|
1
|
Gilbert WV, Bell TA and Schaening C:
Messenger RNA modifications: Form, distribution, and function.
Science. 352:1408–1412. 2016.
|
|
2
|
Cohn WE: Pseudouridine, a carbon-carbon
linked ribonucleoside in ribonucleic acids: Isolation, structure,
and chemical characteristics. J Biol Chem. 235:1488–1498. 1960.
|
|
3
|
Meyer KD, Patil DP, Zhou J, Zinoviev A,
Skabkin MA, Elemento O, Pestova TV, Qian SB and Jaffrey SR: 5′ UTR
m(6) A promotes cap-independent translation. Cell. 163:999–1010.
2015.
|
|
4
|
Dawson MA and Kouzarides T: Cancer
epigenetics: from mechanism to therapy. Cell. 150:12–27. 2012.
|
|
5
|
Nishiyama A and Nakanishi M: Navigating
the DNA methylation landscape of cancer. Trends Genet.
37:1012–1027. 2021.
|
|
6
|
Huang W, Li H, Yu Q, Xiao W and Wang DO:
LncRNA-mediated DNA methylation: An emerging mechanism in cancer
and beyond. J Exp Clin Cancer Res. 41:1002022.
|
|
7
|
Esteller M: Cancer epigenomics: DNA
methylomes and histone-modification maps. Nat Rev Genet. 8:286–298.
2007.
|
|
8
|
Meyer KD, Saletore Y, Zumbo P, Elemento O,
Mason CE and Jaffrey SR: Comprehensive analysis of mRNA methylation
reveals enrichment in 3′ UTRs and near stop codons. Cell.
149:1635–1646. 2012.
|
|
9
|
Linder B, Grozhik AV, Olarerin-George AO,
Meydan C, Mason CE and Jaffrey SR: Single-nucleotide-resolution
mapping of m6A and m6Am throughout the transcriptome. Nat Methods.
12:767–772. 2015.
|
|
10
|
Sun T, Wu R and Ming L: The role of m6A
RNA methylation in cancer. Biomed Pharmacother. 112:1086132019.
|
|
11
|
Song N, Cui K, Zhang K, Yang J, Liu J,
Miao Z, Zhao F, Meng H, Chen L, Chen C, et al: The role of m6A RNA
methylation in cancer: Implication for nature products anti-cancer
research. Front Pharmacol. 13:9333322022.
|
|
12
|
Li X, Ma S, Deng Y, Yi P and Yu J:
Targeting the RNA m6A modification for cancer
immunotherapy. Mol Cancer. 21:762022.
|
|
13
|
An Y and Duan H: The role of m6A RNA
methylation in cancer metabolism. Mol Cancer. 21:142022.
|
|
14
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
|
|
15
|
Shi JF, Wang L, Ran JC, Wang H, Liu CC,
Zhang HZ, Yang L, Shi SS, Jiang LM, Fan JH, et al: Clinical
characteristics, medical service utilization, and expenditure for
colorectal cancer in China, 2005 to 2014: Overall design and
results from a multicenter retrospective epidemiologic survey.
Cancer. 127:1880–1893. 2021.
|
|
16
|
Alfarouk KO, Stock CM, Taylor S, Walsh M,
Muddathir AK, Verduzco D, Bashir AH, Mohammed OY, Elhassan GO,
Harguindey S, et al: Resistance to cancer chemotherapy: Failure in
drug response from ADME to P-gp. Cancer Cell Int. 15:712015.
|
|
17
|
Liu K, Ouyang QY, Zhan Y, Yin H, Liu BX,
Tan LM, Liu R, Wu W and Yin JY: Pharmacoepitranscriptomic landscape
revealing m6A modification could be a drug-effect biomarker for
cancer treatment. Mol Ther Nucleic Acids. 28:464–476. 2022.
|
|
18
|
Pan J, Liu F, Xiao X, Xu R, Dai L, Zhu M,
Xu H, Xu Y, Zhao A, Zhou W, et al: METTL3 promotes colorectal
carcinoma progression by regulating the m6A-CRB3-Hippo axis. J Exp
Clin Cancer Res. 41:192022.
|
|
19
|
Shen C, Xuan B, Yan T, Ma Y, Xu P, Tian X,
Zhang X, Cao Y, Ma D, Zhu X, et al: m6A-dependent
glycolysis enhances colorectal cancer progression. Mol Cancer.
19:722020.
|
|
20
|
Peng W, Li J, Chen R, Gu Q, Yang P, Qian
W, Ji D, Wang Q, Zhang Z, Tang J and Sun Y: Upregulated METTL3
promotes metastasis of colorectal cancer via miR-1246/SPRED2/MAPK
signaling pathway. J Exp Clin Cancer Res. 38:3932019.
|
|
21
|
Liu Z, Zou H, Dang Q, Xu H, Liu L, Zhang
Y, Lv J, Li H, Zhou Z and Han X: Biological and pharmacological
roles of m6A modifications in cancer drug resistance.
Mol Cancer. 21:2202022.
|
|
22
|
Yan J, Liu F, Guan Z, Yan X, Jin X, Wang
Q, Wang Z, Yan J, Zhang D, Liu Z, et al: Structural insights into
DNA N6-adenine methylation by the MTA1 complex. Cell
Discov. 9:82023.
|
|
23
|
Yan X, Pei K, Guan Z, Liu F, Yan J, Jin X,
Wang Q, Hou M, Tang C and Yin P: AI-empowered integrative
structural characterization of m6A methyltransferase
complex. Cell Res. 32:1124–1127. 2022.
|
|
24
|
Zhou Z, Lv J, Yu H, Han J, Yang X, Feng D,
Wu Q, Yuan B, Lu Q and Yang H: Mechanism of RNA modification
N6-methyladenosine in human cancer. Mol Cancer. 19:1042020.
|
|
25
|
Wang Z, Pan Z, Adhikari S, Harada BT, Shen
L, Yuan W, Abeywardana T, Al-Hadid Q, Stark JM, He C, et al:
m6 A deposition is regulated by PRMT1-mediated arginine
methylation of METTL14 in its disordered C-terminal region. EMBO J.
40:e1063092021.
|
|
26
|
Liu X, Du Y, Huang Z, Qin H, Chen J and
Zhao Y: Insights into roles of METTL14 in tumors. Cell Prolif.
55:e131682022.
|
|
27
|
Ping XL, Sun BF, Wang L, Xiao W, Yang X,
Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, et al: Mammalian WTAP is
a regulatory subunit of the RNA N6-methyladenosine
methyltransferase. Cell Res. 24:177–189. 2014.
|
|
28
|
Fan Y, Li X, Sun H, Gao Z, Zhu Z and Yuan
K: Role of WTAP in cancer: From mechanisms to the therapeutic
potential. Biomolecules. 12:12242022.
|
|
29
|
Yue Y, Liu J, Cui X, Cao J, Luo G, Zhang
Z, Cheng T, Gao M, Shu X, Ma H, et al: VIRMA mediates preferential
m6A mRNA methylation in 3′UTR and near stop codon and
associates with alternative polyadenylation. Cell Discov.
4:102018.
|
|
30
|
Huang L, Liang D, Zhang Y, Chen X, Chen J,
Wen C, Liu H, Yang X, Yang X and Lin S: METTL3 promotes colorectal
cancer metastasis by promoting the maturation of pri-microRNA-196b.
J Cancer Res Clin Oncol. 149:5095–5108. 2023.
|
|
31
|
Zhang F, Su T and Xiao M: RUNX3-regulated
circRNA METTL3 inhibits colorectal cancer proliferation and
metastasis via miR-107/PER3 axis. Cell Death Dis. 13:5502022.
|
|
32
|
Shi K, Yang S, Chen C, Shao B, Guo Y, Wu
X, Zhao L, Yang X, Zhang Q, Yuan W and Sun Z: RNA
methylation-mediated LINC01559 suppresses colorectal cancer
progression by regulating the miR-106b-5p/PTEN axis. Int J Biol
Sci. 18:3048–3065. 2022.
|
|
33
|
Xu Q, Lu X, Li J, Feng Y, Tang J, Zhang T,
Mao Y, Lan Y, Luo H, Zeng L, et al: Fusobacterium nucleatum induces
excess methyltransferase-like 3-mediated microRNA-4717-3p
maturation to promote colorectal cancer cell proliferation. Cancer
Sci. 113:3787–3800. 2022.
|
|
34
|
Chen S, Zhang L, Li M, Zhang Y, Sun M,
Wang L, Lin J, Cui Y, Chen Q, Jin C, et al: Fusobacterium nucleatum
reduces METTL3-mediated m6A modification and contributes
to colorectal cancer metastasis. Nat Commun. 13:12482022.
|
|
35
|
Chen H, Gao S, Liu W, Wong CC, Wu J, Wu J,
Liu D, Gou H, Kang W, Zhai J, et al: RNA
N6-methyladenosine methyltransferase METTL3 facilitates
colorectal cancer by activating the m6A-GLUT1-mTORC1
axis and is a therapeutic target. Gastroenterology.
160:1284–1300.e16. 2021.
|
|
36
|
Lu S, Han L, Hu X, Sun T, Xu D, Li Y, Chen
Q, Yao W, He M, Wang Z, et al: N6-methyladenosine reader IMP2
stabilizes the ZFAS1/OLA1 axis and activates the Warburg effect:
Implication in colorectal cancer. J Hematol Oncol. 14:1882021.
|
|
37
|
Sun L, Wan A, Zhou Z, Chen D, Liang H, Liu
C, Yan S, Niu Y, Lin Z, Zhan S, et al: RNA-binding protein RALY
reprogrammes mitochondrial metabolism via mediating miRNA
processing in colorectal cancer. Gut. 70:1698–1712. 2021.
|
|
38
|
Deng R, Cheng Y, Ye S, Zhang J, Huang R,
Li P, Liu H, Deng Q, Wu X, Lan P and Deng Y: m6A
methyltransferase METTL3 suppresses colorectal cancer proliferation
and migration through p38/ERK pathways. Onco Targets Ther.
12:4391–4402. 2019.
|
|
39
|
Chen X, Xu M, Xu X, Zeng K, Liu X, Pan B,
Li C, Sun L, Qin J, Xu T, et al: METTL14-mediated
N6-methyladenosine modification of SOX4 mRNA inhibits tumor
metastasis in colorectal cancer. Mol Cancer. 19:1062020.
|
|
40
|
Hou Y, Zhang X, Yao H, Hou L, Zhang Q, Tao
E, Zhu X, Jiang S, Ren Y, Hong X, et al: METTL14 modulates
glycolysis to inhibit colorectal tumorigenesis in p53-wild-type
cells. EMBO Rep. 24:e563252023.
|
|
41
|
Zhang J, Tsoi H, Li X, Wang H, Gao J, Wang
K, Go MY, Ng SC, Chan FK, Sung JJ and Yu J: Carbonic anhydrase IV
inhibits colon cancer development by inhibiting the Wnt signalling
pathway through targeting the WTAP-WT1-TBL1 axis. Gut.
65:1482–1493. 2016.
|
|
42
|
Li Y, He L, Wang Y, Tan Y and Zhang F:
N6-methyladenosine methyltransferase KIAA1429 elevates
colorectal cancer aerobic glycolysis via HK2-dependent manner.
Bioengineered. 13:11923–11932. 2022.
|
|
43
|
Wei X, Huo Y, Pi J, Gao Y, Rao S, He M,
Wei Q, Song P, Chen Y, Lu D, et al: METTL3 preferentially enhances
non-m6A translation of epigenetic factors and promotes
tumourigenesis. Nat Cell Biol. 24:1278–1290. 2022.
|
|
44
|
Zeng C, Huang W, Li Y and Weng H: Roles of
METTL3 in cancer: Mechanisms and therapeutic targeting. J Hematol
Oncol. 13:1172020.
|
|
45
|
Collignon E, Cho B, Furlan G,
Fothergill-Robinson J, Martin SB, McClymont SA, Ross RL, Limbach PA
and Ramalho-Santos M: m6A RNA methylation orchestrates
transcriptional dormancy during paused pluripotency. Nat Cell Biol.
25:1279–1289. 2023.
|
|
46
|
Lin S, Choe J, Du P, Triboulet R and
Gregory RI: The m(6)A methyltransferase METTL3 promotes translation
in human cancer cells. Mol Cell. 62:335–345. 2016.
|
|
47
|
Wang JL, Chen ZF, Chen HM, Wang MY, Kong
X, Wang YC, Sun TT, Hong J, Zou W, Xu J and Fang JY: Elf3 drives
β-catenin transactivation and associates with poor prognosis in
colorectal cancer. Cell Death Dis. 5:e12632014.
|
|
48
|
Xiang Y, Guo Z, Zhu P, Chen J and Huang Y:
Traditional Chinese medicine as a cancer treatment: Modern
perspectives of ancient but advanced science. Cancer Med.
8:1958–1975. 2019.
|
|
49
|
Xin T, Zhang Y, Pu X, Gao R, Xu Z and Song
J: Trends in herbgenomics. Sci China Life Sci. 62:288–308.
2019.
|
|
50
|
Wang YN, Zou M, Wang D, Zhang ZK, Qu LP,
Xu J, Shi CD and Gao F: An exploratory study on TCM syndrome
differentiation in preoperative patients with colorectal cancer
assisted by laboratory indicators. Heliyon. 8:e102072022.
|
|
51
|
Wang CY, Ding HZ, Tang X and Li ZG:
Comparative analysis of immune function, hemorheological
alterations and prognosis in colorectal cancer patients with
different traditional Chinese medicine syndromes. Cancer Biomark.
21:701–710. 2018.
|
|
52
|
Zhang X, Wang X, Shi R, Ran X, He X and
Dou D: Effective substances and mechanism of red ginseng on rats
with spleen-deficiency syndrome based on the substance and energy
metabolism as well as the 'brain-gut' axis. J Ethnopharmacol.
311:1164382023.
|
|
53
|
Lu Y, Zhou C, Zhu M, Fu Z, Shi Y, Li M,
Wang W, Zhu S, Jiang B, Luo Y and Su S: Traditional chinese
medicine syndromes classification associates with tumor cell and
microenvironment heterogeneity in colorectal cancer: A single cell
RNA sequencing analysis. Chin Med. 16:1332021.
|
|
54
|
Liu WW, Zhang ZY, Wang F and Wang H:
Emerging roles of m6A RNA modification in cancer therapeutic
resistance. Exp Hematol Oncol. 12:212023.
|
|
55
|
Ma SC, Zhang JQ, Yan TH, Miao MX, Cao YM,
Cao YB, Zhang LC and Li L: Novel strategies to reverse
chemoresistance in colorectal cancer. Cancer Med. 12:11073–11096.
2023.
|
|
56
|
Zou Z, Sepich-Poore C, Zhou X, Wei J and
He C: The mechanism underlying redundant functions of the YTHDF
proteins. Genome Biol. 24:172023.
|
|
57
|
Chen L, Gao Y, Xu S, Yuan J, Wang M, Li T
and Gong J: N6-methyladenosine reader YTHDF family in biological
processes: Structures, roles, and mechanisms. Front Immunol.
14:11626072023.
|
|
58
|
Sarraf G and Chhabra R: Emerging role of
mRNA methylation in regulating the hallmarks of cancer. Biochimie.
206:61–72. 2023.
|
|
59
|
Chang G, Shi L, Ye Y, Shi H, Zeng L,
Tiwary S, Huse JT, Huo L, Ma L, Ma Y, et al: YTHDF3 Induces the
translation of m6A-enriched gene transcripts to promote
breast cancer brain metastasis. Cancer Cell. 38:857–871. 2020.
|
|
60
|
Hao W, Dian M, Zhou Y, Zhong Q, Pang W, Li
Z, Zhao Y, Ma J, Lin X, Luo R, et al: Autophagy induction promoted
by m6A reader YTHDF3 through translation upregulation of
FOXO3 mRNA. Nat Commun. 13:58452022.
|
|
61
|
Wang S, Gao S, Zeng Y, Zhu L, Mo Y, Wong
CC, Bao Y, Su P, Zhai J, Wang L, et al: N6-methyladenosine reader
YTHDF1 promotes ARHGEF2 translation and RhoA signaling in
colorectal cancer. Gastroenterology. 162:1183–1196. 2022.
|
|
62
|
Ning Z, Wu Z, Zhang F, Yang M, Lu Z, Yu B,
Long F, Guo Y, Yang K, Hu G, et al: GMEB2 promotes the growth of
colorectal cancer by activating ADRM1 transcription and NF-κB
signalling and is positively regulated by the m6A reader
YTHDF1. Cancers (Basel). 14:60462022.
|
|
63
|
Ni W, Yao S, Zhou Y, Liu Y, Huang P, Zhou
A, Liu J, Che L and Li J: Long noncoding RNA GAS5 inhibits
progression of colorectal cancer by interacting with and triggering
YAP phosphorylation and degradation and is negatively regulated by
the m6A reader YTHDF3. Mol Cancer. 18:1432019.
|
|
64
|
Li T, Hu PS, Zuo Z, Lin JF, Li X, Wu QN,
Chen ZH, Zeng ZL, Wang F, Zheng J, et al: METTL3 facilitates tumor
progression via an m6A-IGF2BP2-dependent mechanism in
colorectal carcinoma. Mol Cancer. 18:1122019.
|
|
65
|
Liu X, He H, Zhang F, Hu X, Bi F, Li K, Yu
H, Zhao Y, Teng X, Li J, et al: m6A methylated EphA2 and VEGFA
through IGF2BP2/3 regulation promotes vasculogenic mimicry in
colorectal cancer via PI3K/AKT and ERK1/2 signaling. Cell Death
Dis. 13:4832022.
|
|
66
|
Zhao Y and Peng H: The role of
N6-methyladenosine (m6A) methylation
modifications in hematological malignancies. Cancers (Basel).
14:3322022.
|
|
67
|
Qu X and Shi Y: Bile reflux and bile acids
in the progression of gastric intestinal metaplasia. Chin Med J
(Engl). 135:1664–1672. 2022.
|
|
68
|
Li H, Wu H, Wang Q, Ning S, Xu S and Pang
D: Dual effects of N6-methyladenosine on cancer
progression and immunotherapy. Mol Ther Nucleic Acids. 24:25–39.
2021.
|
|
69
|
Liu C, Yang S, Zhang Y, Wang C, Du D, Wang
X, Liu T and Liang G: Emerging roles of N6-methyladenosine
demethylases and its interaction with environmental toxicants in
digestive system cancers. Cancer Manag Res. 13:7101–7114. 2021.
|
|
70
|
Uddin MB, Wang Z and Yang C:
Dysregulations of functional RNA modifications in cancer, cancer
stemness and cancer therapeutics. Theranostics. 10:3164–3189.
2020.
|
|
71
|
Relier S, Ripoll J, Guillorit H, Amalric
A, Achour C, Boissière F, Vialaret J, Attina A, Debart F, Choquet
A, et al: FTO-mediated cytoplasmic m6Am
demethylation adjusts stem-like properties in colorectal cancer
cell. Nat Commun. 12:17162021.
|
|
72
|
Ruan DY, Li T, Wang YN, Meng Q, Li Y, Yu
K, Wang M, Lin JF, Luo LZ, Wang DS, et al: FTO downregulation
mediated by hypoxia facilitates colorectal cancer metastasis.
Oncogene. 40:5168–5181. 2021.
|
|
73
|
Ballester V, Taylor WR, Slettedahl SW,
Mahoney DW, Yab TC, Sinicrope FA, Boland CR, Lidgard GP,
Cruz-Correa MR, Smyrk TC, et al: Novel methylated DNA markers
accurately discriminate Lynch syndrome associated colorectal
neoplasia. Epigenomics. 12:2173–2187. 2020.
|
|
74
|
Li N, Kang Y, Wang L, Huff S, Tang R, Hui
H, Agrawal K, Gonzalez GM, Wang Y, Patel SP and Rana TM: ALKBH5
regulates anti-PD-1 therapy response by modulating lactate and
suppressive immune cell accumulation in tumor microenvironment.
Proc Natl Acad Sci USA. 117:20159–20170. 2020.
|
|
75
|
Wang YQ, Li HZ, Gong WW, Chen YY, Zhu C,
Wang L, Zhong JM and Du LB: Cancer incidence and mortality in
Zhejiang Province, Southeast China, 2016: A population-based study.
Chin Med J (Engl). 134:1959–1966. 2021.
|
|
76
|
Chen HM, Lin CC, Chen WS, Jiang JK, Yang
SH, Chang SC, Ho CL, Yang CC, Huang SC, Chao Y, et al: Insulin-like
growth factor 2 mRNA-binding protein 1 (IGF2BP1) is a prognostic
biomarker and associated with chemotherapy responsiveness in
colorectal cancer. Int J Mol Sci. 22:69402021.
|
|
77
|
Hanahan D: Hallmarks of cancer: New
dimensions. Cancer Discov. 12:31–46. 2022.
|
|
78
|
Yang W, Wang Y, Tao C, Li Y, Cao S and
Yang X: CRNDE silencing promotes apoptosis and enhances cisplatin
sensitivity of colorectal carcinoma cells by inhibiting the
Akt/mTORC1-mediated Warburg effect. Oncol Lett. 23:702022.
|
|
79
|
Wei TT, Lin YT, Tang SP, Luo CK, Tsai CT,
Shun CT and Chen CC: Metabolic targeting of HIF-1α potentiates the
therapeutic efficacy of oxaliplatin in colorectal cancer. Oncogene.
39:414–427. 2020.
|
|
80
|
Peng L, Jiang J, Chen HN, Zhou L, Huang Z,
Qin S, Jin P, Luo M, Li B, Shi J, et al: Redox-sensitive
cyclophilin A elicits chemoresistance through realigning cellular
oxidative status in colorectal cancer. Cell Rep. 37:1100692021.
|
|
81
|
Zhang K, Zhang T, Yang Y, Tu W, Huang H,
Wang Y, Chen Y, Pan K and Chen Z:
N6-methyladenosine-mediated LDHA induction potentiates
chemoresistance of colorectal cancer cells through metabolic
reprogramming. Theranostics. 12:4802–4817. 2022.
|
|
82
|
Yang Z, Quan Y, Chen Y, Huang Y, Huang R,
Yu W, Wu D, Ye M, Min Z and Yu B: Knockdown of RNA
N6-methyladenosine methyltransferase METTL3 represses Warburg
effect in colorectal cancer via regulating HIF-1α. Signal Transduct
Target Ther. 6:892021.
|
|
83
|
Han S, Zhu L, Zhu Y, Meng Y, Li J, Song P,
Yousafzai NA, Feng L, Chen M, Wang Y, et al: Targeting
ATF4-dependent pro-survival autophagy to synergize glutaminolysis
inhibition. Theranostics. 11:8464–8479. 2021.
|
|
84
|
Chen P, Liu XQ, Lin X, Gao LY, Zhang S and
Huang X: Targeting YTHDF1 effectively re-sensitizes
cisplatin-resistant colon cancer cells by modulating GLS-mediated
glutamine metabolism. Mol Ther Oncolytics. 20:228–239. 2021.
|
|
85
|
Rehman SK, Haynes J, Collignon E, Brown
KR, Wang Y, Nixon AML, Bruce JP, Wintersinger JA, Singh Mer A, Lo
EBL, et al: Colorectal Cancer cells enter a diapause-like DTP state
to survive chemotherapy. Cell. 184:226–242.e21. 2021.
|
|
86
|
Wang Y, Yang L, Zhang J, Zhou M, Shen L,
Deng W, Liang L, Hu R, Yang W, Yao Y, et al: Radiosensitization by
irinotecan is attributed to G2/M phase arrest, followed by enhanced
apoptosis, probably through the ATM/Chk/Cdc25C/Cdc2 pathway in
p53-mutant colorectal cancer cells. Int J Oncol. 53:1667–1680.
2018.
|
|
87
|
Lin Z, Wan AH, Sun L, Liang H, Niu Y, Deng
Y, Yan S, Wang QP, Bu X, Zhang X, et al: N6-methyladenosine
demethylase FTO enhances chemo-resistance in colorectal cancer
through SIVA1-mediated apoptosis. Mol Ther. 31:517–534. 2023.
|
|
88
|
Li J, Chen F, Peng Y, Lv Z, Lin X, Chen Z
and Wang H: N6-methyladenosine regulates the expression and
secretion of TGFbeta1 to affect the epithelial-mesenchymal
transition of cancer cells. Cells. 9:2962020.
|
|
89
|
Yang M, Sun M and Zhang H: The interaction
between epigenetic changes, EMT, and exosomes in predicting
metastasis of colorectal cancers (CRC). Front Oncol.
12:8798482022.
|
|
90
|
Sabouni E, Nejad MM, Mojtabavi S, Khoshduz
S, Mojtabavi M, Nadafzadeh N, Nikpanjeh N, Mirzaei S, Hashemi M,
Aref AR, et al: Unraveling the function of epithelial-mesenchymal
transition (EMT) in colorectal cancer: Metastasis, therapy
response, and revisiting molecular pathways. Biomed Pharmacother.
160:1143952023.
|
|
91
|
Oskarsson T, Batlle E and Massagué J:
Metastatic stem cells: Sources, niches, and vital pathways. Cell
Stem Cell. 14:306–321. 2014.
|
|
92
|
Liu X, Su K, Sun X, Jiang Y, Wang L, Hu C,
Zhang C, Lu M, Du X and Xing B: Sec62 promotes stemness and
chemoresistance of human colorectal cancer through activating
Wnt/β-catenin pathway. J Exp Clin Cancer Res. 40:1322021.
|
|
93
|
Zhang Y, Kang M, Zhang B, Meng F, Song J,
Kaneko H, Shimamoto F and Tang B: m6A
modification-mediated CBX8 induction regulates stemness and
chemosensitivity of colon cancer via upregulation of LGR5. Mol
Cancer. 18:1852019.
|
|
94
|
Bai Y, Yang C, Wu R, Huang L, Song S, Li
W, Yan P, Lin C, Li D and Zhang Y: YTHDF1 regulates tumorigenicity
and cancer stem cell-like activity in human colorectal carcinoma.
Front Oncol. 9:3322019.
|
|
95
|
Mauri G, Arena S, Siena S, Bardelli A and
Sartore-Bianchi A: The DNA damage response pathway as a land of
therapeutic opportunities for colorectal cancer. Ann Oncol.
31:1135–1147. 2020.
|
|
96
|
Catalano F, Borea R, Puglisi S, Boutros A,
Gandini A, Cremante M, Martelli V, Sciallero S and Puccini A:
Targeting the DNA damage response pathway as a novel therapeutic
strategy in colorectal cancer. Cancers (Basel). 14:13882022.
|
|
97
|
Zhang C, Chen L, Peng D, Jiang A, He Y,
Zeng Y, Xie C, Zhou H, Luo X, Liu H, et al: METTL3 and
N6-methyladenosine promote homologous recombination-mediated repair
of DSBs by modulating DNA-RNA hybrid accumulation. Mol Cell.
79:425–442.e7. 2020.
|
|
98
|
Li M, Xia M, Zhang Z, Tan Y, Li E, Guo Z,
Fang M, Zhu Y and Hu Z: METTL3 antagonizes 5-FU chemotherapy and
confers drug resistance in colorectal carcinoma. Int J Oncol.
61:1062022.
|
|
99
|
Zhang SH QQLP: METTL3-mediated m6A
modification in oxaliplatin resistance in colorectal cancer. J
Chongqing Med Univ. 47:pp. 941–947. 2022, (In Chinese). https://kns.cnki.net/kcms/detail/detail.aspx?FileName=ZQYK202208010&DbName=DKFX2022.
View Article : Google Scholar
|
|
100
|
Yankova E, Blackaby W, Albertella M, Rak
J, De Braekeleer E, Tsagkogeorga G, Pilka ES, Aspris D, Leggate D,
Hendrick AG, et al: Small-molecule inhibition of METTL3 as a
strategy against myeloid leukaemia. Nature. 593:597–601. 2021.
|
|
101
|
Sun Y, Shen W, Hu S, Lyu Q, Wang Q, Wei T,
Zhu W and Zhang J: METTL3 promotes chemoresistance in small cell
lung cancer by inducing mitophagy. J Exp Clin Cancer Res.
42:652023.
|
|
102
|
Deng LJ, Deng WQ, Fan SR, Chen MF, Qi M,
Lyu WY, Qi Q, Tiwari AK, Chen JX, Zhang DM and Chen ZS: m6A
modification: recent advances, anticancer targeted drug discovery
and beyond. Mol Cancer. 21:522022.
|
|
103
|
Chen Y, Wu R, Chen W, Liu Y, Liao X, Zeng
B, Guo G, Lou F, Xiang Y, Wang Y and Wang X: Curcumin prevents
obesity by targeting TRAF4-induced ubiquitylation in m6
A-dependent manner. EMBO Rep. 22:e521462021.
|
|
104
|
Weng W and Goel A: Curcumin and colorectal
cancer: An update and current perspective on this natural medicine.
Semin Cancer Biol. 80:73–86. 2022.
|
|
105
|
Su P, Yang Y, Wang G, Chen X and Ju Y:
Curcumin attenuates resistance to irinotecan via induction of
apoptosis of cancer stem cells in chemoresistant colon cancer
cells. Int J Oncol. 53:1343–1353. 2018.
|
|
106
|
Gan Z, Wei W, Wu J, Zhao Y, Zhang L, Wang
T and Zhong X: Resveratrol and curcumin improve intestinal mucosal
integrity and decrease m6A RNA methylation in the
intestine of weaning piglets. ACS Omega. 4:17438–17446. 2019.
|
|
107
|
Hernández-Caballero ME, Sierra-Ramírez JA,
Villalobos-Valencia R and Seseña-Méndez E: Potential of
Kalanchoe pinnata as a cancer treatment adjuvant and an
epigenetic regulator. Molecules. 27:64252022.
|
|
108
|
Zhu D, Li A, Lv Y and Fan Q: Traditional
Chinese medicine: A class of potentially reliable epigenetic drugs.
Front Pharmacol. 13:9070312022.
|
|
109
|
Sun K, Du Y, Hou Y, Zhao M, Li J, Du Y,
Zhang L, Chen C, Yang H, Yan F and Su R: Saikosaponin D exhibits
anti-leukemic activity by targeting FTO/m6A signaling.
Theranostics. 11:5831–5846. 2021.
|
|
110
|
Xu W, Xie S, Chen X, Pan S, Qian H and Zhu
X: Effects of quercetin on the efficacy of various chemotherapeutic
drugs in cervical cancer cells. Drug Des Devel Ther. 15:577–588.
2021.
|
|
111
|
Wu R, Yao Y, Jiang Q, Cai M, Liu Q, Wang Y
and Wang X: Epigallocatechin gallate targets FTO and inhibits
adipogenesis in an mRNA m6A-YTHDF2-dependent manner. Int
J Obes (Lond). 42:1378–1388. 2018.
|
|
112
|
Jiao Y, Williams A and Wei N: Quercetin
ameliorated insulin resistance via regulating METTL3-mediated
N6-methyladenosine modification of PRKD2 mRNA in skeletal muscle
and C2C12 myocyte cell line. Nutr Metab Cardiovasc Dis.
32:2655–2668. 2022.
|
|
113
|
Phan T, Nguyen VH, Su R, Li Y, Qing Y, Qin
H, Cho H, Jiang L, Wu X, Chen J, et al: Targeting fat mass and
obesity-associated protein mitigates human colorectal cancer growth
in vitro and in a murine model. Front Oncol. 13:10876442023.
|
|
114
|
Du Y, Yuan Y, Xu L, Zhao F, Wang W, Xu Y
and Tian X: Discovery of METTL3 small molecule inhibitors by
virtual screening of natural products. Front Pharmacol.
13:8781352022.
|
|
115
|
Manna S, Samal P, Basak R, Mitra A, Roy
AK, Kundu R, Ahir A, Roychowdhury A and Hazra D: Amentoflavone and
methyl hesperidin, novel lead molecules targeting epitranscriptomic
modulator in acute myeloid leukemia: In silico drug screening and
molecular dynamics simulation approach. J Mol Model. 29:92022.
|
|
116
|
Deng S, Zhang J, Su J, Zuo Z, Zeng L, Liu
K, Zheng Y, Huang X, Bai R, Zhuang L, et al: RNA m6A
regulates transcription via DNA demethylation and chromatin
accessibility. Nat Genet. 54:1427–1437. 2022.
|