|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Smyth EC, Nilsson M, Grabsch HI, van
Grieken NC and Lordick F: Gastric cancer. Lancet. 396:635–648.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Joshi SS and Badgwell BD: Current
treatment and recent progress in gastric cancer. CA Cancer J Clin.
71:264–279. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
DiMasi JA, Feldman L, Seckler A and Wilson
A: Trends in risks associated with new drug development: Success
rates for investigational drugs. Clin Pharmacol Ther. 87:272–277.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Abdolahi S, Ghazvinian Z, Muhammadnejad S,
Saleh M, Asadzadeh Aghdaei H and Baghaei K: Patient-derived
xenograft (PDX) models, applications and challenges in cancer
research. J Transl Med. 20:2062022. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Liu Y, Wu W, Cai C, Zhang H, Shen H and
Han Y: Patient-derived xenograft models in cancer therapy:
Technologies and applications. Signal Transduct Target Ther.
8:1602023. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Mo S, Tang P, Luo W, Zhang L, Li Y, Hu X,
Ma X, Chen Y, Bao Y, He X, et al: Patient-derived organoids from
colorectal cancer with paired liver metastasis reveal tumor
heterogeneity and predict response to chemotherapy. Adv Sci
(Weinh). 9:e22040972022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Sachs N, de Ligt J, Kopper O, Gogola E,
Bounova G, Weeber F, Balgobind AV, Wind K, Gracanin A, Begthel H,
et al: A living biobank of breast cancer organoids captures disease
heterogeneity. Cell. 172:373–386.e10. 2018. View Article : Google Scholar
|
|
9
|
Yan HHN, Siu HC, Law S, Ho SL, Yue SSK,
Tsui WY, Chan D, Chan AS, Ma S, Lam KO, et al: A comprehensive
human gastric cancer organoid biobank captures tumor subtype
heterogeneity and enables therapeutic screening. Cell Stem Cell.
23:882–897. e11. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Corso S, Isella C, Bellomo SE, Apicella M,
Durando S, Migliore C, Ughetto S, D'Errico L, Menegon S, Moya-Rull
D, et al: A comprehensive PDX gastric cancer collection captures
cancer cell-intrinsic transcriptional MSI traits. Cancer Res.
79:5884–5896. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Rygaard J and Povlsen CO:
Heterotransplantation of a human malignant tumour to 'nude' mice.
Acta Pathol Microbiol Scand. 77:758–760. 1969. View Article : Google Scholar
|
|
12
|
Flanagan SP: 'Nude', a new hairless gene
with pleiotropic effects in the mouse. Genet Res. 8:295–309. 1966.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Bosma GC, Custer RP and Bosma MJ: A severe
combined immunodeficiency mutation in the mouse. Nature.
301:527–530. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Taghian A, Budach W, Zietman A, Freeman J,
Gioioso D, Ruka W and Suit HD: Quantitative comparison between the
transplantability of human and murine tumors into the subcutaneous
tissue of NCr/Sed-nu/nu nude and severe combined immunodeficient
mice. Cancer Res. 53:5012–5017. 1993.PubMed/NCBI
|
|
15
|
Roder J and Duwe A: The beige mutation in
the mouse selectively impairs natural killer cell function. Nature.
278:451–453. 1979. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Mosier DE, Stell KL, Gulizia RJ, Torbett
BE and Gilmore GL: Homozygous scid/scid;beige/beige mice have low
levels of spontaneous or neonatal T cell-induced B cell generation.
J Exp Med. 177:191–194. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ito M, Hiramatsu H, Kobayashi K, Suzue K,
Kawahata M, Hioki K, Ueyama Y, Koyanagi Y, Sugamura K, Tsuji K, et
al: NOD/SCID/gamma(c)(null) mouse: An excellent recipient mouse
model for engraftment of human cells. Blood. 100:3175–3182. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Okada S, Harada H, Ito T, Saito T and Suzu
S: Early development of human hematopoietic and acquired immune
systems in new born NOD/Scid/Jak3null mice intrahepatic engrafted
with cord blood-derived CD34 + cells. Int J Hematol. 88:476–482.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Shultz LD, Lyons BL, Burzenski LM, Gott B,
Chen X, Chaleff S, Kotb M, Gillies SD, King M, Mangada J, et al:
Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R
gamma null mice engrafted with mobilized human hemopoietic stem
cells. J Immunol. 174:6477–6489. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Ono A, Hattori S, Kariya R, Iwanaga S,
Taura M, Harada H, Suzu S and Okada S: Comparative study of human
hematopoietic cell engraftment into BALB/c and C57BL/6 strain of
rag-2/jak3 double-deficient mice. J Biomed Biotechnol.
2011:5397482011. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Traggiai E, Chicha L, Mazzucchelli L,
Bronz L, Piffaretti JC, Lanzavecchia A and Manz MG: Development of
a human adaptive immune system in cord blood cell-transplanted
mice. Science. 304:104–107. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Iwamoto C, Takenaka K, Urata S, Yamauchi
T, Shima T, Kuriyama T, Daitoku S, Saito Y, Miyamoto T, Iwasaki H,
et al: The BALB/c-specific polymorphic SIRPA enhances its affinity
for human CD47, inhibiting phagocytosis against human cells to
promote xenogeneic engraftment. Exp Hematol. 42:163–171.e1. 2014.
View Article : Google Scholar
|
|
23
|
Gotoh K, Kariya R, Matsuda K, Hattori S,
Vaeteewoottacharn K and Okada S: A novel EGFP-expressing nude mice
with complete loss of lymphocytes and NK cells to study tumor-host
interactions. Biosci Trends. 8:202–205. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Choi YY, Lee JE, Kim H, Sim MH, Kim KK,
Lee G, Kim HI, An JY, Hyung WJ, Kim CB, et al: Establishment and
characterisation of patient-derived xenografts as paraclinical
models for gastric cancer. Sci Rep. 6:221722016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Karalis JD, Yoon LY, Hammer STG, Hong C,
Zhu M, Nassour I, Ju MR, Xiao S, Castro-Dubon EC, Agrawal D, et al:
Lenvatinib inhibits the growth of gastric cancer patient-derived
xenografts generated from a heterogeneous population. J Transl Med.
20:1162022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Yoshida GJ: Applications of
patient-derived tumor xenograft models and tumor organoids. J
Hematol Oncol. 13:42020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Mosier DE, Gulizia RJ, Baird SM and Wilson
DB: Transfer of a functional human immune system to mice with
severe combined immunodeficiency. Nature. 335:256–259. 1988.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Lan P, Tonomura N, Shimizu A, Wang S and
Yang YG: Reconstitution of a functional human immune system in
immunodeficient mice through combined human fetal thymus/liver and
CD34+ cell transplantation. Blood. 108:487–492. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zhu M, Zhang P, Yu S, Tang C, Wang Y, Shen
Z, Chen W, Liu T and Cui Y: Targeting ZFP64/GAL-1 axis promotes
therapeutic effect of nab-paclitaxel and reverses immunosuppressive
microenvironment in gastric cancer. J Exp Clin Cancer Res.
41:142022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hoffman RM: Patient-derived orthotopic
xenografts: Better mimic of metastasis than subcutaneous
xenografts. Nat Rev Cancer. 15:451–452. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Furukawa T, Kubota T, Watanabe M, Kitajima
M and Hoffman RM: Orthotopic transplantation of histologically
intact clinical specimens of stomach cancer to nude mice:
Correlation of metastatic sites in mouse and individual patient
donors. Int J Cancer. 53:608–612. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Li W, Ng JM, Wong CC, Ng EKW and Yu J:
Molecular alterations of cancer cell and tumour microenvironment in
metastatic gastric cancer. Oncogene. 37:4903–4920. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Tiberio GAM, Coniglio A, Marchet A,
Marrelli D, Giacopuzzi S, Baiocchi L, Roviello F, de Manzoni G,
Nitti D and Giulini SM: Metachronous hepatic metastases from
gastric carcinoma: A multicentric survey. Eur J Surg Oncol.
35:486–491. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kang W, Maher L, Michaud M, Bae SW, Kim S,
Lee HS, Im SA, Yang HK and Lee C: Development of a novel orthotopic
gastric cancer mouse model. Biol Proced Online. 23:12021.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Hollingshead MG, Alley MC, Camalier RF,
Abbott BJ, Mayo JG, Malspeis L and Grever MR: In vivo cultivation
of tumor cells in hollow fibers. Life Sci. 57:131–141. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhang F, Wang W, Long Y, Liu H, Cheng J,
Guo L, Li R, Meng C, Yu S, Zhao Q, et al: Characterization of drug
responses of mini patient-derived xenografts in mice for predicting
cancer patient clinical therapeutic response. Cancer Commun (Lond).
38:602018.PubMed/NCBI
|
|
37
|
Ge Y, Zhang X, Liang W, Tang C, Gu D, Shi
J and Wei X: OncoVee™-MiniPDX-guided anticancer treatment for
gastric cancer patients with synchronous liver metastases: A
retrospective cohort analysis. Front Oncol. 11:7573832022.
View Article : Google Scholar
|
|
38
|
Wang J, Huang J, Wang H, Yang W, Bai Q,
Yao Z, Li Q, Lv H, Chen B, Nie C, et al: Personalized treatment of
advanced gastric cancer guided by the MiniPDX model. J Oncol.
2022:19877052022.PubMed/NCBI
|
|
39
|
Zhu X, Xu X, Zhang B, Dong Y, Gong S, Gong
T, Zhang F and Jin C: Individualized therapy based on the
combination of mini-PDX and NGS for a patient with metastatic
AFP-producing and HER-2 amplified gastric cancer. Oncol Lett.
24:4112022. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Zhu X, Zhu Y, Chen N, Tang C and Shi J:
The drugs screened by OncoVeeTM-Mini-PDX have
significantly benefited the patient with HER2-positive advanced
gastric cancer. J Oncol Pharm Pract. 28:1435–1440. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhang B, Li Y, Zhu X, Chen Z, Huang X,
Gong T, Zheng W, Bi Z, Zhu C, Qian J, et al:
OncoVee™-MiniPDX-guided anticancer treatment for HER2-negative
intermediate-advanced gastric cancer patients: A single-arm,
open-label phase I clinical study. Discov Oncol. 14:462023.
View Article : Google Scholar
|
|
42
|
Sato T, Vries RG, Snippert HJ, van de
Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters
PJ and Clevers H: Single Lgr5 stem cells build crypt-villus
structures in vitro without a mesenchymal niche. Nature.
459:262–265. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Mun SJ, Ryu JS, Lee MO, Son YS, Oh SJ, Cho
HS, Son MY, Kim DS, Kim SJ, Yoo HJ, et al: Generation of expandable
human pluripotent stem cell-derived hepatocyte-like liver
organoids. J Hepatol. 71:970–985. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Homan KA, Gupta N, Kroll KT, Kolesky DB,
Skylar-Scott M, Miyoshi T, Mau D, Valerius MT, Ferrante T,
Bonventre JV, et al: Flow-enhanced vascularization and maturation
of kidney organoids in vitro. Nat Methods. 16:255–262. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kim M, Mun H, Sung CO, Cho EJ, Jeon HJ,
Chun SM, Jung DJ, Shin TH, Jeong GS, Kim DK, et al: Patient-derived
lung cancer organoids as in vitro cancer models for therapeutic
screening. Nat Commun. 10:39912019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Driehuis E, van Hoeck A, Moore K, Kolders
S, Francies HE, Gulersonmez MC, Stigter ECA, Burgering B, Geurts V,
Gracanin A, et al: Pancreatic cancer organoids recapitulate disease
and allow personalized drug screening. Proc Natl Acad Sci USA.
116:26580–26590. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Barker N, Huch M, Kujala P, van de
Wetering M, Snippert HJ, van Es JH, Sato T, Stange DE, Begthel H,
van den Born M, et al: Lgr5(+ve) stem cells drive self-renewal in
the stomach and build long-lived gastric units in vitro. Cell Stem
Cell. 6:25–36. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Stange DE, Koo BK, Huch M, Sibbel G, Basak
O, Lyubimova A, Kujala P, Bartfeld S, Koster J, Geahlen JH, et al:
Differentiated Troy+ chief cells act as reserve stem cells to
generate all lineages of the stomach epithelium. Cell. 155:357–368.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Bartfeld S, Bayram T, van de Wetering M,
Huch M, Begthel H, Kujala P, Vries R, Peters PJ and Clevers H: In
vitro expansion of human gastric epithelial stem cells and their
responses to bacterial infection. Gastroenterology. 148:126–136.e6.
2015. View Article : Google Scholar
|
|
50
|
Vlachogiannis G, Hedayat S, Vatsiou A,
Jamin Y, Fernández-Mateos J, Khan K, Lampis A, Eason K, Huntingford
I, Burke R, et al: Patient-derived organoids model treatment
response of metastatic gastrointestinal cancers. Science.
359:920–926. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Nanki K, Toshimitsu K, Takano A, Fujii M,
Shimokawa M, Ohta Y, Matano M, Seino T, Nishikori S, Ishikawa K, et
al: Divergent routes toward Wnt and R-spondin niche independency
during human gastric carcinogenesis. Cell. 174:856–869.e17. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Seidlitz T, Merker SR, Rothe A, Zakrzewski
F, von Neubeck C, Grützmann K, Sommer U, Schweitzer C, Schölch S,
Uhlemann H, et al: Human gastric cancer modelling using organoids.
Gut. 68:207–217. 2019. View Article : Google Scholar
|
|
53
|
Jiang F and Doudna JA: CRISPR-Cas9
structures and mechanisms. Annu Rev Biophys. 46:505–529. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Mullen J, Kato S, Sicklick JK and Kurzrock
R: Targeting ARID1A mutations in cancer. Cancer Treat Rev.
100:1022872021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Lo YH, Kolahi KS, Du Y, Chang CY,
Krokhotin A, Nair A, Sobba WD, Karlsson K, Jones SJ, Longacre TA,
et al: A CRISPR/Cas9-engineered ARID1A-deficient human gastric
cancer organoid model reveals essential and nonessential modes of
oncogenic transformation. Cancer Discov. 11:1562–1581. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kumar V, Ramnarayanan K, Sundar R,
Padmanabhan N, Srivastava S, Koiwa M, Yasuda T, Koh V, Huang KK,
Tay ST, et al: Single-cell atlas of lineage states, tumor
microenvironment, and subtype-specific expression programs in
gastric cancer. Cancer Discov. 12:670–691. 2022. View Article : Google Scholar
|
|
57
|
Yuan Y, Jiang YC, Sun CK and Chen QM: Role
of the tumor microenvironment in tumor progression and the clinical
applications (review). Oncol Rep. 35:2499–3515. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Chen DS and Mellman I: Elements of cancer
immunity and the cancer-immune set point. Nature. 541:321–330.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Pardoll DM: The blockade of immune
checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Kim JW, Nam KH, Ahn SH, Park DJ, Kim HH,
Kim SH, Chang H, Lee JO, Kim YJ, Lee HS, et al: Prognostic
implications of immunosuppressive protein expression in tumors as
well as immune cell infiltration within the tumor microenvironment
in gastric cancer. Gastric Cancer. 19:42–52. 2016. View Article : Google Scholar
|
|
61
|
Muro K, Chung HC, Shankaran V, Geva R,
Catenacci D, Gupta S, Eder JP, Golan T, Le DT, Burtness B, et al:
Pembrolizumab for patients with PD-L1-positive advanced gastric
cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial.
Lancet Oncol. 17:717–726. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Chakrabarti J, Koh V, So JBY, Yong WP and
Zavros Y: A preclinical human-derived autologous gastric cancer
organoid/immune cell co-culture model to predict the efficacy of
targeted therapies. J Vis Exp. 2021:e614432021.
|
|
63
|
Chakrabarti J, Koh V, Steele N, Hawkins J,
Ito Y, Merchant JL, Wang J, Helmrath MA, Ahmad SA, So JBY, et al:
Disruption of Her2-induced PD-L1 inhibits tumor cell immune evasion
in patient-derived gastric cancer organoids. Cancers (Basel).
13:61582021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Koh V, Chakrabarti J, Torvund M, Steele N,
Hawkins JA, Ito Y, Wang J, Helmrath MA, Merchant JL, Ahmed SA, et
al: Hedgehog transcriptional effector GLI mediates mTOR-Induced
PD-L1 expression in gastric cancer organoids. Cancer Lett.
518:59–71. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Lawson DA, Kessenbrock K, Davis RT,
Pervolarakis N and Werb Z: Tumour heterogeneity and metastasis at
single-cell resolution. Nat Cell Biol. 20:1349–1360. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Jiang H, Yu D, Yang P, Guo R, Kong M, Gao
Y, Yu X, Lu X and Fan X: Revealing the transcriptional
heterogeneity of organ-specific metastasis in human gastric cancer
using single-cell RNA sequencing. Clin Transl Med. 12:e7302022.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Li X, Sun Z, Peng G, Xiao Y, Guo J, Wu B,
Li X, Zhou W, Li J, Li Z, et al: Single-cell RNA sequencing reveals
a pro-invasive cancer-associated fibroblast subgroup associated
with poor clinical outcomes in patients with gastric cancer.
Theranostics. 12:620–638. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Qian Y, Zhai E, Chen S, Liu Y, Ma Y, Chen
J, Liu J, Qin C, Cao Q, Chen J and Cai S: Single-cell RNA-seq
dissecting heterogeneity of tumor cells and comprehensive dynamics
in tumor microenvironment during lymph nodes metastasis in gastric
cancer. Int J Cancer. 151:1367–1381. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Lu Z, Zhong A, Liu H, Zhang M, Chen X, Pan
X, Wang M, Deng X, Gao L, Zhao L, et al: Dissecting the genetic and
microenvironmental factors of gastric tumorigenesis in mice. Cell
Rep. 41:1114822022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Venkatasamy A, Guerin E, Reichardt W,
Devignot V, Chenard MP, Miguet L, Romain B, Jung AC, Gross I,
Gaiddon C and Mellitzer G: Morpho-functional analysis of
patient-derived xenografts reveals differential impact of gastric
cancer and chemotherapy on the tumor ecosystem, affecting immune
check point, metabolism, and sarcopenia. Gastric Cancer.
26:220–233. 2023. View Article : Google Scholar :
|
|
71
|
Wang H, Lu J, Tang J, Chen S, He K, Jiang
X, Jiang W and Teng L: Establishment of patient-derived gastric
cancer xenografts: a useful tool for preclinical evaluation of
targeted therapies involving alterations in HER-2, MET and FGFR2
signaling pathways. BMC Cancer. 17:1912017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Chen Z, Huang W, Tian T, Zang W, Wang J,
Liu Z, Li Z, Lai Y, Jiang Z, Gao J and Shen L: Characterization and
validation of potential therapeutic targets based on the molecular
signature of patient-derived xenografts in gastric cancer. J
Hematol Oncol. 11:202018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Liu H, Shin SH, Chen H, Liu T, Li Z, Hu Y,
Liu F, Zhang C, Kim DJ, Liu K and Dong Z: CDK12 and PAK2 as novel
therapeutic targets for human gastric cancer. Theranostics.
10:6201–6215. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Nagaraju GP, Srivani G, Dariya B,
Chalikonda G, Farran B, Behera SK, Alam A and Kamal MA:
Nanoparticles guided drug delivery and imaging in gastric cancer.
Semin Cancer Biol. 69:69–76. 2021. View Article : Google Scholar
|
|
75
|
Zou J, Wang S, Chai N, Yue H, Ye P, Guo P,
Li F, Wei B, Ma G, Wei W and Linghu E: Construction of gastric
cancer patient-derived organoids and their utilization in a
comparative study of clinically used paclitaxel nanoformulations. J
Nanobiotechnology. 20:2332022. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Huang KH, Chen MH, Fang WL, Lin CH, Chao
Y, Lo SS, Li AF, Wu CW and Shyr YM: The clinicopathological
characteristics and genetic alterations of signet-ring cell
carcinoma in gastric cancer. Cancers (Basel). 12:23182020.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Li G, Ma S, Wu Q, Kong D, Yang Z, Gu Z,
Feng L, Zhang K, Cheng S, Tian Y and Zhang W: Establishment of
gastric signet ring cell carcinoma organoid for the therapeutic
drug testing. Cell Death Discov. 8:62022. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Bromberg JF, Wrzeszczynska MH, Devgan G,
Zhao Y, Pestell RG, Albanese C and Darnell JE Jr: Stat3 as an
oncogene. Cell. 98:295–303. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Ouyang S, Li H, Lou L, Huang Q, Zhang Z,
Mo J, Li M, Lu J, Zhu K, Chu Y, et al: Inhibition of
STAT3-ferroptosis negative regulatory axis suppresses tumor growth
and alleviates chemoresistance in gastric cancer. Redox Biol.
52:1023172022. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ukai S, Honma R, Sakamoto N, Yamamoto Y,
Pham QT, Harada K, Takashima T, Taniyama D, Asai R, Fukada K, et
al: Molecular biological analysis of 5-FU-resistant gastric cancer
organoids; KHDRBS3 contributes to the attainment of features of
cancer stem cell. Oncogene. 39:7265–7278. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Harada K, Sakamoto N, Ukai S, Yamamoto Y,
Pham QT, Taniyama D, Honma R, Maruyama R, Takashima T, Ota H, et
al: Establishment of oxaliplatin-resistant gastric cancer
organoids: Importance of myoferlin in the acquisition of
oxaliplatin resistance. Gastric Cancer. 24:1264–1277. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Li J, Davies BR, Han S, Zhou M, Bai Y,
Zhang J, Xu Y, Tang L, Wang H, Liu YJ, et al: The AKT inhibitor
AZD5363 is selectively active in PI3KCA mutant gastric cancer, and
sensitizes a patient-derived gastric cancer xenograft model with
PTEN loss to Taxotere. J Transl Med. 11:2412013. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhang M, Li B, Liao H, Chen Z, Huang W,
Yang J, Ge S, Li Z, Shen L, Zhang C and Gao J: Targeting HER3 or
MEK overcomes acquired trastuzumab resistance in HER2-positive
gastric cancer-derived xenograft. Cell Death Discov. 8:4782022.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Yin Y, Shen Q, Zhang P, Tao R, Chang W, Li
R, Xie G, Liu W, Zhang L, Kapoor P, et al: Chk1 inhibition
potentiates the therapeutic efficacy of PARP inhibitor BMN673 in
gastric cancer. Am J Cancer Res. 7:473–483. 2017.PubMed/NCBI
|
|
85
|
Jiang H, Shi Z, Wang P, Wang C, Yang L, Du
G, Zhang H, Shi B, Jia J, Li Q, et al: Claudin18.2-specific
chimeric antigen receptor engineered T cells for the treatment of
gastric cancer. J Natl Cancer Inst. 111:409–418. 2019. View Article : Google Scholar
|
|
86
|
Wei W, Zhang D, Zhang Y, Li L, Jin Y, An
S, Lv C, Zhao H, Wang C, Huang Y, et al: Development and comparison
of 68Ga/18F/64Cu-labeled nanobody
tracers probing Claudin18.2. Mol Ther Oncolytics. 27:305–314. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Gavine PR, Ren Y, Han L, Lv J, Fan S,
Zhang W, Xu W, Liu YJ, Zhang T, Fu H, et al: Volitinib, a potent
and highly selective c-Met inhibitor, effectively blocks c-Met
signaling and growth in c-MET amplified gastric cancer
patient-derived tumor xenograft models. Mol Oncol. 9:323–333. 2015.
View Article : Google Scholar
|
|
88
|
Gao H, Korn JM, Ferretti S, Monahan JE,
Wang Y, Singh M, Zhang C, Schnell C, Yang G, Zhang Y, et al:
High-throughput screening using patient-derived tumor xenografts to
predict clinical trial drug response. Nat Med. 21:1318–1325. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Kim J, Park KE, Jeong YS, Kim Y, Park H,
Nam JH, Jung K, Son WS, Jung HS, Lee JH, et al: Therapeutic
efficacy of ABN401, a highly potent and selective MET inhibitor,
based on diagnostic biomarker test in MET-addicted cancer. Cancers
(Basel). 12:15752020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Lu J, Li G, He K, Jiang W, Xu C, Li Z,
Wang H, Wang W, Wang H, Teng X and Teng L: Luteolin exerts a marked
antitumor effect in cMet-overexpressing patient-derived tumor
xenograft models of gastric cancer. J Transl Med. 13:422015.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Wu QN, Liao YF, Lu YX, Wang Y, Lu JH, Zeng
ZL, Huang QT, Sheng H, Yun JP, Xie D, et al: Pharmacological
inhibition of DUSP6 suppresses gastric cancer growth and metastasis
and overcomes cisplatin resistance. Cancer Lett. 412:243–255. 2018.
View Article : Google Scholar
|
|
92
|
Wang CJ, Tong PJ and Zhu MY: The
combinational therapy of trastuzumab and cetuximab inhibits tumor
growth in a patient-derived tumor xenograft model of gastric
cancer. Clin Transl Oncol. 18:507–514. 2016. View Article : Google Scholar
|
|
93
|
Yu X, Chen Y, Lu J, He K, Chen Y, Ding Y,
Jin K, Wang H, Zhang H, Wang H and Teng L: Patient-derived
xenograft models for gastrointestinal tumors: A single-center
retrospective study. Front Oncol. 12:9851542022. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Park JE, Jin MH, Hur M, Nam AR, Bang JH,
Won J, Oh DY and Bang YJ: GC1118, a novel anti-EGFR antibody, has
potent KRAS mutation-independent antitumor activity compared with
cetuximab in gastric cancer. Gastric Cancer. 22:932–940. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zhou JT, Liu JH, Song TT, Ma B, Amidula N
and Bai C: EGLIF-CAR-T cells secreting PD-1 blocking antibodies
significantly mediate the elimination of gastric cancer. Cancer
Manag Res. 12:8893–8902. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Ughetto S, Migliore C, Pietrantonio F,
Apicella M, Petrelli A, D'Errico L, Durando S, Moya-Rull D, Bellomo
SE, Rizzolio S, et al: Personalized therapeutic strategies in
HER2-driven gastric cancer. Gastric Cancer. 24:897–912. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Chen Z, Liu Z, Zhang M, Huang W, Li Z,
Wang S, Zhang C, Dong B, Gao J and Shen L: EPHA2 blockade reverses
acquired resistance to afatinib induced by EPHA2-mediated MAPK
pathway activation in gastric cancer cells and avatar mice. Int J
Cancer. 145:2440–2449. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Lau WM, Teng E, Huang KK, Tan JW, Das K,
Zang Z, Chia T, The M, Kono K, Yong WP, et al: Acquired resistance
to FGFR inhibitor in diffuse-type gastric cancer through an
AKT-independent PKC-mediated phosphorylation of GSK3β. Mol Cancer
Ther. 17:232–242. 2018. View Article : Google Scholar
|
|
99
|
McSheehy PMJ, Forster-Gross N, El Shemerly
M, Bachmann F, Roceri M, Hermann N, Spickermann J, Kellenberger L
and Lane HA: The fibroblast growth factor receptor inhibitor,
derazantinib, has strong efficacy in human gastric tumor models and
synergizes with paclitaxel in vivo. Anticancer Drugs. 34:532–543.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Li Y, Fan Y, Xu J, Huo L, Scott AW, Jin J,
Yang B, Shao S, Ma L, Wang Y, et al: GRK3 is a poor prognosticator
and serves as a therapeutic target in advanced gastric
adenocarcinoma. J Exp Clin Cancer Res. 41:2572022. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Shi J, Li F, Yao X, Mou T, Xu Z, Han Z,
Chen S, Li W, Yu J, Qi X, et al: The HER4-YAP1 axis promotes
trastuzumab resistance in HER2-positive gastric cancer by inducing
epithelial and mesenchymal transition. Oncogene. 37:3022–3038.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Ogitani Y, Aida T, Hagihara K, Yamaguchi
J, Ishii C, Harada N, Soma M, Okamoto H, Oitate M, Arakawa S, et
al: DS-8201a, a novel HER2-targeting ADC with a novel DNA
topoisomerase i inhibitor, demonstrates a promising antitumor
efficacy with differentiation from T-DM1. Clin Cancer Res.
22:5097–5108. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Chen Z, Yuan J, Xu Y, Zhang C, Li Z, Gong
J, Li Y, Shen L and Gao J: From AVATAR mice to patients: RC48-ADC
exerted promising efficacy in advanced gastric cancer with HER2
expression. Front Pharmacol. 12:7579942022. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Shin SH, Park YH, Park SS, Ju EJ, Park J,
Ko EJ, Bae DJ, Kim SY, Chung CW, Song HY, et al: An elaborate new
linker system significantly enhances the efficacy of an
HER2-antibody-drug conjugate against refractory HER2-positive
cancers. Adv Sci (Weinh). 8:e21024142021. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Wang Q, Zhang X, Shen E, Gao J, Cao F,
Wang X, Li Y, Tian T, Wang J, Chen Z, et al: The anti-HER3 antibody
in combination with trastuzumab exerts synergistic antitumor
activity in HER2-positive gastric cancer. Cancer Lett. 380:20–30.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Li M, Duan L, Wu W, Li W, Zhao L, Li A, Lu
X, He X, Dong Z, Liu K and Jiang Y: Vortioxetine hydrobromide
inhibits the growth of gastric cancer cells in vivo and in vitro by
targeting JAK2 and SRC. Oncogenesis. 12:242023. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Wang Z, Chen Y, Li X, Zhang Y, Zhao X,
Zhou H, Lu X, Zhao L, Yuan Q, Shi Y, et al: Tegaserod maleate
suppresses the growth of gastric cancer in vivo and in vitro by
targeting MEK1/2. Cancers (Basel). 14:35922022. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Zhang Q, Liu G, Liu J, Yang M, Fu J, Liu
G, Li D, Gu Z, Zhang L, Pan Y, et al: The antitumor capacity of
mesothelin-CAR-T cells in targeting solid tumors in mice. Mol Ther
Oncolytics. 20:556–568. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Cao B, Liu M, Huang J, Zhou J, Li J, Lian
H, Huang W, Guo Y, Yang S, Lin L, et al: Development of
mesothelin-specific CAR NK-92 cells for the treatment of gastric
cancer. Int J Biol Sci. 17:3850–3861. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Fukamachi H, Kim SK, Koh J, Lee HS, Sasaki
Y, Yamashita K, Nishikawaji T, Shimada S, Akiyama Y, Byeon SJ, et
al: A subset of diffuse-type gastric cancer is susceptible to mTOR
inhibitors and checkpoint inhibitors. J Exp Clin Cancer Res.
38:1272019. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Petrelli A, Rizzolio S, Pietrantonio F,
Bellomo SE, Benelli M, De Cecco L, Romagnoli D, Berrino E, Orrù C,
Ribisi S, et al: BRCA2 germline mutations identify gastric cancers
responsive to PARP inhibitors. Cancer Res. 83:1699–1710. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Khalafi S, Zhu S, Khurana R, Lohse I,
Giordano S, Corso S, Al-Ali H, Brothers SP, Wahlestedt C, Schürer S
and El-Rifai W: A novel strategy for combination of clofarabine and
pictilisib is synergistic in gastric cancer. Transl Oncol.
15:1012602022. View Article : Google Scholar
|
|
113
|
Guan X, Yang J, Wang W, Zhao B, Hu S, Yu
D, Yuan L, Shi Y, Xu J, Dong J, et al: Dual inhibition of MYC and
SLC39A10 by a novel natural product STAT3 inhibitor derived from
Chaetomium globosum suppresses tumor growth and metastasis in
gastric cancer. Pharmacol Res. 189:1067032023. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
DiPeri TP, Evans KW, Raso MG, Zhao M,
Rizvi YQ, Zheng X, Wang B, Kirby BP, Kong K, Kahle M, et al:
Adavosertib enhances antitumor activity of trastuzumab deruxtecan
in HER2-expressing Cancers. Clin Cancer Res. 29:4385–4398. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Ajani JA, Xu Y, Huo L, Wang R, Li Y, Wang
Y, Pizzi MP, Scott A, Harada K, Ma L, et al: YAP1 mediates gastric
adenocarcinoma peritoneal metastases that are attenuated by YAP1
inhibition. Gut. 70:55–66. 2021. View Article : Google Scholar
|