.

106 

Wu R, Ohara RA, Jo S, Liu TT, Ferris ST, Ou F, Kim S, Theisen DJ, Anderson DA III, Wong BW, et al: Mechanisms of CD40-dependent cDC1 licensing beyond costimulation. Nat Immunol. 23:1536–1550. 2022.

107 

Najafi M, Goradel NH, Farhood B, Salehi E, Solhjoo S, Toolee H, Kharazinejad E and Mortezaee K: Tumor microenvironment: Interactions and therapy. J Cell Physiol. 234:5700–5721. 2019.

108 

Ruffolo LI, Jackson KM, Kuhlers PC, Dale BS, Figueroa Guilliani NM, Ullman NA, Burchard PR, Qin SS, Juviler PG, Keilson JM, et al: GM-CSF drives myelopoiesis, recruitment and polarisation of tumour-associated macrophages in cholangiocarcinoma and systemic blockade facilitates antitumour immunity. Gut. 71:1386–1398. 2022.

109 

Feng M, Jiang W, Kim BYS, Zhang CC, Fu YX and Weissman IL: Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer. 19:568–586. 2019.

110 

Grinberg-Bleyer Y, Oh H, Desrichard A, Bhatt DM, Caron R, Chan TA, Schmid RM, Klein U, Hayden MS and Ghosh S: NF-κB c-Rel is crucial for the regulatory T cell immune checkpoint in cancer. Cell. 170:1096–1108.e13. 2017.

111 

Li Z, Li Y, Gao J, Fu Y, Hua P, Jing Y, Cai M, Wang H and Tong T: The role of CD47-SIRPα immune checkpoint in tumor immune evasion and innate immunotherapy. Life Sci. 273:1191502021.

112 

Vaeteewoottacharn K, Kariya R, Pothipan P, Fujikawa S, Pairojkul C, Waraasawapati S, Kuwahara K, Wongkham C, Wongkham S and Okada S: Attenuation of CD47-SIRPα signal in cholangiocarcinoma potentiates tumor-associated macrophage-mediated phagocytosis and suppresses intrahepatic metastasis. Transl Oncol. 12:217–225. 2019.

113 

Morvan MG and Lanier LL: NK cells and cancer: You can teach innate cells new tricks. Nature reviews Cancer. 16:7–19. 2016.

114 

Oliviero B, Varchetta S, Mele D, Pessino G, Maiello R, Falleni M, Tosi D, Donadon M, Soldani C, Franceschini B, et al: MICA/B-targeted antibody promotes NK cell-driven tumor immunity in patients with intrahepatic cholangiocarcinoma. Oncoimmunology. 11:20359192022.

115 

Boussiotis VA: Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med. 375:1767–1778. 2016.

116 

Sharpe AH and Pauken KE: The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol. 18:153–167. 2018.

117 

Azuma T, Yao S, Zhu G, Flies AS, Flies SJ and Chen L: B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood. 111:3635–3643. 2008.

118 

Gato-Cañas M, Zuazo M, Arasanz H, Ibañez-Vea M, Lorenzo L, Fernandez-Hinojal G, Vera R, Smerdou C, Martisova E, Arozarena I, et al: PDL1 signals through conserved sequence motifs to overcome interferon-mediated cytotoxicity. Cell Rep. 20:1818–1829. 2017.

119 

Hosseini A, Gharibi T, Marofi F, Babaloo Z and Baradaran B: CTLA-4: From mechanism to autoimmune therapy. Int Immunopharmacol. 80:1062212020.

120 

Walter D, Herrmann E, Schnitzbauer AA, Zeuzem S, Hansmann ML, Peveling-Oberhag J and Hartmann S: PD-L1 expression in extrahepatic cholangiocarcinoma. Histopathology. 71:383–392. 2017.

121 

Yu F, Gong L, Mo Z, Wang W, Wu M, Yang J, Zhang Q, Li L, Yao J and Dong J: Programmed death ligand-1, tumor infiltrating lymphocytes and HLA expression in Chinese extrahepatic cholangiocarcinoma patients: Possible immunotherapy implications. Biosci Trends. 13:58–69. 2019.

122 

Ma K, Wei X, Dong D, Wu Y, Geng Q and Li E: PD-L1 and PD-1 expression correlate with prognosis in extrahepatic cholangiocarcinoma. Oncol Lett. 14:250–256. 2017.

123 

Kim H, Kim J, Byeon S, Jang KT, Hong JY, Lee J, Park SH, Park JO, Park YS, Lim HY, et al: Programmed death ligand 1 expression as a prognostic marker in patients with advanced biliary tract cancer. Oncology. 99:365–372. 2021.

124 

Kitano Y, Yamashita YI, Nakao Y, Itoyama R, Yusa T, Umezaki N, Tsukamoto M, Yamao T, Miyata T, Nakagawa S, et al: Clinical significance of PD-L1 expression in both cancer and stroma cells of cholangiocarcinoma patients. Ann Surg Oncol. 27:599–607. 2020.

125 

Xian F, Ren D, Bie J and Xu G: Prognostic value of programmed cell death ligand 1 expression in patients with intrahepatic cholangiocarcinoma: a meta-analysis. Front Immunol. 14:11191682023.

126 

Cai Z, Ang X, Xu Z, Li S, Zhang J, Pei C and Zhou F: A pan-cancer study of PD-1 and CTLA-4 as therapeutic targets. Transl Cancer Res. 10:3993–4001. 2021.

127 

Guo XJ, Lu JC, Zeng HY, Zhou R, Sun QM, Yang GH, Pei YZ, Meng XL, Shen YH, Zhang PF, et al: CTLA-4 synergizes with PD1/PD-L1 in the inhibitory tumor microenvironment of intrahepatic cholangiocarcinoma. Front Immunol. 12:7053782021.

128 

Perkhofer L, Beutel AK and Ettrich TJ: Immunotherapy: Pancreatic cancer and extrahepatic biliary tract cancer. Visc Med. 35:28–37. 2019.

129 

Andrews LP, Yano H and Vignali DAA: Inhibitory receptors and ligands beyond PD-1, PD-L1 and CTLA-4: breakthroughs or backups. Nat Immunol. 20:1425–1434. 2019.

130 

Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E, et al: Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 372:320–330. 2015.

131 

Sharma P, Retz M, Siefker-Radtke A, Baron A, Necchi A, Bedke J, Plimack ER, Vaena D, Grimm MO, Bracarda S, et al: Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): A multicentre, single-arm, phase 2 trial. Lancet Oncol. 18:312–322. 2017.

132 

El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, Kim TY, Choo SP, Trojan J, Welling TH Rd, et al: Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 389:2492–2502. 2017.

133 

Casak SJ, Marcus L, Fashoyin-Aje L, Mushti SL, Cheng J, Shen YL, Pierce WF, Her L, Goldberg KB, Theoret MR, et al: FDA approval summary: Pembrolizumab for the first-line treatment of patients with MSI-H/dMMR advanced unresectable or metastatic colorectal carcinoma. Clin Cancer Res. 27:4680–4684. 2021.

134 

Nakajima EC, Vellanki PJ, Larkins E, Chatterjee S, Mishra-Kalyani PS, Bi Y, Qosa H, Liu J, Zhao H, Biable M, et al: FDA approval summary: Nivolumab in combination with ipilimumab for the treatment of unresectable malignant pleural mesothelioma. Clin Cancer Res. 28:446–451. 2022.

135 

Jenkins L, Jungwirth U, Avgustinova A, Iravani M, Mills A, Haider S, Harper J and Isacke CM: Cancer-associated fibroblasts suppress CD8+ T-cell infiltration and confer resistance to immune-checkpoint blockade. Cancer Res. 82:2904–2917. 2022.

136 

Job S, Rapoud D, Dos Santos A, Gonzalez P, Desterke C, Pascal G, Elarouci N, Ayadi M, Adam R, Azoulay D, et al: Identification of four immune subtypes characterized by distinct composition and functions of tumor microenvironment in intrahepatic cholangiocarcinoma. Hepatology. 72:965–981. 2020.

137 

Ikeda Y, Ono M, Ohmori G, Ameda S, Yamada M, Abe T, Fujii S, Fujita M and Maeda M: Successful pembrolizumab treatment of microsatellite instability-high intrahepatic cholangiocarcinoma: A case report. Clin Case Rep. 9:2259–2263. 2021.

138 

Mody K, Jain P, El-Refai SM, Azad NS, Zabransky DJ, Baretti M, Shroff RT, Kelley RK, El-Khouiery AB, Hockenberry AJ, et al: Clinical, genomic, and transcriptomic data profiling of biliary tract cancer reveals subtype-specific immune signatures. JCO Precis Oncol. 6:e21005102022.

139 

Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, et al: Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 357:409–413. 2017.

140 

Liu X, Yao J, Song L, Zhang S, Huang T and Li Y: Local and abscopal responses in advanced intrahepatic cholangiocarcinoma with low TMB, MSS, pMMR and negative PD-L1 expression following combined therapy of SBRT with PD-1 blockade. J Immunother Cancer. 7:2042019.

141 

Mou H, Yu L, Liao Q, Hou X, Wu Y, Cui Q, Yan N, Ma R, Wang L, Yao M and Wang K: Successful response to the combination of immunotherapy and chemotherapy in cholangiocarcinoma with high tumour mutational burden and PD-L1 expression: A case report. BMC Cancer. 18:11052018.

142 

Piha-Paul SA, Oh DY, Ueno M, Malka D, Chung HC, Nagrial A, Kelley RK, Ros W, Italiano A, Nakagawa K, et al: Efficacy and safety of pembrolizumab for the treatment of advanced biliary cancer: Results from the KEYNOTE-158 and KEYNOTE-028 studies. Int J Cancer. 147:2190–2198. 2020.

143 

Kim RD, Chung V, Alese OB, El-Rayes BF, Li D, Al-Toubah TE, Schell MJ, Zhou JM, Mahipal A, Kim BH and Kim DW: A phase 2 multi-institutional study of nivolumab for patients with advanced refractory biliary tract cancer. JAMA Oncol. 6:888–894. 2020.

144 

Ueno M, Ikeda M, Morizane C, Kobayashi S, Ohno I, Kondo S, Okano N, Kimura K, Asada S, Namba Y, et al: Nivolumab alone or in combination with cisplatin plus gemcitabine in Japanese patients with unresectable or recurrent biliary tract cancer: A non-randomised, multicentre, open-label, phase 1 study. Lancet Gastroenterol Hepatol. 4:611–621. 2019.

145 

Doki Y, Ueno M, Hsu CH, Oh DY, Park K, Yamamoto N, Ioka T, Hara H, Hayama M, Nii M, et al: Tolerability and efficacy of durvalumab, either as monotherapy or in combination with tremelimumab, in patients from Asia with advanced biliary tract, esophageal, or head-and-neck cancer. Cancer Med. 11:2550–2560. 2022.

146 

Lan Y, Zhang D, Xu C, Hance KW, Marelli B, Qi J, Yu H, Qin G, Sircar A, Hernández VM, et al: Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β. Sci Transl Med. 10:eaan54882018.

147 

Yoo C, Oh DY, Choi HJ, Kudo M, Ueno M, Kondo S, Chen LT, Osada M, Helwig C, Dussault I and Ikeda M: Phase I study of bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in patients with pretreated biliary tract cancer. J Immunother Cancer. 8:e0005642020.

148 

Klein O, Kee D, Nagrial A, Markman B, Underhill C, Michael M, Jackett L, Lum C, Behren A, Palmer J, et al: Evaluation of combination nivolumab and ipilimumab immunotherapy in patients with advanced biliary tract cancers: Subgroup analysis of a phase 2 nonrandomized clinical trial. JAMA Oncol. 6:1405–1409. 2020.

149 

Floudas CS, Xie C, Brar G, Morelli MP, Fioravanti S, Walker M, Mabry-Hrones D, Wood BJ, Levy EB, Krishnasamy VP and Greten TF: Combined immune checkpoint inhibition (ICI) with tremelimumab and durvalumab in patients with advanced hepatocellular carcinoma (HCC) or biliary tract carcinomas (BTC). J Clin Oncol. 37(4 Suppl): S3362019.

150 

Oh DY, Lee KH, Lee DW, Yoon J, Kim TY, Bang JH, Nam AR, Oh KS, Kim JM, Lee Y, et al: Gemcitabine and cisplatin plus durvalumab with or without tremelimumab in chemotherapy-naive patients with advanced biliary tract cancer: An open-label, single-centre, phase 2 study. Lancet Gastroenterol Hepatol. 7:522–532. 2022.

151 

Oh DY, Lee KH, Lee DW, Kim TY, Bang JH, Nam AR, Lee Y, Zhang Q, Rebelatto M, Li W and Kim JW: Phase II study assessing tolerability, efficacy, and biomarkers for durvalumab (D) ± tremelimumab (T) and gemcitabine/cisplatin (GemCis) in chemo-naïve advanced biliary tract cancer (aBTC). J Clin Oncol. 38(15 Suppl): S45202020.

152 

Feng K, Liu Y, Zhao Y, Yang Q, Dong L, Liu J, Li X, Zhao Z, Mei Q and Han W: Efficacy and biomarker analysis of nivolumab plus gemcitabine and cisplatin in patients with unresectable or metastatic biliary tract cancers: Results from a phase II study. J Immunother Cancer. 8:e0003672020.

153 

Boilève A, Hilmi M, Gougis P, Cohen R, Rousseau B, Blanc JF, Ben Abdelghani M, Castanié H, Dahan L, Tougeron D, et al: Triplet combination of durvalumab, tremelimumab, and paclitaxel in biliary tract carcinomas: Safety run-in results of the randomized IMMUNOBIL PRODIGE 57 phase II trial. Eur J Cancer. 143:55–63. 2021.

154 

Arkenau HT, Martin-Liberal J, Calvo E, Penel N, Krebs MG, Herbst RS, Walgren RA, Widau RC, Mi G, Jin J, et al: Ramucirumab plus pembrolizumab in patients with previously treated advanced or metastatic biliary tract cancer: Nonrandomized, open-label, phase I trial (JVDF). Oncologist. 23:1407–e136. 2018.

155 

Yarchoan M, Cope L, Ruggieri AN, Anders RA, Noonan AM, Goff LW, Goyal L, Lacy J, Li D, Patel AK, et al: Multicenter randomized phase II trial of atezolizumab with or without cobimetinib in biliary tract cancers. J Clin Invest. 131:e1526702021.

156 

Lin J, Yang X, Long J, Zhao S, Mao J, Wang D, Bai Y, Bian J, Zhang L, Yang X, et al: Pembrolizumab combined with lenvatinib as non-first-line therapy in patients with refractory biliary tract carcinoma. Hepatobiliary Surg Nutr. 9:414–424. 2020.

157 

Xie C, Duffy AG, Mabry-Hrones D, Wood B, Levy E, Krishnasamy V, Khan J, Wei JS, Agdashian D, Tyagi M, et al: Tremelimumab in combination with microwave ablation in patients with refractory biliary tract cancer. Hepatology. 69:2048–2060. 2019.

158 

Leem G, Jang SI, Cho JH, Jo JH, Lee HS, Chung MJ, Park JY, Bang S, Yoo DK, Cheon HC, et al: Safety and efficacy of allogeneic natural killer cells in combination with pembrolizumab in patients with chemotherapy-refractory biliary tract cancer: A multicenter open-label phase 1/2a trial. Cancers (Basel). 14:42292022.

159 

Sterner RC and Sterner RM: CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 11:692021.

160 

Sangsuwannukul T, Supimon K, Sujjitjoon J, Phanthaphol N, Chieochansin T, Poungvarin N, Wongkham S, Junking M and Yenchitsomanus PT: Anti-tumour effect of the fourth-generation chimeric antigen receptor T cells targeting CD133 against cholangiocarcinoma cells. Inte Int Immunopharmacol. 89:1070692020.

161 

Guo Y, Feng K, Liu Y, Wu Z, Dai H, Yang Q, Wang Y, Jia H and Han W: Phase I study of chimeric antigen receptor-modified T cells in patients with EGFR-positive advanced biliary tract cancers. Clin Cancer Res. 24:1277–1286. 2018.

162 

Feng KC, Guo YL, Liu Y, Dai HR, Wang Y, Lv HY, Huang JH, Yang QM and Han WD: Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma. J Hematol Oncol. 10:42017.

163 

Alnaggar M, Xu Y, Li J, He J, Chen J, Li M, Wu Q, Lin L, Liang Y, Wang X, et al: Allogenic Vγ9Vδ2 T cell as new potential immunotherapy drug for solid tumor: A case study for cholangiocarcinoma. J Immunother Cancer. 7:362019.

164 

Tran E, Turcotte S, Gros A, Robbins PF, Lu YC, Dudley ME, Wunderlich JR, Somerville RP, Hogan K, Hinrichs CS, et al: Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science. 344:641–645. 2014.

165 

Zhang T, Chen J, Niu L, Liu Y, Ye G, Jiang M and Qi Z: Clinical safety and efficacy of locoregional therapy combined with adoptive transfer of allogeneic γδ T cells for advanced hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Vasc Interv Radiol. 33:19–27.e3. 2022.

166 

Shimizu K, Kotera Y, Aruga A, Takeshita N, Takasaki K and Yamamoto M: Clinical utilization of postoperative dendritic cell vaccine plus activated T-cell transfer in patients with intrahepatic cholangiocarcinoma. J Hepatobiliary Pancreat Sci. 19:171–178. 2012.

167 

Shimizu K, Kotera Y, Aruga A, Takeshita N, Katagiri S, Ariizumi S, Takahashi Y, Yoshitoshi K, Takasaki K and Yamamoto M: Postoperative dendritic cell vaccine plus activated T-cell transfer improves the survival of patients with invasive hepatocellular carcinoma. Hum Vaccin Immunother. 10:970–976. 2014.

168 

Vonderheide RH: CD40 agonist antibodies in cancer immunotherapy. Annu Rev Med. 71:47–58. 2020.

169 

Hegde S, Krisnawan VE, Herzog BH, Zuo C, Breden MA, Knolhoff BL, Hogg GD, Tang JP, Baer JM, Mpoy C, et al: Dendritic cell paucity leads to dysfunctional immune surveillance in pancreatic cancer. Cancer Cell. 37:289–307.e9. 2020.

170 

Zhang J, Li Y, Yang S, Zhang L and Wang W: Anti-CD40 mAb enhanced efficacy of anti-PD1 against osteosarcoma. J Bone Oncol. 17:1002452019.

171 

Leblond MM, Tillé L, Nassiri S, Gilfillan CB, Imbratta C, Schmittnaegel M, Ries CH, Speiser DE and Verdeil G: CD40 agonist restores the antitumor efficacy of anti-PD1 therapy in muscle-invasive bladder cancer in an IFN I/II-mediated manner. Cancer Immunol Res. 8:1180–1192. 2020.

172 

Ma HS, Poudel B, Torres ER, Sidhom JW, Robinson TM, Christmas B, Scott B, Cruz K, Woolman S, Wall VZ, et al: A CD40 agonist and PD-1 antagonist antibody reprogram the microenvironment of nonimmunogenic tumors to allow T-cell-mediated anticancer activity. Cancer Immunol Res. 7:428–442. 2019.

173 

Moreno V, Perets R, Peretz-Yablonski T, Fourneau N, Girgis S, Guo Y, Hellemans P, Verona R, Pendás N, Xia Q, et al: A phase 1 study of intravenous mitazalimab, a CD40 agonistic monoclonal antibody, in patients with advanced solid tumors. Invest New Drugs. 41:93–104. 2023.

174 

Humphreys EH, Williams KT, Adams DH and Afford SC: Primary and malignant cholangiocytes undergo CD40 mediated Fas dependent apoptosis, but are insensitive to direct activation with exogenous Fas ligand. PLoS One. 5:e140372010.

175 

Diggs LP, Ruf B, Ma C, Heinrich B, Cui L, Zhang Q, McVey JC, Wabitsch S, Heinrich S, Rosato U, et al: CD40-mediated immune cell activation enhances response to anti-PD-1 in murine intrahepatic cholangiocarcinoma. J Hepatol. 74:1145–1154. 2021.

176 

O'Hara MH, O'Reilly EM, Rosemarie M, Varadhachary G, Wainberg ZA, Ko A, Fisher GA, Rahma O, Lyman JP, Cabanski CR, et al: Abstract CT004: A phase Ib study of CD40 agonistic monoclonal antibody APX005M together with gemcitabine (Gem) and nab-paclitaxel (NP) with or without nivolumab (Nivo) in untreated metastatic ductal pancreatic adenocarcinoma (PDAC) patients. Cancer Res. 79(13 Suppl): CT0042019.

177 

Lin Y, Peng L, Dong L, Liu D, Ma J, Lin J, Chen X, Lin P, Song G, Zhang M, et al: Geospatial immune heterogeneity reflects the diverse tumor-immune interactions in intrahepatic cholangiocarcinoma. Cancer Discov. 12:2350–2371. 2022.

178 

Morse MA, Gwin WR III and Mitchell DA: Vaccine therapies for cancer: Then and now. Target Oncol. 16:121–152. 2021.

179 

Goldstein D, Lemech C and Valle J: New molecular and immunotherapeutic approaches in biliary cancer. ESMO Open. 2(Suppl 1): e0001522017.

180 

Koido S, Kan S, Yoshida K, Yoshizaki S, Takakura K, Namiki Y, Tsukinaga S, Odahara S, Kajihara M, Okamoto M, et al: Immunogenic modulation of cholangiocarcinoma cells by chemoimmunotherapy. Anticancer Res. 34:6353–6361. 2014.

181 

Kaida M, Morita-Hoshi Y, Soeda A, Wakeda T, Yamaki Y, Kojima Y, Ueno H, Kondo S, Morizane C, Ikeda M, et al: Phase 1 trial of Wilms tumor 1 (WT1) peptide vaccine and gemcitabine combination therapy in patients with advanced pancreatic or biliary tract cancer. J Immunother. 34:92–99. 2011.

182 

Yamamoto K, Ueno T, Kawaoka T, Hazama S, Fukui M, Suehiro Y, Hamanaka Y, Ikematsu Y, Imai K, Oka M and Hinoda Y: MUC1 peptide vaccination in patients with advanced pancreas or biliary tract cancer. Anticancer Res. 25:3575–3579. 2005.

183 

Aruga A, Takeshita N, Kotera Y, Okuyama R, Matsushita N, Ohta T, Takeda K and Yamamoto M: Long-term vaccination with multiple peptides derived from cancer-testis antigens can maintain a specific T-cell response and achieve disease stability in advanced biliary tract cancer. Clin Cancer Res. 19:2224–2231. 2013.

184 

Aruga A, Takeshita N, Kotera Y, Okuyama R, Matsushita N, Ohta T, Takeda K and Yamamoto M: Phase I clinical trial of multiple-peptide vaccination for patients with advanced biliary tract cancer. J Transl Med. 12:612014.

185 

Yoshitomi M, Yutani S, Matsueda S, Ioji T, Komatsu N, Shichijo S, Yamada A, Itoh K, Sasada T and Kinoshita H: Personalized peptide vaccination for advanced biliary tract cancer: IL-6, nutritional status and pre-existing antigen-specific immunity as possible biomarkers for patient prognosis. Exp Ther Med. 3:463–469. 2012.

186 

Lepisto AJ, Moser AJ, Zeh H, Lee K, Bartlett D, McKolanis JR, Geller BA, Schmotzer A, Potter DP, Whiteside T, et al: A phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors. Cancer Ther. 6:955–964. 2008.

187 

Kobayashi M, Sakabe T, Abe H, Tanii M, Takahashi H, Chiba A, Yanagida E, Shibamoto Y, Ogasawara M, Tsujitani S, et al: Dendritic cell-based immunotherapy targeting synthesized peptides for advanced biliary tract cancer. J Gastrointest Surg. 17:1609–1617. 2013.

188 

Hochnadel I, Hoenicke L, Petriv N, Neubert L, Reinhard E, Hirsch T, Alfonso JCL, Suo H, Longerich T, Geffers R, et al: Safety and efficacy of prophylactic and therapeutic vaccine based on live-attenuated Listeria monocytogenes in hepatobiliary cancers. Oncogene. 41:2039–2053. 2022.

189 

Miao L, Zhang Y and Huang L: mRNA vaccine for cancer immunotherapy. Mol Cancer. 20:412021.

190 

Huang X, Tang T, Zhang G and Liang T: Identification of tumor antigens and immune subtypes of cholangiocarcinoma for mRNA vaccine development. Mol Cancer. 20:502021.

191 

Izquierdo-Sanchez L, Lamarca A, La Casta A, Buettner S, Utpatel K, Klümpen HJ, Adeva J, Vogel A, Lleo A, Fabris L, et al: Cholangiocarcinoma landscape in Europe: Diagnostic, prognostic and therapeutic insights from the ENSCCA Registry. J Hepatol. 76:1109–1121. 2022.

192 

Walker NJ, Crockett PW, Nyska A, Brix AE, Jokinen MP, Sells DM, Hailey JR, Easterling M, Haseman JK, Yin M, et al: Dose-additive carcinogenicity of a defined mixture of 'dioxin-like compounds'. Environ Health Perspect. 113:43–48. 2005.

193 

National Toxicology Program: Toxicology and carcinogenesis studies of 2,3',4,4',5-pentachlorobiphenyl (PCB 118) (CAS No. 31508-00-6) in female harlan Sprague-Dawley rats (gavage studies). Natl Toxicol Program Tech Rep Ser. 1–174. 2010.

194 

Lowery MA, Ptashkin R, Jordan E, Berger MF, Zehir A, Capanu M, Kemeny NE, O'Reilly EM, El-Dika I, Jarnagin WR, et al: Comprehensive molecular profiling of intrahepatic and extrahepatic cholangiocarcinomas: Potential targets for intervention. Clin Cancer Res. 24:4154–4161. 2018.

195 

Weinberg BA, Xiu J, Lindberg MR, Shields AF, Hwang JJ, Poorman K, Salem ME, Pishvaian MJ, Holcombe RF, Marshall JL and Morse MA: Molecular profiling of biliary cancers reveals distinct molecular alterations and potential therapeutic targets. J Gastrointest Oncol. 10:652–662. 2019.

196 

Kendall T, Verheij J, Gaudio E, Evert M, Guido M, Goeppert B and Carpino G: Anatomical, histomorphological and molecular classification of cholangiocarcinoma. Liver Int. 39(Suppl 1): S7–S18. 2019.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yang S, Zou R, Dai Y, Hu Y, Li F and Hu H: Tumor immune microenvironment and the current immunotherapy of cholangiocarcinoma (Review). Int J Oncol 63: 137, 2023.
APA
Yang, S., Zou, R., Dai, Y., Hu, Y., Li, F., & Hu, H. (2023). Tumor immune microenvironment and the current immunotherapy of cholangiocarcinoma (Review). International Journal of Oncology, 63, 137. https://doi.org/10.3892/ijo.2023.5585
MLA
Yang, S., Zou, R., Dai, Y., Hu, Y., Li, F., Hu, H."Tumor immune microenvironment and the current immunotherapy of cholangiocarcinoma (Review)". International Journal of Oncology 63.6 (2023): 137.
Chicago
Yang, S., Zou, R., Dai, Y., Hu, Y., Li, F., Hu, H."Tumor immune microenvironment and the current immunotherapy of cholangiocarcinoma (Review)". International Journal of Oncology 63, no. 6 (2023): 137. https://doi.org/10.3892/ijo.2023.5585
Copy and paste a formatted citation
x
Spandidos Publications style
Yang S, Zou R, Dai Y, Hu Y, Li F and Hu H: Tumor immune microenvironment and the current immunotherapy of cholangiocarcinoma (Review). Int J Oncol 63: 137, 2023.
APA
Yang, S., Zou, R., Dai, Y., Hu, Y., Li, F., & Hu, H. (2023). Tumor immune microenvironment and the current immunotherapy of cholangiocarcinoma (Review). International Journal of Oncology, 63, 137. https://doi.org/10.3892/ijo.2023.5585
MLA
Yang, S., Zou, R., Dai, Y., Hu, Y., Li, F., Hu, H."Tumor immune microenvironment and the current immunotherapy of cholangiocarcinoma (Review)". International Journal of Oncology 63.6 (2023): 137.
Chicago
Yang, S., Zou, R., Dai, Y., Hu, Y., Li, F., Hu, H."Tumor immune microenvironment and the current immunotherapy of cholangiocarcinoma (Review)". International Journal of Oncology 63, no. 6 (2023): 137. https://doi.org/10.3892/ijo.2023.5585
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team