|
1
|
Chaffer CL and Weinberg RA: A perspective
on cancer cell metastasis. Science. 331:1559–1564. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Huang JF, Shen J, Li X, Rengan R,
Silvestris N, Wang M, Derosa L, Zheng X, Belli A, Zhang XL, et al:
Incidence of patients with bone metastases at diagnosis of solid
tumors in adults: A large population-based study. Ann Transl Med.
8:4822020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Svensson E, Christiansen CF, Ulrichsen SP,
Rørth MR and Sørensen HT: Survival after bone metastasis by primary
cancer type: A Danish population-based cohort study. BMJ Open.
7:e0160222017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Pardoll DM: The blockade of immune
checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264.
2012. View
Article : Google Scholar : PubMed/NCBI
|
|
5
|
Galluzzi L, Chan TA, Kroemer G, Wolchok JD
and López-Soto A: The hallmarks of successful anticancer
immunotherapy. Sci Transl Med. 10:eaat78072018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Morad G, Helmink BA, Sharma P and Wargo
JA: Hallmarks of response, resistance, and toxicity to immune
checkpoint blockade. Cell. 184:5309–5337. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Scott EC, Baines AC, Gong Y, Moore R Jr,
Pamuk GE, Saber H, Subedee A, Thompson MD, Xiao W, Pazdur R, et al:
Trends in the approval of cancer therapies by the FDA in the
twenty-first century. Nat Rev Drug Discov. 22:625–640. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Pitter MR and Zou W: Uncovering the
immunoregulatory function and therapeutic potential of the
PD-1/PD-L1 axis in cancer. Cancer Res. 81:5141–5143. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Nagahama K, Aoki K, Nonaka K, Saito H,
Takahashi M, Varghese BJ, Shimokawa H, Azuma M, Ohya K and Ohyama
K: The deficiency of immunoregulatory receptor PD-1 causes mild
osteopetrosis. Bone. 35:1059–1068. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Brom VC, Strauss AC, Sieberath A, Salber
J, Burger C, Wirtz DC and Schildberg FA: Agonistic and antagonistic
targeting of immune checkpoint molecules differentially regulate
osteoclastogenesis. Front Immunol. 14:9883652023. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Wang K, Gu Y, Liao Y, Bang S, Donnelly CR,
Chen O, Tao X, Mirando AJ, Hilton MJ and Ji RR: PD-1 blockade
inhibits osteoclast formation and murine bone cancer pain. J Clin
Invest. 130:3603–3620. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Pantano F, Tramontana F, Iuliani M, Leanza
G, Simonetti S, Piccoli A, Paviglianiti A, Cortellini A, Spinelli
GP, Longo UG, et al: Changes in bone turnover markers in patients
without bone metastases receiving immune checkpoint inhibitors: An
exploratory analysis. J Bone Oncol. 37:1004592022. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zuo H and Wan Y: Inhibition of myeloid
PD-L1 suppresses osteoclastogenesis and cancer bone metastasis.
Cancer Gene Ther. 29:1342–1354. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Comazzetto S, Shen B and Morrison SJ:
Niches that regulate stem cells and hematopoiesis in adult bone
marrow. Dev Cell. 56:1848–1860. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhao E, Xu H, Wang L, Kryczek I, Wu K, Hu
Y, Wang G and Zou W: Bone marrow and the control of immunity. Cell
Mol Immunol. 9:11–19. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Tumeh PC, Harview CL, Yearley JH, Shintaku
IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu
V, et al: PD-1 blockade induces responses by inhibiting adaptive
immune resistance. Nature. 515:568–571. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Kumagai S, Togashi Y, Kamada T, Sugiyama
E, Nishinakamura H, Takeuchi Y, Vitaly K, Itahashi K, Maeda Y,
Matsui S, et al: The PD-1 expression balance between effector and
regulatory T cells predicts the clinical efficacy of PD-1 blockade
therapies. Nat Immunol. 21:1346–1358. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zhang K, Kim S, Cremasco V, Hirbe AC,
Collins L, Piwnica-Worms D, Novack DV, Weilbaecher K and Faccio R:
CD8+ T cells regulate bone tumor burden independent of
osteoclast resorption. Cancer Res. 71:4799–7808. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kudo-Saito C, Fuwa T, Murakami K and
Kawakami Y: Targeting FSTL1 prevents tumor bone metastasis and
consequent immune dysfunction. Cancer Res. 73:6185–6193. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Bidwell BN, Slaney CY, Withana NP, Forster
S, Cao Y, Loi S, Andrews D, Mikeska T, Mangan NE, Samarajiwa SA, et
al: Silencing of Irf7 pathways in breast cancer cells promotes bone
metastasis through immune escape. Nat Med. 18:1224–1231. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Arellano DL, Juárez P, Verdugo-Meza A,
Almeida-Luna PS, Corral-Avila JA, Drescher F, Olvera F, Jiménez S,
Elzey BD, Guise TA and Fournier PGJ: Bone
microenvironment-suppressed T cells increase osteoclast formation
and osteolytic bone metastases in mice. J Bone Miner Res.
37:1446–1463. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Jiao S, Subudhi SK, Aparicio A, Ge Z, Guan
B, Miura Y and Sharma P: Differences in tumor microenvironment
dictate T helper lineage polarization and response to immune
checkpoint therapy. Cell. 179:1177–1190.e13. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Hiraga T, Nishida D and Horibe K: Primary
tumor-induced immunity suppresses bone metastases of breast cancer
in syngeneic immunocompetent mouse models. Bone. 178:1169442024.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Feuerer M, Rocha M, Bai L, Umansky V,
Solomayer EF, Bastert G, Diel IJ and Schirrmacher V: Enrichment of
memory T cells and other profound immunological changes in the bone
marrow from untreated breast cancer patients. Int J Cancer.
92:96–105. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Feuerer M, Beckhove P, Bai L, Solomayer
EF, Bastert G, Diel IJ, Pedain C, Oberniedermayr M, Schirrmacher V
and Umansky V: Therapy of human tumors in NOD/SCID mice with
patient-derived reactivated memory T cells from bone marrow. Nat
Med. 7:452–458. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
26
|
Chao X, Zhang Y, Zheng C, Huang Q, Lu J,
Pulver EM, Houthuijzen J, Hutten S, Luo R, He J and Sun P:
Metastasis of breast cancer to bones alters the tumor immune
microenvironment. Eur J Med Res. 28:1192023. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Sawant A, Hensel JA, Chanda D, Harris BA,
Siegal GP, Maheshwari A and Ponnazhagan S: Depletion of
plasmacytoid dendritic cells inhibits tumor growth and prevents
bone metastasis of breast cancer cells. J Immunol. 189:4258–4265.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhao E, Wang L, Dai J, Kryczek I, Wei S,
Vatan L, Altuwaijri S, Sparwasser T, Wang G, Keller ET and Zou W:
Regulatory T cells in the bone marrow microenvironment in patients
with prostate cancer. Oncoimmunology. 1:152–161. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Doroshow DB, Bhalla S, Beasley MB, Sholl
LM, Kerr KM, Gnjatic S, Wistuba II, Rimm DL, Tsao MS and Hirsch FR:
PD-L1 as a biomarker of response to immune-checkpoint inhibitors.
Nat Rev Clin Oncol. 18:345–362. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Schmid P, Adams S, Rugo HS, Schneeweiss A,
Barrios CH, Iwata H, Diéras V, Hegg R, Im SA, Shaw Wright G, et al:
Atezolizumab and nab-paclitaxel in advanced triple-negative breast
cancer. N Engl J Med. 379:2108–2121. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Daud AI, Wolchok JD, Robert C, Hwu WJ,
Weber JS, Ribas A, Hodi FS, Joshua AM, Kefford R, Hersey P, et al:
Programmed death-ligand 1 expression and response to the
anti-programmed death 1 antibody pembrolizumab in melanoma. J Clin
Oncol. 34:4102–4109. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Schmid P, Cortes J, Pusztai L, McArthur H,
Kümmel S, Bergh J, Denkert C, Park YH, Hui R, Harbeck N, et al:
Pembrolizumab for early triple-negative breast cancer. N Engl J
Med. 382:810–821. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Hellmann MD, Paz-Ares L, Bernabe Caro R,
Zurawski B, Kim SW, Carcereny Costa E, Park K, Alexandru A,
Lupinacci L, de la Mora Jimenez E, et al: Nivolumab plus ipilimumab
in advanced non-small-cell lung cancer. N Engl J Med.
381:2020–2031. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Hirsch FR, McElhinny A, Stanforth D,
Ranger-Moore J, Jansson M, Kulangara K, Richardson W, Towne P,
Hanks D, Vennapusa B, et al: PD-L1 immunohistochemistry assays for
lung cancer: Results from phase 1 of the blueprint PD-L1 IHC assay
comparison project. J Thorac Oncol. 12:208–222. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Rugo HS, Loi S, Adams S, Schmid P,
Schneeweiss A, Barrios CH, Iwata H, Diéras V, Winer EP, Kockx MM,
et al: PD-L1 immunohistochemistry assay comparison in atezolizumab
plus nab-paclitaxel-treated advanced triple-negative breast cancer.
J Natl Cancer Inst. 113:1733–1743. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Rimm DL, Han G, Taube JM, Yi ES, Bridge
JA, Flieder DB, Homer R, West WW, Wu H, Roden AC, et al: A
prospective, multi-institutional, pathologist-based assessment of 4
immunohistochemistry assays for PD-L1 expression in non-small cell
lung cancer. JAMA Oncol. 3:1051–1058. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Sun Q, Hong Z, Zhang C, Wang L, Han Z and
Ma D: Immune checkpoint therapy for solid tumours: Clinical
dilemmas and future trends. Signal Transduct Target Ther.
8:3202023. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zou Y, Hu X, Zheng S, Yang A, Li X, Tang
H, Kong Y and Xie X: Discordance of immunotherapy response
predictive biomarkers between primary lesions and paired metastases
in tumours: A systematic review and meta-analysis. EBioMedicine.
63:1031372021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Rozenblit M, Huang R, Danziger N, Hegde P,
Alexander B, Ramkissoon S, Blenman K, Ross JS, Rimm DL and Pusztai
L: Comparison of PD-L1 protein expression between primary tumors
and metastatic lesions in triple negative breast cancers. J
Immunother Cancer. 8:e0015582020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Fankhauser CD, Schüffler PJ, Gillessen S,
Omlin A, Rupp NJ, Rueschoff JH, Hermanns T, Poyet C, Sulser T, Moch
H and Wild PJ: Comprehensive immunohistochemical analysis of PD-L1
shows scarce expression in castration-resistant prostate cancer.
Oncotarget. 9:10284–10293. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhang X, Yin X, Zhang H, Sun G, Yang Y,
Chen J, Zhu X, Zhao P, Zhao J, Liu J, et al: Differential
expressions of PD-1, PD-L1 and PD-L2 between primary and metastatic
sites in renal cell carcinoma. BMC Cancer. 19:3602019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhu YJ, Chang XS, Zhou R, Chen YD, Ma HC,
Xiao ZZ, Qu X, Liu YH, Liu LR, Li Y, et al: Bone metastasis
attenuates efficacy of immune checkpoint inhibitors and displays
‘cold’ immune characteristics in Non-small cell lung cancer. Lung
Cancer. 166:189–196. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Mehdi A, Attias M, Arakelian A, Piccirillo
CA, Szyf M and Rabbani SA: Co-targeting luminal B breast cancer
with S-Adenosylmethionine and immune checkpoint inhibitor reduces
primary tumor growth and progression, and metastasis to lungs and
bone. Cancers (Basel). 15:482022. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Li Y, Du Y, Sun T, Xue H, Jin Z and Tian
J: PD-1 blockade in combination with zoledronic acid to enhance the
antitumor efficacy in the breast cancer mouse model. BMC Cancer.
18:6692018. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Hamaoka T, Madewell JE, Podoloff DA,
Hortobagyi GN and Ueno NT: Bone imaging in metastatic breast
cancer. J Clin Oncol. 22:2942–2953. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Asano Y, Yamamoto N, Demura S, Hayashi K,
Takeuchi A, Kato S, Miwa S, Igarashi K, Higuchi T, Yonezawa H, et
al: The therapeutic effect and clinical outcome of immune
checkpoint inhibitors on bone metastasis in advanced non-small-cell
lung cancer. Front Oncol. 12:8716752022. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Asano Y, Yamamoto N, Demura S, Hayashi K,
Takeuchi A, Kato S, Miwa S, Igarashi K, Higuchi T, Taniguchi Y, et
al: Novel predictors of immune checkpoint inhibitor response and
prognosis in advanced non-small-cell lung cancer with bone
metastasis. Cancer Med. 12:12425–12437. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Bongiovanni A, Foca F, Menis J, Stucci SL,
Artioli F, Guadalupi V, Forcignanò MR, Fantini M, Recine F,
Mercatali L, et al: Immune checkpoint inhibitors with or without
bone-targeted therapy in NSCLC patients with bone metastases and
prognostic significance of neutrophil-to-lymphocyte ratio. Front
Immunol. 12:6972982021. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
De Giglio A, Deiana C and Di Federico A:
Bone-specific response according to MDA criteria predicts
immunotherapy efficacy among advanced non-small cell lung cancer
(NSCLC) patients. J Cancer Res Clin Oncol. 149:1835–1847. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Nakata E, Sugihara S, Sugawara Y, Kozuki
T, Harada D, Nogami N, Nakahara R, Furumatsu T, Tetsunaga T,
Kunisada T and Ozaki T: Early response of bone metastases can
predict tumor response in patients with non-small-cell lung cancer
with bone metastases in the treatment with nivolumab. Oncol Lett.
20:2977–2986. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Botticelli A, Salati M, Di Pietro FR,
Strigari L, Cerbelli B, Zizzari IG, Giusti R, Mazzotta M, Mazzuca
F, Roberto M, et al: A nomogram to predict survival in non-small
cell lung cancer patients treated with nivolumab. J Transl Med.
17:992019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Cortellini A, Tiseo M, Banna GL, Cappuzzo
F, Aerts JGJV, Barbieri F, Giusti R, Bria E, Cortinovis D, Grossi
F, et al: Clinicopathologic correlates of first-line pembrolizumab
effectiveness in patients with advanced NSCLC and a PD-L1
expression of ≥50%. Cancer Immunol Immunother. 69:2209–2221. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Debieuvre D, Juergens RA, Asselain B,
Audigier-Valette C, Auliac JB, Barlesi F, Benoit N, Bombaron P,
Butts CA, Dixmier A, et al: Two-year survival with nivolumab in
previously treated advanced non-small-cell lung cancer: A
real-world pooled analysis of patients from France, Germany, and
Canada. Lung Cancer. 157:40–47. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Deng J, Gao M, Gou Q, Xu C, Yan H, Yang M,
Li J, Yang X, Wei X and Zhou Q: Organ-specific efficacy in advanced
non-small cell lung cancer patients treated with first-line
single-agent immune checkpoint inhibitors. Chin Med J (Engl).
135:1404–1413. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Du W, Chen C, Luo LF, He LN, Wang Y, Zhang
X, Zhou Y, Lin Z and Hong S: Optimizing the tumor shrinkage
threshold for evaluating immunotherapy efficacy for advanced
non-small-cell lung cancer. J Cancer Res Clin Oncol. 149:1103–1113.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Garde-Noguera J, Martin-Martorell P, De
Julián M, Perez-Altozano J, Salvador-Coloma C, García-Sanchez J,
Insa-Molla A, Martín M, Mielgo-Rubio X, Marin-Liebana S, et al:
Predictive and prognostic clinical and pathological factors of
nivolumab efficacy in non-small-cell lung cancer patients. Clin
Transl Oncol. 20:1072–1079. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Hosoya K, Fujimoto D, Morimoto T, Kumagai
T, Tamiya A, Taniguchi Y, Yokoyama T, Ishida T, Matsumoto H, Hirano
K, et al: Clinical factors associated with shorter durable
response, and patterns of acquired resistance to first-line
pembrolizumab monotherapy in PD-L1-positive non-small-cell lung
cancer patients: A retrospective multicenter study. BMC Cancer.
21:3462021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Kawachi H, Tamiya M, Tamiya A, Ishii S,
Hirano K, Matsumoto H, Fukuda Y, Yokoyama T, Kominami R, Fujimoto
D, et al: Association between metastatic sites and first-line
pembrolizumab treatment outcome for advanced non-small cell lung
cancer with high PD-L1 expression: A retrospective multicenter
cohort study. Invest New Drugs. 38:211–218. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Landi L, D'Incà F, Gelibter A, Chiari R,
Grossi F, Delmonte A, Passaro A, Signorelli D, Gelsomino F, Galetta
D, et al: Bone metastases and immunotherapy in patients with
advanced non-small-cell lung cancer. J Immunother Cancer.
7:3162019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Li X, Wang L, Chen S, Zhou F, Zhao J, Zhao
W and Su C: Adverse impact of bone metastases on clinical outcomes
of patients with advanced non-small cell lung cancer treated with
immune checkpoint inhibitors. Thorac Cancer. 11:2812–2819. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Ma SC, Tang XR, Long LL, Bai X, Zhou JG,
Duan ZJ, Wang J, Fu QJ, Zhu HB, Guo XJ, et al: Integrative
evaluation of primary and metastatic lesion spectrum to guide
anti-PD-L1 therapy of non-small cell lung cancer: Results from two
randomized studies. Oncoimmunology. 10:19092962021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Mouritzen MT, Junker KF, Carus A, Ladekarl
M, Meldgaard P, Nielsen AWM, Livbjerg A, Larsen JW, Skuladottir H,
Kristiansen C, et al: Clinical features affecting efficacy of
immune checkpoint inhibitors in pretreated patients with advanced
NSCLC: A Danish nationwide real-world study. Acta Oncol.
61:409–416. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Petrova MP, Eneva MI, Arabadjiev JI, Conev
NV, Dimitrova EG, Koynov KD, Karanikolova TS, Valev SS, Gencheva
RB, Zhbantov GA, et al: Neutrophil to lymphocyte ratio as a
potential predictive marker for treatment with pembrolizumab as a
second line treatment in patients with non-small cell lung cancer.
Biosci Trends. 14:48–55. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Qin A, Zhao S, Miah A, Wei L, Patel S,
Johns A, Grogan M, Bertino EM, He K, Shields PG, et al: Bone
metastases, skeletal-related events, and survival in patients with
metastatic non-small cell lung cancer treated with immune
checkpoint inhibitors. J Natl Compr Cancer Netw. 19:915–921. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Rounis K, Makrakis D, Papadaki C,
Monastirioti A, Vamvakas L, Kalbakis K, Gourlia K, Xanthopoulos I,
Tsamardinos I, Mavroudis D and Agelaki S: Prediction of outcome in
patients with non-small cell lung cancer treated with second line
PD-1/PDL-1 inhibitors based on clinical parameters: Results from a
prospective, single institution study. PLoS One. 16:e02525372021.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Shi Y, Ji M, Jiang Y, Yin R, Wang Z, Li H,
Wang S, He K, Ma Y, Wang Z, et al: A cohort study of the efficacy
and safety of immune checkpoint inhibitors plus anlotinib versus
immune checkpoint inhibitors alone as the treatment of advanced
non-small cell lung cancer in the real world. Transl Lung Cancer
Res. 11:1051–1068. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Tamiya M, Tamiya A, Inoue T, Kimura M,
Kunimasa K, Nakahama K, Taniguchi Y, Shiroyama T, Isa S, Nishino K,
et al: Metastatic site as a predictor of nivolumab efficacy in
patients with advanced non-small cell lung cancer: A retrospective
multicenter trial. PLoS One. 13:e01922272018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Yang T, Cheng J, Fu S, Sun T, Yang K, You
J and Li F: Pretreatment levels of serum alkaline phosphatase are
associated with the prognosis of patients with non-small cell lung
cancer receiving immune checkpoint inhibitors. Oncol Lett.
25:1542023. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Yao J, Wang Z, Sheng J, Wang H, You L, Zhu
X, Pan H and Han W: Efficacy and safety of combined immunotherapy
and antiangiogenic therapy for advanced non-small cell lung cancer:
A two-center retrospective study. Int Immunopharmacol. 89((Pt A)):
1070332020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Yoneda T, Sone T, Koba H, Shibata K,
Suzuki J, Tani M, Nishitsuji M, Nishi K, Kobayashi T, Shirasaki H,
et al: Long-term survival of patients with non-small cell lung
cancer treated with immune checkpoint inhibitor monotherapy in
real-world settings. Clin Lung Cancer. 23:467–476. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zeng H, Huang W, Liu YJ, Huang Q, Zhao SM,
Li YL, Tian PW and Li WM: Development and validation of a nomogram
for predicting prognosis to immune checkpoint inhibitors plus
chemotherapy in patients with non-small cell lung cancer. Front
Oncol. 11:6850472021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Lee S, Shim HS, Ahn BC, Lim SM, Kim HR,
Cho BC and Hong MH: Efficacy and safety of atezolizumab, in
combination with etoposide and carboplatin regimen, in the
first-line treatment of extensive-stage small-cell lung cancer: A
single-center experience. Cancer Immunol Immunother. 71:1093–1101.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhou J, Lu X, Zhu H, Ding N, Zhang Y, Xu
X, Gao L, Zhou J, Song Y and Hu J: Resistance to immune checkpoint
inhibitors in advanced lung cancer: Clinical characteristics,
potential prognostic factors and next strategy. Front Immunol.
14:10890262023. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Tanaka K, Tanabe H, Sato H, Ishikawa C,
Goto M, Yanagida N, Akabane H, Yokohama S, Hasegawa K, Kitano Y, et
al: Prognostic factors to predict the survival in patients with
advanced gastric cancer who receive later-line nivolumab
monotherapy-The Asahikawa Gastric Cancer Cohort Study (AGCC).
Cancer Med. 11:406–416. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Gambale E, Palmieri VE, Rossi V, Francini
E, Bonato A, Salfi A, Galli L, Mela MM, Pillozzi S and Antonuzzo L:
Bone metastases in renal cell carcinoma: Impact of immunotherapy on
survival. Cancer Diagnosis Progn. 3:538–542. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Rebuzzi SE, Signori A, Banna GL, Maruzzo
M, De Giorgi U, Pedrazzoli P, Sbrana A, Zucali PA, Masini C,
Naglieri E, et al: Inflammatory indices and clinical factors in
metastatic renal cell carcinoma patients treated with nivolumab:
the development of a novel prognostic score (Meet-URO 15 study).
Ther Adv Med Oncol. 13:175883592110196422021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Velev M, Dalban C, Chevreau C, Gravis G,
Negrier S, Laguerre B, Gross-Goupil M, Ladoire S, Borchiellini D,
Geoffrois L, et al: Efficacy and safety of nivolumab in bone
metastases from renal cell carcinoma: Results of the
GETUG-AFU26-NIVOREN multicentre phase II study. Eur J Cancer.
182:66–76. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Shimizu T, Miyake M, Nishimura N, Inoue K,
Fujii K, Iemura Y, Ichikawa K, Omori C, Tomizawa M, Maesaka F, et
al: Organ-specific and mixed responses to pembrolizumab in patients
with unresectable or metastatic urothelial carcinoma: A multicenter
retrospective study. Cancers (Basel). 14:17352022. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Makrakis D, Talukder R, Lin GI,
Diamantopoulos LN, Dawsey S, Gupta S, Carril-Ajuria L, Castellano
D, de Kouchkovsky I, Koshkin VS, et al: Association between sites
of metastasis and outcomes with immune checkpoint inhibitors in
advanced urothelial carcinoma. Clin Genitourin Cancer.
20:e440–e452. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Raggi D, Giannatempo P, Marandino L,
Pierantoni F, Maruzzo M, Lipari H, Banna GL, De Giorgi U, Casadei
C, Naglieri E, et al: Role of bone metastases in patients receiving
immunotherapy for pre-treated urothelial carcinoma: The
multicentre, retrospective meet-URO-1 Bone Study. Clin Genitourin
Cancer. 20:155–164. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Hoshi Y, Shirakura S, Yamada M, Sugiyama
T, Koide N, Tamii S, Kamata K, Yokomura M, Osaki S, Ohno T, et al:
Site of distant metastasis affects the prognosis with
recurrent/metastatic head and neck squamous cell carcinoma patients
treated with nivolumab. Int J Clin Oncol. 28:1139–1146. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Bilen MA, Shabto JM, Martini DJ, Liu Y,
Lewis C, Collins H, Akce M, Kissick H, Carthon BC, Shaib WL, et al:
Sites of metastasis and association with clinical outcome in
advanced stage cancer patients treated with immunotherapy. BMC
Cancer. 19:8572019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Botticelli A, Cirillo A, Scagnoli S,
Cerbelli B, Strigari L, Cortellini A, Pizzuti L, Vici P, De
Galitiis F, Di Pietro FR, et al: The agnostic role of site of
metastasis in predicting outcomes in cancer patients treated with
immunotherapy. Vaccines (Basel). 8:2032020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Qin Q, Jun T, Wang B, Patel VG, Mellgard
G, Zhong X, Gogerly-Moragoda M, Parikh AB, Leiter A, Gallagher EJ,
et al: Clinical factors associated with outcome in solid tumor
patients treated with immune-checkpoint inhibitors: a single
institution retrospective analysis. Discov Oncol. 13:732022.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Topalian SL, Hodi FS, Brahmer JR,
Gettinger SN, Smith DC, McDermott DF, Powderly JD, Sosman JA,
Atkins MB, Leming PD, et al: Five-year survival and correlates
among patients with advanced melanoma, renal cell carcinoma, or
non-small cell lung cancer treated with nivolumab. JAMA Oncol.
5:1411–1420. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Debien V, De Caluwé A, Wang X,
Piccart-Gebhart M, Tuohy VK, Romano E and Buisseret L:
Immunotherapy in breast cancer: An overview of current strategies
and perspectives. NPJ Breast Cancer. 9:72023. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Sridaran D, Bradshaw E, DeSelm C,
Pachynski R, Mahajan K and Mahajan NP: Prostate cancer
immunotherapy: Improving clinical outcomes with a multi-pronged
approach. Cell Rep Med. 4:1011992023. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Li HS, Lei SY, Li JL, Xing PY, Hao XZ, Xu
F, Xu HY and Wang Y: Efficacy and safety of concomitant
immunotherapy and denosumab in patients with advanced non-small
cell lung cancer carrying bone metastases: A retrospective chart
review. Front Immunol. 13:9084362022. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Qiang H, Lei Y, Shen Y, Li J, Zhong H,
Zhong R, Zhang X, Chang Q, Lu J, Feng H, et al: Pembrolizumab
monotherapy or combination therapy for bone metastases in advanced
non-small cell lung cancer: A real-world retrospective study.
Transl Lung Cancer Res. 11:87–99. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zheng Y, Wang PP, Fu Y, Chen YY and Ding
ZY: Zoledronic acid enhances the efficacy of immunotherapy in
non-small cell lung cancer. Int Immunopharmacol. 110:1090302022.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ishikawa T: Differences between zoledronic
acid and denosumab for breast cancer treatment. J Bone Miner Metab.
41:301–306. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Dieli F, Gebbia N, Poccia F, Caccamo N,
Montesano C, Fulfaro F, Arcara C, Valerio MR, Meraviglia S, Di Sano
C, et al: Induction of gammadelta T-lymphocyte effector functions
by bisphosphonate zoledronic acid in cancer patients in vivo.
Blood. 102:2310–2311. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Iwasaki M, Tanaka Y, Kobayashi H,
Murata-Hirai K, Miyabe H, Sugie T, Toi M and Minato N: Expression
and function of PD-1 in human γδ T cells that recognize
phosphoantigens. Eur J Immunol. 41:345–355. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wong BR, Josien R, Lee SY, Sauter B, Li
HL, Steinman RM and Choi Y: TRANCE (tumor necrosis factor
[TNF]-related activation-induced cytokine), a new TNF family member
predominantly expressed in T cells, is a dendritic cell-specific
survival factor. J Exp Med. 186:2075–2080. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Ahern E, Smyth MJ, Dougall WC and Teng
MWL: Roles of the RANKL-RANK axis in antitumour
immunity-implications for therapy. Nat Rev Clin Oncol. 15:676–693.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Ahern E, Harjunpää H, O'Donnell JS, Allen
S, Dougall WC, Teng MWL and Smyth MJ: RANKL blockade improves
efficacy of PD1-PD-L1 blockade or dual PD1-PD-L1 and CTLA4 blockade
in mouse models of cancer. Oncoimmunology. 7:e14310882018.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Batlle E and Massagué J: Transforming
growth factor-β signaling in immunity and cancer. Immunity.
50:924–940. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Nixon BG, Gao S, Wang X and Li MO: TGFβ
control of immune responses in cancer: A holistic immuno-oncology
perspective. Nat Rev Immunol. 23:346–362. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Trivedi T, Pagnotti GM, Guise TA and
Mohammad KS: The role of TGF-β in bone metastases. Biomolecules.
11:16432021. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Wang B, Bai J, Tian B, Chen H, Yang Q,
Chen Y, Xu J, Zhang Y, Dai H, Ma Q, et al: Genetically engineered
hematopoietic stem cells deliver TGF-β Inhibitor to enhance bone
metastases immunotherapy. Adv Sci (Weinh). 9:e22014512022.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Xu W, Yang Y, Hu Z, Head M, Mangold KA,
Sullivan M, Wang E, Saha P, Gulukota K, Helseth DL, et al:
LyP-1-modified oncolytic adenoviruses targeting transforming growth
factor β inhibit tumor growth and metastases and augment immune
checkpoint inhibitor therapy in breast cancer mouse models. Hum
Gene Ther. 31:863–880. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Khan KA and Kerbel RS: Improving
immunotherapy outcomes with anti-angiogenic treatments and vice
versa. Nat Rev Clin Oncol. 15:310–324. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Brest P, Mograbi B, Pagès G, Hofman P and
Milano G: Checkpoint inhibitors and anti-angiogenic agents: A
winning combination. Br J Cancer. 129:1367–1372. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Xie X, Zhou M, Wang L, Wang F, Deng H,
Yang Y, Sun N, Li R, Chen Y, Lin X, et al: Effects of combining
immune checkpoint inhibitors and anti-angiogenic agents on bone
metastasis in non-small cell lung cancer patients. Hum Vaccin
Immunother. 19:22413102023. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Castello A and Lopci E: Response
assessment of bone metastatic disease: Seeing the forest for the
trees RECIST, PERCIST, iRECIST, and PCWG-2. Q J Nucl Med Mol
Imaging. 63:150–158. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Yin C, Wang M, Wang Y, Lin Q, Lin K, Du H,
Lang C, Dai Y and Peng X: BHLHE22 drives the immunosuppressive bone
tumor microenvironment and associated bone metastasis in prostate
cancer. J Immunother Cancer. 11:e0055322023. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Nagasaki J, Ishino T and Togashi Y:
Mechanisms of resistance to immune checkpoint inhibitors. Cancer
Sci. 113:3303–3312. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Butterfield LH and Najjar YG:
Immunotherapy combination approaches: Mechanisms, biomarkers and
clinical observations. Nat Rev Immunol. December 6–2023.(Epub ahead
of print). View Article : Google Scholar : PubMed/NCBI
|