Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
April-2024 Volume 64 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2024 Volume 64 Issue 4

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Advancements in colorectal cancer research: Unveiling the cellular and molecular mechanisms of neddylation (Review)

  • Authors:
    • Tianyu Wang
    • Xiaobing Li
    • Ruijie Ma
    • Jian Sun
    • Shuhong Huang
    • Zhigang Sun
    • Meng Wang
  • View Affiliations / Copyright

    Affiliations: School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong 250117, P.R. China, Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China, Department of General Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 39
    |
    Published online on: February 21, 2024
       https://doi.org/10.3892/ijo.2024.5627
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Neddylation, akin to ubiquitination, represents a post‑translational modification of proteins wherein neural precursor cell‑expressed developmentally downregulated protein 8 (NEDD8) is modified on the substrate protein through a series of reactions. Neddylation plays a pivotal role in the growth and proliferation of animal cells. In colorectal cancer (CRC), it predominantly contributes to the proliferation, metastasis and survival of tumor cells, decreasing overall patient survival. The strategic manipulation of the NEDD8‑mediated neddylation pathway holds immense therapeutic promise in terms of the potential to modulate the growth of tumors by regulating diverse biological responses within cancer cells, such as DNA damage response and apoptosis, among others. MLN4924 is an inhibitor of NEDD8, and its combined use with platinum drugs and irinotecan, as well as cycle inhibitors and NEDD activating enzyme inhibitors screened by drug repurposing, has been found to exert promising antitumor effects. The present review summarizes the recent progress made in the understanding of the role of NEDD8 in the advancement of CRC, suggesting that NEDD8 is a promising anti‑CRC target.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Brenner H, Kloor M and Pox CP: Colorectal cancer. Lancet. 383:1490–1502. 2014. View Article : Google Scholar

3 

Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, Stein KD, Alteri R and Jemal A: Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 66:271–289. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Roque-Castellano C, Fariña-Castro R, Nogués-Ramia EM, Artiles-Armas M and Marchena-Gómez J: Colorectal cancer surgery in selected nonagenarians is relatively safe and it is associated with a good long-term survival: An observational study. World J Surg Oncol. 18:1202020. View Article : Google Scholar : PubMed/NCBI

5 

Salibasic M, Pusina S, Bicakcic E, Pasic A, Gavric I, Kulovic E, Rovcanin A and Beslija S: Colorectal cancer surgical treatment, our experience. Med Arch. 73:412–414. 2019. View Article : Google Scholar

6 

Luo W, Wu M and Chen Y: Laparoscopic versus open surgery for elderly patients with colorectal cancer: A systematic review and meta-analysis of matched studies. ANZ J Surg. 92:2003–2017. 2022. View Article : Google Scholar : PubMed/NCBI

7 

Ustuner MA, Deniz A and Simsek A: Laparoscopic <em>versus</em> open surgery in colorectal cancer: Is laparoscopy safe enough? J Coll Physicians Surg Pak. 32:1170–1174. 2022. View Article : Google Scholar : PubMed/NCBI

8 

Liu G, Zhang S, Zhang Y, Fu X and Liu X: Robotic surgery in rectal cancer: Potential, challenges, and opportunities. Curr Treat Options Oncol. 23:961–979. 2022. View Article : Google Scholar : PubMed/NCBI

9 

Riesco-Martinez MC, Modrego A, Espinosa-Olarte P, La Salvia A and Garcia-Carbonero R: Perioperative chemotherapy for liver metastasis of colorectal cancer: Lessons learned and future perspectives. Curr Treat Options Oncol. 23:1320–1337. 2022. View Article : Google Scholar : PubMed/NCBI

10 

Habr-Gama A, Perez RO, São Julião GP, Proscurshim I and Gama-Rodrigues J: Nonoperative approaches to rectal cancer: A critical evaluation. Semin Radiat Oncol. 21:234–239. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Hsu YJ, Chern YJ, Lai IL, Chiang SF, Liao CK, Tsai WS, Hung HY, Hsieh PS, Yeh CY, Chiang JM, et al: Usefulness of close surveillance for rectal cancer patients after neoadjuvant chemoradiotherapy. Open Med (Wars). 17:1438–1448. 2022. View Article : Google Scholar : PubMed/NCBI

12 

McWhirter D, Kitteringham N, Jones RP, Malik H, Park K and Palmer D: Chemotherapy induced hepatotoxicity in metastatic colorectal cancer: A review of mechanisms and outcomes. Crit Rev Oncol Hematol. 88:404–415. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Kim JH: Chemotherapy for colorectal cancer in the elderly. World J Gastroenterol. 21:5158–5166. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Piawah S and Venook AP: Targeted therapy for colorectal cancer metastases: A review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer. Cancer. 125:4139–4147. 2019. View Article : Google Scholar : PubMed/NCBI

15 

Kumar S, Tomooka Y and Noda M: Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem Biophys Res Commun. 185:1155–1161. 1992. View Article : Google Scholar : PubMed/NCBI

16 

Kumar S, Yoshida Y and Noda M: Cloning of a cDNA which encodes a novel ubiquitin-like protein. Biochem Biophys Res Commun. 195:393–399. 1993. View Article : Google Scholar : PubMed/NCBI

17 

Kamitani T, Kito K, Nguyen HP and Yeh ET: Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. J Biol Chem. 272:28557–28562. 1997. View Article : Google Scholar : PubMed/NCBI

18 

Wada H, Kito K, Caskey LS, Yeh ET and Kamitani T: Cleavage of the C-terminus of NEDD8 by UCH-L3. Biochem Biophys Res Commun. 251:688–692. 1998. View Article : Google Scholar : PubMed/NCBI

19 

Mendoza HM, Shen LN, Botting C, Lewis A, Chen J, Ink B and Hay RT: NEDP1, a highly conserved cysteine protease that deNEDDylates Cullins. J Biol Chem. 278:25637–25643. 2003. View Article : Google Scholar : PubMed/NCBI

20 

Gong L and Yeh ET: Identification of the activating and conjugating enzymes of the NEDD8 conjugation pathway. J Biol Chem. 274:12036–12042. 1999. View Article : Google Scholar : PubMed/NCBI

21 

Huang DT, Zhuang M, Ayrault O and Schulman BA: Identification of conjugation specificity determinants unmasks vestigial preference for ubiquitin within the NEDD8 E2. Nat Struct Mol Biol. 15:280–287. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Huang DT, Ayrault O, Hunt HW, Taherbhoy AM, Duda DM, Scott DC, Borg LA, Neale G, Murray PJ, Roussel MF and Schulman BA: E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. Mol Cell. 33:483–495. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Baek K, Scott DC and Schulman BA: NEDD8 and ubiquitin ligation by cullin-RING E3 ligases. Curr Opin Struct Biol. 67:101–109. 2021. View Article : Google Scholar :

24 

Lydeard JR, Schulman BA and Harper JW: Building and remodelling Cullin-RING E3 ubiquitin ligases. EMBO Rep. 14:1050–1061. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Xirodimas DP, Saville MK, Bourdon JC, Hay RT and Lane DP: Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell. 118:83–97. 2004. View Article : Google Scholar : PubMed/NCBI

26 

Stickle NH, Chung J, Klco JM, Hill RP, Kaelin WG Jr and Ohh M: pVHL modification by NEDD8 is required for fibronectin matrix assembly and suppression of tumor development. Mol Cell Biol. 24:3251–3261. 2004. View Article : Google Scholar : PubMed/NCBI

27 

Guan J, Yu S and Zheng X: NEDDylation antagonizes ubiquitination of proliferating cell nuclear antigen and regulates the recruitment of polymerase η in response to oxidative DNA damage. Protein Cell. 9:365–379. 2018.

28 

Ryu JH, Li SH, Park HS, Park JW, Lee B and Chun YS: Hypoxia-inducible factor α subunit stabilization by NEDD8 conjugation is reactive oxygen species-dependent. J Biol Chem. 286:6963–6970. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Brown JS and Jackson SP: Ubiquitylation, neddylation and the DNA damage response. Open Biol. 5:1500182015. View Article : Google Scholar : PubMed/NCBI

30 

Liu J and Nussinov R: Flexible cullins in cullin-RING E3 ligases allosterically regulate ubiquitination. J Biol Chem. 286:40934–40942. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Sarikas A, Hartmann T and Pan ZQ: The cullin protein family. Genome Biol. 12:2202011. View Article : Google Scholar : PubMed/NCBI

32 

Osaka F, Kawasaki H, Aida N, Saeki M, Chiba T, Kawashima S, Tanaka K and Kato S: A new NEDD8-ligating system for cullin-4A. Genes Dev. 12:2263–2268. 1998. View Article : Google Scholar : PubMed/NCBI

33 

Petroski MD and Deshaies RJ: Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol. 6:9–20. 2005. View Article : Google Scholar : PubMed/NCBI

34 

Nam SY, Ko YS, Jung J, Yoon J, Kim YH, Choi YJ, Park JW, Chang MS, Kim WH and Lee BL: A hypoxia-dependent upregulation of hypoxia-inducible factor-1 by nuclear factor-κB promotes gastric tumour growth and angiogenesis. Br J Cancer. 104:166–174. 2011. View Article : Google Scholar

35 

Semenza GL: HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol. 13:167–171. 2001. View Article : Google Scholar : PubMed/NCBI

36 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Kittai AS, Danilova OV, Lam V, Liu T, Bruss N, Best S, Fan G and Danilov AV: NEDD8-activating enzyme inhibition induces cell cycle arrest and anaphase catastrophe in malignant T-cells. Oncotarget. 12:2068–2074. 2021. View Article : Google Scholar : PubMed/NCBI

38 

Lan H, Tang Z, Jin H and Sun Y: Neddylation inhibitor MLN4924 suppresses growth and migration of human gastric cancer cells. Sci Rep. 6:242182016. View Article : Google Scholar : PubMed/NCBI

39 

Liu H, Bei Q and Luo X: MLN4924 inhibits cell proliferation by targeting the activated neddylation pathway in endometrial carcinoma. J Int Med Res. 49:30006052110185922021.PubMed/NCBI

40 

Picco G, Petti C, Sassi F, Grillone K, Migliardi G, Rossi T, Isella C, Di Nicolantonio F, Sarotto I, Sapino A, et al: Efficacy of NEDD8 pathway inhibition in preclinical models of poorly differentiated, clinically aggressive colorectal cancer. J Natl Cancer Inst. 109:djw2092017. View Article : Google Scholar

41 

Xie P, Zhang M, He S, Lu K, Chen Y, Xing G, Lu Y, Liu P, Li Y, Wang S, et al: The covalent modifier Nedd8 is critical for the activation of Smurf1 ubiquitin ligase in tumorigenesis. Nat Commun. 5:37332014. View Article : Google Scholar : PubMed/NCBI

42 

Jiang Y, Liang Y, Li L, Zhou L, Cheng W, Yang X, Yang X, Qi H, Yu J, Jeong LS, et al: Targeting neddylation inhibits intravascular survival and extravasation of cancer cells to prevent lung-cancer metastasis. Cell Biol Toxicol. 35:233–245. 2019. View Article : Google Scholar : PubMed/NCBI

43 

Mickova A, Kharaishvili G, Kurfurstova D, Gachechiladze M, Kral M, Vacek O, Pokryvkova B, Mistrik M, Soucek K and Bouchal J: Skp2 and slug are coexpressed in aggressive prostate cancer and inhibited by neddylation blockade. Int J Mol Sci. 22:28442021. View Article : Google Scholar : PubMed/NCBI

44 

Tan KL and Pezzella F: Inhibition of NEDD8 and FAT10 ligase activities through the degrading enzyme NEDD8 ultimate buster 1: A potential anticancer approach. Oncol Lett. 12:4287–4296. 2016. View Article : Google Scholar

45 

Watson IR, Blanch A, Lin DC, Ohh M and Irwin MS: Mdm2-mediated NEDD8 modification of TAp73 regulates its transactivation function. J Biol Chem. 281:34096–34103. 2006. View Article : Google Scholar : PubMed/NCBI

46 

Aoki I, Higuchi M and Gotoh Y: NEDDylation controls the target specificity of E2F1 and apoptosis induction. Oncogene. 32:3954–3964. 2013. View Article : Google Scholar

47 

Halazonetis TD, Gorgoulis VG and Bartek J: An oncogene-induced DNA damage model for cancer development. Science. 319:1352–1355. 2008. View Article : Google Scholar : PubMed/NCBI

48 

Garvin AJ: Beyond reversal: ubiquitin and ubiquitin-like proteases and the orchestration of the DNA double strand break repair response. Biochem Soc Trans. 47:1881–1893. 2019. View Article : Google Scholar : PubMed/NCBI

49 

Meir M, Galanty Y, Kashani L, Blank M, Khosravi R, Fernández-Ávila MJ, Cruz-García A, Star A, Shochot L, Thomas Y, et al: The COP9 signalosome is vital for timely repair of DNA double-strand breaks. Nucleic Acids Res. 43:4517–4530. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Gâtel P, Piechaczyk M and Bossis G: Ubiquitin, SUMO, and Nedd8 as therapeutic targets in cancer. Adv Exp Med Biol. 1233:29–54. 2020. View Article : Google Scholar : PubMed/NCBI

51 

Li YJ, Lei YH, Yao N, Wang CR, Hu N, Ye WC, Zhang DM and Chen ZS: Autophagy and multidrug resistance in cancer. Chin J Cancer. 36:522017. View Article : Google Scholar : PubMed/NCBI

52 

Sun Y, Baechler SA, Zhang X, Kumar S, Factor VM, Arakawa Y, Chau CH, Okamoto K, Parikh A, Walker B, et al: Targeting neddylation sensitizes colorectal cancer to topoisomerase I inhibitors by inactivating the DCAF13-CRL4 ubiquitin ligase complex. Nat Commun. 14:37622023. View Article : Google Scholar : PubMed/NCBI

53 

Wan J, Zhu J, Li G and Zhang Z: Radiosensitization of human colorectal cancer cells by MLN4924: An Inhibitor of NEDD8-Activating Enzyme. Technol Cancer Res Treat. 15:527–534. 2016. View Article : Google Scholar

54 

Shao Y, Liu Z, Song X, Sun R, Zhou Y, Zhang D, Sun H, Huang J, Wu C, Gu W, et al: ALKBH5/YTHDF2-mediated m6A modification of circAFF2 enhances radiosensitivity of colorectal cancer by inhibiting Cullin neddylation. Clin Transl Med. 13:e13182023. View Article : Google Scholar : PubMed/NCBI

55 

Whiteside TL: The tumor microenvironment and its role in promoting tumor growth. Oncogene. 27:5904–5912. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Zhou L, Jiang Y, Luo Q, Li L and Jia L: Neddylation: A novel modulator of the tumor microenvironment. Mol Cancer. 18:772019. View Article : Google Scholar : PubMed/NCBI

57 

Chang FM, Reyna SM, Granados JC, Wei SJ, Innis-Whitehouse W, Maffi SK, Rodriguez E, Slaga TJ and Short JD: Inhibition of neddylation represses lipopolysaccharide-induced proinflammatory cytokine production in macrophage cells. J Biol Chem. 287:35756–35767. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Li L, Liu B, Dong T, Lee HW, Yu J, Zheng Y, Gao H, Zhang Y, Chu Y, Liu G, et al: Neddylation pathway regulates the proliferation and survival of macrophages. Biochem Biophys Res Commun. 432:494–498. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Zhou L, Jiang Y, Liu X, Li L, Yang X, Dong C, Liu X, Lin Y, Li Y, Yu J, et al: Promotion of tumor-associated macrophages infiltration by elevated neddylation pathway via NF-κB-CCL2 signaling in lung cancer. Oncogene. 38:5792–5804. 2019. View Article : Google Scholar : PubMed/NCBI

60 

Joyce JA and Fearon DT: T cell exclusion, immune privilege, and the tumor microenvironment. Science. 348:74–80. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Jin HS, Liao L, Park Y and Liu YC: Neddylation pathway regulates T-cell function by targeting an adaptor protein Shc and a protein kinase Erk signaling. Proc Natl Acad Sci USA. 110:624–629. 2013. View Article : Google Scholar :

62 

Jiang Y, Li L, Li Y, Liu G, Hoffman RM and Jia L: Neddylation regulates macrophages and implications for cancer therapy. Front Cell Dev Biol. 9:6811862021. View Article : Google Scholar : PubMed/NCBI

63 

Best S, Lam V, Liu T, Bruss N, Kittai A, Danilova OV, Murray S, Berger A, Pennock ND, Lind EF and Danilov AV: Immunomodulatory effects of pevonedistat, a NEDD8-activating enzyme inhibitor, in chronic lymphocytic leukemia-derived T cells. Leukemia. 35:156–168. 2021. View Article : Google Scholar :

64 

Maishi N and Hida K: Tumor endothelial cells accelerate tumor metastasis. Cancer Sci. 108:1921–1926. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Tang N, Wang L, Esko J, Giordano FJ, Huang Y, Gerber HP, Ferrara N and Johnson RS: Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell. 6:485–495. 2004. View Article : Google Scholar : PubMed/NCBI

66 

Shi CS, Kuo KL, Lin WC, Chen MS, Liu SH, Liao SM, Hsu CH, Chang YW, Chang HC and Huang KH: Neddylation inhibitor, MLN4924 suppresses angiogenesis in huvecs and solid cancers: in vitro and in vivo study. Am J Cancer Res. 10:953–964. 2020.PubMed/NCBI

67 

Yao WT, Wu JF, Yu GY, Wang R, Wang K, Li LH, Chen P, Jiang YN, Cheng H, Lee HW, et al: Suppression of tumor angiogenesis by targeting the protein neddylation pathway. Cell Death Dis. 5:e10592014. View Article : Google Scholar : PubMed/NCBI

68 

Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, Iglesias M, Sevillano M, Ibiza S, Cañellas A, Hernando-Momblona X, et al: TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature. 554:538–543. 2018. View Article : Google Scholar : PubMed/NCBI

69 

Kerscher O, Felberbaum R and Hochstrasser M: Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol. 22:159–180. 2006. View Article : Google Scholar : PubMed/NCBI

70 

He S, Cao Y, Xie P, Dong G and Zhang L: The Nedd8 Non-covalent Binding Region in the Smurf HECT Domain is Critical to its Ubiquitn Ligase Function. Sci Rep. 7:413642017. View Article : Google Scholar : PubMed/NCBI

71 

Zheng J, Shi Z, Yang P, Zhao Y, Tang W, Ye S, Xuan Z, Chen C, Shao C, Wu Q and Sun H: ERK-Smurf1-RhoA signaling is critical for TGFβ-drived EMT and tumor metastasis. Life Sci Alliance. 5:e2021013302022. View Article : Google Scholar

72 

Xie L, Law BK, Chytil AM, Brown KA, Aakre ME and Moses HL: Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia. 6:603–610. 2004. View Article : Google Scholar : PubMed/NCBI

73 

Fang JY and Richardson BC: The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 6:322–327. 2005. View Article : Google Scholar : PubMed/NCBI

74 

Cardoso AP, Pinto ML, Pinto AT, Oliveira MI, Pinto MT, Gonçalves R, Relvas JB, Figueiredo C, Seruca R, Mantovani A, et al: Macrophages stimulate gastric and colorectal cancer invasion through EGFR Y(1086), c-Src, Erk1/2 and Akt phosphorylation and smallGTPase activity. Oncogene. 33:2123–2133. 2014. View Article : Google Scholar

75 

Price JT, Wilson HM and Haites NE: Epidermal growth factor (EGF) increases the in vitro invasion, motility and adhesion interactions of the primary renal carcinoma cell line, A704. Eur J Cancer. 32A:1977–1982. 1996. View Article : Google Scholar : PubMed/NCBI

76 

Li S, Wu X, Xu Y, Wu S, Li Z, Chen R, Huang N, Zhu Z and Xu X: miR-145 suppresses colorectal cancer cell migration and invasion by targeting an ETS-related gene. Oncol Rep. 36:1917–1926. 2016. View Article : Google Scholar : PubMed/NCBI

77 

Kwon A, Lee HL, Woo KM, Ryoo HM and Baek JH: SMURF1 plays a role in EGF-induced breast cancer cell migration and invasion. Mol Cells. 36:548–555. 2013. View Article : Google Scholar : PubMed/NCBI

78 

Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT and Horwitz AR: Cell migration: Integrating signals from front to back. Science. 302:1704–1709. 2003. View Article : Google Scholar : PubMed/NCBI

79 

Du MG, Liu F, Chang Y, Tong S, Liu W, Chen YJ and Xie P: Neddylation modification of the U3 snoRNA-binding protein RRP9 by Smurf1 promotes tumorigenesis. J Biol Chem. 297:1013072021. View Article : Google Scholar : PubMed/NCBI

80 

Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW, et al: High-throughput mapping of a dynamic signaling network in mammalian cells. Science. 307:1621–1625. 2005. View Article : Google Scholar : PubMed/NCBI

81 

Clerget G, Bourguignon-Igel V, Marmier-Gourrier N, Rolland N, Wacheul L, Manival X, Charron C, Kufel J, Méreau A, Senty-Ségault V, et al: Synergistic defects in pre-rRNA processing from mutations in the U3-specific protein Rrp9 and U3 snoRNA. Nucleic Acids Res. 48:3848–3868. 2020. View Article : Google Scholar : PubMed/NCBI

82 

Pecoraro A, Pagano M, Russo G and Russo A: Ribosome Biogenesis and Cancer: Overview on Ribosomal Proteins. Int J Mol Sci. 22:54962021. View Article : Google Scholar : PubMed/NCBI

83 

Pelletier J, Thomas G and Volarević S: Ribosome biogenesis in cancer: New players and therapeutic avenues. Nat Rev Cancer. 18:51–63. 2018. View Article : Google Scholar

84 

Guo J, Xu G, Mao C and Wei R: Low Expression of Smurf1 Enhances the Chemosensitivity of Human Colorectal Cancer to Gemcitabine and Cisplatin in Patient-Derived Xenograft Models. Transl Oncol. 13:1008042020. View Article : Google Scholar : PubMed/NCBI

85 

Song MS, Salmena L and Pandolfi PP: The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 13:283–296. 2012. View Article : Google Scholar : PubMed/NCBI

86 

Salmena L, Carracedo A and Pandolfi PP: Tenets of PTEN tumor suppression. Cell. 133:403–414. 2008. View Article : Google Scholar : PubMed/NCBI

87 

Xie P, Peng Z, Chen Y, Li H, Du M, Tan Y, Zhang X, Lu Z, Cui CP, Liu CH, et al: Neddylation of PTEN regulates its nuclear import and promotes tumor development. Cell Res. 31:291–311. 2021. View Article : Google Scholar :

88 

Finicle BT, Jayashankar V and Edinger AL: Nutrient scavenging in cancer. Nat Rev Cancer. 18:619–633. 2018. View Article : Google Scholar : PubMed/NCBI

89 

Murphy N, Song M, Papadimitriou N, Carreras-Torres R, Langenberg C, Martin RM, Tsilidis KK, Barroso I, Chen J, Frayling TM, et al: Associations Between Glycemic Traits and Colorectal Cancer: A Mendelian Randomization Analysis. J Natl Cancer Inst. 114:740–752. 2022. View Article : Google Scholar : PubMed/NCBI

90 

Zhang W, Lu Y and Li X, Zhang J, Lin W, Zhang W, Zheng L and Li X: IPO5 promotes the proliferation and tumourigenicity of colorectal cancer cells by mediating RASAL2 nuclear transportation. J Exp Clin Cancer Res. 38:2962019. View Article : Google Scholar : PubMed/NCBI

91 

Menendez JA and Lupu R: Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 7:763–777. 2007. View Article : Google Scholar : PubMed/NCBI

92 

Xia Q, Zhang H, Zhang P, Li Y, Xu M, Li X, Li X and Dong L: Oncogenic Smurf1 promotes PTEN wild-type glioblastoma growth by mediating PTEN ubiquitylation. Oncogene. 39:5902–5915. 2020. View Article : Google Scholar : PubMed/NCBI

93 

Du MG, Peng ZQ, Gai WB, Liu F, Liu W, Chen YJ, Li HC, Zhang X, Liu CH, Zhang LQ, et al: The Absence of PTEN in Breast Cancer Is a Driver of MLN4924 Resistance. Front Cell Dev Biol. 9:6674352021. View Article : Google Scholar : PubMed/NCBI

94 

Phelps RA, Chidester S, Dehghanizadeh S, Phelps J, Sandoval IT, Rai K, Broadbent T, Sarkar S, Burt RW and Jones DA: A two-step model for colon adenoma initiation and progression caused by APC loss. Cell. 137:623–634. 2009. View Article : Google Scholar : PubMed/NCBI

95 

Schütz AK, Hennes T, Jumpertz S, Fuchs S and Bernhagen J: Role of CSN5/JAB1 in Wnt/β-catenin activation in colorectal cancer cells. FEBS Lett. 586:1645–1651. 2012. View Article : Google Scholar

96 

Cope GA and Deshaies RJ: COP9 signalosome: A multifunctional regulator of SCF and other cullin-based ubiquitin ligases. Cell. 114:663–671. 2003. View Article : Google Scholar : PubMed/NCBI

97 

Jumpertz S, Hennes T, Asare Y, Vervoorts J, Bernhagen J and Schütz AK: The β-catenin E3 ubiquitin ligase SIAH-1 is regulated by CSN5/JAB1 in CRC cells. Cell Signal. 26:2051–2059. 2014. View Article : Google Scholar : PubMed/NCBI

98 

Sninsky JA, Shore BM, Lupu GV and Crockett SD: Risk Factors for Colorectal Polyps and Cancer. Gastrointest Endosc Clin N Am. 32:195–213. 2022. View Article : Google Scholar : PubMed/NCBI

99 

Aiello NM, Maddipati R, Norgard RJ, Balli D, Li J, Yuan S, Yamazoe T, Black T, Sahmoud A, Furth EE, et al: EMT Subtype Influences Epithelial Plasticity and Mode of Cell Migration. Dev Cell. 45:681–695.e84. 2018. View Article : Google Scholar : PubMed/NCBI

100 

Asmamaw MD, Liu Y, Zheng YC, Shi XJ and Liu HM: Skp2 in the ubiquitin-proteasome system: A comprehensive review. Med Res Rev. 40:1920–1949. 2020. View Article : Google Scholar : PubMed/NCBI

101 

Serrano-Gomez SJ, Maziveyi M and Alahari SK: Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol Cancer. 15:182016. View Article : Google Scholar : PubMed/NCBI

102 

Yu X, Zhou L, Liu W, Liu L, Gao F, Li W and Liu H: Skp2 stabilizes Mcl-1 and confers radioresistance in colorectal cancer. Cell Death Dis. 13:2492022. View Article : Google Scholar : PubMed/NCBI

103 

Chen P, Li X, Zhang R, Liu S, Xiang Y, Zhang M, Chen X, Pan T, Yan L, Feng J, et al: Combinative treatment of β-elemene and cetuximab is sensitive to KRAS mutant colorectal cancer cells by inducing ferroptosis and inhibiting epithelial-mesenchymal transformation. Theranostics. 10:5107–5119. 2020. View Article : Google Scholar :

104 

Wang L, Li S, Luo H, Lu Q and Yu S: PCSK9 promotes the progression and metastasis of colon cancer cells through regulation of EMT and PI3K/AKT signaling in tumor cells and phenotypic polarization of macrophages. J Exp Clin Cancer Res. 41:3032022. View Article : Google Scholar : PubMed/NCBI

105 

Kunkel TA and Erie DA: DNA mismatch repair. Annu Rev Biochem. 74:681–710. 2005. View Article : Google Scholar : PubMed/NCBI

106 

Guastadisegni C, Colafranceschi M, Ottini L and Dogliotti E: Microsatellite instability as a marker of prognosis and response to therapy: A meta-analysis of colorectal cancer survival data. Eur J Cancer. 46:2788–2798. 2010. View Article : Google Scholar : PubMed/NCBI

107 

de la Chapelle A and Hampel H: Clinical relevance of microsatellite instability in colorectal cancer. J Clin Oncol. 28:3380–3387. 2010. View Article : Google Scholar : PubMed/NCBI

108 

McGrail DJ, Garnett J, Yin J, Dai H, Shih DJH, Lam TNA, Li Y, Sun C, Li Y, Schmandt R, et al: Proteome Instability Is a Therapeutic Vulnerability in Mismatch Repair-Deficient Cancer. Cancer Cell. 37:371–386.e12. 2020. View Article : Google Scholar : PubMed/NCBI

109 

Johnstone RW, Ruefli AA and Lowe SW: Apoptosis: A link between cancer genetics and chemotherapy. Cell. 108:153–164. 2002. View Article : Google Scholar : PubMed/NCBI

110 

Kim H, Rafiuddin-Shah M, Tu HC, Jeffers JR, Zambetti GP, Hsieh JJ and Cheng EH: Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol. 8:1348–1358. 2006. View Article : Google Scholar : PubMed/NCBI

111 

Wong WW and Puthalakath H: Bcl-2 family proteins: The sentinels of the mitochondrial apoptosis pathway. IUBMB Life. 60:390–397. 2008. View Article : Google Scholar : PubMed/NCBI

112 

Ploner C, Kofler R and Villunger A: Noxa: At the tip of the balance between life and death. Oncogene. 27(Suppl 1): S84–S92. 2008. View Article : Google Scholar

113 

Xu S, Ma Y, Tong Q, Yang J, Liu J, Wang Y, Li G, Zeng J, Fang S, Li F, et al: Cullin-5 neddylation-mediated NOXA degradation is enhanced by PRDX1 oligomers in colorectal cancer. Cell Death Dis. 12:2652021. View Article : Google Scholar : PubMed/NCBI

114 

Brennan CM and Steitz JA: HuR and mRNA stability. Cell Mol Life Sci. 58:266–277. 2001. View Article : Google Scholar : PubMed/NCBI

115 

Wang W, Caldwell MC, Lin S, Furneaux H and Gorospe M: HuR regulates cyclin A and cyclin B1 mRNA stability during cell proliferation. EMBO J. 19:2340–2350. 2000. View Article : Google Scholar : PubMed/NCBI

116 

Abdelmohsen K and Gorospe M: Posttranscriptional regulation of cancer traits by HuR. Wiley Interdiscip Rev RNA. 1:214–229. 2010. View Article : Google Scholar

117 

McLarnon A: Cancer: Mdm2-regulated stabilization of HuR by neddylation in HCC and colon cancer-a possible target for therapy. Nat Rev Gastroenterol Hepatol. 9:42011.

118 

Embade N, Fernández-Ramos D, Varela-Rey M, Beraza N, Sini M, Gutiérrez de Juan V, Woodhoo A, Martínez-López N, Rodríguez-Iruretagoyena B, Bustamante FJ, et al: Murine double minute 2 regulates Hu antigen R stability in human liver and colon cancer through NEDDylation. Hepatology. 55:1237–1248. 2012. View Article : Google Scholar

119 

Greenlee JD, Lopez-Cavestany M, Ortiz-Otero N, Liu K, Subramanian T, Cagir B and King MR: Oxaliplatin resistance in colorectal cancer enhances TRAIL sensitivity via death receptor 4 upregulation and lipid raft localization. Elife. 10:e677502021. View Article : Google Scholar : PubMed/NCBI

120 

Lee SJ, Lee DE, Choi SY and Kwon OS: OSMI-1 Enhances TRAIL-Induced Apoptosis through ER Stress and NF-κB Signaling in Colon Cancer Cells. Int J Mol Sci. 22:110732021. View Article : Google Scholar

121 

Paiva C, Godbersen JC, Rowland T, Danilova OV, Danes C, Berger A and Danilov AV: Pevonedistat, a Nedd8-activating enzyme inhibitor, sensitizes neoplastic B-cells to death receptor-mediated apoptosis. Oncotarget. 8:21128–21139. 2017. View Article : Google Scholar : PubMed/NCBI

122 

Sakamoto K, Maeda S, Hikiba Y, Nakagawa H, Hayakawa Y, Shibata W, Yanai A, Ogura K and Omata M: Constitutive NF-kappaB activation in colorectal carcinoma plays a key role in angiogenesis, promoting tumor growth. Clin Cancer Res. 15:2248–2258. 2009. View Article : Google Scholar : PubMed/NCBI

123 

Linares J, Sallent-Aragay A, Badia-Ramentol J, Recort-Bascuas A, Méndez A, Manero-Rupérez N, Re DL, Rivas EI, Guiu M, Zwick M, et al: Long-term platinum-based drug accumulation in cancer-associated fibroblasts promotes colorectal cancer progression and resistance to therapy. Nat Commun. 14:7462023. View Article : Google Scholar : PubMed/NCBI

124 

Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S, Brownell JE, Burke KE, Cardin DP, Critchley S, et al: An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature. 458:732–736. 2009. View Article : Google Scholar : PubMed/NCBI

125 

Brownell JE, Sintchak MD, Gavin JM, Liao H, Bruzzese FJ, Bump NJ, Soucy TA, Milhollen MA, Yang X, Burkhardt AL, et al: Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: The NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ. Mol Cell. 37:102–111. 2010. View Article : Google Scholar : PubMed/NCBI

126 

Wu KJ, Zhong HJ, Li G, Liu C, Wang HD, Ma DL and Leung CH: Structure-based identification of a NEDD8-activating enzyme inhibitor via drug repurposing. Eur J Med Chem. 143:1021–1027. 2018. View Article : Google Scholar

127 

Ferris J, Espona-Fiedler M, Hamilton C, Holohan C, Crawford N, McIntyre AJ, Roberts JZ, Wappett M, McDade SS, Longley DB and Coyle V: Pevonedistat (MLN4924): Mechanism of cell death induction and therapeutic potential in colorectal cancer. Cell Death Discov. 6:612020. View Article : Google Scholar : PubMed/NCBI

128 

Li H, Zhu H, Xu CJ and Yuan J: Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 94:491–501. 1998. View Article : Google Scholar : PubMed/NCBI

129 

Sekeres MA, Watts J, Radinoff A, Sangerman MA, Cerrano M, Lopez PF, Zeidner JF, Campelo MD, Graux C, Liesveld J, et al: Randomized phase 2 trial of pevonedistat plus azacitidine versus azacitidine for higher-risk MDS/CMML or low-blast AML. Leukemia. 35:2119–2124. 2021. View Article : Google Scholar : PubMed/NCBI

130 

Zhou X, Sedarati F, Faller DV, Zhao D, Faessel HM, Chowdhury S, Bolleddula J, Li Y, Venkatakrishnan K and Papai Z: Phase I study assessing the mass balance, pharmacokinetics, and excretion of [14C]-pevonedistat, a NEDD8-activating enzyme inhibitor in patients with advanced solid tumors. Invest New Drugs. 39:488–498. 2021. View Article : Google Scholar

131 

Zheng W, Luo Z, Zhang J, Min P, Li W, Xu D, Zhang Z, Xiong P, Liang H and Liu J: Neural precursor cell expressed, developmentally downregulated 8-activating enzyme inhibitor MLN4924 sensitizes colorectal cancer cells to oxaliplatin by inducing DNA damage, G2 cell cycle arrest and apoptosis. Mol Med Rep. 15:2795–2801. 2017. View Article : Google Scholar : PubMed/NCBI

132 

Toth JI, Yang L, Dahl R and Petroski MD: A gatekeeper residue for NEDD8-activating enzyme inhibition by MLN4924. Cell Rep. 1:309–316. 2012. View Article : Google Scholar : PubMed/NCBI

133 

Zhang S, You X, Xu T, Chen Q, Li H, Dou L and Sun Y, Xiong X, Meredith MA and Sun Y: PD-L1 induction via the MEK-JNK-AP1 axis by a neddylation inhibitor promotes cancer-associated immunosuppression. Cell Death Dis. 13:8442022. View Article : Google Scholar : PubMed/NCBI

134 

Zhou S, Zhao X, Yang Z, Yang R, Chen C, Zhao K, Wang W, Ma Y, Zhang Q and Wang X: Neddylation inhibition upregulates PD-L1 expression and enhances the efficacy of immune checkpoint blockade in glioblastoma. Int J Cancer. 145:763–774. 2019. View Article : Google Scholar : PubMed/NCBI

135 

Gong J, Chehrazi-Raffle A, Reddi S and Salgia R: Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: A comprehensive review of registration trials and future considerations. J Immunother Cancer. 6:82018. View Article : Google Scholar : PubMed/NCBI

136 

Issa NT, Stathias V, Schürer S and Dakshanamurthy S: Machine and deep learning approaches for cancer drug repurposing. Semin Cancer Biol. 68:132–142. 2021. View Article : Google Scholar

137 

Gin A, Dilay L, Karlowsky JA, Walkty A, Rubinstein E and Zhanel GG: Piperacillin-tazobactam: A beta-lactam/beta-lactamase inhibitor combination. Expert Rev Anti Infect Ther. 5:365–383. 2007. View Article : Google Scholar : PubMed/NCBI

138 

Maarbjerg SF, Thorsted A, Friberg LE, Nielsen EI, Wang M, Schrøder H and Albertsen BK: Continuous infusion of piperacillin-tazobactam significantly improves target attainment in children with cancer and fever. Cancer Rep (Hoboken). 5:e15852022. View Article : Google Scholar

139 

Rosanova MT, Cuellar-Pompa L and Lede R: Efficacy and safety of empirical treatment with piperacillin/tazobactan as monotherapy in episodes of neutropenia and fever in children with cancer: Systematic review and meta-analysis. Rev Chilena Infectol. 38:488–494. 2021.In Spanish. View Article : Google Scholar : PubMed/NCBI

140 

Zhong HJ, Liu LJ, Chan DS, Wang HM, Chan PW, Ma DL and Leung CH: Structure-based repurposing of FDA-approved drugs as inhibitors of NEDD8-activating enzyme. Biochimie. 102:211–215. 2014. View Article : Google Scholar : PubMed/NCBI

141 

Evison BJ, Sleebs BE, Watson KG, Phillips DR and Cutts SM: Mitoxantrone, more than just another topoisomerase II poison. Med Res Rev. 36:248–299. 2016. View Article : Google Scholar

142 

Faulds D, Balfour JA, Chrisp P and Langtry HD: Mitoxantrone. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in the chemotherapy of cancer. Drugs. 41:400–449. 1991. View Article : Google Scholar : PubMed/NCBI

143 

Taieb F, Nougayrède JP and Oswald E: Cycle inhibiting factors (cifs): Cyclomodulins that usurp the ubiquitin-dependent degradation pathway of host cells. Toxins (Basel). 3:356–368. 2011. View Article : Google Scholar : PubMed/NCBI

144 

Liu L, Ni J, Zhang J and He X: Construction and characterization of regulated cycle inhibiting factors induced upon Tet-On system in human colon cancer cell lines. Anticancer Drugs. 29:854–860. 2018. View Article : Google Scholar : PubMed/NCBI

145 

Liu L, Zhang J, Gu M, Li G, Ni J and Fan M: Antitumor effect of cycle inhibiting factor expression in colon cancer via salmonella VNP20009. Anticancer Agents Med Chem. 20:1722–1727. 2020. View Article : Google Scholar : PubMed/NCBI

146 

Wheate NJ, Walker S, Craig GE and Oun R: The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 39:8113–8127. 2010. View Article : Google Scholar : PubMed/NCBI

147 

Tchounwou PB, Dasari S, Noubissi FK, Ray P and Kumar S: Advances in our understanding of the molecular mechanisms of action of cisplatin in cancer therapy. J Exp Pharmacol. 13:303–328. 2021. View Article : Google Scholar : PubMed/NCBI

148 

Li W, Sun Y, Chen J, Jiang Z and Yang J: PEGylated cisplatin nanoparticles for treating colorectal cancer in a pH-Responsive manner. J Immunol Res. 2022:80239152022. View Article : Google Scholar : PubMed/NCBI

149 

Jones TM, Espitia CM, Ooi A, Bauman JE, Carew JS and Nawrocki ST: Targeted CUL4A inhibition synergizes with cisplatin to yield long-term survival in models of head and neck squamous cell carcinoma through a DDB2-mediated mechanism. Cell Death Dis. 13:3502022. View Article : Google Scholar : PubMed/NCBI

150 

Misra S, Zhang X, Wani NA, Sizemore S and Ray A: Both BRCA1-wild type and -mutant triple-negative breast cancers show sensitivity to the NAE inhibitor MLN4924 which is enhanced upon MLN4924 and cisplatin combination treatment. Oncotarget. 11:784–800. 2020. View Article : Google Scholar : PubMed/NCBI

151 

Zeng Y, Iv YS, Pan QH, Zhou YG and Li H: An overactive neddylation pathway serves as a therapeutic target and MLN4924 enhances the anticancer activity of cisplatin in pancreatic cancer. Oncol Lett. 18:2724–2732. 2019.PubMed/NCBI

152 

Lin WC, Kuo KL, Shi CS, Wu JT, Hsieh JT, Chang HC, Liao SM, Chou CT, Chiang CK, Chiu WS, et al: MLN4924, a Novel NEDD8-activating enzyme inhibitor, exhibits antitumor activity and enhances cisplatin-induced cytotoxicity in human cervical carcinoma: In vitro and in vivo study. Am J Cancer Res. 5:3350–3362. 2015.

153 

Ho GY, Woodward N and Coward JI: Cisplatin versus carboplatin: Comparative review of therapeutic management in solid malignancies. Crit Rev Oncol Hematol. 102:37–46. 2016. View Article : Google Scholar : PubMed/NCBI

154 

Arango D, Wilson AJ, Shi Q, Corner GA, Arañes MJ, Nicholas C, Lesser M, Mariadason JM and Augenlicht LH: Molecular mechanisms of action and prediction of response to oxaliplatin in colorectal cancer cells. Br J Cancer. 91:1931–1946. 2004. View Article : Google Scholar : PubMed/NCBI

155 

Shoji H, Takahari D, Hara H, Nagashima K, Adachi J and Boku N: A phase I study of pevonedistat plus capecitabine plus oxaliplatin in patients with advanced gastric cancer refractory to platinum (NCCH-1811). Future Sci OA. 7:FSO7212021. View Article : Google Scholar : PubMed/NCBI

156 

Liu T, Zhang X, Du L, Wang Y, Liu X, Tian H, Wang L, Li P, Zhao Y, Duan W, et al: Exosome-transmitted miR-128-3p increase chemosensitivity of oxaliplatin-resistant colorectal cancer. Mol Cancer. 18:432019. View Article : Google Scholar : PubMed/NCBI

157 

Buyana B, Naki T, Alven S and Aderibigbe BA: Nanoparticles loaded with platinum drugs for colorectal cancer therapy. Int J Mol Sci. 23:112612022. View Article : Google Scholar : PubMed/NCBI

158 

Hicks LD, Hyatt JL, Stoddard S, Tsurkan L, Edwards CC, Wadkins RM and Potter PM: Improved, selective, human intestinal carboxylesterase inhibitors designed to modulate 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin (Irinotecan; CPT-11) toxicity. J Med Chem. 52:3742–3752. 2009. View Article : Google Scholar : PubMed/NCBI

159 

Meisenberg C, Ashour ME, El-Shafie L, Liao C, Hodgson A, Pilborough A, Khurram SA, Downs JA, Ward SE and El-Khamisy SF: Epigenetic changes in histone acetylation underpin resistance to the topoisomerase I inhibitor irinotecan. Nucleic Acids Res. 45:1159–1176. 2017.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang T, Li X, Ma R, Sun J, Huang S, Sun Z and Wang M: Advancements in colorectal cancer research: Unveiling the cellular and molecular mechanisms of neddylation (Review). Int J Oncol 64: 39, 2024.
APA
Wang, T., Li, X., Ma, R., Sun, J., Huang, S., Sun, Z., & Wang, M. (2024). Advancements in colorectal cancer research: Unveiling the cellular and molecular mechanisms of neddylation (Review). International Journal of Oncology, 64, 39. https://doi.org/10.3892/ijo.2024.5627
MLA
Wang, T., Li, X., Ma, R., Sun, J., Huang, S., Sun, Z., Wang, M."Advancements in colorectal cancer research: Unveiling the cellular and molecular mechanisms of neddylation (Review)". International Journal of Oncology 64.4 (2024): 39.
Chicago
Wang, T., Li, X., Ma, R., Sun, J., Huang, S., Sun, Z., Wang, M."Advancements in colorectal cancer research: Unveiling the cellular and molecular mechanisms of neddylation (Review)". International Journal of Oncology 64, no. 4 (2024): 39. https://doi.org/10.3892/ijo.2024.5627
Copy and paste a formatted citation
x
Spandidos Publications style
Wang T, Li X, Ma R, Sun J, Huang S, Sun Z and Wang M: Advancements in colorectal cancer research: Unveiling the cellular and molecular mechanisms of neddylation (Review). Int J Oncol 64: 39, 2024.
APA
Wang, T., Li, X., Ma, R., Sun, J., Huang, S., Sun, Z., & Wang, M. (2024). Advancements in colorectal cancer research: Unveiling the cellular and molecular mechanisms of neddylation (Review). International Journal of Oncology, 64, 39. https://doi.org/10.3892/ijo.2024.5627
MLA
Wang, T., Li, X., Ma, R., Sun, J., Huang, S., Sun, Z., Wang, M."Advancements in colorectal cancer research: Unveiling the cellular and molecular mechanisms of neddylation (Review)". International Journal of Oncology 64.4 (2024): 39.
Chicago
Wang, T., Li, X., Ma, R., Sun, J., Huang, S., Sun, Z., Wang, M."Advancements in colorectal cancer research: Unveiling the cellular and molecular mechanisms of neddylation (Review)". International Journal of Oncology 64, no. 4 (2024): 39. https://doi.org/10.3892/ijo.2024.5627
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team