Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
March-2024 Volume 64 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2024 Volume 64 Issue 3

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Advances in the study of antisense long‑stranded non‑coding RNAs in tumors (Review)

  • Authors:
    • Yifan Shao
    • Yuwei Dong
    • Jing Zhou
    • Zhihua Lu
    • Chen Chen
    • Xiaomin Yuan
    • Linhai He
    • Wenwen Tang
    • Zepeng Chen
    • Yuji Wang
    • Qiurong Li
    • Shuhui Zhan
    • Zhengxi Qiu
    • Kuiling Wang
    • Jiaze Ma
    • Yugen Chen
    • Yang Li
  • View Affiliations / Copyright

    Affiliations: The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China, Department of Colorectal Surgery, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
  • Article Number: 22
    |
    Published online on: January 9, 2024
       https://doi.org/10.3892/ijo.2024.5610
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Long‑stranded non‑coding RNAs (lncRNAs) are RNAs that consist of >200 nucleotides. The majority of lncRNAs do not encode proteins but have been revealed to mediate a variety of important physiological functions. Antisense‑lncRNAs (AS‑lncRNAs) are transcribed from the opposite strand of a protein or non‑protein coding gene as part of the antisense strand of the coding gene. AS‑lncRNAs can serve an important role in the tumorigenesis, prognosis, metastasis and drug resistance of a number of malignancies. This has been reported to be exerted through various mechanisms, such as endogenous competition, promoter interactions, direct interactions with mRNAs, acting as ‘scaffolds’ to regulate mRNA half‑life, interactions with 5‑untranslated regions and regulation of sense mRNAs. AS‑lncRNAs have been found to either inhibit or promote tumor aggressiveness by regulating cell proliferation, energy metabolism, inflammation, inflammatory‑carcinoma transformation, invasion, migration and angiogenesis. In addition, accumulating evidence has documented that AS‑lncRNAs can regulate tumor therapy resistance. Therefore, targeting aberrantly expressed AS‑lncRNAs for cancer treatment may prove to be a promising approach to reverse therapy resistance. In the present review, research advances on the role of AS‑lncRNAs in tumor occurrence and development were summarized, with the aim of providing novel ideas for further research in this field.
View Figures

Figure 1

View References

1 

GBD 2019 Diseases and Injuries Collaborators, . Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet. 396:1204–1222. 2020. View Article : Google Scholar : PubMed/NCBI

2 

Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin Med J (Engl). 135:584–590. 2022. View Article : Google Scholar : PubMed/NCBI

3 

Qiu H, Cao S and Xu R: Cancer incidence, mortality, and burden in China: A time-trend analysis and comparison with the United States and United Kingdom based on the global epidemiological data released in 2020. Cancer Commun (Lond). 41:1037–1048. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022. View Article : Google Scholar : PubMed/NCBI

5 

Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, Kramer J and Siegel RL: Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 72:409–436. 2022. View Article : Google Scholar : PubMed/NCBI

6 

Ponting CP, Oliver PL and Reik W: Evolution and functions of long noncoding RNAs. Cell. 136:629–641. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Agirre E and Eyras E: Databases and resources for human small non-coding RNAs. Hum Genomics. 5:192–199. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Lee JT: Epigenetic regulation by long noncoding RNAs. Science. 338:1435–1439. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Takahashi A, Tsutsumi R, Kikuchi I, Obuse C, Saito Y, Seidi A, Karisch R, Fernandez M, Cho T, Ohnishi N, et al: SHP2 tyrosine phosphatase converts parafibromin/Cdc73 from a tumor suppressor to an oncogenic driver. Mol Cell. 43:45–56. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Bhan A, Soleimani M and Mandal SS: Long noncoding RNA and cancer: A new paradigm. Cancer Res. 77:3965–3981. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Statello L, Guo CJ, Chen LL and Huarte M: Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Bio. 22:96–118. 2021. View Article : Google Scholar : PubMed/NCBI

12 

Hua Q, Mi B, Xu F, Wen J, Zhao L, Liu J and Huang G: Hypoxia-induced lncRNA-AC020978 promotes proliferation and glycolytic metabolism of non-small cell lung cancer by regulating PKM2/HIF-1α axis. Theranostics. 10:4762–4778. 2020. View Article : Google Scholar : PubMed/NCBI

13 

Chen J, Yu Y, Li H, Hu Q, Chen X, He Y, Xue C, Ren F, Ren Z, Li J, et al: Long non-coding RNA PVT1 promotes tumor progression by regulating the miR-143/HK2 axis in gallbladder cancer. Mol Cancer. 18:332019. View Article : Google Scholar : PubMed/NCBI

14 

Devaux Y, Zangrando J, Schroen B, Creemers EE, Pedrazzini T, Chang CP, Dorn GN, Thum T II and Heymans S; Cardiolinc network, : Long noncoding RNAs in cardiac development and ageing. Nat Rev Cardiol. 12:415–425. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Magistri M, Faghihi MA, St Laurent G III and Wahlestedt C: Regulation of chromatin structure by long noncoding RNAs: Focus on natural antisense transcripts. Trends Genet. 28:389–396. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Cui XY, Zhan JK and Liu YS: Roles and functions of antisense lncRNA in vascular aging. Ageing Res Rev. 72:1014802021. View Article : Google Scholar : PubMed/NCBI

17 

Bian Z, Zhang J, Li M, Feng Y, Wang X, Zhang J, Yao S, Jin G, Du J, Han W, et al: LncRNA-FEZF1-AS1 promotes tumor proliferation and metastasis in colorectal cancer by regulating PKM2 Signaling. Clin Cancer Res. 24:4808–4819. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Yang MH, Zhao L, Wang L, Ou-Yang W, Hu SS, Li WL, Ai ML, Wang YQ, Han Y, Li TT, et al: Nuclear lncRNA HOXD-AS1 suppresses colorectal carcinoma growth and metastasis via inhibiting HOXD3-induced integrin β3 transcriptional activating and MAPK/AKT signalling. Mol Cancer. 18:312019. View Article : Google Scholar : PubMed/NCBI

19 

Braga EA, Fridman MV, Moscovtsev AA, Filippova EA, Dmitriev AA and Kushlinskii NE: LncRNAs in ovarian cancer progression, metastasis, and main pathways: ceRNA and alternative mechanisms. Int J Mol Sci. 21:88552020. View Article : Google Scholar : PubMed/NCBI

20 

Pan H, Ding Y, Jiang Y, Wang X, Rao J, Zhang X, Yu H, Hou Q and Li T: LncRNA LIFR-AS1 promotes proliferation and invasion of gastric cancer cell via miR-29a-3p/COL1A2 axis. Cancer Cell Int. 21:72021. View Article : Google Scholar : PubMed/NCBI

21 

Si Z, Yu L, Jing H, Wu L and Wang X: Oncogenic lncRNA ZNF561-AS1 is essential for colorectal cancer proliferation and survival through regulation of miR-26a-3p/miR-128-5p-SRSF6 axis. J Exp Clin Canc Res. 40:782021. View Article : Google Scholar

22 

Shuai Y, Ma Z, Liu W, Yu T, Yan C, Jiang H, Tian S, Xu T and Shu Y: TEAD4 modulated LncRNA MNX1-AS1 contributes to gastric cancer progression partly through suppressing BTG2 and activating BCL2. Mol Cancer. 19:62020. View Article : Google Scholar : PubMed/NCBI

23 

Yao W, Du X, Zhang J, Wang Y, Wang M, Pan Z and Li Q: SMAD4-induced knockdown of the antisense long noncoding RNA BRE-AS contributes to granulosa cell apoptosis. Mol Ther Nucleic Acids. 25:251–263. 2021. View Article : Google Scholar : PubMed/NCBI

24 

Jiang B, Yuan Y, Yi T and Dang W: The roles of antisense long noncoding RNAs in tumorigenesis and development through Cis-Regulation of neighbouring genes. Biomolecules. 13:6842023. View Article : Google Scholar : PubMed/NCBI

25 

Liu B, Xiang W and Liu J, Tang J, Wang J, Liu B, Long Z, Wang L, Yin G and Liu J: The regulatory role of antisense lncRNAs in cancer. Cancer Cell Int. 21:4592021. View Article : Google Scholar : PubMed/NCBI

26 

Li D, Shen L, Zhang X, Chen Z, Huang P, Huang C and Qin S: LncRNA ELF3-AS1 inhibits gastric cancer by forming a negative feedback loop with SNAI2 and regulates ELF3 mRNA stability via interacting with ILF2/ILF3 complex. J Exp Clin Cancer Res. 41:3322022. View Article : Google Scholar : PubMed/NCBI

27 

Bartl J, Zanini M, Bernardi F, Forget A, Blumel L, Talbot J, Picard D, Qin N, Cancila G, Gao Q, et al: The HHIP-AS1 lncRNA promotes tumorigenicity through stabilization of dynein complex 1 in human SHH-driven tumors. Nat Commun. 13:40612022. View Article : Google Scholar : PubMed/NCBI

28 

Jadaliha M, Gholamalamdari O, Tang W, Zhang Y, Petracovici A, Hao Q, Tariq A, Kim TG, Holton SE, Singh DK, et al: A natural antisense lncRNA controls breast cancer progression by promoting tumor suppressor gene mRNA stability. PLoS Genet. 14:e10078022018. View Article : Google Scholar : PubMed/NCBI

29 

Pan K and Xie Y: LncRNA FOXC2-AS1 enhances FOXC2 mRNA stability to promote colorectal cancer progression via activation of Ca(2+)-FAK signal pathway. Cell Death Dis. 11:4342020. View Article : Google Scholar : PubMed/NCBI

30 

Zhao Y, Liu Y, Lin L, Huang Q, He W, Zhang S, Dong S, Wen Z, Rao J, Liao W and Shi M: The lncRNA MACC1-AS1 promotes gastric cancer cell metabolic plasticity via AMPK/Lin28 mediated mRNA stability of MACC1. Mol Cancer. 17:692018. View Article : Google Scholar : PubMed/NCBI

31 

Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E and Chang HY: Long noncoding RNA as modular scaffold of histone modification complexes. Science. 329:689–693. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Zhu L, Zhu Y, Han S, Chen M, Song P, Dai D, Xu W, Jiang T, Feng L, Shin VY, et al: Impaired autophagic degradation of lncRNA ARHGAP5-AS1 promotes chemoresistance in gastric cancer. Cell Death Dis. 10:3832019. View Article : Google Scholar : PubMed/NCBI

33 

Visvanathan A, Patil V, Arora A, Hegde AS, Arivazhagan A, Santosh V and Somasundaram K: Essential role of METTL3-mediated m(6)A modification in glioma stem-like cells maintenance and radioresistance. Oncogene. 37:522–533. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Tran NT, Su H, Khodadadi Jamayran A, Lin S, Zhang L, Zhou D, Pawlik KM, Townes TM, Chen Y, Mulloy JC and Zhao X: The AS-RBM15 lncRNA enhances RBM15 protein translation during megakaryocyte differentiation. EMBO Rep. 17:887–900. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Zhang J and Manley JL: Misregulation of pre-mRNA alternative splicing in cancer. Cancer Discov. 3:1228–1237. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Oltean S and Bates DO: Hallmarks of alternative splicing in cancer. Oncogene. 33:5311–5318. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Yuan JH, Liu XN, Wang TT, Pan W, Tao QF, Zhou WP, Wang F and Sun SH: The MBNL3 splicing factor promotes hepatocellular carcinoma by increasing PXN expression through the alternative splicing of lncRNA-PXN-AS1. Nat Cell Biol. 19:820–832. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Zhou M, Guo X, Wang M and Qin R: The patterns of antisense long non-coding RNAs regulating corresponding sense genes in human cancers. J Cancer. 12:1499–1506. 2021. View Article : Google Scholar : PubMed/NCBI

39 

Luo N, Zhang K, Li X and Hu Y: ZEB1 induced-upregulation of long noncoding RNA ZEB1-AS1 facilitates the progression of triple negative breast cancer by binding with ELAVL1 to maintain the stability of ZEB1 mRNA. J Cell Biochem. 121:4176–4187. 2020. View Article : Google Scholar : PubMed/NCBI

40 

Wang A, Bao Y, Wu Z, Zhao T, Wang D, Shi J, Liu B, Sun S, Yang F, Wang L and Qu L: Long noncoding RNA EGFR-AS1 promotes cell growth and metastasis via affecting HuR mediated mRNA stability of EGFR in renal cancer. Cell Death Dis. 10:1542019. View Article : Google Scholar : PubMed/NCBI

41 

Gong YQ, Lu TL, Hou FT and Chen CW: Antisense long non-coding RNAs in gastric cancer. Clin Chim Acta. 534:128–137. 2022. View Article : Google Scholar : PubMed/NCBI

42 

Su J, Chen D, Ruan Y, Tian Y, Lv K, Zhou X, Ying D and Lu Y: LncRNA MBNL1-AS1 represses gastric cancer progression via the TGF-β pathway by modulating miR-424-5p/Smad7 axis. Bioengineered. 13:6978–6995. 2022. View Article : Google Scholar : PubMed/NCBI

43 

Zhuang L, Ding W, Ding W, Zhang Q, Xu X and Xi D: lncRNA ZNF667-AS1 (NR_036521.1) inhibits the progression of colorectal cancer via regulating ANK2/JAK2 expression. J Cell Physiol. 236:2178–2193. 2021. View Article : Google Scholar : PubMed/NCBI

44 

Sun M, Nie F, Wang Y, Zhang Z, Hou J, He D, Xie M, Xu L, De W, Wang Z and Wang J: LncRNA HOXA11-AS promotes proliferation and invasion of gastric cancer by scaffolding the chromatin modification factors PRC2, LSD1, and DNMT1. Cancer Res. 76:6299–6310. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Lin X, Zhuang S, Chen X, Du J, Zhong L, Ding J, Wang L, Yi J, Hu G, Tang G, et al: lncRNA ITGB8-AS1 functions as a ceRNA to promote colorectal cancer growth and migration through integrin-mediated focal adhesion signaling. Mol Ther. 30:688–702. 2022. View Article : Google Scholar : PubMed/NCBI

46 

Bedoui S, Herold MJ and Strasser A: Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Bio. 21:678–695. 2020. View Article : Google Scholar : PubMed/NCBI

47 

Liu J, Hong M, Li Y, Chen D, Wu Y and Hu Y: Programmed cell death tunes tumor immunity. Front Immunol. 13:8473452022. View Article : Google Scholar : PubMed/NCBI

48 

Zheng C, Chu M, Chen Q, Chen C, Wang ZW and Chen X: The role of lncRNA OIP5-AS1 in cancer development and progression. Apoptosis. 27:311–321. 2022. View Article : Google Scholar : PubMed/NCBI

49 

Wang Z and Jin J: LncRNA SLCO4A1-AS1 promotes colorectal cancer cell proliferation by enhancing autophagy via miR-508-3p/PARD3 axis. Aging (Albany NY). 11:4876–4889. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Xia X, Wang X, Cheng Z, Qin W, Lei L, Jiang J and Hu J: The role of pyroptosis in cancer: Pro-cancer or pro-‘host’? Cell Death Dis. 10:6502019. View Article : Google Scholar : PubMed/NCBI

51 

Huang G, Xiang Z, Wu H, He Q, Dou R, Lin Z, Yang C, Huang S, Song J, Di Z, et al: The lncRNA BDNF-AS/WDR5/FBXW7 axis mediates ferroptosis in gastric cancer peritoneal metastasis by regulating VDAC3 ubiquitination. Int J Biol Sci. 18:1415–1433. 2022. View Article : Google Scholar : PubMed/NCBI

52 

Bai Y and Li S: Long noncoding RNA OIP5-AS1 aggravates cell proliferation, migration in gastric cancer by epigenetically silencing NLRP6 expression via binding EZH2. J Cell Biochem. 121:353–362. 2020. View Article : Google Scholar : PubMed/NCBI

53 

Wang LW, Li XB, Liu Z, Zhao LH, Wang Y and Yue L: Long non-coding RNA OIP5-AS1 promotes proliferation of gastric cancer cells by targeting miR-641. Eur Rev Med Pharmacol Sci. 23:10776–10784. 2019.PubMed/NCBI

54 

Tao Y, Wan X, Fan Q, Wang Y, Sun H, Ma L, Sun C and Wu Y: Long non-coding RNA OIP5-AS1 promotes the growth of gastric cancer through the miR-367-3p/HMGA2 axis. Dig Liver Dis. 52:773–779. 2020. View Article : Google Scholar : PubMed/NCBI

55 

Liao Y, Zhang B, Zhang T, Zhang Y and Wang F: LncRNA GATA6-AS promotes cancer cell proliferation and inhibits apoptosis in glioma by downregulating lncRNA TUG1. Cancer Biother Radiopharm. 34:660–665. 2019.PubMed/NCBI

56 

Russell RC and Guan KL: The multifaceted role of autophagy in cancer. EMBO J. 41:e1100312022. View Article : Google Scholar : PubMed/NCBI

57 

Li X, He S and Ma B: Autophagy and autophagy-related proteins in cancer. Mol cancer. 19:122020. View Article : Google Scholar : PubMed/NCBI

58 

Li J, Zhan H, Ren Y, Feng M, Wang Q, Jiao Q, Wang Y, Liu X, Zhang S, Du L, et al: Sirtuin 4 activates autophagy and inhibits tumorigenesis by upregulating the p53 signaling pathway. Cell Death Differ. 30:313–326. 2023. View Article : Google Scholar : PubMed/NCBI

59 

Feng X, Zhang H, Meng L, Song H, Zhou Q, Qu C, Zhao P, Li Q, Zou C, Liu X and Zhang Z: Hypoxia-induced acetylation of PAK1 enhances autophagy and promotes brain tumorigenesis via phosphorylating ATG5. Autophagy. 17:723–742. 2021. View Article : Google Scholar : PubMed/NCBI

60 

Elias EE, Lyons B and Muruve DA: Gasdermins and pyroptosis in the kidney. Nat Rev Nephrol. 19:337–350. 2023. View Article : Google Scholar : PubMed/NCBI

61 

Wei X, Xie F, Zhou X, Wu Y, Yan H, Liu T, Huang J, Wang F, Zhou F and Zhang L: Role of pyroptosis in inflammation and cancer. Cell Mol Immunol. 19:971–992. 2022. View Article : Google Scholar : PubMed/NCBI

62 

Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, Meng Q, Yu X and Shi S: Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol. 13:1102020. View Article : Google Scholar : PubMed/NCBI

63 

Yang P, Yang W, Wei Z, Li Y, Yang Y and Wang J: Novel targets for gastric cancer: The tumor microenvironment (TME), N6-methyladenosine (m6A), pyroptosis, autophagy, ferroptosis and cuproptosis. Biomed Pharmacother. 163:1148832023. View Article : Google Scholar : PubMed/NCBI

64 

Wang Z, Cao L, Zhou S, Lyu J, Gao Y and Yang R: Construction and validation of a novel pyroptosis-related Four-lncRNA prognostic signature related to gastric cancer and immune infiltration. Front Immunol. 13:8547852022. View Article : Google Scholar : PubMed/NCBI

65 

Ren N, Jiang T, Wang C, Xie S, Xing Y, Piao D, Zhang T and Zhu Y: LncRNA ADAMTS9-AS2 inhibits gastric cancer (GC) development and sensitizes chemoresistant GC cells to cisplatin by regulating miR-223-3p/NLRP3 axis. Aging (Albany NY). 12:11025–11041. 2020. View Article : Google Scholar : PubMed/NCBI

66 

Tang D, Chen X, Kang R and Kroemer G: Ferroptosis: Molecular mechanisms and health implications. Cell Res. 31:107–125. 2021. View Article : Google Scholar : PubMed/NCBI

67 

Wu Y, Zhang S, Gong X, Tam S, Xiao D, Liu S and Tao Y: The epigenetic regulators and metabolic changes in ferroptosis-associated cancer progression. Mol Cancer. 19:392020. View Article : Google Scholar : PubMed/NCBI

68 

Katada S, Imhof A and Sassone-Corsi P: Connecting threads: Epigenetics and metabolism. Cell. 148:24–28. 2012. View Article : Google Scholar : PubMed/NCBI

69 

Ganapathy-Kanniappan S and Geschwind JF: Tumor glycolysis as a target for cancer therapy: Progress and prospects. Mol Cancer. 12:1522013. View Article : Google Scholar : PubMed/NCBI

70 

Vaupel P, Schmidberger H and Mayer A: The Warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol. 95:912–919. 2019. View Article : Google Scholar : PubMed/NCBI

71 

Koppenol WH, Bounds PL and Dang CV: Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer. 11:325–337. 2011. View Article : Google Scholar : PubMed/NCBI

72 

Liberti MV and Locasale JW: The warburg effect: How does it benefit cancer cells? Trends Biochem Sci. 41:211–218. 2016. View Article : Google Scholar : PubMed/NCBI

73 

Li C, Wang P, Du J, Chen J, Liu W and Ye K: LncRNA RAD51-AS1/miR-29b/c-3p/NDRG2 crosstalk repressed proliferation, invasion and glycolysis of colorectal cancer. IUBMB life. 73:286–298. 2021. View Article : Google Scholar : PubMed/NCBI

74 

Cheng X, Li J and Guo D: SCAP/SREBPs are central players in lipid metabolism and novel metabolic targets in cancer therapy. Curr Top Med Chem. 18:484–493. 2018. View Article : Google Scholar : PubMed/NCBI

75 

Li C, Zhang L, Qiu Z, Deng W and Wang W: Key molecules of fatty acid metabolism in gastric cancer. Biomolecules. 12:7062022. View Article : Google Scholar : PubMed/NCBI

76 

Gong J, Lin Y, Zhang H, Liu C, Cheng Z, Yang X, Zhang J, Xiao Y, Sang N, Qian X, et al: Reprogramming of lipid metabolism in cancer-associated fibroblasts potentiates migration of colorectal cancer cells. Cell Death Dis. 11:2672020. View Article : Google Scholar : PubMed/NCBI

77 

Guo D, Reinitz F, Youssef M, Hong C, Nathanson D, Akhavan D, Kuga D, Amzajerdi AN, Soto H, Zhu S, et al: An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway. Cancer Discov. 1:442–456. 2011. View Article : Google Scholar : PubMed/NCBI

78 

Zhang J, Song F, Zhao X, Jiang H, Wu X, Wang B, Zhou M, Tian M, Shi B, Wang H, et al: EGFR modulates monounsaturated fatty acid synthesis through phosphorylation of SCD1 in lung cancer. Mol Cancer. 16:1272017. View Article : Google Scholar : PubMed/NCBI

79 

Tang Y, Tang R, Tang M, Huang P, Liao Z, Zhou J, Zhou L, Su M, Chen P, Jiang J, et al: LncRNA DNAJC3-AS1 Regulates fatty acid synthase via the EGFR pathway to promote the progression of colorectal cancer. Front Oncol. 10:6045342020. View Article : Google Scholar : PubMed/NCBI

80 

Currie E, Schulze A, Zechner R, Walther TC and Farese RJ: Cellular fatty acid metabolism and cancer. Cell Metab. 18:153–161. 2013. View Article : Google Scholar : PubMed/NCBI

81 

Carracedo A, Cantley LC and Pandolfi PP: Cancer metabolism: Fatty acid oxidation in the limelight. Nat Rev Cancer. 13:227–232. 2013. View Article : Google Scholar : PubMed/NCBI

82 

He W, Liang B, Wang C, Li S, Zhao Y, Huang Q, Liu Z, Yao Z, Wu Q, Liao W, et al: MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer. Oncogene. 38:4637–4654. 2019. View Article : Google Scholar : PubMed/NCBI

83 

Greten FR and Grivennikov SI: Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity. 51:27–41. 2019. View Article : Google Scholar : PubMed/NCBI

84 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

85 

Nie C, Zhai J, Wang Q, Zhu X, Xiang G, Liu C, Liu T, Wang W, Wang Y, Zhao Y, et al: Comprehensive analysis of an individualized Immune-Related lncRNA pair signature in gastric cancer. Front Cell Dev Biol. 10:8056232022. View Article : Google Scholar : PubMed/NCBI

86 

Cui X, Morales RT, Qian W, Wang H, Gagner JP, Dolgalev I, Placantonakis D, Zagzag D, Cimmino L, Snuderl M, et al: Hacking macrophage-associated immunosuppression for regulating glioblastoma angiogenesis. Biomaterials. 161:164–178. 2018. View Article : Google Scholar : PubMed/NCBI

87 

Wang H, Tian T and Zhang J: Tumor-Associated Macrophages (TAMs) in Colorectal Cancer (CRC): From mechanism to therapy and prognosis. Int J Mol Sci. 22:84702021. View Article : Google Scholar : PubMed/NCBI

88 

Lazăr DC, Avram MF, Romoșan I, Cornianu M, Tăban S and Goldiș A: Prognostic significance of tumor immune microenvironment and immunotherapy: Novel insights and future perspectives in gastric cancer. World J Gastroenterol. 24:3583–3616. 2018. View Article : Google Scholar : PubMed/NCBI

89 

Denaro N, Merlano MC and Lo Nigro C: Long noncoding RNAs as regulators of cancer immunity. Mol Oncol. 13:61–73. 2019. View Article : Google Scholar : PubMed/NCBI

90 

Xu M, Xu X, Pan B, Chen X, Lin K, Zeng K, Liu X, Xu T, Sun L, Qin J, et al: LncRNA SATB2-AS1 inhibits tumor metastasis and affects the tumor immune cell microenvironment in colorectal cancer by regulating SATB2. Mol Cancer. 18:1352019. View Article : Google Scholar : PubMed/NCBI

91 

Sanchez-Tillo E, Liu Y, de Barrios O, Siles L, Fanlo L, Cuatrecasas M, Darling DS, Dean DC, Castells A and Postigo A: EMT-activating transcription factors in cancer: Beyond EMT and tumor invasiveness. Cell Mol Life Sci. 69:3429–3456. 2012. View Article : Google Scholar : PubMed/NCBI

92 

Nieto MA, Huang RY, Jackson RA and Thiery JP: EMT: 2016. Cell. 166:21–45. 2016. View Article : Google Scholar : PubMed/NCBI

93 

Dongre A and Weinberg RA: New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Bio. 20:69–84. 2019. View Article : Google Scholar : PubMed/NCBI

94 

Song Y, Lin M, Liu Y, Wang ZW and Zhu X: Emerging role of F-box proteins in the regulation of epithelial-mesenchymal transition and stem cells in human cancers. Stem Cell Res Ther. 10:1242019. View Article : Google Scholar : PubMed/NCBI

95 

Brabletz S, Schuhwerk H, Brabletz T and Stemmler MP: Dynamic EMT: A multi-tool for tumor progression. EMBO J. 40:e1086472021. View Article : Google Scholar : PubMed/NCBI

96 

Lin J, Shi Z, Yu Z and He Z: LncRNA HIF1A-AS2 positively affects the progression and EMT formation of colorectal cancer through regulating miR-129-5p and DNMT3A. Biomed Pharmacother. 98:433–439. 2018. View Article : Google Scholar : PubMed/NCBI

97 

Yu J, Han Z, Sun Z, Wang Y, Zheng M and Song C: LncRNA SLCO4A1-AS1 facilitates growth and metastasis of colorectal cancer through β-catenin-dependent Wnt pathway. J Exp Clin Canc Res. 37:2222018. View Article : Google Scholar

98 

Zhou L, Jiang J, Huang Z, Jin P, Peng L, Luo M, Zhang Z, Chen Y, Xie N, Gao W, et al: Hypoxia-induced lncRNA STEAP3-AS1 activates Wnt/β-catenin signaling to promote colorectal cancer progression by preventing m(6)A-mediated degradation of STEAP3 mRNA. Mol Cancer. 21:1682022. View Article : Google Scholar : PubMed/NCBI

99 

Ali MM, Akhade VS, Kosalai ST, Subhash S, Statello L, Meryet-Figuiere M, Abrahamsson J, Mondal T and Kanduri C: PAN-cancer analysis of S-phase enriched lncRNAs identifies oncogenic drivers and biomarkers. Nat Commun. 9:8832018. View Article : Google Scholar : PubMed/NCBI

100 

Mo S, Zhang L, Dai W, Han L, Wang R, Xiang W, Wang Z, Li Q, Yu J, Yuan J, et al: Antisense lncRNA LDLRAD4-AS1 promotes metastasis by decreasing the expression of LDLRAD4 and predicts a poor prognosis in colorectal cancer. Cell Death Dis. 11:1552020. View Article : Google Scholar : PubMed/NCBI

101 

Gonzalez DM and Medici D: Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 7:re82014. View Article : Google Scholar : PubMed/NCBI

102 

Slattery ML, Herrick J, Curtin K, Samowitz W, Wolff RK, Caan BJ, Duggan D, Potter JD and Peters U: Increased risk of colon cancer associated with a genetic polymorphism of SMAD7. Cancer Res. 70:1479–1485. 2010. View Article : Google Scholar : PubMed/NCBI

103 

Rakic JM, Maillard C, Jost M, Bajou K, Masson V, Devy L, Lambert V, Foidart JM and Noel A: Role of plasminogen activator-plasmin system in tumor angiogenesis. Cell Mol Life Sci. 60:463–473. 2003. View Article : Google Scholar : PubMed/NCBI

104 

Bajou K, Maillard C, Jost M, Lijnen RH, Gils A, Declerck P, Carmeliet P, Foidart JM and Noel A: Host-derived plasminogen activator inhibitor-1 (PAI-1) concentration is critical for in vivo tumoral angiogenesis and growth. Oncogene. 23:6986–6990. 2004. View Article : Google Scholar : PubMed/NCBI

105 

Teng F, Zhang JX, Chen Y, Shen XD, Su C, Guo YJ, Wang PH, Shi CC, Lei M, Cao YO and Liu SQ: LncRNA NKX2-1-AS1 promotes tumor progression and angiogenesis via upregulation of SERPINE1 expression and activation of the VEGFR-2 signaling pathway in gastric cancer. Mol Oncol. 15:1234–1255. 2021. View Article : Google Scholar : PubMed/NCBI

106 

Duan S, Huang W, Liu X, Liu X, Chen N, Xu Q, Hu Y, Song W and Zhou J: IMPDH2 promotes colorectal cancer progression through activation of the PI3K/AKT/mTOR and PI3K/AKT/FOXO1 signaling pathways. J Exp Clin Canc Res. 37:3042018. View Article : Google Scholar

107 

Peng Y, Wang Y, Zhou C, Mei W and Zeng C: PI3K/Akt/mTOR pathway and its role in cancer therapeutics: Are we making headway? Front Oncol. 12:8191282022. View Article : Google Scholar : PubMed/NCBI

108 

Liu HT, Ma RR, Lv BB, Zhang H, Shi DB, Guo XY, Zhang GH and Gao P: LncRNA-HNF1A-AS1 functions as a competing endogenous RNA to activate PI3K/AKT signalling pathway by sponging miR-30b-3p in gastric cancer. Br J Cancer. 122:1825–1836. 2020. View Article : Google Scholar : PubMed/NCBI

109 

Guo C, Zhou S, Yi W, Yang P, Li O, Liu J and Peng C: Long non-coding RNA muskelin 1 antisense RNA (MKLN1-AS) is a potential diagnostic and prognostic biomarker and therapeutic target for hepatocellular carcinoma. Exp Mol Pathol. 120:1046382021. View Article : Google Scholar : PubMed/NCBI

110 

El-Ashmawy NE, Al-Ashmawy GM and Hamouda SM: Long non-coding RNA FAM83H-AS1 as an emerging marker for diagnosis, prognosis and therapeutic targeting of cancer. Cell Biochem Funct. 39:350–356. 2021. View Article : Google Scholar : PubMed/NCBI

111 

Da J, Liu P, Wang R and Bu L: Upregulation of the long non-coding RNA FAM83H-AS1 in gastric cancer and its clinical significance. Pathol Res Pract. 215:1526162019. View Article : Google Scholar : PubMed/NCBI

112 

Chen Q, Zhou L, Ma D, Hou J, Lin Y, Wu J and Tao M: LncRNA GAS6-AS1 facilitates tumorigenesis and metastasis of colorectal cancer by regulating TRIM14 through miR-370-3p/miR-1296-5p and FUS. J Transl Med. 20:3562022. View Article : Google Scholar : PubMed/NCBI

113 

Lu GH, Zhao HM, Liu ZY, Cao Q, Shao RD and Sun G: LncRNA SAMD12-AS1 promotes the progression of gastric cancer via DNMT1/p53 Axis. Arch Med Res. 52:683–691. 2021. View Article : Google Scholar : PubMed/NCBI

114 

Macleod K: Tumor suppressor genes. Curr Opin Genet Dev. 10:81–93. 2000. View Article : Google Scholar : PubMed/NCBI

115 

Sherr CJ: Principles of tumor suppression. Cell. 116:235–246. 2004. View Article : Google Scholar : PubMed/NCBI

116 

Sun W and Yang J: Functional mechanisms for human tumor suppressors. J Cancer. 1:136–140. 2010. View Article : Google Scholar : PubMed/NCBI

117 

Liu HT, Liu S, Liu L, Ma RR and Gao P: EGR1-Mediated Transcription of lncRNA-HNF1A-AS1 promotes cell-cycle progression in gastric cancer. Cancer Res. 78:5877–5890. 2018. View Article : Google Scholar : PubMed/NCBI

118 

Zhang J, Cui K, Huang L, Yang F, Sun S, Bian Z, Wang X, Li C, Yin Y, Huang S, et al: SLCO4A1-AS1 promotes colorectal tumourigenesis by regulating Cdk2/c-Myc signalling. J Biomed Sci. 29:42022. View Article : Google Scholar : PubMed/NCBI

119 

Ni X, Ding Y, Yuan H, Shao J, Yan Y, Guo R, Luan W and Xu M: Long non-coding RNA ZEB1-AS1 promotes colon adenocarcinoma malignant progression via miR-455-3p/PAK2 axis. Cell Prolif. 53:e127232020. View Article : Google Scholar : PubMed/NCBI

120 

Wu X, Cui F, Chen Y, Zhu Y and Liu F: Long Non-Coding RNA LOXL1-AS1 enhances colorectal cancer proliferation, migration and invasion through miR-708-5p/CD44-EGFR Axis. Onco Targets Ther. 13:7615–7627. 2020. View Article : Google Scholar : PubMed/NCBI

121 

Flecken T, Schmidt N, Hild S, Gostick E, Drognitz O, Zeiser R, Schemmer P, Bruns H, Eiermann T, Price DA, et al: Immunodominance and functional alterations of tumor-associated antigen-specific CD8+ T-cell responses in hepatocellular carcinoma. Hepatology. 59:1415–1426. 2014. View Article : Google Scholar : PubMed/NCBI

122 

Chow A, Perica K, Klebanoff CA and Wolchok JD: Clinical implications of T cell exhaustion for cancer immunotherapy. Nat Rev Clin Oncol. 19:775–790. 2022. View Article : Google Scholar : PubMed/NCBI

123 

Pardoll DM: The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264. 2012. View Article : Google Scholar : PubMed/NCBI

124 

He X and Xu C: Immune checkpoint signaling and cancer immunotherapy. Cell Res. 30:660–669. 2020. View Article : Google Scholar : PubMed/NCBI

125 

Pu Y and Ji Q: Tumor-Associated macrophages regulate PD-1/PD-L1 immunosuppression. Front Immunol. 13:8745892022. View Article : Google Scholar : PubMed/NCBI

126 

Topalian SL, Drake CG and Pardoll DM: Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr opin immunol. 24:207–212. 2012. View Article : Google Scholar : PubMed/NCBI

127 

Fan F, Chen K, Lu X, Li A, Liu C and Wu B: Dual targeting of PD-L1 and PD-L2 by PCED1B-AS1 via sponging hsa-miR-194-5p induces immunosuppression in hepatocellular carcinoma. Hepatol Int. 15:444–458. 2021. View Article : Google Scholar : PubMed/NCBI

128 

Han Y, Liu D and Li L: PD-1/PD-L1 pathway: Current researches in cancer. Am J Cancer Res. 10:727–742. 2020.PubMed/NCBI

129 

Zhou Z, Liu Q, Zhang G, Mohammed D, Amadou S, Tan G and Zhang X: HOXA11-AS1 Promotes PD-L1-Mediated immune escape and metastasis of hypopharyngeal carcinoma by facilitating PTBP1 and FOSL1 Association. Cancers (Basel). 14:36942022. View Article : Google Scholar : PubMed/NCBI

130 

Chen YG, Satpathy AT and Chang HY: Gene regulation in the immune system by long noncoding RNAs. Nat immunol. 18:962–972. 2017. View Article : Google Scholar : PubMed/NCBI

131 

Wu Y, Song Y, Wang R and Wang T: Molecular mechanisms of tumor resistance to radiotherapy. Mol Cancer. 22:962023. View Article : Google Scholar : PubMed/NCBI

132 

Hou J, Zhang G, Wang X, Wang Y and Wang K: Functions and mechanisms of lncRNA MALAT1 in cancer chemotherapy resistance. Biomark Res. 11:232023. View Article : Google Scholar : PubMed/NCBI

133 

Chen QN, Wei CC, Wang ZX and Sun M: Long non-coding RNAs in anti-cancer drug resistance. Oncotarget. 8:1925–1936. 2017. View Article : Google Scholar : PubMed/NCBI

134 

Ni J, Bucci J, Malouf D, Knox M, Graham P and Li Y: Exosomes in cancer radioresistance. Front Oncol. 9:8692019. View Article : Google Scholar : PubMed/NCBI

135 

Zhou M, Dong J, Huang J, Ye W, Zheng Z, Huang K, Pan Y, Cen J, Liang Y, Shu G, et al: Chitosan-Gelatin-EGCG Nanoparticle-Meditated LncRNA TMEM44-AS1 Silencing to Activate the P53 signaling pathway for the synergistic reversal of 5-FU resistance in gastric cancer. Adv Sci (Weinh). 9:e21050772022. View Article : Google Scholar : PubMed/NCBI

136 

Qu L, Chen Y, Zhang F and He L: The lncRNA DLGAP1-AS1/miR-149-5p/TGFB2 axis contributes to colorectal cancer progression and 5-FU resistance by regulating smad2 pathway. Mol Ther Oncolytics. 20:607–624. 2021. View Article : Google Scholar : PubMed/NCBI

137 

Gui Z, Zhao Z, Sun Q, Shao G, Huang J, Zhao W and Kuang Y: LncRNA FEZF1-AS1 promotes multi-drug resistance of gastric cancer cells via upregulating ATG5. Front Cell Dev Biol. 9:7491292021. View Article : Google Scholar : PubMed/NCBI

138 

Zou Y, Yao S, Chen X, Liu D, Wang J, Yuan X, Rao J, Xiong H, Yu S, Yuan X, et al: LncRNA OIP5-AS1 regulates radioresistance by targeting DYRK1A through miR-369-3p in colorectal cancer cells. Eur J Cell Biol. 97:369–378. 2018. View Article : Google Scholar : PubMed/NCBI

139 

Song L, Zhou Z, Gan Y, Li P, Xu Y, Zhang Z, Luo F, Xu J, Zhou Q and Dai F: Long noncoding RNA OIP5-AS1 causes cisplatin resistance in osteosarcoma through inducing the LPAATβ/PI3K/AKT/mTOR signaling pathway by sponging the miR-340-5p. J Cell Biochem. 120:9656–9666. 2019. View Article : Google Scholar : PubMed/NCBI

140 

Wu Q, Ma J, Wei J, Meng W, Wang Y and Shi M: FOXD1-AS1 regulates FOXD1 translation and promotes gastric cancer progression and chemoresistance by activating the PI3K/AKT/mTOR pathway. Mol Oncol. 15:299–316. 2021. View Article : Google Scholar : PubMed/NCBI

141 

Qi FF, Yang Y, Zhang H and Chen H: Long non-coding RNAs: Key regulators in oxaliplatin resistance of colorectal cancer. Biomed Pharmacother. 128:1103292020. View Article : Google Scholar : PubMed/NCBI

142 

Shi CJ, Xue ZH, Zeng WQ, Deng LQ, Pang FX, Zhang FW, Fu WM and Zhang JF: LncRNA-NEF suppressed oxaliplatin resistance and epithelial-mesenchymal transition in colorectal cancer through epigenetically inactivating MEK/ERK signaling. Cancer Gene Ther. 30:855–865. 2023. View Article : Google Scholar : PubMed/NCBI

143 

Li Y, Gan Y, Liu J, Li J, Zhou Z, Tian R, Sun R, Liu J, Xiao Q, Li Y, et al: Downregulation of MEIS1 mediated by ELFN1-AS1/EZH2/DNMT3a axis promotes tumorigenesis and oxaliplatin resistance in colorectal cancer. Signal Transduct Target. 7:872022. View Article : Google Scholar : PubMed/NCBI

144 

Liang J, Tian XF and Yang W: Effects of long non-coding RNA Opa-interacting protein 5 antisense RNA 1 on colon cancer cell resistance to oxaliplatin and its regulation of microRNA-137. World J Gastroenterol. 26:1474–1489. 2020. View Article : Google Scholar : PubMed/NCBI

145 

Hui B, Lu C, Wang J, Xu Y, Yang Y, Ji H, Li X, Xu L, Wang J, Tang W, et al: Engineered exosomes for co-delivery of PGM5-AS1 and oxaliplatin to reverse drug resistance in colon cancer. J Cell Physiol. 237:911–933. 2022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Shao Y, Dong Y, Zhou J, Lu Z, Chen C, Yuan X, He L, Tang W, Chen Z, Wang Y, Wang Y, et al: Advances in the study of antisense long‑stranded non‑coding RNAs in tumors (Review). Int J Oncol 64: 22, 2024.
APA
Shao, Y., Dong, Y., Zhou, J., Lu, Z., Chen, C., Yuan, X. ... Li, Y. (2024). Advances in the study of antisense long‑stranded non‑coding RNAs in tumors (Review). International Journal of Oncology, 64, 22. https://doi.org/10.3892/ijo.2024.5610
MLA
Shao, Y., Dong, Y., Zhou, J., Lu, Z., Chen, C., Yuan, X., He, L., Tang, W., Chen, Z., Wang, Y., Li, Q., Zhan, S., Qiu, Z., Wang, K., Ma, J., Chen, Y., Li, Y."Advances in the study of antisense long‑stranded non‑coding RNAs in tumors (Review)". International Journal of Oncology 64.3 (2024): 22.
Chicago
Shao, Y., Dong, Y., Zhou, J., Lu, Z., Chen, C., Yuan, X., He, L., Tang, W., Chen, Z., Wang, Y., Li, Q., Zhan, S., Qiu, Z., Wang, K., Ma, J., Chen, Y., Li, Y."Advances in the study of antisense long‑stranded non‑coding RNAs in tumors (Review)". International Journal of Oncology 64, no. 3 (2024): 22. https://doi.org/10.3892/ijo.2024.5610
Copy and paste a formatted citation
x
Spandidos Publications style
Shao Y, Dong Y, Zhou J, Lu Z, Chen C, Yuan X, He L, Tang W, Chen Z, Wang Y, Wang Y, et al: Advances in the study of antisense long‑stranded non‑coding RNAs in tumors (Review). Int J Oncol 64: 22, 2024.
APA
Shao, Y., Dong, Y., Zhou, J., Lu, Z., Chen, C., Yuan, X. ... Li, Y. (2024). Advances in the study of antisense long‑stranded non‑coding RNAs in tumors (Review). International Journal of Oncology, 64, 22. https://doi.org/10.3892/ijo.2024.5610
MLA
Shao, Y., Dong, Y., Zhou, J., Lu, Z., Chen, C., Yuan, X., He, L., Tang, W., Chen, Z., Wang, Y., Li, Q., Zhan, S., Qiu, Z., Wang, K., Ma, J., Chen, Y., Li, Y."Advances in the study of antisense long‑stranded non‑coding RNAs in tumors (Review)". International Journal of Oncology 64.3 (2024): 22.
Chicago
Shao, Y., Dong, Y., Zhou, J., Lu, Z., Chen, C., Yuan, X., He, L., Tang, W., Chen, Z., Wang, Y., Li, Q., Zhan, S., Qiu, Z., Wang, K., Ma, J., Chen, Y., Li, Y."Advances in the study of antisense long‑stranded non‑coding RNAs in tumors (Review)". International Journal of Oncology 64, no. 3 (2024): 22. https://doi.org/10.3892/ijo.2024.5610
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team