|
1
|
Deo SVS, Sharma J and Kumar S: GLOBOCAN
2020 report on global cancer burden: Challenges and opportunities
for surgical oncologists. Ann Surg Oncol. 29:6497–6500. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Siegel RL, Wagle NS, Cercek A, Smith RA
and Jemal A: Colorectal cancer statistics, 2023. CA Cancer J Clin.
73:233–254. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Hanahan D and Weinberg RA: The hallmarks
of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Hanahan D: Hallmarks of cancer: New
dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ursell LK, Metcalf JL, Parfrey LW and
Knight R: Defining the human microbiome. Nutr Rev. 70:S38–S44.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wang R, Tang R, Li B, Ma X, Schnabl B and
Tilg H: Gut microbiome, liver immunology, and liver diseases. Cell
Mol Immunol. 18:4–17. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Dekaboruah E, Suryavanshi MV, Chettri D
and Verma AK: Human microbiome: An academic update on human body
site specific surveillance and its possible role. Arch Microbiol.
8:2147–2167. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kuźniar A, Szawica D, Wąsiewicz E,
Fularska K and Oleszko M: Human gut microbiome-how intestinal
bacteria influence our health. J Educ Health Sport. 1:30–35. 2023.
View Article : Google Scholar
|
|
10
|
Zhu X, Li B, Lou P, Dai T, Chen Y, Zhuge
A, Yuan Y and Li L: The relationship between the gut microbiome and
neurodegenerative diseases. Neurosci Bull. 37:1510–1522. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hoesel B and Schmid JA: The complexity of
NF-κB signaling in inflammation and cancer. Mol Cancer. 12:1–15.
2013. View Article : Google Scholar
|
|
12
|
Guinane CM and Cotter PD: Role of the gut
microbiota in health and chronic gastrointestinal disease:
Understanding a hidden metabolic organ. Ther Adv Gastroenterol.
4:295–308. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Meng C, Bai C, Brown TD, Hood LE and Tian
Q: Human gut microbiota and gastrointestinal cancer. Genomics
Proteomics Bioinformatics. 16:33–49. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Bhatt AP, Redinbo MR and Bultman SJ: The
role of the microbiome in cancer development and therapy. CA Cancer
J Clin. 67:326–344. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Boutari C and Mantzoros CS: A 2022 update
on the epidemiology of obesity and a call to action: As its twin
COVID-19 pandemic appears to be receding, the obesity and
dysmetabolism pandemic continues to rage on. Metabolism.
133:1552172022. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Calle EE, Rodriguez C, Walker-Thurmond K
and Thun MJ: Overweight, obesity, and mortality from cancer in a
prospectively studied cohort of U.S adults. N Engl J Med.
17:1625–1638. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Martin-Rodriguez E, Guillen-Grima F, Martí
A and Brugos-Larumbe A: Comorbidity associated with obesity in a
large population: The APNA study. Obes Res Clin Pract. 5:435–447.
2003.PubMed/NCBI
|
|
18
|
Wolin KY, Carson K and Colditz GA: Obesity
and cancer. Oncologist. 6:556–565. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Amersi F, Agustin M and Ko CY: Colorectal
cancer: Epidemiology, risk factors, and health services. Clin Colon
Rectal Surg. 3:133–140. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lauby-Secretan B, Scoccianti C, Loomis D,
Grosse Y, Bianchini F and Straif K: Body fatness and
cancer-viewpoint of the IARC working group. N Engl J Med.
8:794–798. 2016. View Article : Google Scholar
|
|
21
|
Deslypere JP: Obesity and cancer.
Metabolism. 44:24–27. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Fasshauer M and Blüher M: Adipokines in
health and disease. Trends Pharmacol Sci. 7:461–470. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Gregor MF and Hotamisligil GS:
Inflammatory mechanisms in obesity. Annu Rev Immunol. 29:415–445.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Longo M, Zatterale F, Naderi J, Parrillo
L, Formisano P, Raciti GA, Beguinot F and Miele C: Adipose tissue
dysfunction as determinant of obesity-associated metabolic
complications. Int J Mol Sci. 20:23582019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Amen OM, Sarker SD, Ghildyal R and Arya A:
Endoplasmic reticulum stress activates unfolded protein response
signaling and mediates inflammation, obesity, and cardiac
dysfunction: Therapeutic and molecular approach. Front Pharmacol.
10:9772019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Cnop M, Foufelle F and Velloso LA:
Endoplasmic reticulum stress, obesity and diabetes. Trends Mol Med.
18:59–68. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Kolb R, Sutterwala FS and Zhang W: Obesity
and cancer: Inflammation bridges the two. Curr Opin Pharmacol.
29:77–89. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Fenton JI, Hord NG, Lavigne JA, Perkins SN
and Hursting SD: Leptin, insulin-like growth factor-1, and
insulin-like growth factor-2 are mitogens in ApcMin/+ but not
Apc+/+ colonic epithelial cell lines. Cancer Epidemiol Biomarkers
Prev. 14:1646–1652. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
VanSaun MN: Molecular pathways:
Adiponectin and leptin signaling in cancer. Clin Cancer Res.
19:1926–1932. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hursting SD, Nunez ND, Varticovski L and
Vinson C: The obesity-cancer link: Lessons learned from a fatless
mouse. Cancer Res. 67:2391–2393. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Cohen DH and LeRoith D: Obesity, type 2
diabetes, and cancer: The insulin and IGF connection. Endocr Relat
Cancer. 19:F27–F45. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Amin MN, Hussain MS, Sarwar MS, Moghal MM,
Das A, Hossain MZ, Chowdhury JA, Millat MS and Islam MS: How the
association between obesity and inflammation may lead to insulin
resistance and cancer. Diabetes Metab Syndr. 13:1213–1224. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Dobbins M, Decorby K and Choi BCK: The
association between obesity and cancer risk: A meta-analysis of
observational studies from 1985 to 2011. ISRN Prev Med. 2013:1–16.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Jiralerspong S and Goodwin PJ: Obesity and
breast cancer prognosis: Evidence, challenges, and opportunities. J
Clin Oncol. 34:4203–4216. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Osman MA and Hennessy BT: Obesity
correlation with metastases development and response to first-line
metastatic chemotherapy in breast cancer. Clin Med Insights Oncol.
9:105–112. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Rumgay H, Arnold M, Ferlay J, Lesi O,
Cabasag CJ, Vignat J, Laversanne M, McGlynn KA and Soerjomataram I:
Global burden of primary liver cancer in 2020 and predictions to
2040. J Hepatol. 77:1598–1606. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
El-Serag HB and Mason AC: Risk factors for
the rising rates of primary liver cancer in the United States. Arch
Intern Med. 160:3227–3230. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ohishi W, Fujiwara S, Cologne JB, Suzuki
G, Akahoshi M, Nishi N, Tsuge M and Chayama K: Impact of radiation
and hepatitis virus infection on risk of hepatocellular carcinoma.
Hepatology. 53:1237–1245. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Larsson S and Wolk A: Overweight, obesity
and risk of liver cancer: A meta-analysis of cohort studies. Br J
Cancer. 97:1005–1008. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Chen Y, Wang X, Wang J, Yan Z and Luo J:
Excess body weight and the risk of primary liver cancer: An updated
meta-analysis of prospective studies. Eur J Cancer. 48:2137–2145.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Karczewski J, Begier-Krasińska B,
Staszewski R, Popławska E, Gulczynska-Elhadi K and Dobrowolska A:
Obesity and the risk of gastrointestinal cancers. Dig Dis Sci.
64:2740–2749. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
El-Serag HB, Ergun GA, Pandolfino J,
Fitzgerald S, Tran T and Kramer JR: Obesity increases oesophageal
acid exposure. Gut. 56:749–755. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Long E and Beales IL: The role of obesity
in oesophageal cancer development. Ther Adv Gastroenterol.
7:247–268. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Donohoe CL, O'Farrell NJ, Doyle SL and
Reynolds JV: The role of obesity in gastrointestinal cancer:
Evidence and opinion. Ther Adv Gastroenterol. 7:38–50. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Pati S, Irfan W, Jameel A, Ahmed S and
Shahid RK: Obesity and cancer: A current overview of epidemiology,
pathogenesis, outcomes, and management. Cancers (Basel).
15:4852023. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Rawla P, Sunkara T and Barsouk A:
Epidemiology of colorectal cancer: Incidence, mortality, survival,
and risk factors. Prz Gastroenterology. 14:89–103. 2019.
|
|
47
|
Soltani G, Poursheikhani A, Yassi M,
Hayatbakhsh A, Kerachian M and Kerachian MA: Obesity, diabetes and
the risk of colorectal adenoma and cancer. BMC Endocr Disord.
19:1132019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D,
Xiao C, Zhu D, Koya JB, Wei L, Li J and Chen ZS: Microbiota in
health and diseases. Signal Transduct Target Ther. 7:1352022.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Barra WF, Sarquis DP, Khayat AS, Khayat
BCM, Demachki S, Anaissi AKM, Ishak G, Santos NPC, Dos Santos SEB,
Burbano RR, et al: Gastric cancer microbiome. Pathobiology.
88:156–169. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Chattopadhyay I, Verma M and Panda M: Role
of oral microbiome signatures in diagnosis and prognosis of oral
cancer. Technol Cancer Res Treat. 18:15330338198673542019.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Yang Y, Dai D, Jin W, Huang Y, Zhang Y,
Chen Y, Wang W, Lin W, Chen X, Zhang J, et al: Microbiota and
metabolites alterations in proximal and distal gastric cancer
patients. J Transl Med. 20:4392022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Irfan M, Delgado RZR and Frias-Lopez J:
The oral microbiome and cancer. Front. Immunol.
11:5910882020.PubMed/NCBI
|
|
53
|
Zhao Y, Liu Y, Li S, Peng Z, Liu X, Chen J
and Zheng X: Role of lung and gut microbiota on lung cancer
pathogenesis. J Cancer Res Clin Oncol. 147:2177–2186. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ruo SW, Alkayyali T, Win M, Tara A, Joseph
C, Kannan A, Srivastava K, Ochuba O, Sandhu JK, Went TR, et al:
Role of gut microbiota dysbiosis in breast cancer and novel
approaches in prevention, diagnosis, and treatment. Cureus.
26:e174722021.PubMed/NCBI
|
|
55
|
Nicolaro M, Portal DE, Shinder B, Patel HV
and Singer EA: The human microbiome and genitourinary malignancies.
Ann Transl Med. 8:12452020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Allen J and Sears CL: Impact of the gut
microbiome on the genome and epigenome of colon epithelial cells:
Contributions to colorectal cancer development. Genome Med.
25:112019. View Article : Google Scholar
|
|
57
|
Collina F, Chiara AD, Renzo AD, Rosa GD,
Botti G and Franco R: Chlamydia psittaci in ocular adnexa MALT
lymphoma: A possible role in lymphomagenesis and a different
geographical distribution. Infect Agent Cancer. 7:82012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Tang T, Wu H, Chen X and Chen L, Liu L, Li
Z, Bai Q, Chen Y and Chen L: The hypothetical inclusion membrane
protein CPSIT_0846 regulates mitochondrial-mediated host cell
apoptosis via the ERK/JNK signaling pathway. Front Cell Infect
Microbiol. 11:6074222021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Olsen I and Yilmaz Ö: Possible role of
Porphyromonas gingivalis in orodigestive cancers. J Oral Microbiol.
11:15634102019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Cao S, Li J, Lu J, Zhong R and Zhong H:
Mycobacterium tuberculosis antigens repress Th1 immune response
suppression and promotes lung cancer metastasis through PD-1/PDl-1
signaling pathway. Cell Death Dis. 10:442019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Littman AJ, Jackson LA and Vaughan TL:
Chlamydia pneumoniae and lung cancer: Epidemiologic evidence.
Cancer Epidemiol Biomarkers Prev. 14:773–778. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Di Domenico EG, Cavallo I, Pontone M, Toma
L and Ensoli F: Biofilm producing Salmonella Typhi: Chronic
colonization and development of gallbladder cancer. Int J Mol Sci.
18:18872017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Oehmcke-Hecht S, Mandl V, Naatz LT,
Dühring L, Köhler J, Kreikemeyer B and Maletzki C: Streptococcus
gallolyticus abrogates anti-carcinogenic properties of tannic acid
on low-passage colorectal carcinomas. Sci Rep. 10:47142020.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Abdulamir AS, Hafidh RR and Bakar FA: The
association of Streptococcus bovis/gallolyticus with colorectal
tumors: The nature and the underlying mechanisms of its etiological
role. J Exp Clin Cancer Res. 30:112011. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhou X, Kandalai S, Hossain F and Zheng Q:
Tumor microbiome metabolism: A game changer in cancer development
and therapy. Front Oncol. 12:9334072022. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Johansson P, Eckstein A and Küppers R:
Biology of ocular adnexal marginal zone lymphomas. Cancers (Basel).
14:12642022. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Yoo JY, Groer M, Dutra SVO, Sarkar A and
McSkimming DI: Gut microbiota and immune system interactions.
Microorganisms. 8:15872020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ge Y, Wang X, Guo Y, Yan J, Abuduwaili A,
Aximujiang K, Yan J and Wu M: Gut microbiota influence tumor
development and Alter interactions with the human immune system. J
Exp Clin Cancer Res. 40:422021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kovács T, Mikó E, Ujlaki G, Sári Z and Bai
P: The microbiome as a component of the tumor microenvironment.
Tumor Microenviron. 2020:137–153. 2020. View Article : Google Scholar
|
|
70
|
Chen Y, Wu FH, Wu PQ, Xing HY and Ma T:
The role of the tumor microbiome in tumor development and its
treatment. Front Immunol. 13:9358462023. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
He T, Cheng X and Xing C: The gut
microbial diversity of colon cancer patients and the clinical
significance. Bioengineered. 12:7046–7060. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zheng D, Liwinski T and Elinav E:
Interaction between microbiota and immunity in health and disease.
Cell Res. 30:492–506. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Chénard T, Prévost K, Dubé J and Massé E:
Immune system modulations by products of the gut microbiota.
Vaccines (Basel). 8:4612020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Rawla P and Barsouk A: Epidemiology of
gastric cancer: Global trends, risk factors and prevention.
Gastroenterol Rev Gastroenterol. 14:26–38. 2018. View Article : Google Scholar
|
|
75
|
Hanus M, Parada-Venegas D, Landskron G,
Wielandt AM, Hurtado C, Alvarez K, Hermoso MA, López-Köstner F and
la Fuente MD: Immune system, microbiota, and microbial metabolites:
The unresolved triad in colorectal cancer microenvironment. Front
Immunol. 12:6128262021. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Ilic M and Ilic I: Epidemiology of stomach
cancer. World J Gastroenterol. 28:1187–1203. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lin XJ, Wang CP, Liu XD, Yan KK, Li S, Bao
HH, Zhao LY and Liu X: Body mass index and risk of gastric cancer:
A meta-analysis. Jpn J Clin Oncol. 44:783–791. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Lee HW, Huang D, Shin WK, de la Torre K,
Yang JJ, Song M, Shin A, Lee JK and Kang D: Obesity at early
adulthood increases risk of gastric cancer from the health
Examinees-Gem (HEXA-G) study. PLoS One. 17:e02608262022. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Cani PD and Jordan BF: Gut
microbiota-mediated inflammation in obesity: A link with
gastrointestinal cancer. Nat Rev Gastroenterol Hepatol. 15:671–682.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Doorakkers E, Lagergren J, Engstrand L and
Brusselaers N: Eradication of helicobacter pylori and gastric
cancer: A systematic review and meta-analysis of cohort studies. J
Natl Cancer Inst. 108:djw1322016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Toh JWT and Wilson RB: Pathways of gastric
carcinogenesis, helicobacter pylori virulence and interactions with
antioxidant systems, vitamin C and phytochemicals. Int J Mol Sci.
21:64512020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Colotta F, Allavena A, Sica C, Garlanda C
and Mantovani A: Cancer-related inflammation, the seventh hallmark
of cancer: Links to genetic instability. Carcinogenesis.
30:1073–1081. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Khatoon J, Rai RP and Prasad KN: Role of
helicobacter pylori in gastric cancer: Updates. World J
Gastrointest Oncol. 8:147–158. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Moyat M and Velin D: Immune responses to
Helicobacter pylori infection. World J Gastroenterol. 20:5583–5593.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Udhayakumar G, Jayanthi V, Devaraj N and
Devaraj H: Interaction of MUC1 with β-catenin modulates the Wnt
target Gene cyclinD1 in H. pylori-induced gastric cancer. Mol
Carcinog. 46:807–817. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Hotchin NA, Cover TL and Akhtar N: Cell
vacuolation induced by the VacA cytotoxin ofhelicobacter pylori is
regulated by the Rac1 GTPase. J Biol Chem. 275:14009–14012. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Yahiro K, Akazawa Y, Nakano M, Suzuki H,
Hisatune J, Isomoto H, Sap J, Noda M, Moss J and Hirayama T:
Helicobacter pylori VacA induces apoptosis by accumulation of
connexin 43 in autophagic vesicles via a Rac1/ERK-dependent
pathway. Cell Death Discov. 1:150352015. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Caputo R, Tuccillo C, Manzo BA, Zarrilli
R, Tortora G, Blanco CD, Ricci V, Ciardiello F and Romano M:
Helicobacter pylori VacA toxin up-regulates vascular endothelial
growth factor expression in MKN 28 gastric cells through an
epidermal growth factor receptor-, cyclooxygenase-2-dependent
mechanism1. Clin Cancer Res. 9:2015–2021. 2003.PubMed/NCBI
|
|
89
|
Song X, Xin N, Wang W and Zhao C:
Wnt/β-catenin, an oncogenic pathway targeted by H. pylori in
gastric carcinogenesis. Oncotarget. 6:35579–35588. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Muhammad JS, Eladl MA and Khoder G:
Helicobacter pylori-induced DNA methylation as an epigenetic
modulator of gastric cancer: Recent outcomes and future direction.
Pathogens. 8:232019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Peterson AJ, Menheniott TR, O'Connor L,
Walduck AK, Fox JG, Kawakami K, Minamoto T, Ong EK, Wang TC, Judd
LM and Giraud AS: Helicobacter pylori infection promotes
methylation and silencing of trefoil factor 2, leading to gastric
tumor development in mice and humans. Gastroenterology.
139:2005–2017. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Sato F and Meltzer SJ: CpG island
hypermethylation in progression of esophageal and gastric cancer.
Cancer. 106:483–493. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Smet A, Kupcinskas J, Link A, Hold GL and
Bornschein J: The role of microbiota in gastrointestinal cancer and
cancer treatment: Chance or curse? Cell Mol Gastroenterol Hepatol.
13:857–874. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Engstrand L and Lindberg M: Helicobacter
pylori and the gastric microbiota. Best Pract Res Clin
Gastroenterol. 27:39–45. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Aviles-Jimenez F, Vazquez-Jimenez F,
Medrano-Guzman R, Mantilla A and Torres J: Stomach microbiota
composition varies between patients with non-atrophic gastritis and
patients with intestinal type of gastric cancer. Sci Rep.
4:42022014. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Dias-Jácome E, Libânio D, Borges-Canha M,
Galaghar A and Pimentel-Nunes P: Gastric microbiota and
carcinogenesis: The role of non-Helicobacter pylori bacteria-A
systematic review. Rev Esp Enferm Dig. 108:530–540. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
De Witte C, Schulz C, Smet A,
Malfertheiner P and Haesebrouck F: Other Helicobacters and gastric
microbiota. Helicobacter. 21:62–68. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Tong Y, Gao H, Qi Q, Liu X, Li J, Gao J,
Li P, Wang Y, Du L and Wang C: High fat diet, gut microbiome and
gastrointestinal cancer. Theranostics. 11:5889–5910. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Arita S and Inagaki-Ohara K:
High-fat-diet-induced modulations of leptin signaling and gastric
microbiota drive precancerous lesions in the stomach. Nutrition.
67–68. 1105562019.
|
|
100
|
Colegio OR, Chu NQ, Szabo AL, Chu T,
Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC,
Phillips GM, et al: Functional polarization of tumour-associated
macrophages by tumour-derived lactic acid. Nature. 513:559–563.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
He C, Cheng D, Peng C, Li Y, Zhu Y and Lu
N: High-fat diet induces dysbiosis of gastric microbiota prior to
gut microbiota in association with metabolic disorders in mice.
Front Microbiol. 9:6392018. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Kim KA, Gu W, Lee IA, Joh EH and Kim DH:
High fat diet-induced gut microbiota exacerbates inflammation and
obesity in mice via the TLR4 signaling pathway. PLoS One.
7:e477132012. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Xiao S, Fei N, Pang X, Shen J, Wang L,
Zhang B, Zhang M, Zhang X, Zhang C, Li M, et al: A gut
microbiota-targeted dietary intervention for amelioration of
chronic inflammation underlying metabolic syndrome. FEMS Microbiol
Ecol. 87:357–367. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Li N, Xu H, Ou Y, Feng Z, Zhang Q, Zhu Q
and Cai Z: LPS-induced CXCR7 expression promotes gastric Cancer
proliferation and migration via the TLR4/MD-2 pathway. Diagn
Pathol. 14:32019. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zhang XHF, Giuliano M, Trivedi MV, Schiff
R and Osborne CK: Metastasis dormancy in estrogen receptor-positive
breast cancer. Clin Cancer Res. 19:6389–6397. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Bardou M, Barkun AN and Martel M: Obesity
and colorectal cancer. Gut. 62:933–947. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Pischon T and Nimptsch K: Obesity and risk
of cancer: An introductory overview in obesity and cancer. Recent
Results Cancer Res. 208:1–15. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Torre LA, Siegel RL, Ward EM and Jemal A:
Global cancer incidence and mortality rates and trends-an update.
Cancer Epidemiol Biomarkers Prev. 25:16–27. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Chaplin A, Rodriguez RM, Segura-Sampedro
JJ, Ochogavía-Seguí A, Romaguera D and Barceló-Coblijn G: Insights
behind the relationship between colorectal cancer and obesity: Is
visceral adipose tissue the missing link? Int J Mol Sci.
23:131282022. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Ma Y, Yang Y, Wang F, Zhang P, Shi C, Zou
Y and Qin H: Obesity and risk of colorectal cancer: A systematic
review of prospective studies. PLoS One. 8:e539162013. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Matsuo K, Mizoue T, Tanaka K, Tsuji I,
Sugawara Y, Sasazuki S, Nagata C, Tamakoshi A, Wakai K, Inoue M, et
al: Association between body mass index and the colorectal cancer
risk in Japan: Pooled analysis of population-based cohort studies
in Japan. Ann Oncol. 23:479–490. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Socol CT, Chira A, Martinez-Sanchez MA,
Nuñez-Sanchez MA, Maerescu CM, Mierlita D, Rusu AV, Ruiz-Alcaraz
AJ, Trif M and Ramos-Molina B: Leptin signaling in obesity and
colorectal cancer. Int J Mol Sci. 23:47132022. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Milosevic VS, Vukmirovic FC, Krstic MC,
Zindovic MM, Stojanovic DL and Jancic SA: Involvement of leptin
receptors expression in proliferation and neoangiogenesis in
colorectal carcinoma. J BUON. 20:100–108. 2015.PubMed/NCBI
|
|
114
|
Niku M, Pajari AM, Sarantaus L, Päivärinta
E, Storvik M, Heiman-Lindh A, Suokas S, Nyström M and Mutanen M:
Western diet enhances intestinal tumorigenesis in Min/+ mice,
associating with mucosal metabolic and inflammatory stress and loss
of Apc heterozygosity. J Nutr Biochem. 39:126–133. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Park S, Koh E, Koo JS, Kim SI, Park BW and
Kim KS: Lack of both androgen receptor and forkhead box A1 (FOXA1)
expression is a poor prognostic factor in estrogen
receptor-positive breast cancers. Oncotarget. 8:82940–82955. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Gheorghe AS, Negru ȘM, Preda M, Mihăilă
RI, Komporaly IA, Dumitrescu EA, Lungulescu CV, Kajanto LA,
Georgescu B, Radu EA and Stănculeanu DL: Biochemical and
metabolical pathways associated with microbiota-derived butyrate in
colorectal cancer and omega-3 fatty acids implications: A narrative
review. Nutrients. 14:11522022. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Mori G, Rampelli S, Orena BS, Rengucci C,
De Maio G, Barbieri G, Passardi A, Gardini AC, Frassineti GL,
Gaiarsa S, et al: Shifts of faecal microbiota during sporadic
colorectal carcinogenesis. Sci Rep. 8:103292018. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Hannigan GD, Duhaime MB, Ruffin MT IV,
Koumpouras CC and Schloss PD: Diagnostic potential and interactive
dynamics of the colorectal cancer virome. mBio. 9:e02248–e02218.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Fang Y, Yan C, Zhao Q, Xu J, Liu Z, Gao J,
Zhu H, Dai Z, Wang D and Tang D: The roles of microbial products in
the development of colorectal cancer: A review. Bioengineered.
12:720–735. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Sánchez-Alcoholado L, Ramos-Molina B,
Otero A, Laborda-Illanes A, Ordóñez R, Medina JA, Gómez-Millán J
and Queipo-Ortuño MI: The role of the gut microbiome in colorectal
cancer development and therapy response. Cancers (Basel).
12:14062020. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Schulz MD, Atay C, Heringer J, Romrig FK,
Schwitalla S, Aydin B, Ziegler PK, Varga J, Reindl W, Pommerenke C,
et al: High-fat-diet-mediated dysbiosis promotes intestinal
carcinogenesis independently of obesity. Nature. 514:508–512. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Gaines S, van Praagh JB, Williamson AJ,
Jacobson RA, Hyoju S, Zaborin A, Mao J, Koo HY, Alpert L,
Bissonnette M, et al: Western diet promotes intestinal colonization
by collagenolytic microbes and promotes tumor formation after
colorectal surgery. Gastroenterology. 158:958–970.e2. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Zeng H, Umar S, Rust B, Lazarova D and
Bordonaro M: Secondary bile acids and short chain fatty acids in
the colon: A focus on colonic microbiome, cell proliferation,
inflammation, and cancer. Int J Mol Sci. 20:12142019. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Schramm C: Bile acids, the microbiome,
immunity, and liver tumors. N Engl J Med. 379:888–890. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Koh GY, Kane A, Lee K, Xu Q, Wu X, Roper
J, Mason JB and Crott JW: Parabacteroides distasonis attenuates
toll-like receptor 4 signaling and Akt activation and blocks colon
tumor formation in high-fat diet-fed azoxymethane-treated mice. Int
J Cancer. 143:1797–1805. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Gupta H, Youn GS, Shin MJ and Suk KT: Role
of gut microbiota in hepatocarcinogenesis. Microorganisms.
7:1212019. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Trivedi Y, Bolgarina Z, Desai HN,
Senaratne M, Swami SS, Aye SL and Mohammed L: The role of gut
microbiome in hepatocellular carcinoma: A systematic review.
Cureus. 15:e438622023.PubMed/NCBI
|
|
128
|
Plaza-Díaz J, Solís-Urra P,
Rodríguez-Rodríguez F, Olivares-Arancibia J, Navarro-Oliveros M,
Abadía-Molina F and Álvarez-Mercado AI: The gut barrier, intestinal
microbiota, and liver disease: Molecular mechanisms and strategies
to manage. Int J Mol Sci. 21:83512020. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Schwabe RF and Greten TF: Gut microbiome
in HCC-Mechanisms, diagnosis and therapy. J Hepatol. 72:230–238.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Chu H, Williams B and Schnabl B: Gut
microbiota, fatty liver disease, and hepatocellular carcinoma.
Liver Res. 2:43–51. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Yoshimoto S, Loo TM, Atarashi K, Kanda H,
Sato S, Oyadomari S, Iwakura Y, Oshima K, Morita H, Hattori M, et
al: Obesity-induced gut microbial metabolite promotes liver cancer
through senescence secretome. Nature. 499:97–101. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Roh YS and Seki E: Toll-like receptors in
alcoholic liver disease, non-alcoholic steatohepatitis and
carcinogenesis. J Gastroenterol Hepatol. 28:38–42. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Bartolini I, Risaliti M, Tucci R, Muiesan
P, Ringressi MN, Taddei A and Amedei A: Gut microbiota and immune
system in liver cancer: Promising therapeutic implication from
development to treatment. World J Gastrointest Oncol. 13:1616–1631.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Allsopp P, Possemiers S, Campbell D, Gill
C and Rowland I: A comparison of the anti-cancer properties of
isoxanthohumol and 8-prenylnaringenin using in vitro models of
colon cancer. Biofactors. 39:441–447. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Higashimura Y, Naito Y, Takagi T, Uchiyama
K, Mizushima K, Ushiroda C, Ohnogi H, Kudo Y, Yasui M, Inui S, et
al: Protective effect of agaro-oligosaccharides on gut dysbiosis
and colon tumorigenesis in high-fat diet-fed mice. Am J Physiol
Gastrointest Liver Physiol. 310:G367–G375. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Costabile A, Fava F, Röytiö H, Forssten
SD, Olli K, Klievink J, Rowland IR, Ouwehand AC, Rastall RA, Gibson
GR and Walton GE: Impact of polydextrose on the faecal microbiota:
A double-blind, crossover, placebo-controlled feeding study in
healthy human subjects. Br J Nutr. 108:471–481. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Shields CE, Van Meerbeke SW, Housseau F,
Wang H, Huso DL, Casero RA Jr, O'Hagan HM and Sears CL: Reduction
of murine colon tumorigenesis driven by enterotoxigenic bacteroides
fragilis using cefoxitin treatment. J Infect Dis. 214:122–129.
2016. View Article : Google Scholar
|
|
138
|
Hou H, Chen D, Zhang K, Zhang W, Liu T,
Wang S, Dai X, Wang B, Zhong W and Cao H: Gut microbiota-derived
short-chain fatty acids and colorectal cancer: Ready for clinical
translation? Cancer Lett. 526:225–235. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Son MY and Cho HS: Anticancer effects of
gut microbiota-derived short-chain fatty acids in cancers. J
Microbiol Biotechnol. 33:849–856. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Schneider KM, Mohs A, Gui W, Galvez EJC,
Candels LS, Hoenicke L, Muthukumarasamy U, Holland CH, Elfers C,
Kilic K, et al: Imbalanced gut microbiota fuels hepatocellular
carcinoma development by shaping the hepatic inflammatory
microenvironment. Nat Commun. 13:39642022. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Yu LX and Schwabe RF: The gut microbiome
and liver cancer: Mechanisms and clinical translation. Nat Rev
Gastroenterol Hepatol. 14:527–539. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Patel AH, Li Y, Minacapelli CD, Catalano K
and Rustgi V: Reduction in gastrointestinal cancers in cirrhotic
patients receiving rifaximin vs lactulose only therapy for hepatic
encephalopathy. Cureus. 15:e352592023.PubMed/NCBI
|
|
143
|
Ting NLN, Lau HCH and Yu J: Cancer
pharmacomicrobiomics: Targeting microbiota to optimise cancer
therapy outcomes. Gut. 71:1412–1425. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
de Clercq NC, van den Ende T, Prodan A,
Hemke R, Davids M, Pedersen HK, Nielsen HB, Groen AK, de Vos WM,
van Laarhoven HWM and Nieuwdorp M: Fecal microbiota transplantation
from overweight or obese donors in cachectic patients with advanced
gastroesophageal cancer: A randomized, double-blind,
placebo-controlled, phase II study. Clin Cancer Res. 27:3784–3792.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Napolitano M and Covasa M: Microbiota
transplant in the treatment of obesity and diabetes: Current and
future perspectives. Front Microbiol. 11:5903702020. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Davar D, Dzutsev AK, McCulloch JA,
Rodrigues RR, Chauvin JM, Morrison RM, Deblasio RN, Menna C, Ding
Q, Pagliano O, et al: Fecal microbiota transplant overcomes
resistance to anti-PD-1 therapy in melanoma patients. Science.
371:595–602. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Xu H, Cao C, Ren Y, Weng S, Liu L, Guo C,
Wang L, Han X, Ren J and Liu Z: Antitumor effects of fecal
microbiota transplantation: Implications for microbiome modulation
in cancer treatment. Front Immunol. 13:9494902022. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Zhao LY, Mei JX, Yu G, Lei L, Zhang WH,
Liu K, Chen XL, Kołat D, Yang K and Hu JK: Role of the gut
microbiota in anticancer therapy: from molecular mechanisms to
clinical applications. Signal Transduction Target Ther. 8:2012023.
View Article : Google Scholar : PubMed/NCBI
|