Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
February-2024 Volume 64 Issue 2

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2024 Volume 64 Issue 2

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Research progress on the role of tumor‑associated macrophages in tumor development and their use as molecular targets (Review)

  • Authors:
    • Chenglin Lu
    • Ying Liu
    • Linxuan Miao
    • Xiangle Kong
    • Huili Li
    • Haoran Chen
    • Xu Zhao
    • Bin Zhang
    • Xiaonan Cui
  • View Affiliations / Copyright

    Affiliations: Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 860411, P.R. China, Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 860411, P.R. China
    Copyright: © Lu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 11
    |
    Published online on: December 7, 2023
       https://doi.org/10.3892/ijo.2023.5599
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The tumor microenvironment (TME) is a complex system composed mainly of tumor cells, mesenchymal cells and immune cells. Macrophages, also known as tumor‑associated macrophages (TAMs), among innate immune cells, are some of the most abundant components of the TME. They may influence tumor growth and metastasis through interactions with other cell populations in the TME and have been associated with poor prognosis in a variety of tumors. Therefore, a better understanding of the role of TAMs in the TME may provide new insight into tumor therapy. In the present review, the origin and classification of TAMs in the TME were outlined and their polarization and dual effects on tumor cells, as well as emerging strategies for cancer therapies targeting TAMs, were discussed.
View Figures

Figure 1

Figure 2

View References

1 

Yan S and Wan G: Tumor-associated macrophages in immunotherapy. FEBS J. 288:6174–6186. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, et al: Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity. 41:14–20. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Chen Y, Song Y, Du W, Gong L, Chang H and Zou Z: Tumor-associated macrophages: An accomplice in solid tumor progression. J Biomed Sci. 26:782019. View Article : Google Scholar : PubMed/NCBI

4 

Pathria P, Louis TL and Varner JA: Targeting tumor-associated macrophages in cancer. Trends Immunol. 40:310–327. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Li F, Okreglicka KM, Pohlmeier LM, Schneider C and Kopf M: Fetal monocytes possess increased metabolic capacity and replace primitive macrophages in tissue macrophage development. EMBO J. 39:e1032052020. View Article : Google Scholar : PubMed/NCBI

6 

Locati M, Curtale G and Mantovani A: Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 15:123–147. 2020. View Article : Google Scholar

7 

Bonapace L, Coissieux MM, Wyckoff J, Mertz KD, Varga Z, Junt T and Bentires-Alj M: Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature. 515:130–133. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Zhang WJ, Wang XH, Gao ST, Chen C, Xu XY, Sun Q, Zhou ZH, Wu GZ, Yu Q, Xu G, et al: Tumor-associated macrophages correlate with phenomenon of epithelial-mesenchymal transition and contribute to poor prognosis in triple-negative breast cancer patients. J Surg Res. 222:93–101. 2018. View Article : Google Scholar

9 

Xu Y, Zeng H, Jin K, Liu Z, Zhu Y, Xu L, Wang Z, Chang Y and Xu J: Immunosuppressive tumor-associated macrophages expressing interlukin-10 conferred poor prognosis and therapeutic vulnerability in patients with muscle-invasive bladder cancer. J Immunother Cancer. 10:e0034162022. View Article : Google Scholar : PubMed/NCBI

10 

Kumar AT, Knops A, Swendseid B, Martinez-Outschoom U, Harshyne L, Philp N, Rodeck U, Luginbuhl A, Cognetti D, Johnson J and Curry J: Prognostic significance of tumor-associated macrophage content in head and neck squamous cell carcinoma: A meta-analysis. Front Oncol. 9:6562019. View Article : Google Scholar : PubMed/NCBI

11 

Zhang H, Luo YB, Wu W, Zhang L, Wang Z, Dai Z, Feng S, Cao H, Cheng Q and Liu Z: The molecular feature of macrophages in tumor immune microenvironment of glioma patients. Comput Struct Biotechnol J. 19:4603–4618. 2021. View Article : Google Scholar : PubMed/NCBI

12 

Wu Z, Lei K, Li H, He J and Shi E: Transcriptome-based network analysis related to M2-like tumor-associated macrophage infiltration identified VARS1 as a potential target for improving melanoma immunotherapy efficacy. J Transl Med. 20:4892022. View Article : Google Scholar : PubMed/NCBI

13 

Yuri P, Shigemura K, Kitagawa K, Hadibrata E, Risan M, Zulfiqqar A, Soeroharjo I, Hendri AZ, Danarto R, Ishii A, et al: Increased tumor-associated macrophages in the prostate cancer microenvironment predicted patients' survival and responses to androgen deprivation therapies in Indonesian patients cohort. Prostate Int. 8:62–69. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Cortese N, Carriero R, Laghi L, Mantovani A and Marchesi F: Prognostic significance of tumor-associated macrophages: Past, present and future. Semin Immunol. 48:1014082020. View Article : Google Scholar : PubMed/NCBI

15 

Qian BZ and Pollard JW: Macrophage diversity enhances tumor progression and metastasis. Cell. 141:39–51. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Movahedi K, Laoui D, Gysemans C, Baeten M, Stangé G, Van den Bossche J, Mack M, Pipeleers D, In't Veld P, De Baetselier P and Van Ginderachter JA: Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 70:5728–5739. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 233:6425–6440. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Martinez FO, Sica A, Mantovani A and Locati M: Macrophage activation and polarization. Front Biosci. 13:453–461. 2008. View Article : Google Scholar

19 

Zizzo G, Hilliard BA, Monestier M and Cohen PL: Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK Induction. J Immunol. 189:3508–3520. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Ferrante AW Jr: Macrophages, fat, and the emergence of immunometabolism. J Clin Invest. 123:4992–4993. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Haskó G, Pacher P, Deitch EA and Vizi ES: Shaping of monocyte and macrophage function by adenosine receptors. Pharmacol Ther. 113:264–275. 2007. View Article : Google Scholar

22 

Pinhal-Enfield G, Ramanathan M, Hasko G, Vogel SN, Salzman AL, Boons GJ and Leibovich SJ: An angiogenic switch in macrophages involving synergy between Toll-like receptors 2, 4, 7, and 9 and adenosine A(2A) receptors. Am J Pathol. 163:711–721. 2003. View Article : Google Scholar : PubMed/NCBI

23 

Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A and Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25:677–686. 2004. View Article : Google Scholar : PubMed/NCBI

24 

Huang YH, Cai K, Xu PP, Wang L, Huang CX, Fang Y, Cheng S, Sun XJ, Liu F, Huang JY, et al: CREBBP/EP300 mutations promoted tumor progression in diffuse large B-cell lymphoma through altering tumor-associated macrophage polarization via FBXW7-NOTCH-CCL2/CSF1 axis. Signal Transduct Target Ther. 6:102021. View Article : Google Scholar : PubMed/NCBI

25 

Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA and Pollard JW: CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 475:222–225. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Sierra-Filardi E, Nieto C, Domínguez-Soto Á, Barroso R, Sánchez-Mateos P, Puig-Kroger A, López-Bravo M, Joven J, Ardavín C, Rodríguez-Fernández JL, et al CCL2 Shapes Macrophage Polarization by GM-CSF and M-CSF: Identification of CCL2/CCR2-dependent gene expression profile. J Immunol. 192:3858–3867. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Archer M, Bernhardt SM, Hodson LJ, Woolford L, Van der Hoek M, Dasari P, Evdokiou A and Ingman WV: CCL2-Mediated stromal interactions drive macrophage polarization to increase breast tumorigenesis. Int J Mol Sci. 24:73852023. View Article : Google Scholar : PubMed/NCBI

28 

Valero JG, Matas-Céspedes A, Arenas F, Rodriguez V, Carreras J, Serrat N, Guerrero-Hernández M, Yahiaoui A, Balagué O, Martin S, et al: The receptor of the colony-stimulating factor-1 (CSF-1R) is a novel prognostic factor and therapeutic target in follicular lymphoma. Leukemia. 35:2635–2649. 2021. View Article : Google Scholar : PubMed/NCBI

29 

Mu G, Zhu Y, Dong Z, Shi L, Deng Y and Li H: Calmodulin 2 facilitates angiogenesis and metastasis of gastric cancer via STAT3/HIF-1A/VEGF-A mediated macrophage polarization. Front Oncol. 11:7273062021. View Article : Google Scholar : PubMed/NCBI

30 

Lian G, Chen S, Ouyang M, Li F, Chen L and Yang J: Colon cancer cell secretes EGF to Promote M2 Polarization of TAM Through EGFR/PI3K/AKT/mTOR pathway. Technol Cancer Res Treat. 18:15330338198490682019. View Article : Google Scholar : PubMed/NCBI

31 

Mazzoni M, Mauro G, Erreni M, Romeo P, Minna E, Vizioli MG, Belgiovine C, Rizzetti MG, Pagliardini S, Avigni R, et al: Senescent thyrocytes and thyroid tumor cells induce M2-like macrophage polarization of human monocytes via a PGE2-dependent mechanism. J Exp Clin Cancer Res. 38:2082019. View Article : Google Scholar : PubMed/NCBI

32 

Vaupel P and Harrison L: Tumor hypoxia: Causative factors, compensatory mechanisms, and cellular response. Oncologist. 9(Suppl 5): S4–S9. 2004. View Article : Google Scholar

33 

Zhou HC, Xin-Yan Yan, Yu WW, Liang XQ, Du XY, Liu ZC, Long JP, Zhao GH and Liu HB: Lactic acid in macrophage polarization: The significant role in inflammation and cancer. Inter Rev Immunol. 41:4–18. 2021. View Article : Google Scholar

34 

Zhang L and Li S: Lactic acid promotes macrophage polarization through MCT-HIF1α signaling in gastric cancer. Exp Cell Res. 388:1118462020. View Article : Google Scholar

35 

Park JE, Dutta B, Tse SW, Gupta N, Tan CF, Low JK, Yeoh KW, Kon OL, Tam JP and Sze SK: Hypoxia-induced tumor exosomes promote M2-like macrophage polarization of infiltrating myeloid cells and microRNA-mediated metabolic shift. Oncogene. 38:5158–5173. 2019. View Article : Google Scholar : PubMed/NCBI

36 

Hynes RO: The extracellular matrix: Not just pretty fibrils. Science. 326:1216–1219. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Colombatti A, Spessotto P, Doliana R, Mongiat M, Bressan GM and Esposito G: The EMILIN/Multimerin family. Front Immunol. 2:932012. View Article : Google Scholar :

38 

Mongiat M, Marastoni S, Ligresti G, Lorenzon E, Schiappacassi M, Perris R, Frustaci S and Colombatti A: The extracellular matrix glycoprotein elastin microfibril interface located protein 2: A dual role in the tumor microenvironment. Neoplasia. 12:294–304. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Andreuzzi E, Fejza A, Polano M, Poletto E, Camicia L, Carobolante G, Tarticchio G, Todaro F, Di Carlo E, Scarpa M, et al: Colorectal cancer development is affected by the ECM molecule EMILIN-2 hinging on macrophage polarization via the TLR-4/MyD88 pathway. J Exp Clin Cancer Res. 41:602022. View Article : Google Scholar : PubMed/NCBI

40 

Bernsmeier C, van der Merwe S and Périanin A: Innate immune cells in cirrhosis. J Hepatol. 73:186–201. 2020. View Article : Google Scholar : PubMed/NCBI

41 

Bruns H, Büttner M, Fabri M, Mougiakakos D, Bittenbring JT, Hoffmann MH, Beier F, Pasemann S, Jitschin R, Hofmann AD, et al: Vitamin D-dependent induction of cathelicidin in human macrophages results in cytotoxicity against high-grade B cell lymphoma. Sci Transl Med. 7:282ra472015. View Article : Google Scholar : PubMed/NCBI

42 

Pan Y, Yu Y, Wang X and Zhang T: Tumor-Associated macrophages in tumor immunity. Front Immunol. 11:5830842020. View Article : Google Scholar : PubMed/NCBI

43 

Haque ASMR, Moriyama M, Kubota K, Ishiguro N, Sakamoto M, Chinju A, Mochizuki K, Sakamoto T, Kaneko N, Munemura R, et al: CD206+tumor-associated macrophages promote proliferation and invasion in oral squamous cell carcinoma via EGF production. Sci Rep. 9:146112019. View Article : Google Scholar

44 

Xu W, Wu Y, Liu W, Anwaier A, Tian X, Su J, Huang H, Wei G, Qu Y, Zhang H and Ye D: Tumor-associated macrophage-derived chemokine CCL5 facilitates the progression and immunosuppressive tumor microenvironment of clear cell renal cell carcinoma. Int J Biol Sci. 18:4884–4900. 2022. View Article : Google Scholar : PubMed/NCBI

45 

Radharani NNV, Yadav AS, Nimma R, Kumar TVS, Bulbule A, Chanukuppa V, Kumar D, Patnaik S, Rapole S and Kundu GC: Tumor-associated macrophage derived IL-6 enriches cancer stem cell population and promotes breast tumor progression via Stat-3 pathway. Cancer Cell Int. 22:1222022. View Article : Google Scholar : PubMed/NCBI

46 

Valković T, Dobrila F, Melato M, Sasso F, Rizzardi C and Jonjić N: Correlation between vascular endothelial growth factor, angiogenesis, and tumor-associated macrophages in invasive ductal breast carcinoma. Virchows Arch. 440:583–588. 2002. View Article : Google Scholar

47 

Fu LQ, Du WL, Cai MH, Yao JY, Zhao YY and Mou XZ: The roles of tumor-associated macrophages in tumor angiogenesis and metastasis. Cell Immunol. 353:1041192020. View Article : Google Scholar : PubMed/NCBI

48 

Wu H, Zhang X, Han D, Cao J and Tian J: Tumour-associated macrophages mediate the invasion and metastasis of bladder cancer cells through CXCL8. PeerJ. 8:e87212020. View Article : Google Scholar : PubMed/NCBI

49 

Riabov V, Gudima A, Wang N, Mickley A, Orekhov A and Kzhyshkowska J: Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol. 5:752014. View Article : Google Scholar : PubMed/NCBI

50 

Kawahara A, Hattori S, Akiba J, Nakashima K, Taira T, Watari K, Hosoi F, Uba M, Basaki Y, Koufuji K, et al: Infiltration of thymidine phosphorylase-positive macrophages is closely associated with tumor angiogenesis and survival in intestinal type gastric cancer. Oncol Rep. 24:405–415. 2010. View Article : Google Scholar : PubMed/NCBI

51 

Hori T, Sasayama T, Tanaka K, Koma YI, Nishihara M, Tanaka H, Nakamizo S, Nagashima H, Maeyama M, Fujita Y, et al: Tumor-associated macrophage related interleukin-6 in cerebrospinal fluid as a prognostic marker for glioblastoma. J Clin Neurosci. 68:281–289. 2019. View Article : Google Scholar : PubMed/NCBI

52 

Zhou M, Na R, Lai S, Guo Y, Shi J, Nie J, Zhang S, Wang Y and Zheng T: The present roles and future perspectives of Interleukin-6 in biliary tract cancer. Cytokine. 169:1562712023. View Article : Google Scholar : PubMed/NCBI

53 

Sceneay J, Smyth MJ and Möller A: The pre-metastatic niche: Finding common ground. Cancer Metastasis Rev. 32:449–464. 2013. View Article : Google Scholar : PubMed/NCBI

54 

Lu X and Kang Y: Organotropism of breast cancer metastasis. J Mammary Gland Biol Neoplasia. 12:153–162. 2007. View Article : Google Scholar : PubMed/NCBI

55 

Müller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, et al: Involvement of chemokine receptors in breast cancer metastasis. Nature. 410:50–56. 2001. View Article : Google Scholar : PubMed/NCBI

56 

Gocheva V, Wang HW, Gadea BB, Shree T, Hunter KE, Garfall AL, Berman T and Joyce JA: IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 24:241–255. 2010. View Article : Google Scholar : PubMed/NCBI

57 

Chen Q, Zhang XH and Massagué J: Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell. 20:538–549. 2011. View Article : Google Scholar : PubMed/NCBI

58 

Qian B, Deng Y, Im JH, Muschel RJ, Zou Y, Li J, Lang RA and Pollard JW: A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One. 4:e65622009. View Article : Google Scholar : PubMed/NCBI

59 

Genna A, Duran CL, Entenberg D, Condeelis JS and Cox D: Macrophages Promote tumor cell extravasation across an endothelial barrier through thin membranous connections. Cancers (Basel). 15:20922023. View Article : Google Scholar : PubMed/NCBI

60 

Chen X, Yang M, Yin J, Li P, Zeng S, Zheng G, He Z, Liu H, Wang Q, Zhang F and Chen D: Tumor-associated macrophages promote epithelial-mesenchymal transition and the cancer stem cell properties in triple-negative breast cancer through CCL2/AKT/β-catenin signaling. Cell Commun Signal. 20:922022. View Article : Google Scholar

61 

Li X, Shao C, Shi Y and Han W: Lessons learned from the blockade of immune checkpoints in cancer immunotherapy. J Hematol Oncol. 11:312018. View Article : Google Scholar : PubMed/NCBI

62 

DeNardo DG and Ruffell B: Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol. 19:369–382. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, et al: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 10:942–949. 2004. View Article : Google Scholar : PubMed/NCBI

64 

Liu J, Zhang N, Li Q, Zhang W, Ke F, Leng Q and Wang H, Chen J and Wang H: Tumor-associated macrophages recruit CCR6+ regulatory T cells and promote the development of colorectal cancer via enhancing CCL20 production in mice. PLoS One. 6:e194952011. View Article : Google Scholar : PubMed/NCBI

65 

Arlauckas SP, Garren SB, Garris CS, Kohler RH, Oh J, Pittet MJ and Weissleder R: Arg1 expression defines immunosuppressive subsets of tumor-associated macrophages. Theranostics. 8:5842–5854. 2018. View Article : Google Scholar

66 

Menjivar RE, Nwosu ZC, Du W, Donahue KL, Hong HS, Espinoza C, Brown K, Velez-Delgado A, Yan W, Lima F, et al: Arginase 1 is a key driver of immune suppression in pancreatic cancer. Elife. 12:e807212023. View Article : Google Scholar : PubMed/NCBI

67 

Mantovani A, Marchesi F, Malesci A, Laghi L and Allavena P: Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 14:399–416. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Cassetta L and Pollard JW: Targeting macrophages: Therapeutic approaches in cancer. Nat Rev Drug Discov. 17:887–904. 2018. View Article : Google Scholar : PubMed/NCBI

69 

van der Heide D, Weiskirchen R and Bansal R: Therapeutic targeting of hepatic macrophages for the treatment of liver diseases. Front Immunol. 10:28522019. View Article : Google Scholar : PubMed/NCBI

70 

Roelofs AJ, Thompson K, Gordon S and Rogers MJ: Molecular mechanisms of action of bisphosphonates: Current status. Clin Cancer Res. 12(20 Pt 2): 6222s–6230s. 2006. View Article : Google Scholar : PubMed/NCBI

71 

Van Acker HH, Anguille S, Willemen Y, Smits EL and Van Tendeloo VF: Bisphosphonates for cancer treatment: Mechanisms of action and lessons from clinical trials. Pharmacol Ther. 158:24–40. 2016. View Article : Google Scholar

72 

Rogers TL and Holen I: Tumour macrophages as potential targets of bisphosphonates. J Transl Med. 9:1772011. View Article : Google Scholar : PubMed/NCBI

73 

Van Rooijen N, Kors N, vd Ende M and Dijkstra CD: Depletion and repopulation of macrophages in spleen and liver of rat after intravenous treatment with liposome-encapsulated dichloromethylene diphosphonate. Cell Tissue Res. 260:215–222. 1990. View Article : Google Scholar : PubMed/NCBI

74 

Giraudo E, Inoue M and Hanahan D: An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest. 114:623–633. 2004. View Article : Google Scholar : PubMed/NCBI

75 

Zang X, Zhou J, Zhang X, Chen D, Han Y and Chen X: Dual-targeting tumor cells and tumor associated macrophages with lipid coated calcium zoledronate for enhanced lung cancer chemoimmunotherapy. Int J Pharm. 594:1201742021. View Article : Google Scholar

76 

Lv J, Chen FK, Liu C, Liu PJ, Feng ZP, Jia L, Yang ZX, Hou F and Deng ZY: Zoledronic acid inhibits thyroid cancer stemness and metastasis by repressing M2-like tumor-associated macrophages induced Wnt/β-catenin pathway. Life Sci. 256:1179252020. View Article : Google Scholar

77 

Choi J, Lee EJ, Yang SH, Im YR and Seong J: A prospective phase II study for the efficacy of radiotherapy in combination with zoledronic acid in treating painful bone metastases from gastrointestinal cancers. J Radiat Res. 60:242–248. 2019. View Article : Google Scholar :

78 

D'Incalci M and Galmarini CM: A review of trabectedin (ET-743): A unique mechanism of action. Mol Cancer Ther. 9:2157–2163. 2010. View Article : Google Scholar : PubMed/NCBI

79 

Germano G, Frapolli R, Belgiovine C, Anselmo A, Pesce S, Liguori M, Erba E, Uboldi S, Zucchetti M, Pasqualini F, et al: Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell. 23:249–262. 2013. View Article : Google Scholar : PubMed/NCBI

80 

Belgiovine C, Frapolli R, Liguori M, Digifico E, Colombo FS, Meroni M, Allavena P and D'Incalci M: Inhibition of tumor-associated macrophages by trabectedin improves the antitumor adaptive immunity in response to anti-PD-1 therapy. Eur J Immunol. 51:2677–2686. 2021. View Article : Google Scholar : PubMed/NCBI

81 

de Sande González LM, Martin-Broto J, Kasper B, Blay JY and Le Cesne A: Real-world evidence of the efficacy and tolerability of trabectedin in patients with advanced soft-tissue sarcoma. Expert Rev Anticancer Ther. 20:957–963. 2020. View Article : Google Scholar : PubMed/NCBI

82 

Romero I, López-Guerrero JA and Pignata S: Real-world experience with trabectedin for the treatment of recurrent ovarian cancer. Expert Rev Anticancer Ther. 21:1089–1095. 2021. View Article : Google Scholar : PubMed/NCBI

83 

Cortinovis D, Grosso F, Carlucci L, Zucali PA, Pasello G, Tiseo M, Sperandi F, Hollander L, Galli F, Torri V, et al: Trabectedin in malignant pleural mesothelioma: Results from the multicentre, single arm, phase II ATREUS study. Clin Lung Cancer. 22:361–370.e3. 2021. View Article : Google Scholar

84 

Belli C, Piemonti L, D'Incalci M, Zucchetti M, Porcu L, Cappio S, Doglioni C, Allavena P, Ceraulo D, Maggiora P, et al: Phase II trial of salvage therapy with trabectedin in metastatic pancreatic adenocarcinoma. Cancer Chemother Pharmacol. 77:477–484. 2016. View Article : Google Scholar

85 

Cao Y, Qiao B, Chen Q, Xie Z, Dou X, Xu L, Ran H, Zhang L and Wang Z: Tumor microenvironment remodeling via targeted depletion of M2-like tumor-associated macrophages for cancer immunotherapy. Acta Biomater. 160:239–251. 2023. View Article : Google Scholar : PubMed/NCBI

86 

Kalbasi A, Komar C, Tooker GM, Liu M, Lee JW, Gladney WL, Ben-Josef E and Beatty GL: Tumor-Derived CCL2 mediates resistance to radiotherapy in pancreatic ductal adenocarcinoma. Clin Cancer Res. 23:137–148. 2017. View Article : Google Scholar

87 

Yang H, Zhang Q, Xu M, Wang L, Chen X, Feng Y, Li Y, Zhang X, Cui W and Jia X: CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis. Mol Cancer. 19:412020. View Article : Google Scholar : PubMed/NCBI

88 

Noel M, O'Reilly EM, Wolpin BM, Ryan DP, Bullock AJ, Britten CD, Linehan DC, Belt BA, Gamelin EC, Ganguly B, et al: Phase 1b study of a small molecule antagonist of human chemokine (C-C motif) receptor 2 (PF-04136309) in combination with nab-paclitaxel/gemcitabine in first-line treatment of metastatic pancreatic ductal adenocarcinoma. Invest New Drugs. 38:800–811. 2020. View Article : Google Scholar :

89 

Brana I, Calles A, LoRusso PM, Yee LK, Puchalski TA, Seetharam S, Zhong B, de Boer CJ, Tabernero J and Calvo E: Carlumab, an anti-C-C chemokine ligand 2 monoclonal antibody, in combination with four chemotherapy regimens for the treatment of patients with solid tumors: An open-label, multicenter phase 1b study. Target Onco. 10:111–123. 2015. View Article : Google Scholar

90 

Cherney RJ, Anjanappa P, Selvakumar K, Batt DG, Brown GD, Rose AV, Vuppugalla R, Chen J, Pang J, Xu S, et al: BMS-813160: A Potent CCR2 and CCR5 dual antagonist selected as a clinical candidate. ACS Med Chem Lett. 12:1753–1758. 2021. View Article : Google Scholar : PubMed/NCBI

91 

Lelios I, Cansever D, Utz SG, Mildenberger W, Stifter SA and Greter M: Emerging roles of IL-34 in health and disease. J Exp Med. 217:e201902902020. View Article : Google Scholar : PubMed/NCBI

92 

Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V, Rey-Giraud F, Pradel LP, Feuerhake F, Klaman I, et al: Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell. 25:846–859. 2014. View Article : Google Scholar : PubMed/NCBI

93 

Gomez-Roca CA, Italiano A, Le Tourneau C, Cassier PA, Toulmonde M, D'Angelo SP, Campone M, Weber KL, Loirat D, Cannarile MA, et al: Phase I study of emactuzumab single agent or in combination with paclitaxel in patients with advanced/metastatic solid tumors reveals depletion of immunosuppressive M2-like macrophages. Ann Oncol. 30:1381–1392. 2019. View Article : Google Scholar : PubMed/NCBI

94 

Hua F, Tian Y, Gao Y, Li C and Liu X: Colony-stimulating factor 1 receptor inhibition blocks macrophage infiltration and endometrial cancer cell proliferation. Mol Med Rep. 19:3139–3147. 2019.PubMed/NCBI

95 

Lee JH, Chen TW, Hsu CH, Yen YH, Yang JC, Cheng AL, Sasaki SI, Chiu LL, Sugihara M, Ishizuka T, et al: A phase I study of pexidartinib, a colony-stimulating factor 1 receptor inhibitor, in Asian patients with advanced solid tumors. Invest New Drugs. 38:99–110. 2020. View Article : Google Scholar :

96 

Smith BD, Kaufman MD, Wise SC, Ahn YM, Caldwell TM, Leary CB, Lu WP, Tan G, Vogeti L, Vogeti S, et al: Vimseltinib: A Precision CSF1R therapy for tenosynovial giant cell tumors and diseases promoted by macrophages. Mol Cancer Ther. 20:2098–2109. 2021. View Article : Google Scholar : PubMed/NCBI

97 

Nie Y, Huang H, Guo M, Chen J, Wu W, Li W, Xu X, Lin X, Fu W, Yao Y, et al: Breast Phyllodes Tumors Recruit and Repolarize Tumor-Associated Macrophages via Secreting CCL5 to promote malignant progression, which can be inhibited by CCR5 inhibition therapy. Clin Cancer Res. 25:3873–3886. 2019. View Article : Google Scholar : PubMed/NCBI

98 

Altevogt P, Sammar M, Hüser L and Kristiansen G: Novel insights into the function of CD24: A driving force in cancer. Int J Cancer. 148:546–559. 2021. View Article : Google Scholar

99 

Tarhriz V, Bandehpour M, Dastmalchi S, Ouladsahebmadarek E, Zarredar H and Eyvazi S: Overview of CD24 as a new molecular marker in ovarian cancer. J Cell Physiol. 234:2134–2142. 2019. View Article : Google Scholar

100 

Barkal AA, Brewer RE, Markovic M, Kowarsky M, Barkal SA, Zaro BW, Krishnan V, Hatakeyama J, Dorigo O, Barkal LJ and Weissman IL: CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature. 572:392–396. 2019. View Article : Google Scholar : PubMed/NCBI

101 

Freile JÁ, Ustyanovska Avtenyuk N, Corrales MG, Lourens HJ, Huls G, van Meerten T, Cendrowicz E and Bremer E: CD24 Is a Potential Immunotherapeutic Target for Mantle Cell Lymphoma. Biomedicines. 10:11752022. View Article : Google Scholar : PubMed/NCBI

102 

Maute R, Xu J and Weissman IL: CD47-SIRPα-targeted therapeutics: Status and prospects. Immunooncol Technol. 13:1000702022. View Article : Google Scholar

103 

Schürch CM, Roelli MA, Forster S, Wasmer MH, Brühl F, Maire RS, Di Pancrazio S, Ruepp MD, Giger R, Perren A, et al: Targeting CD47 in anaplastic thyroid carcinoma enhances tumor phagocytosis by macrophages and is a promising therapeutic strategy. Thyroid. 29:979–992. 2019. View Article : Google Scholar : PubMed/NCBI

104 

Nishiga Y, Drainas AP, Baron M, Bhattacharya D, Barkal AA, Ahrari Y, Mancusi R, Ross JB, Takahashi N, Thomas A, et al: Radiotherapy in combination with CD47 blockade elicits a macrophage-mediated abscopal effect. Nat Cancer. 3:1351–1366. 2022. View Article : Google Scholar : PubMed/NCBI

105 

Zhang M, Hutter G, Kahn SA, Azad TD, Gholamin S, Xu CY, Liu J, Achrol AS, Richard C, Sommerkamp P, et al: Anti-CD47 treatment stimulates phagocytosis of glioblastoma by M1 and M2 polarized macrophages and promotes M1 polarized macrophages in vivo. PLoS One. 11:e01535502016. View Article : Google Scholar : PubMed/NCBI

106 

Advani R, Flinn I, Popplewell L, Forero A, Bartlett NL, Ghosh N, Kline J, Roschewski M, LaCasce A, Collins GP, et al: CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkin's Lymphoma. N Engl J Med. 379:1711–1721. 2018. View Article : Google Scholar : PubMed/NCBI

107 

Zeidan AM, DeAngelo DJ, Palmer J, Seet CS, Tallman MS, Wei X, Raymon H, Sriraman P, Kopytek S, Bewersdorf JP, et al: Phase 1 study of anti-CD47 monoclonal antibody CC-90002 in patients with relapsed/refractory acute myeloid leukemia and high-risk myelodysplastic syndromes. Ann Hematol. 101:557–569. 2022. View Article : Google Scholar : PubMed/NCBI

108 

Solinas G and Becattini B: The role of PI3Kγ in metabolism and macrophage activation. Oncotarget. 8:106145–106146. 2017. View Article : Google Scholar :

109 

Qiu X, Tian Y, Liang Z, Sun Y, Li Z and Bian J: Recent discovery of phosphoinositide 3-kinase γ inhibitors for the treatment of immune diseases and cancers. Future Med Chem. 11:2151–2169. 2019. View Article : Google Scholar : PubMed/NCBI

110 

Qin H, Yu H, Sheng J, Zhang D, Shen N, Liu L, Tang Z and Chen X: PI3Kgamma inhibitor attenuates immunosuppressive effect of Poly(l-Glutamic Acid)-Combretastatin A4 conjugate in metastatic breast cancer. Adv Sci (Weinh). 6:19003272019. View Article : Google Scholar : PubMed/NCBI

111 

Carnevalli LS, Taylor MA, King M, Coenen-Stass AML, Hughes AM, Bell S, Proia TA, Wang Y, Ramos-Montoya A, Wali N, et al: Macrophage activation status rather than repolarization is associated with enhanced checkpoint activity in combination with PI3Kγ Inhibition. Mol Cancer Ther. 20:1080–1091. 2021. View Article : Google Scholar : PubMed/NCBI

112 

Hong DS, Postow M, Chmielowski B, Sullivan R, Patnaik A, Cohen EEW, Shapiro G, Steuer C, Gutierrez M, Yeckes-Rodin H, et al: Eganelisib a first-in-class PI3Kγ inhibitor, in patients with advanced solid tumors: Results of the phase 1/1b MARIO-1 trial. Clin Cancer Res. 29:2210–2219. 2023. View Article : Google Scholar : PubMed/NCBI

113 

Brennan JJ and Gilmore TD: Evolutionary Origins of Toll-like Receptor Signaling. Mol Biol Evol. 35:1576–1587. 2018. View Article : Google Scholar : PubMed/NCBI

114 

Kim SY, Kim S, Kim JE, Lee SN, Shin IW, Shin HS, Jin SM, Noh YW, Kang YJ, Kim YS, et al: Lyophilizable and multifaceted toll-like receptor 7/8 agonist-loaded nanoemulsion for the reprogramming of tumor microenvironments and enhanced cancer immunotherapy. ACS Nano. 13:12671–12686. 2019. View Article : Google Scholar : PubMed/NCBI

115 

Liu Z, Xie Y, Xiong Y, Liu S, Qiu C, Zhu Z, Mao H, Yu M and Wang X: TLR 7/8 agonist reverses oxaliplatin resistance in colorectal cancer via directing the myeloid-derived suppressor cells to tumoricidal M1-macrophages. Cancer Lett. 469:173–185. 2020. View Article : Google Scholar

116 

Vidyarthi A, Khan N, Agnihotri T, Negi S, Das DK, Aqdas M, Chatterjee D, Colegio OR, Tewari MK and Agrewala JN: TLR-3 Stimulation Skews M2 Macrophages to M1 Through IFN-αβ signaling and restricts tumor progression. Front Immunol. 9:16502018. View Article : Google Scholar

117 

Sun L, Kees T, Almeida AS, Liu B, He XY, Ng D, Han X, Spector DL, McNeish IA, Gimotty P, et al: Activating a collaborative innate-adaptive immune response to control metastasis. Cancer Cell. 39:1361–1374.e9. 2021. View Article : Google Scholar : PubMed/NCBI

118 

Chow LQM, Morishima C, Eaton KD, Baik CS, Goulart BH, Anderson LN, Manjarrez KL, Dietsch GN, Bryan JK, Hershberg RM, et al: Phase Ib trial of the toll-like receptor 8 agonist, motolimod (VTX-2337), combined with cetuximab in patients with recurrent or metastatic SCCHN. Clin Cancer Res. 23:2442–2450. 2017. View Article : Google Scholar

119 

Shayan G, Kansy BA, Gibson SP, Srivastava RM, Bryan JK, Bauman JE, Ohr J, Kim S, Duvvuri U, Clump DA, et al: Phase Ib study of immune biomarker modulation with neoadjuvant cetuximab and TLR8 stimulation in head and neck cancer to overcome suppressive myeloid signals. Clin Cancer Res. 24:62–72. 2018. View Article : Google Scholar :

120 

Trutnovsky G, Reich O, Joura EA, Holter M, Ciresa-König A, Widschwendter A, Schauer C, Bogner G, Jan Z, Boandl A, et al: Topical imiquimod versus surgery for vulvar intraepithelial neoplasia: A multicentre, randomised, phase 3, non-inferiority trial. Lancet. 399:1790–1798. 2022. View Article : Google Scholar : PubMed/NCBI

121 

Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y and Noelle RJ: Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev. 229:152–172. 2009. View Article : Google Scholar : PubMed/NCBI

122 

Valencia JC, Erwin-Cohen RA, Clavijo PE, Allen C, Sanford ME, Day CP, Hess MM, Johnson M, Yin J, Fenimore JM, et al: Myeloid-Derived suppressive cell expansion promotes melanoma growth and autoimmunity by inhibiting CD40/IL27 regulation in macrophages. Cancer Res. 81:5977–5990. 2021. View Article : Google Scholar : PubMed/NCBI

123 

Lim CY, Chang JH, Lee WS, Kim J and Park IY: CD40 agonists alter the pancreatic cancer microenvironment by shifting the macrophage phenotype toward M1 and suppress human pancreatic cancer in organotypic slice cultures. Gut Liver. 16:645–659. 2022. View Article : Google Scholar :

124 

Frankish J, Mukherjee D, Romano E, Billian-Frey K, Schröder M, Heinonen K, Merz C, Redondo Müller M, Gieffers C, Hill O, et al: The CD40 agonist HERA-CD40L results in enhanced activation of antigen presenting cells, promoting an anti-tumor effect alone and in combination with radiotherapy. Front Immunol. 14:11601162023. View Article : Google Scholar : PubMed/NCBI

125 

Byrne KT, Betts CB, Mick R, Sivagnanam S, Bajor DL, Laheru DA, Chiorean EG, O'Hara MH, Liudahl SM, Newcomb C, et al: Neoadjuvant selicrelumab, an agonist CD40 antibody, induces changes in the tumor microenvironment in patients with resectable pancreatic cancer. Clin Cancer Res. 27:4574–4586. 2021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Lu C, Liu Y, Miao L, Kong X, Li H, Chen H, Zhao X, Zhang B and Cui X: Research progress on the role of tumor‑associated macrophages in tumor development and their use as molecular targets (Review). Int J Oncol 64: 11, 2024.
APA
Lu, C., Liu, Y., Miao, L., Kong, X., Li, H., Chen, H. ... Cui, X. (2024). Research progress on the role of tumor‑associated macrophages in tumor development and their use as molecular targets (Review). International Journal of Oncology, 64, 11. https://doi.org/10.3892/ijo.2023.5599
MLA
Lu, C., Liu, Y., Miao, L., Kong, X., Li, H., Chen, H., Zhao, X., Zhang, B., Cui, X."Research progress on the role of tumor‑associated macrophages in tumor development and their use as molecular targets (Review)". International Journal of Oncology 64.2 (2024): 11.
Chicago
Lu, C., Liu, Y., Miao, L., Kong, X., Li, H., Chen, H., Zhao, X., Zhang, B., Cui, X."Research progress on the role of tumor‑associated macrophages in tumor development and their use as molecular targets (Review)". International Journal of Oncology 64, no. 2 (2024): 11. https://doi.org/10.3892/ijo.2023.5599
Copy and paste a formatted citation
x
Spandidos Publications style
Lu C, Liu Y, Miao L, Kong X, Li H, Chen H, Zhao X, Zhang B and Cui X: Research progress on the role of tumor‑associated macrophages in tumor development and their use as molecular targets (Review). Int J Oncol 64: 11, 2024.
APA
Lu, C., Liu, Y., Miao, L., Kong, X., Li, H., Chen, H. ... Cui, X. (2024). Research progress on the role of tumor‑associated macrophages in tumor development and their use as molecular targets (Review). International Journal of Oncology, 64, 11. https://doi.org/10.3892/ijo.2023.5599
MLA
Lu, C., Liu, Y., Miao, L., Kong, X., Li, H., Chen, H., Zhao, X., Zhang, B., Cui, X."Research progress on the role of tumor‑associated macrophages in tumor development and their use as molecular targets (Review)". International Journal of Oncology 64.2 (2024): 11.
Chicago
Lu, C., Liu, Y., Miao, L., Kong, X., Li, H., Chen, H., Zhao, X., Zhang, B., Cui, X."Research progress on the role of tumor‑associated macrophages in tumor development and their use as molecular targets (Review)". International Journal of Oncology 64, no. 2 (2024): 11. https://doi.org/10.3892/ijo.2023.5599
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team