|
1
|
Yan S and Wan G: Tumor-associated
macrophages in immunotherapy. FEBS J. 288:6174–6186. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Murray PJ, Allen JE, Biswas SK, Fisher EA,
Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence
T, et al: Macrophage activation and polarization: Nomenclature and
experimental guidelines. Immunity. 41:14–20. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Chen Y, Song Y, Du W, Gong L, Chang H and
Zou Z: Tumor-associated macrophages: An accomplice in solid tumor
progression. J Biomed Sci. 26:782019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Pathria P, Louis TL and Varner JA:
Targeting tumor-associated macrophages in cancer. Trends Immunol.
40:310–327. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Li F, Okreglicka KM, Pohlmeier LM,
Schneider C and Kopf M: Fetal monocytes possess increased metabolic
capacity and replace primitive macrophages in tissue macrophage
development. EMBO J. 39:e1032052020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Locati M, Curtale G and Mantovani A:
Diversity, mechanisms, and significance of macrophage plasticity.
Annu Rev Pathol. 15:123–147. 2020. View Article : Google Scholar
|
|
7
|
Bonapace L, Coissieux MM, Wyckoff J, Mertz
KD, Varga Z, Junt T and Bentires-Alj M: Cessation of CCL2
inhibition accelerates breast cancer metastasis by promoting
angiogenesis. Nature. 515:130–133. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Zhang WJ, Wang XH, Gao ST, Chen C, Xu XY,
Sun Q, Zhou ZH, Wu GZ, Yu Q, Xu G, et al: Tumor-associated
macrophages correlate with phenomenon of epithelial-mesenchymal
transition and contribute to poor prognosis in triple-negative
breast cancer patients. J Surg Res. 222:93–101. 2018. View Article : Google Scholar
|
|
9
|
Xu Y, Zeng H, Jin K, Liu Z, Zhu Y, Xu L,
Wang Z, Chang Y and Xu J: Immunosuppressive tumor-associated
macrophages expressing interlukin-10 conferred poor prognosis and
therapeutic vulnerability in patients with muscle-invasive bladder
cancer. J Immunother Cancer. 10:e0034162022. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Kumar AT, Knops A, Swendseid B,
Martinez-Outschoom U, Harshyne L, Philp N, Rodeck U, Luginbuhl A,
Cognetti D, Johnson J and Curry J: Prognostic significance of
tumor-associated macrophage content in head and neck squamous cell
carcinoma: A meta-analysis. Front Oncol. 9:6562019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhang H, Luo YB, Wu W, Zhang L, Wang Z,
Dai Z, Feng S, Cao H, Cheng Q and Liu Z: The molecular feature of
macrophages in tumor immune microenvironment of glioma patients.
Comput Struct Biotechnol J. 19:4603–4618. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wu Z, Lei K, Li H, He J and Shi E:
Transcriptome-based network analysis related to M2-like
tumor-associated macrophage infiltration identified VARS1 as a
potential target for improving melanoma immunotherapy efficacy. J
Transl Med. 20:4892022. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Yuri P, Shigemura K, Kitagawa K, Hadibrata
E, Risan M, Zulfiqqar A, Soeroharjo I, Hendri AZ, Danarto R, Ishii
A, et al: Increased tumor-associated macrophages in the prostate
cancer microenvironment predicted patients' survival and responses
to androgen deprivation therapies in Indonesian patients cohort.
Prostate Int. 8:62–69. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Cortese N, Carriero R, Laghi L, Mantovani
A and Marchesi F: Prognostic significance of tumor-associated
macrophages: Past, present and future. Semin Immunol.
48:1014082020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Qian BZ and Pollard JW: Macrophage
diversity enhances tumor progression and metastasis. Cell.
141:39–51. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Movahedi K, Laoui D, Gysemans C, Baeten M,
Stangé G, Van den Bossche J, Mack M, Pipeleers D, In't Veld P, De
Baetselier P and Van Ginderachter JA: Different tumor
microenvironments contain functionally distinct subsets of
macrophages derived from Ly6C(high) monocytes. Cancer Res.
70:5728–5739. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Shapouri-Moghaddam A, Mohammadian S,
Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi
A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization,
and function in health and disease. J Cell Physiol. 233:6425–6440.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Martinez FO, Sica A, Mantovani A and
Locati M: Macrophage activation and polarization. Front Biosci.
13:453–461. 2008. View
Article : Google Scholar
|
|
19
|
Zizzo G, Hilliard BA, Monestier M and
Cohen PL: Efficient clearance of early apoptotic cells by human
macrophages requires M2c polarization and MerTK Induction. J
Immunol. 189:3508–3520. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Ferrante AW Jr: Macrophages, fat, and the
emergence of immunometabolism. J Clin Invest. 123:4992–4993. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Haskó G, Pacher P, Deitch EA and Vizi ES:
Shaping of monocyte and macrophage function by adenosine receptors.
Pharmacol Ther. 113:264–275. 2007. View Article : Google Scholar
|
|
22
|
Pinhal-Enfield G, Ramanathan M, Hasko G,
Vogel SN, Salzman AL, Boons GJ and Leibovich SJ: An angiogenic
switch in macrophages involving synergy between Toll-like receptors
2, 4, 7, and 9 and adenosine A(2A) receptors. Am J Pathol.
163:711–721. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Mantovani A, Sica A, Sozzani S, Allavena
P, Vecchi A and Locati M: The chemokine system in diverse forms of
macrophage activation and polarization. Trends Immunol. 25:677–686.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Huang YH, Cai K, Xu PP, Wang L, Huang CX,
Fang Y, Cheng S, Sun XJ, Liu F, Huang JY, et al: CREBBP/EP300
mutations promoted tumor progression in diffuse large B-cell
lymphoma through altering tumor-associated macrophage polarization
via FBXW7-NOTCH-CCL2/CSF1 axis. Signal Transduct Target Ther.
6:102021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Qian BZ, Li J, Zhang H, Kitamura T, Zhang
J, Campion LR, Kaiser EA, Snyder LA and Pollard JW: CCL2 recruits
inflammatory monocytes to facilitate breast-tumour metastasis.
Nature. 475:222–225. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Sierra-Filardi E, Nieto C, Domínguez-Soto
Á, Barroso R, Sánchez-Mateos P, Puig-Kroger A, López-Bravo M, Joven
J, Ardavín C, Rodríguez-Fernández JL, et al CCL2 Shapes Macrophage
Polarization by GM-CSF and M-CSF: Identification of
CCL2/CCR2-dependent gene expression profile. J Immunol.
192:3858–3867. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Archer M, Bernhardt SM, Hodson LJ,
Woolford L, Van der Hoek M, Dasari P, Evdokiou A and Ingman WV:
CCL2-Mediated stromal interactions drive macrophage polarization to
increase breast tumorigenesis. Int J Mol Sci. 24:73852023.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Valero JG, Matas-Céspedes A, Arenas F,
Rodriguez V, Carreras J, Serrat N, Guerrero-Hernández M, Yahiaoui
A, Balagué O, Martin S, et al: The receptor of the
colony-stimulating factor-1 (CSF-1R) is a novel prognostic factor
and therapeutic target in follicular lymphoma. Leukemia.
35:2635–2649. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Mu G, Zhu Y, Dong Z, Shi L, Deng Y and Li
H: Calmodulin 2 facilitates angiogenesis and metastasis of gastric
cancer via STAT3/HIF-1A/VEGF-A mediated macrophage polarization.
Front Oncol. 11:7273062021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Lian G, Chen S, Ouyang M, Li F, Chen L and
Yang J: Colon cancer cell secretes EGF to Promote M2 Polarization
of TAM Through EGFR/PI3K/AKT/mTOR pathway. Technol Cancer Res
Treat. 18:15330338198490682019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Mazzoni M, Mauro G, Erreni M, Romeo P,
Minna E, Vizioli MG, Belgiovine C, Rizzetti MG, Pagliardini S,
Avigni R, et al: Senescent thyrocytes and thyroid tumor cells
induce M2-like macrophage polarization of human monocytes via a
PGE2-dependent mechanism. J Exp Clin Cancer Res. 38:2082019.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Vaupel P and Harrison L: Tumor hypoxia:
Causative factors, compensatory mechanisms, and cellular response.
Oncologist. 9(Suppl 5): S4–S9. 2004. View Article : Google Scholar
|
|
33
|
Zhou HC, Xin-Yan Yan, Yu WW, Liang XQ, Du
XY, Liu ZC, Long JP, Zhao GH and Liu HB: Lactic acid in macrophage
polarization: The significant role in inflammation and cancer.
Inter Rev Immunol. 41:4–18. 2021. View Article : Google Scholar
|
|
34
|
Zhang L and Li S: Lactic acid promotes
macrophage polarization through MCT-HIF1α signaling in gastric
cancer. Exp Cell Res. 388:1118462020. View Article : Google Scholar
|
|
35
|
Park JE, Dutta B, Tse SW, Gupta N, Tan CF,
Low JK, Yeoh KW, Kon OL, Tam JP and Sze SK: Hypoxia-induced tumor
exosomes promote M2-like macrophage polarization of infiltrating
myeloid cells and microRNA-mediated metabolic shift. Oncogene.
38:5158–5173. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hynes RO: The extracellular matrix: Not
just pretty fibrils. Science. 326:1216–1219. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Colombatti A, Spessotto P, Doliana R,
Mongiat M, Bressan GM and Esposito G: The EMILIN/Multimerin family.
Front Immunol. 2:932012. View Article : Google Scholar :
|
|
38
|
Mongiat M, Marastoni S, Ligresti G,
Lorenzon E, Schiappacassi M, Perris R, Frustaci S and Colombatti A:
The extracellular matrix glycoprotein elastin microfibril interface
located protein 2: A dual role in the tumor microenvironment.
Neoplasia. 12:294–304. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Andreuzzi E, Fejza A, Polano M, Poletto E,
Camicia L, Carobolante G, Tarticchio G, Todaro F, Di Carlo E,
Scarpa M, et al: Colorectal cancer development is affected by the
ECM molecule EMILIN-2 hinging on macrophage polarization via the
TLR-4/MyD88 pathway. J Exp Clin Cancer Res. 41:602022. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Bernsmeier C, van der Merwe S and Périanin
A: Innate immune cells in cirrhosis. J Hepatol. 73:186–201. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Bruns H, Büttner M, Fabri M, Mougiakakos
D, Bittenbring JT, Hoffmann MH, Beier F, Pasemann S, Jitschin R,
Hofmann AD, et al: Vitamin D-dependent induction of cathelicidin in
human macrophages results in cytotoxicity against high-grade B cell
lymphoma. Sci Transl Med. 7:282ra472015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Pan Y, Yu Y, Wang X and Zhang T:
Tumor-Associated macrophages in tumor immunity. Front Immunol.
11:5830842020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Haque ASMR, Moriyama M, Kubota K, Ishiguro
N, Sakamoto M, Chinju A, Mochizuki K, Sakamoto T, Kaneko N,
Munemura R, et al: CD206+tumor-associated macrophages promote
proliferation and invasion in oral squamous cell carcinoma via EGF
production. Sci Rep. 9:146112019. View Article : Google Scholar
|
|
44
|
Xu W, Wu Y, Liu W, Anwaier A, Tian X, Su
J, Huang H, Wei G, Qu Y, Zhang H and Ye D: Tumor-associated
macrophage-derived chemokine CCL5 facilitates the progression and
immunosuppressive tumor microenvironment of clear cell renal cell
carcinoma. Int J Biol Sci. 18:4884–4900. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Radharani NNV, Yadav AS, Nimma R, Kumar
TVS, Bulbule A, Chanukuppa V, Kumar D, Patnaik S, Rapole S and
Kundu GC: Tumor-associated macrophage derived IL-6 enriches cancer
stem cell population and promotes breast tumor progression via
Stat-3 pathway. Cancer Cell Int. 22:1222022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Valković T, Dobrila F, Melato M, Sasso F,
Rizzardi C and Jonjić N: Correlation between vascular endothelial
growth factor, angiogenesis, and tumor-associated macrophages in
invasive ductal breast carcinoma. Virchows Arch. 440:583–588. 2002.
View Article : Google Scholar
|
|
47
|
Fu LQ, Du WL, Cai MH, Yao JY, Zhao YY and
Mou XZ: The roles of tumor-associated macrophages in tumor
angiogenesis and metastasis. Cell Immunol. 353:1041192020.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wu H, Zhang X, Han D, Cao J and Tian J:
Tumour-associated macrophages mediate the invasion and metastasis
of bladder cancer cells through CXCL8. PeerJ. 8:e87212020.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Riabov V, Gudima A, Wang N, Mickley A,
Orekhov A and Kzhyshkowska J: Role of tumor associated macrophages
in tumor angiogenesis and lymphangiogenesis. Front Physiol.
5:752014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kawahara A, Hattori S, Akiba J, Nakashima
K, Taira T, Watari K, Hosoi F, Uba M, Basaki Y, Koufuji K, et al:
Infiltration of thymidine phosphorylase-positive macrophages is
closely associated with tumor angiogenesis and survival in
intestinal type gastric cancer. Oncol Rep. 24:405–415. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Hori T, Sasayama T, Tanaka K, Koma YI,
Nishihara M, Tanaka H, Nakamizo S, Nagashima H, Maeyama M, Fujita
Y, et al: Tumor-associated macrophage related interleukin-6 in
cerebrospinal fluid as a prognostic marker for glioblastoma. J Clin
Neurosci. 68:281–289. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhou M, Na R, Lai S, Guo Y, Shi J, Nie J,
Zhang S, Wang Y and Zheng T: The present roles and future
perspectives of Interleukin-6 in biliary tract cancer. Cytokine.
169:1562712023. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Sceneay J, Smyth MJ and Möller A: The
pre-metastatic niche: Finding common ground. Cancer Metastasis Rev.
32:449–464. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Lu X and Kang Y: Organotropism of breast
cancer metastasis. J Mammary Gland Biol Neoplasia. 12:153–162.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Müller A, Homey B, Soto H, Ge N, Catron D,
Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, et al:
Involvement of chemokine receptors in breast cancer metastasis.
Nature. 410:50–56. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Gocheva V, Wang HW, Gadea BB, Shree T,
Hunter KE, Garfall AL, Berman T and Joyce JA: IL-4 induces
cathepsin protease activity in tumor-associated macrophages to
promote cancer growth and invasion. Genes Dev. 24:241–255. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Chen Q, Zhang XH and Massagué J:
Macrophage binding to receptor VCAM-1 transmits survival signals in
breast cancer cells that invade the lungs. Cancer Cell. 20:538–549.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Qian B, Deng Y, Im JH, Muschel RJ, Zou Y,
Li J, Lang RA and Pollard JW: A distinct macrophage population
mediates metastatic breast cancer cell extravasation, establishment
and growth. PLoS One. 4:e65622009. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Genna A, Duran CL, Entenberg D, Condeelis
JS and Cox D: Macrophages Promote tumor cell extravasation across
an endothelial barrier through thin membranous connections. Cancers
(Basel). 15:20922023. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chen X, Yang M, Yin J, Li P, Zeng S, Zheng
G, He Z, Liu H, Wang Q, Zhang F and Chen D: Tumor-associated
macrophages promote epithelial-mesenchymal transition and the
cancer stem cell properties in triple-negative breast cancer
through CCL2/AKT/β-catenin signaling. Cell Commun Signal.
20:922022. View Article : Google Scholar
|
|
61
|
Li X, Shao C, Shi Y and Han W: Lessons
learned from the blockade of immune checkpoints in cancer
immunotherapy. J Hematol Oncol. 11:312018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
DeNardo DG and Ruffell B: Macrophages as
regulators of tumour immunity and immunotherapy. Nat Rev Immunol.
19:369–382. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Curiel TJ, Coukos G, Zou L, Alvarez X,
Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L,
Burow M, et al: Specific recruitment of regulatory T cells in
ovarian carcinoma fosters immune privilege and predicts reduced
survival. Nat Med. 10:942–949. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
64
|
Liu J, Zhang N, Li Q, Zhang W, Ke F, Leng
Q and Wang H, Chen J and Wang H: Tumor-associated macrophages
recruit CCR6+ regulatory T cells and promote the development of
colorectal cancer via enhancing CCL20 production in mice. PLoS One.
6:e194952011. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Arlauckas SP, Garren SB, Garris CS, Kohler
RH, Oh J, Pittet MJ and Weissleder R: Arg1 expression defines
immunosuppressive subsets of tumor-associated macrophages.
Theranostics. 8:5842–5854. 2018. View Article : Google Scholar
|
|
66
|
Menjivar RE, Nwosu ZC, Du W, Donahue KL,
Hong HS, Espinoza C, Brown K, Velez-Delgado A, Yan W, Lima F, et
al: Arginase 1 is a key driver of immune suppression in pancreatic
cancer. Elife. 12:e807212023. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Mantovani A, Marchesi F, Malesci A, Laghi
L and Allavena P: Tumour-associated macrophages as treatment
targets in oncology. Nat Rev Clin Oncol. 14:399–416. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Cassetta L and Pollard JW: Targeting
macrophages: Therapeutic approaches in cancer. Nat Rev Drug Discov.
17:887–904. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
van der Heide D, Weiskirchen R and Bansal
R: Therapeutic targeting of hepatic macrophages for the treatment
of liver diseases. Front Immunol. 10:28522019. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Roelofs AJ, Thompson K, Gordon S and
Rogers MJ: Molecular mechanisms of action of bisphosphonates:
Current status. Clin Cancer Res. 12(20 Pt 2): 6222s–6230s. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Van Acker HH, Anguille S, Willemen Y,
Smits EL and Van Tendeloo VF: Bisphosphonates for cancer treatment:
Mechanisms of action and lessons from clinical trials. Pharmacol
Ther. 158:24–40. 2016. View Article : Google Scholar
|
|
72
|
Rogers TL and Holen I: Tumour macrophages
as potential targets of bisphosphonates. J Transl Med. 9:1772011.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Van Rooijen N, Kors N, vd Ende M and
Dijkstra CD: Depletion and repopulation of macrophages in spleen
and liver of rat after intravenous treatment with
liposome-encapsulated dichloromethylene diphosphonate. Cell Tissue
Res. 260:215–222. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Giraudo E, Inoue M and Hanahan D: An
amino-bisphosphonate targets MMP-9-expressing macrophages and
angiogenesis to impair cervical carcinogenesis. J Clin Invest.
114:623–633. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zang X, Zhou J, Zhang X, Chen D, Han Y and
Chen X: Dual-targeting tumor cells and tumor associated macrophages
with lipid coated calcium zoledronate for enhanced lung cancer
chemoimmunotherapy. Int J Pharm. 594:1201742021. View Article : Google Scholar
|
|
76
|
Lv J, Chen FK, Liu C, Liu PJ, Feng ZP, Jia
L, Yang ZX, Hou F and Deng ZY: Zoledronic acid inhibits thyroid
cancer stemness and metastasis by repressing M2-like
tumor-associated macrophages induced Wnt/β-catenin pathway. Life
Sci. 256:1179252020. View Article : Google Scholar
|
|
77
|
Choi J, Lee EJ, Yang SH, Im YR and Seong
J: A prospective phase II study for the efficacy of radiotherapy in
combination with zoledronic acid in treating painful bone
metastases from gastrointestinal cancers. J Radiat Res. 60:242–248.
2019. View Article : Google Scholar :
|
|
78
|
D'Incalci M and Galmarini CM: A review of
trabectedin (ET-743): A unique mechanism of action. Mol Cancer
Ther. 9:2157–2163. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Germano G, Frapolli R, Belgiovine C,
Anselmo A, Pesce S, Liguori M, Erba E, Uboldi S, Zucchetti M,
Pasqualini F, et al: Role of macrophage targeting in the antitumor
activity of trabectedin. Cancer Cell. 23:249–262. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Belgiovine C, Frapolli R, Liguori M,
Digifico E, Colombo FS, Meroni M, Allavena P and D'Incalci M:
Inhibition of tumor-associated macrophages by trabectedin improves
the antitumor adaptive immunity in response to anti-PD-1 therapy.
Eur J Immunol. 51:2677–2686. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
de Sande González LM, Martin-Broto J,
Kasper B, Blay JY and Le Cesne A: Real-world evidence of the
efficacy and tolerability of trabectedin in patients with advanced
soft-tissue sarcoma. Expert Rev Anticancer Ther. 20:957–963. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Romero I, López-Guerrero JA and Pignata S:
Real-world experience with trabectedin for the treatment of
recurrent ovarian cancer. Expert Rev Anticancer Ther. 21:1089–1095.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Cortinovis D, Grosso F, Carlucci L, Zucali
PA, Pasello G, Tiseo M, Sperandi F, Hollander L, Galli F, Torri V,
et al: Trabectedin in malignant pleural mesothelioma: Results from
the multicentre, single arm, phase II ATREUS study. Clin Lung
Cancer. 22:361–370.e3. 2021. View Article : Google Scholar
|
|
84
|
Belli C, Piemonti L, D'Incalci M,
Zucchetti M, Porcu L, Cappio S, Doglioni C, Allavena P, Ceraulo D,
Maggiora P, et al: Phase II trial of salvage therapy with
trabectedin in metastatic pancreatic adenocarcinoma. Cancer
Chemother Pharmacol. 77:477–484. 2016. View Article : Google Scholar
|
|
85
|
Cao Y, Qiao B, Chen Q, Xie Z, Dou X, Xu L,
Ran H, Zhang L and Wang Z: Tumor microenvironment remodeling via
targeted depletion of M2-like tumor-associated macrophages for
cancer immunotherapy. Acta Biomater. 160:239–251. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Kalbasi A, Komar C, Tooker GM, Liu M, Lee
JW, Gladney WL, Ben-Josef E and Beatty GL: Tumor-Derived CCL2
mediates resistance to radiotherapy in pancreatic ductal
adenocarcinoma. Clin Cancer Res. 23:137–148. 2017. View Article : Google Scholar
|
|
87
|
Yang H, Zhang Q, Xu M, Wang L, Chen X,
Feng Y, Li Y, Zhang X, Cui W and Jia X: CCL2-CCR2 axis recruits
tumor associated macrophages to induce immune evasion through PD-1
signaling in esophageal carcinogenesis. Mol Cancer. 19:412020.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Noel M, O'Reilly EM, Wolpin BM, Ryan DP,
Bullock AJ, Britten CD, Linehan DC, Belt BA, Gamelin EC, Ganguly B,
et al: Phase 1b study of a small molecule antagonist of human
chemokine (C-C motif) receptor 2 (PF-04136309) in combination with
nab-paclitaxel/gemcitabine in first-line treatment of metastatic
pancreatic ductal adenocarcinoma. Invest New Drugs. 38:800–811.
2020. View Article : Google Scholar :
|
|
89
|
Brana I, Calles A, LoRusso PM, Yee LK,
Puchalski TA, Seetharam S, Zhong B, de Boer CJ, Tabernero J and
Calvo E: Carlumab, an anti-C-C chemokine ligand 2 monoclonal
antibody, in combination with four chemotherapy regimens for the
treatment of patients with solid tumors: An open-label, multicenter
phase 1b study. Target Onco. 10:111–123. 2015. View Article : Google Scholar
|
|
90
|
Cherney RJ, Anjanappa P, Selvakumar K,
Batt DG, Brown GD, Rose AV, Vuppugalla R, Chen J, Pang J, Xu S, et
al: BMS-813160: A Potent CCR2 and CCR5 dual antagonist selected as
a clinical candidate. ACS Med Chem Lett. 12:1753–1758. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Lelios I, Cansever D, Utz SG, Mildenberger
W, Stifter SA and Greter M: Emerging roles of IL-34 in health and
disease. J Exp Med. 217:e201902902020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Ries CH, Cannarile MA, Hoves S, Benz J,
Wartha K, Runza V, Rey-Giraud F, Pradel LP, Feuerhake F, Klaman I,
et al: Targeting tumor-associated macrophages with anti-CSF-1R
antibody reveals a strategy for cancer therapy. Cancer Cell.
25:846–859. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Gomez-Roca CA, Italiano A, Le Tourneau C,
Cassier PA, Toulmonde M, D'Angelo SP, Campone M, Weber KL, Loirat
D, Cannarile MA, et al: Phase I study of emactuzumab single agent
or in combination with paclitaxel in patients with
advanced/metastatic solid tumors reveals depletion of
immunosuppressive M2-like macrophages. Ann Oncol. 30:1381–1392.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Hua F, Tian Y, Gao Y, Li C and Liu X:
Colony-stimulating factor 1 receptor inhibition blocks macrophage
infiltration and endometrial cancer cell proliferation. Mol Med
Rep. 19:3139–3147. 2019.PubMed/NCBI
|
|
95
|
Lee JH, Chen TW, Hsu CH, Yen YH, Yang JC,
Cheng AL, Sasaki SI, Chiu LL, Sugihara M, Ishizuka T, et al: A
phase I study of pexidartinib, a colony-stimulating factor 1
receptor inhibitor, in Asian patients with advanced solid tumors.
Invest New Drugs. 38:99–110. 2020. View Article : Google Scholar :
|
|
96
|
Smith BD, Kaufman MD, Wise SC, Ahn YM,
Caldwell TM, Leary CB, Lu WP, Tan G, Vogeti L, Vogeti S, et al:
Vimseltinib: A Precision CSF1R therapy for tenosynovial giant cell
tumors and diseases promoted by macrophages. Mol Cancer Ther.
20:2098–2109. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Nie Y, Huang H, Guo M, Chen J, Wu W, Li W,
Xu X, Lin X, Fu W, Yao Y, et al: Breast Phyllodes Tumors Recruit
and Repolarize Tumor-Associated Macrophages via Secreting CCL5 to
promote malignant progression, which can be inhibited by CCR5
inhibition therapy. Clin Cancer Res. 25:3873–3886. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Altevogt P, Sammar M, Hüser L and
Kristiansen G: Novel insights into the function of CD24: A driving
force in cancer. Int J Cancer. 148:546–559. 2021. View Article : Google Scholar
|
|
99
|
Tarhriz V, Bandehpour M, Dastmalchi S,
Ouladsahebmadarek E, Zarredar H and Eyvazi S: Overview of CD24 as a
new molecular marker in ovarian cancer. J Cell Physiol.
234:2134–2142. 2019. View Article : Google Scholar
|
|
100
|
Barkal AA, Brewer RE, Markovic M, Kowarsky
M, Barkal SA, Zaro BW, Krishnan V, Hatakeyama J, Dorigo O, Barkal
LJ and Weissman IL: CD24 signalling through macrophage Siglec-10 is
a target for cancer immunotherapy. Nature. 572:392–396. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Freile JÁ, Ustyanovska Avtenyuk N,
Corrales MG, Lourens HJ, Huls G, van Meerten T, Cendrowicz E and
Bremer E: CD24 Is a Potential Immunotherapeutic Target for Mantle
Cell Lymphoma. Biomedicines. 10:11752022. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Maute R, Xu J and Weissman IL:
CD47-SIRPα-targeted therapeutics: Status and prospects. Immunooncol
Technol. 13:1000702022. View Article : Google Scholar
|
|
103
|
Schürch CM, Roelli MA, Forster S, Wasmer
MH, Brühl F, Maire RS, Di Pancrazio S, Ruepp MD, Giger R, Perren A,
et al: Targeting CD47 in anaplastic thyroid carcinoma enhances
tumor phagocytosis by macrophages and is a promising therapeutic
strategy. Thyroid. 29:979–992. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Nishiga Y, Drainas AP, Baron M,
Bhattacharya D, Barkal AA, Ahrari Y, Mancusi R, Ross JB, Takahashi
N, Thomas A, et al: Radiotherapy in combination with CD47 blockade
elicits a macrophage-mediated abscopal effect. Nat Cancer.
3:1351–1366. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zhang M, Hutter G, Kahn SA, Azad TD,
Gholamin S, Xu CY, Liu J, Achrol AS, Richard C, Sommerkamp P, et
al: Anti-CD47 treatment stimulates phagocytosis of glioblastoma by
M1 and M2 polarized macrophages and promotes M1 polarized
macrophages in vivo. PLoS One. 11:e01535502016. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Advani R, Flinn I, Popplewell L, Forero A,
Bartlett NL, Ghosh N, Kline J, Roschewski M, LaCasce A, Collins GP,
et al: CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkin's
Lymphoma. N Engl J Med. 379:1711–1721. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Zeidan AM, DeAngelo DJ, Palmer J, Seet CS,
Tallman MS, Wei X, Raymon H, Sriraman P, Kopytek S, Bewersdorf JP,
et al: Phase 1 study of anti-CD47 monoclonal antibody CC-90002 in
patients with relapsed/refractory acute myeloid leukemia and
high-risk myelodysplastic syndromes. Ann Hematol. 101:557–569.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Solinas G and Becattini B: The role of
PI3Kγ in metabolism and macrophage activation. Oncotarget.
8:106145–106146. 2017. View Article : Google Scholar :
|
|
109
|
Qiu X, Tian Y, Liang Z, Sun Y, Li Z and
Bian J: Recent discovery of phosphoinositide 3-kinase γ inhibitors
for the treatment of immune diseases and cancers. Future Med Chem.
11:2151–2169. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Qin H, Yu H, Sheng J, Zhang D, Shen N, Liu
L, Tang Z and Chen X: PI3Kgamma inhibitor attenuates
immunosuppressive effect of Poly(l-Glutamic Acid)-Combretastatin A4
conjugate in metastatic breast cancer. Adv Sci (Weinh).
6:19003272019. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Carnevalli LS, Taylor MA, King M,
Coenen-Stass AML, Hughes AM, Bell S, Proia TA, Wang Y,
Ramos-Montoya A, Wali N, et al: Macrophage activation status rather
than repolarization is associated with enhanced checkpoint activity
in combination with PI3Kγ Inhibition. Mol Cancer Ther.
20:1080–1091. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Hong DS, Postow M, Chmielowski B, Sullivan
R, Patnaik A, Cohen EEW, Shapiro G, Steuer C, Gutierrez M,
Yeckes-Rodin H, et al: Eganelisib a first-in-class PI3Kγ inhibitor,
in patients with advanced solid tumors: Results of the phase 1/1b
MARIO-1 trial. Clin Cancer Res. 29:2210–2219. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Brennan JJ and Gilmore TD: Evolutionary
Origins of Toll-like Receptor Signaling. Mol Biol Evol.
35:1576–1587. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Kim SY, Kim S, Kim JE, Lee SN, Shin IW,
Shin HS, Jin SM, Noh YW, Kang YJ, Kim YS, et al: Lyophilizable and
multifaceted toll-like receptor 7/8 agonist-loaded nanoemulsion for
the reprogramming of tumor microenvironments and enhanced cancer
immunotherapy. ACS Nano. 13:12671–12686. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Liu Z, Xie Y, Xiong Y, Liu S, Qiu C, Zhu
Z, Mao H, Yu M and Wang X: TLR 7/8 agonist reverses oxaliplatin
resistance in colorectal cancer via directing the myeloid-derived
suppressor cells to tumoricidal M1-macrophages. Cancer Lett.
469:173–185. 2020. View Article : Google Scholar
|
|
116
|
Vidyarthi A, Khan N, Agnihotri T, Negi S,
Das DK, Aqdas M, Chatterjee D, Colegio OR, Tewari MK and Agrewala
JN: TLR-3 Stimulation Skews M2 Macrophages to M1 Through IFN-αβ
signaling and restricts tumor progression. Front Immunol.
9:16502018. View Article : Google Scholar
|
|
117
|
Sun L, Kees T, Almeida AS, Liu B, He XY,
Ng D, Han X, Spector DL, McNeish IA, Gimotty P, et al: Activating a
collaborative innate-adaptive immune response to control
metastasis. Cancer Cell. 39:1361–1374.e9. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Chow LQM, Morishima C, Eaton KD, Baik CS,
Goulart BH, Anderson LN, Manjarrez KL, Dietsch GN, Bryan JK,
Hershberg RM, et al: Phase Ib trial of the toll-like receptor 8
agonist, motolimod (VTX-2337), combined with cetuximab in patients
with recurrent or metastatic SCCHN. Clin Cancer Res. 23:2442–2450.
2017. View Article : Google Scholar
|
|
119
|
Shayan G, Kansy BA, Gibson SP, Srivastava
RM, Bryan JK, Bauman JE, Ohr J, Kim S, Duvvuri U, Clump DA, et al:
Phase Ib study of immune biomarker modulation with neoadjuvant
cetuximab and TLR8 stimulation in head and neck cancer to overcome
suppressive myeloid signals. Clin Cancer Res. 24:62–72. 2018.
View Article : Google Scholar :
|
|
120
|
Trutnovsky G, Reich O, Joura EA, Holter M,
Ciresa-König A, Widschwendter A, Schauer C, Bogner G, Jan Z, Boandl
A, et al: Topical imiquimod versus surgery for vulvar
intraepithelial neoplasia: A multicentre, randomised, phase 3,
non-inferiority trial. Lancet. 399:1790–1798. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Elgueta R, Benson MJ, de Vries VC, Wasiuk
A, Guo Y and Noelle RJ: Molecular mechanism and function of
CD40/CD40L engagement in the immune system. Immunol Rev.
229:152–172. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Valencia JC, Erwin-Cohen RA, Clavijo PE,
Allen C, Sanford ME, Day CP, Hess MM, Johnson M, Yin J, Fenimore
JM, et al: Myeloid-Derived suppressive cell expansion promotes
melanoma growth and autoimmunity by inhibiting CD40/IL27 regulation
in macrophages. Cancer Res. 81:5977–5990. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Lim CY, Chang JH, Lee WS, Kim J and Park
IY: CD40 agonists alter the pancreatic cancer microenvironment by
shifting the macrophage phenotype toward M1 and suppress human
pancreatic cancer in organotypic slice cultures. Gut Liver.
16:645–659. 2022. View Article : Google Scholar :
|
|
124
|
Frankish J, Mukherjee D, Romano E,
Billian-Frey K, Schröder M, Heinonen K, Merz C, Redondo Müller M,
Gieffers C, Hill O, et al: The CD40 agonist HERA-CD40L results in
enhanced activation of antigen presenting cells, promoting an
anti-tumor effect alone and in combination with radiotherapy. Front
Immunol. 14:11601162023. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Byrne KT, Betts CB, Mick R, Sivagnanam S,
Bajor DL, Laheru DA, Chiorean EG, O'Hara MH, Liudahl SM, Newcomb C,
et al: Neoadjuvant selicrelumab, an agonist CD40 antibody, induces
changes in the tumor microenvironment in patients with resectable
pancreatic cancer. Clin Cancer Res. 27:4574–4586. 2021. View Article : Google Scholar : PubMed/NCBI
|