You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
Venø MT, Hansen TB, Venø ST, Clausen BH, Grebing M, Finsen B, Holm IE and Kjems J: Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol. 16:2452015. View Article : Google Scholar : PubMed/NCBI | |
|
Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, et al: Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 58:870–885. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Guo JU, Agarwal V, Guo H and Bartel DP: Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 15:4092014. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lasda E and Parker R: Circular RNAs: Diversity of form and function. RNA. 20:1829–1842. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Piwecka M, Glažar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, Filipchyk A, Klironomos F, Cerda Jara CA, Fenske P, et al: Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. 357:eaam85262017. View Article : Google Scholar : PubMed/NCBI | |
|
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA and Goodall GJ: The RNA binding protein quaking regulates formation of circRNAs. Cell. 160:1125–1134. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zang J, Lu D and Xu A: The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function. J Neurosci Res. 98:87–97. 2020. View Article : Google Scholar | |
|
Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al: Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell. 66:22–37.e9. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yang F, Hu A, Li D, Wang J, Guo Y, Liu Y, Li H, Chen Y, Wang X, Huang K, et al: Circ-HuR suppresses HuR expression and gastric cancer progression by inhibiting CNBP transactivation. Mol Cancer. 18:1582019. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, et al: Novel Role of FBXW7 Circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst. 110:304–315. 2018. View Article : Google Scholar : | |
|
Chen CY and Sarnow P: Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science. 268:415–417. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, et al: Translation of CircRNAs. Mol Cell. 66:9–21.e7. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27:626–641. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and Kadener S: circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 56:55–66. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Chao CW, Chan DC, Kuo A and Leder P: The mouse formin (Fmn) gene: Abundant circular RNA transcripts and gene-targeted deletion analysis. Mol Med. 4:614–628. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Gualandi F, Trabanelli C, Rimessi P, Calzolari E, Toffolatti L, Patarnello T, Kunz G, Muntoni F and Ferlini A: Multiple exon skipping and RNA circularisation contribute to the severe phenotypic expression of exon 5 dystrophin deletion. J Med Genet. 40:e1002003. View Article : Google Scholar : PubMed/NCBI | |
|
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Thrift AP and El-Serag HB: Burden of gastric cancer. Clin Gastroenterol Hepatol. 18:534–542. 2020. View Article : Google Scholar | |
|
Martínez-Bosch N, Cristóbal H, Iglesias M, Gironella M, Barranco L, Visa L, Calafato D, Jiménez-Parrado S, Earl J, Carrato A, et al: Soluble AXL is a novel blood marker for early detection of pancreatic ductal adenocarcinoma and differential diagnosis from chronic pancreatitis. EBioMedicine. 75:1037972022. View Article : Google Scholar : PubMed/NCBI | |
|
Abe T, Blackford AL, Tamura K, Ford M, McCormick P, Chuidian M, Almario JA, Borges M, Lennon AM, Shin EJ, et al: Deleterious germline mutations are a risk factor for neoplastic progression among high-risk individuals undergoing pancreatic surveillance. J Clin Oncol. 37:1070–1080. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Vincent A, Herman J, Schulick R, Hruban RH and Goggins M: Pancreatic cancer. Lancet. 378:607–620. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Thanikachalam K and Khan G: Colorectal cancer and nutrition. Nutrients. 11:1642019. View Article : Google Scholar : PubMed/NCBI | |
|
Li R, Jiang J, Shi H, Qian H, Zhang X and Xu W: CircRNA: A rising star in gastric cancer. Cell Mol Life Sci. 77:1661–1680. 2020. View Article : Google Scholar | |
|
Li J, Xu Q, Huang ZJ, Mao N, Lin ZT, Cheng L, Sun B and Wang G: CircRNAs: A new target for the diagnosis and treatment of digestive system neoplasms. Cell Death Dis. 12:2052021. View Article : Google Scholar : PubMed/NCBI | |
|
Dragomir MP, Kopetz S, Ajani JA and Calin GA: Non-coding RNAs in GI cancers: From cancer hallmarks to clinical utility. Gut. 69:748–763. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Salzman J, Chen RE, Olsen MN, Wang PL and Brown PO: Cell-type specific features of circular RNA expression. PLoS Genet. 9:e10037772013. View Article : Google Scholar : PubMed/NCBI | |
|
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013. View Article : Google Scholar : | |
|
Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL and Yang L: Complementary sequence-mediated exon circularization. Cell. 159:134–147. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang PF, Gao C, Huang XY, Lu JC, Guo XJ, Shi GM, Cai JB and Ke AW: Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer. 19:1102020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou C, Liu HS, Wang FW, Hu T, Liang ZX, Lan N, He XW, Zheng XB, Wu XJ, Xie D, et al: circCAMSAP1 promotes tumor growth in colorectal cancer via the miR-328-5p/E2F1 axis. Mol Ther. 28:914–928. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Wang S, Wang H, Cao J, Huang X, Chen Z, Xu P, Sun G, Xu J, Lv J and Xu Z: Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer. 18:202019. View Article : Google Scholar : PubMed/NCBI | |
|
Kristensen LS, Okholm T, Venø MT and Kjems J: Circular RNAs are abundantly expressed and upregulated during human epidermal stem cell differentiation. RNA Biol. 15:280–291. 2018. View Article : Google Scholar : | |
|
Yang F, Fang E, Mei H, Chen Y, Li H, Li D, Song H, Wang J, Hong M, Xiao W, et al: Cis-Acting circ-CTNNB1 promotes β-catenin signaling and cancer progression via DDX3-mediated transactivation of YY1. Cancer Res. 79:557–571. 2019. View Article : Google Scholar | |
|
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P and Yang BB: Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44:2846–2858. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Marques R, Lacerda R and Romão L: Internal ribosome entry site (IRES)-mediated translation and its potential for novel mRNA-based therapy development. Biomedicines. 10:18652022. View Article : Google Scholar : PubMed/NCBI | |
|
Fan X, Yang Y, Chen C and Wang Z: Pervasive translation of circular RNAs driven by short IRES-like elements. Nat Commun. 13:37512022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen LL: The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 21:475–490. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng X, Chen L, Zhou Y, Wang Q, Zheng Z, Xu B, Wu C, Zhou Q, Hu W, Wu C and Jiang J: A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Mol Cancer. 18:472019. View Article : Google Scholar : PubMed/NCBI | |
|
Kelly S, Greenman C, Cook PR and Papantonis A: Exon skipping is correlated with exon circularization. J Mol Biol. 427:2414–2417. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hu X, Wu D, He X, Zhao H, He Z, Lin J, Wang K, Wang W, Pan Z, Lin H and Wang M: circGSK3β promotes metastasis in esophageal squamous cell carcinoma by augmenting β-catenin signaling. Mol Cancer. 18:1602019. View Article : Google Scholar | |
|
Shi Y, Fang N, Li Y, Guo Z, Jiang W, He Y, Ma Z and Chen Y: Circular RNA LPAR3 sponges microRNA-198 to facilitate esophageal cancer migration, invasion, and metastasis. Cancer Sci. 111:2824–2836. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu ZH, Yang SZ, Li WY, Dong SY, Zhou SY and Xu S: circRNA_141539 can serve as an oncogenic factor in esophageal squamous cell carcinoma by sponging miR-4469 and activating CDK3 gene. Aging (Albany NY). 13:12179–12193. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong R, Chen Z, Mo T, Li Z and Zhang P: Potential role of circPVT1 as a proliferative factor and treatment target in esophageal carcinoma. Cancer Cell Int. 19:2672019. View Article : Google Scholar : PubMed/NCBI | |
|
Li RC, Ke S, Meng FK, Lu J, Zou XJ, He ZG, Wang WF and Fang MH: CiRS-7 promotes growth and metastasis of esophageal squamous cell carcinoma via regulation of miR-7/HOXB13. Cell Death Dis. 9:8382018. View Article : Google Scholar : PubMed/NCBI | |
|
Shi Y, Guo Z, Fang N, Jiang W, Fan Y, He Y, Ma Z and Chen Y: hsa_circ_0006168 sponges miR-100 and regulates mTOR to promote the proliferation, migration and invasion of esophageal squamous cell carcinoma. Biomed Pharmacother. 117:1091512019. View Article : Google Scholar : PubMed/NCBI | |
|
Qu F, Wang L, Wang C, Yu L, Zhao K and Zhong H: Circular RNA circ_0006168 enhances Taxol resistance in esophageal squamous cell carcinoma by regulating miR-194-5p/JMJD1C axis. Cancer Cell Int. 21:2732021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou S, Guo Z, Zhou C, Zhang Y and Wang S: circ_NRIP1 is oncogenic in malignant development of esophageal squamous cell carcinoma (ESCC) via miR-595/SEMA4D axis and PI3K/AKT pathway. Cancer Cell Int. 21:2502021. View Article : Google Scholar : PubMed/NCBI | |
|
Gu L, Sang Y, Nan X, Zheng Y, Liu F, Meng L, Sang M and Shan B: circCYP24A1 facilitates esophageal squamous cell carcinoma progression through binding PKM2 to regulate NF-kappaB-induced CCL5 secretion. Mol Cancer. 21:2172022. View Article : Google Scholar | |
|
Wang C, Zhou M, Zhu P, Ju C, Sheng J, Du D, Wan J, Yin H, Xing Y, Li H, et al: IGF2BP2-induced circRUNX1 facilitates the growth and metastasis of esophageal squamous cell carcinoma through miR-449b-5p/FOXP3 axis. J Exp Clin Cancer Res. 41:3472022. View Article : Google Scholar : PubMed/NCBI | |
|
Meng F, Zhang X, Wang Y, Lin J, Tang Y, Zhang G, Qiu B, Zeng X, Liu W and He X: Hsa_circ_0021727 (circ-CD44) promotes ESCC progression by targeting miR-23b-5p to activate the TAB1/NFκB pathway. Cell Death Dis. 14:92023. View Article : Google Scholar | |
|
Yao W, Jia X, Zhu L, Xu L, Zhang Q, Xia T and Wei L: Exosomal circ_0026611 contributes to lymphangiogenesis by reducing PROX1 acetylation and ubiquitination in human lymphatic endothelial cells (HLECs). Cell Mol Biol Lett. 28:132023. View Article : Google Scholar : PubMed/NCBI | |
|
Luo J, Tian Z, Zhou Y, Xiao Z, Park SY, Sun H, Zhuang T, Wang Y, Li P and Zhao X: CircABCA13 acts as a miR-4429 sponge to facilitate esophageal squamous cell carcinoma development by stabilizing SRXN1. Cancer Sci. 114:2835–2847. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Ma K, Cheng Y, Abraham JM, Liu X, Ke X, Wang Z and Meltzer SJ: Synthetic circular multi-miR sponge simultaneously inhibits miR-21 and miR-93 in esophageal carcinoma. Lab Invest. 99:1442–1453. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Song X, Wang Y, Yin X, Liang Y, Zhang T, Xu L, Jiang F and Dong G: CircCNTNAP3-TP53-positive feedback loop suppresses malignant progression of esophageal squamous cell carcinoma. Cell Death Dis. 11:10102020. View Article : Google Scholar : PubMed/NCBI | |
|
He Y, Mingyan E, Wang C, Liu G, Shi M and Liu S: CircVRK1 regulates tumor progression and radioresistance in esophageal squamous cell carcinoma by regulating miR-624-3p/PTEN/PI3K/AKT signaling pathway. Int J Biol Macromol. 125:116–123. 2019. View Article : Google Scholar | |
|
Meng L, Zheng Y, Liu S, Ju Y, Ren S, Sang Y, Zhu Y, Gu L, Liu F, Zhao Y, et al: ZEB1 represses biogenesis of circ-DOCK5 to facilitate metastasis in esophageal squamous cell carcinoma via a positive feedback loop with TGF-β. Cancer Lett. 519:117–129. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao R, Chen P, Qu C, Liang J, Cheng Y, Sun Z and Tian H: Circular RNA circTRPS1-2 inhibits the proliferation and migration of esophageal squamous cell carcinoma by reducing the production of ribosomes. Cell Death Discov. 9:52023. View Article : Google Scholar : PubMed/NCBI | |
|
Xu R, Ding P, Zhao X, Li Z, Liu F, Gu L, Zheng Y, Sang M and Meng L: Circular RNA circ-TNRC6B inhibits the proliferation and invasion of esophageal squamous cell carcinoma cells by regulating the miR-452-5p/DAG1 axis. Mol Oncol. 17:1437–1452. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Song H, Tian D, Sun J, Mao X, Kong W, Xu D, Ji Y, Qiu B, Zhan M and Wang J: circFAM120B functions as a tumor suppressor in esophageal squamous cell carcinoma via the miR-661/PPM1L axis and the PKR/p38 MAPK/EMT pathway. Cell Death Dis. 13:3612022. View Article : Google Scholar : PubMed/NCBI | |
|
Xie M, Yu T, Jing X, Ma L, Fan Y, Yang F, Ma P, Jiang H, Wu X, Shu Y and Xu T: Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation. Mol Cancer. 19:1122020. View Article : Google Scholar : PubMed/NCBI | |
|
Huang X, Li Z, Zhang Q, Wang W, Li B, Wang L, Xu Z, Zeng A, Zhang X, Zhang X, et al: Circular RNA AKT3 upregulates PIK3R1 to enhance cisplatin resistance in gastric cancer via miR-198 suppression. Mol Cancer. 18:712019. View Article : Google Scholar : PubMed/NCBI | |
|
Cao J, Zhang X, Xu P, Wang H, Wang S, Zhang L, Li Z, Xie L, Sun G, Xia Y, et al: Circular RNA circLMO7 acts as a microRNA-30a-3p sponge to promote gastric cancer progression via the WNT2/β-catenin pathway. J Exp Clin Cancer Res. 40:62021. View Article : Google Scholar | |
|
Xia Y, Lv J, Jiang T, Li B, Li Y, He Z, Xuan Z, Sun G, Wang S, Li Z, et al: CircFAM73A promotes the cancer stem cell-like properties of gastric cancer through the miR-490-3p/HMGA2 positive feedback loop and HNRNPK-mediated β-catenin stabilization. J Exp Clin Cancer Res. 40:1032021. View Article : Google Scholar | |
|
Ma Q, Yang F, Huang B, Pan X, Li W, Yu T, Wang X, Ran L, Qian K, Li H, et al: CircARID1A binds to IGF2BP3 in gastric cancer and promotes cancer proliferation by forming a circARID1A-IGF2BP3-SLC7A5 RNA-protein ternary complex. J Exp Clin Cancer Res. 41:2512022. View Article : Google Scholar : PubMed/NCBI | |
|
Zha Q, Wu X, Zhang J, Xu T, Shi Y, Sun Y, Fang Y, Gu Y, Ma P, Shu Y and Tian S: Hsa_circ_0007967 promotes gastric cancer proliferation through the miR-411-5p/MAML3 axis. Cell Death Discov. 8:1442022. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang F, Liu G, Chen X, Li Q, Fang F and Shen X: Hsa_circ_0044301 regulates gastric cancer cell's proliferation, migration, and invasion by modulating the Hsa-miR-188-5p/DAXX axis and MAPK pathway. Cancers (Basel). 14:41832022. View Article : Google Scholar : PubMed/NCBI | |
|
Hou G, Zuo H, Shi J, Dai D, Wang H, Song X, Xu G and Tao G: EIF4A3 induced circABCA5 promotes the gastric cancer progression by SPI1 mediated IL6/JAK2/STAT3 signaling. Am J Cancer Res. 13:602–622. 2023.PubMed/NCBI | |
|
Li F, Tang H, Zhao S, Gao X, Yang L and Xu J: Circ-E-Cad encodes a protein that promotes the proliferation and migration of gastric cancer via the TGF-β/Smad/C-E-Cad/PI3K/AKT pathway. Mol Carcinog. 62:360–368. 2023. View Article : Google Scholar | |
|
Zhou P, Qu H, Shi K, Chen X, Zhuang Z, Wang N, Zhang Q, Liu Z, Wang L, Deng K, et al: ATF4-mediated circTDRD3 promotes gastric cancer cell proliferation and metastasis by regulating the miR-891b/ITGA2 axis and AKT signaling pathway. Gastric Cancer. 26:565–579. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Peng L, Sang H, Wei S, Li Y, Jin D, Zhu X, Li X, Dang Y and Zhang G: circCUL2 regulates gastric cancer malignant transformation and cisplatin resistance by modulating autophagy activation via miR-142-3p/ROCK2. Mol Cancer. 19:1562020. View Article : Google Scholar : PubMed/NCBI | |
|
Jie M, Wu Y, Gao M, Li X, Liu C, Ouyang Q, Tang Q, Shan C, Lv Y, Zhang K, et al: CircMRPS35 suppresses gastric cancer progression via recruiting KAT7 to govern histone modification. Mol Cancer. 19:562020. View Article : Google Scholar : PubMed/NCBI | |
|
Ma C, Wang X, Yang F, Zang Y, Liu J, Wang X, Xu X, Li W, Jia J and Liu Z: Circular RNA hsa_circ_0004872 inhibits gastric cancer progression via the miR-224/Smad4/ADAR1 successive regulatory circuit. Mol Cancer. 19:1572020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Jiang J, Zhang J, Shen H, Wang M, Guo Z, Zang X, Shi H, Gao J, Cai H, et al: CircDIDO1 inhibits gastric cancer progression by encoding a novel DIDO1-529aa protein and regulating PRDX2 protein stability. Mol Cancer. 20:1012021. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang T, Xia Y, Lv J, Li B, Li Y, Wang S, Xuan Z, Xie L, Qiu S, He Z, et al: A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol Cancer. 20:662021. View Article : Google Scholar : PubMed/NCBI | |
|
Zang X, Jiang J, Gu J, Chen Y, Wang M, Zhang Y, Fu M, Shi H, Cai H, Qian H, et al: Circular RNA EIF4G3 suppresses gastric cancer progression through inhibition of β-catenin by promoting δ-catenin ubiquitin degradation and upregulating SIK1. Mol Cancer. 21:1412022. View Article : Google Scholar | |
|
Xu P, Zhang X, Cao J, Yang J, Chen Z, Wang W, Wang S, Zhang L, Xie L, Fang L, et al: The novel role of circular RNA ST3GAL6 on blocking gastric cancer malignant behaviours through autophagy regulated by the FOXP2/MET/mTOR axis. Clin Transl Med. 12:e7072022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C, Wei G, Zhu X, Chen X, Ma X, Hu P, Liu W, Yang W, Ruan T, Zhang W, et al: Exosome-delivered circSTAU2 inhibits the progression of gastric cancer by targeting the miR-589/CAPZA1 axis. Int J Nanomedicine. 18:127–142. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu H, Fang D, Zhang C, Zhao Z, Liu Y, Zhao S, Zhang N and Xu J: Circular MTHFD2L RNA-encoded CM-248aa inhibits gastric cancer progression by targeting the SET-PP2A interaction. Mol Ther. 31:1739–1755. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Niu L, Hao J, Yao Y, Yan M and Li H: circIPO7 dissociates caprin-1 from ribosomes and inhibits gastric cancer cell proliferation by suppressing EGFR and mTOR. Oncogene. 42:980–993. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Huang XY, Huang ZL, Huang J, Xu B, Huang XY, Xu YH, Zhou J and Tang ZY: Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis. J Exp Clin Cancer Res. 39:202020. View Article : Google Scholar : PubMed/NCBI | |
|
Xu J, Wan Z, Tang M, Lin Z, Jiang S, Ji L, Gorshkov K, Mao Q, Xia S, Cen D, et al: N6-methyladenosine-modified CircRNA-SORE sustains sorafenib resistance in hepatocellular carcinoma by regulating β-catenin signaling. Mol Cancer. 19:1632020. View Article : Google Scholar | |
|
Zhao Z, Song J, Tang B, Fang S, Zhang D, Zheng L, Wu F, Gao Y, Chen C, Hu X, et al: CircSOD2 induced epigenetic alteration drives hepatocellular carcinoma progression through activating JAK2/STAT3 signaling pathway. J Exp Clin Cancer Res. 39:2592020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Long H, Zheng Q, Bo X, Xiao X and Li B: Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression. Mol Cancer. 18:1192019. View Article : Google Scholar : PubMed/NCBI | |
|
Li Q, Pan X, Zhu D, Deng Z, Jiang R and Wang X: Circular RNA MAT2B promotes glycolysis and malignancy of hepatocellular carcinoma through the miR-338-3p/PKM2 axis under hypoxic stress. Hepatology. 70:1298–1316. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu G, Sun J, Yang ZF, Zhou C, Zhou PY, Guan RY, Sun BY, Wang ZT, Zhou J, Fan J, et al: Cancer-associated fibroblast-derived CXCL11 modulates hepatocellular carcinoma cell migration and tumor metastasis through the circUBAP2/miR-4756/IFIT1/3 axis. Cell Death Dis. 12:2602021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Ling Z, Cai X, Xu Y, Lv Z, Man D, Ge J, Yu C, Zhang D, Zhang Y, et al: Activation of YAP1 by N6-methyladenosine-modified circCPSF6 drives malignancy in hepatocellular carcinoma. Cancer Res. 82:599–614. 2022. View Article : Google Scholar | |
|
Li P, Song R, Yin F, Liu M, Liu H, Ma S, Jia X, Lu X, Zhong Y, Yu L, et al: circMRPS35 promotes malignant progression and cisplatin resistance in hepatocellular carcinoma. Mol Ther. 30:431–447. 2022. View Article : Google Scholar : | |
|
Zheng J, Yan X, Lu T, Song W, Li Y, Liang J, Zhang J, Cai J, Sui X, Xiao J, et al: CircFOXK2 promotes hepatocellular carcinoma progression and leads to a poor clinical prognosis via regulating the Warburg effect. J Exp Clin Cancer Res. 42:632023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen ZQ, Zuo XL, Cai J, Zhang Y, Han GY, Zhang L, Ding WZ, Wu JD and Wang XH: Hypoxia-associated circPRDM4 promotes immune escape via HIF-1α regulation of PD-L1 in hepatocellular carcinoma. Exp Hematol Oncol. 12:172023. View Article : Google Scholar | |
|
Fan L, Xia P, Wang J, Xu S, Qiu Z, Wu Y, Feng M, Zhao Q, Wang H and Li X: Circ_0007429/miR-637/TRIM71/Ago2 axis participates in the regulation of proliferation, migration, invasion, apoptosis, and aerobic glycolysis of HCC. Mol Carcinog. 62:820–832. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu YJ, Zheng B, Luo GJ, Ma XK, Lu XY, Lin XM, Yang S, Zhao Q, Wu T, Li ZX, et al: Circular RNAs negatively regulate cancer stem cells by physically binding FMRP against CCAR1 complex in hepatocellular carcinoma. Theranostics. 9:3526–3540. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang PF, Wei CY, Huang XY, Peng R, Yang X, Lu JC, Zhang C, Gao C, Cai JB, Gao PT, et al: Circular RNA circTRIM33-12 acts as the sponge of MicroRNA-191 to suppress hepatocellular carcinoma progression. Mol Cancer. 18:1052019. View Article : Google Scholar : PubMed/NCBI | |
|
Dong ZR, Ke AW, Li T, Cai JB, Yang YF, Zhou W, Shi GM and Fan J: CircMEMO1 modulates the promoter methylation and expression of TCF21 to regulate hepatocellular carcinoma progression and sorafenib treatment sensitivity. Mol Cancer. 20:752021. View Article : Google Scholar : PubMed/NCBI | |
|
Shi L, Liu B, Shen DD, Yan P, Zhang Y, Tian Y, Hou L, Jiang G, Zhu Y, Liang Y, et al: A tumor-suppressive circular RNA mediates uncanonical integrin degradation by the proteasome in liver cancer. Sci Adv. 7:eabe50432021. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Hu ZQ, Yu SY, Mao L, Zhou ZJ, Wang PC, Gong Y, Su S, Zhou J, Fan J, et al: CircRPN2 inhibits aerobic glycolysis and metastasis in hepatocellular carcinoma. Cancer Res. 82:1055–1069. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen S, Cao X, Zhang J, Wu W, Zhang B and Zhao F: circVAMP3 drives CAPRIN1 phase separation and inhibits hepatocellular carcinoma by suppressing c-Myc translation. Adv Sci (Weinh). 9:e21038172022. View Article : Google Scholar : PubMed/NCBI | |
|
Peng R, Cao J, Su BB, Bai XS, Jin X, Wang AQ, Wang Q, Liu RJ, Jiang GQ, Jin SJ, et al: Down-regulation of circPTTG1IP induces hepatocellular carcinoma development via miR-16-5p/RNF125/JAK1 axis. Cancer Lett. 543:2157782022. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Z, Xie Q, Wu Y, Mo H, Zhang J, He G, Li Z, Gan L, Feng L, Li T, et al: Aberrant expression of circular RNA DHPR facilitates tumor growth and metastasis by regulating the RASGEF1B/RAS/MAPK axis in hepatocellular carcinoma. Cell Oncol (Dordr). 46:1333–1350. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Song R, Ma S, Xu J, Ren X, Guo P, Liu H, Li P, Yin F, Liu M, Wang Q, et al: A novel polypeptide encoded by the circular RNA ZKSCAN1 suppresses HCC via degradation of mTOR. Mol Cancer. 22:162023. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y, Leng K, Yao Y, Kang P, Liao G, Han Y, Shi G, Ji D, Huang P, Zheng W, et al: A circular RNA, cholangiocarcinoma-associated circular RNA 1, contributes to cholangiocarcinoma progression, induces angiogenesis, and disrupts vascular endothelial barriers. Hepatology. 73:1419–1435. 2021. View Article : Google Scholar | |
|
Wang S, Hu Y, Lv X, Li B, Gu D, Li Y, Sun Y and Su Y: Circ-0000284 arouses malignant phenotype of cholangiocarcinoma cells and regulates the biological functions of peripheral cells through cellular communication. Clin Sci (Lond). 133:1935–1953. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao X, Zhang X, Zhang Z, Liu Z, Zhu J, Lyu S, Li L, Lang R and He Q: Comprehensive circular RNA expression profiling constructs a ceRNA network and identifies hsa_circ_0000673 as a novel oncogene in distal cholangiocarcinoma. Aging (Albany NY). 12:23251–23274. 2020.PubMed/NCBI | |
|
Xu Y, Yao Y, Liu Y, Wang Z, Hu Z, Su Z, Li C, Wang H, Jiang X, Kang P, et al: Elevation of circular RNA circ_0005230 facilitates cell growth and metastasis via sponging miR-1238 and miR-1299 in cholangiocarcinoma. Aging (Albany NY). 11:1907–1917. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y, Gao P, Wang Z, Su Z, Liao G, Han Y, Cui Y, Yao Y and Zhong X: Circ-LAMP1 contributes to the growth and metastasis of cholangiocarcinoma via miR-556-5p and miR-567 mediated YY1 activation. J Cell Mol Med. 25:3226–3238. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Tu J, Chen W, Zheng L, Fang S, Zhang D, Kong C, Yang Y, Qiu R, Zhao Z, Lu C, et al: Circular RNA Circ0021205 promotes cholangiocarcinoma progression through MiR-204-5p/RAB22A axis. Front Cell Dev Biol. 9:6532072021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Q, Wang H, Li Z, Li F, Liang L, Zou Y, Shen H, Li J, Xia Y, Cheng Z, et al: Circular RNA ACTN4 promotes intrahepatic cholangiocarcinoma progression by recruiting YBX1 to initiate FZD7 transcription. J Hepatol. 76:135–147. 2022. View Article : Google Scholar | |
|
Zhong X, Ji C, Ren D, Ke A and Yang Z: Circular RNA circEIF3C promotes intrahepatic cholangiocarcinoma progression and immune evasion via the miR-34a-5p/B7-H4 axis. Genes Dis. 10:370–372. 2022. View Article : Google Scholar | |
|
Li H, Lan T, Liu H, Liu C, Dai J, Xu L, Cai Y, Hou G, Xie K, Liao M, et al: IL-6-induced cGGNBP2 encodes a protein to promote cell growth and metastasis in intrahepatic cholangiocarcinoma. Hepatology. 75:1402–1419. 2022. View Article : Google Scholar | |
|
Yu X, Tong H, Chen J, Tang C, Wang S, Si Y, Wang S and Tang Z: CircRNA MBOAT2 promotes intrahepatic cholangiocarcinoma progression and lipid metabolism reprogramming by stabilizing PTBP1 to facilitate FASN mRNA cytoplasmic export. Cell Death Dis. 14:202023. View Article : Google Scholar : PubMed/NCBI | |
|
Liao W, Du J, Li L, Wu X, Chen X, Feng Q, Xu L, Chen X, Liao M, Huang J, et al: CircZNF215 promotes tumor growth and metastasis through inactivation of the PTEN/AKT pathway in intrahepatic cholangiocarcinoma. J Exp Clin Cancer Res. 42:1252023. View Article : Google Scholar : PubMed/NCBI | |
|
Du J, Lan T, Liao H, Feng X, Chen X, Liao W, Hou G, Xu L, Feng Q, Xie K, et al: CircNFIB inhibits tumor growth and metastasis through suppressing MEK1/ERK signaling in intrahepatic cholangiocarcinoma. Mol Cancer. 21:182022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Zhao Y, Wang W, Yu S, Liu L, Sun D, Li W and Jiang X: Upregulation of circ_0059961 suppresses cholangiocarcinoma development by modulating miR-629-5p/SFRP2 axis. Pathol Res Pract. 234:1539012022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang G, Gao X, Sun Z, He T, Huang C, Li S and Long H: Circular RNA SMARCA5 inhibits cholangiocarcinoma via microRNA-95-3p/tumor necrosis factor receptor associated factor 3 axis. Anticancer Drugs. 34:1002–1009. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Li Z, Jiang P, Peng M, Zhang X, Chen K, Liu H, Bi H, Liu X and Li X: Circular RNA IARS (circ-IARS) secreted by pancreatic cancer cells and located within exosomes regulates endothelial monolayer permeability to promote tumor metastasis. J Exp Clin Cancer Res. 37:1772018. View Article : Google Scholar : PubMed/NCBI | |
|
Wong CH, Lou UK, Li Y, Chan SL, Tong JH, To KF and Chen Y: CircFOXK2 promotes growth and metastasis of pancreatic ductal adenocarcinoma by complexing with RNA-binding proteins and sponging MiR-942. Cancer Res. 80:2138–2149. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Guo X, Zhou Q, Su D, Luo Y, Fu Z, Huang L, Li Z, Jiang D, Kong Y, Li Z, et al: Circular RNA circBFAR promotes the progression of pancreatic ductal adenocarcinoma via the miR-34b-5p/MET/Akt axis. Mol Cancer. 19:832020. View Article : Google Scholar : PubMed/NCBI | |
|
Ye Z, Zhu Z, Xie J, Feng Z, Li Y, Xu X, Li W and Chen W: Hsa_circ_0000069 knockdown inhibits tumorigenesis and exosomes with downregulated hsa_circ_0000069 suppress malignant transformation via inhibition of STIL in pancreatic cancer. Int J Nanomedicine. 15:9859–9873. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou X, Liu K, Cui J, Xiong J, Wu H, Peng T and Guo Y: Circ-MBOAT2 knockdown represses tumor progression and glutamine catabolism by miR-433-3p/GOT1 axis in pancreatic cancer. J Exp Clin Cancer Res. 40:1242021. View Article : Google Scholar : PubMed/NCBI | |
|
Rong Z, Shi S, Tan Z, Xu J, Meng Q, Hua J, Liu J, Zhang B, Wang W, Yu X and Liang C: Circular RNA CircEYA3 induces energy production to promote pancreatic ductal adenocarcinoma progression through the miR-1294/c-Myc axis. Mol Cancer. 20:1062021. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng Z, Zhao Y, Chen Q, Zhu S, Niu Y, Ye Z, Hu P, Chen D, Xu P, Chen J, et al: Hypoxic exosomal HIF-1α-stabilizing circZNF91 promotes chemoresistance of normoxic pancreatic cancer cells via enhancing glycolysis. Oncogene. 40:5505–5517. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lin J, Wang X, Zhai S, Shi M, Peng C, Deng X, Fu D, Wang J and Shen B: Hypoxia-induced exosomal circPDK1 promotes pancreatic cancer glycolysis via c-myc activation by modulating miR-628-3p/BPTF axis and degrading BIN1. J Hematol Oncol. 15:1282022. View Article : Google Scholar : PubMed/NCBI | |
|
He Z, Cai K, Zeng Z, Lei S, Cao W and Li X: Autophagy-associated circRNA circATG7 facilitates autophagy and promotes pancreatic cancer progression. Cell Death Dis. 13:2332022. View Article : Google Scholar : PubMed/NCBI | |
|
Hu C, Xia R, Zhang X, Li T, Ye Y, Li G, He R, Li Z, Lin Q, Zheng S and Chen R: circFARP1 enables cancer-associated fibroblasts to promote gemcitabine resistance in pancreatic cancer via the LIF/STAT3 axis. Mol Cancer. 21:242022. View Article : Google Scholar : PubMed/NCBI | |
|
Guan H, Tian K, Luo W and Li M: m6A-modified circRNA MYO1C participates in the tumor immune surveillance of pancreatic ductal adenocarcinoma through m6A/PD-L1 manner. Cell Death Dis. 14:1202023. View Article : Google Scholar | |
|
Liu B, Gong Y, Jiang Q, Wu S, Han B, Chen F, Lin Q, Wang P and Yang D: Hsa_circ_0014784-induced YAP1 promoted the progression of pancreatic cancer by sponging miR-214-3p. Cell Cycle. 22:1583–1596. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Kong Y, Li Y, Luo Y, Zhu J, Zheng H, Gao B, Guo X, Li Z, Chen R and Chen C: circNFIB1 inhibits lymphangiogenesis and lymphatic metastasis via the miR-486-5p/PIK3R1/VEGF-C axis in pancreatic cancer. Mol Cancer. 19:822020. View Article : Google Scholar : PubMed/NCBI | |
|
Huang L, Han J, Yu H, Liu J, Gui L, Wu Z, Zhao X, Su S, Fu G and Li F: CircRNA_000864 upregulates B-cell translocation gene 2 expression and represses migration and invasion in pancreatic cancer cells by binding to miR-361-3p. Front Oncol. 10:5479422020. View Article : Google Scholar | |
|
Xu H, Chen R, Shen Q, Yang D, Peng H, Tong J and Fu Q: Overexpression of circular RNA circ_0013587 reverses erlotinib resistance in pancreatic cancer cells through regulating the miR-1227/E-cadherin pathway. Front Oncol. 11:7541462021. View Article : Google Scholar : PubMed/NCBI | |
|
Yu S, Wang M, Zhang H, Guo X and Qin R: Circ_0092367 inhibits EMT and gemcitabine resistance in pancreatic cancer via regulating the miR-1206/ESRP1 axis. Genes (Basel). 12:17012021. View Article : Google Scholar : PubMed/NCBI | |
|
Shi X, Yang J, Liu M, Zhang Y, Zhou Z, Luo W, Fung KM, Xu C, Bronze MS, Houchen CW and Li M: Circular RNA ANAPC7 inhibits tumor growth and muscle wasting via PHLPP2-AKT-TGF-β signaling axis in pancreatic cancer. Gastroenterology. 162:2004–2017.e2. 2022. View Article : Google Scholar | |
|
Liu J, Yuan W and Gong D: Hsa_circ_0000994 inhibits pancreatic cancer progression by clearing immune-related miR-27a and miR-27b. J Oncol. 2022:72747942022.PubMed/NCBI | |
|
Xu C, Ye Q, Ye C and Liu S: circACTR2 attenuates gemcitabine chemoresiatance in pancreatic cancer through PTEN mediated PI3K/AKT signaling pathway. Biol Direct. 18:142023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen RX, Chen X, Xia LP, Zhang JX, Pan ZZ, Ma XD, Han K, Chen JW, Judde JG, Deas O, et al: N(6)-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun. 10:46952019. View Article : Google Scholar : PubMed/NCBI | |
|
Shang A, Gu C, Wang W, Wang X, Sun J, Zeng B, Chen C, Chang W, Ping Y, Ji P, et al: Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p-TGF-β1 axis. Mol Cancer. 19:1172020. View Article : Google Scholar | |
|
Chen LY, Wang L, Ren YX, Pang Z, Liu Y, Sun XD, Tu J, Zhi Z, Qin Y, Sun LN and Li JM: The circular RNA circ-ERBIN promotes growth and metastasis of colorectal cancer by miR-125a-5p and miR-138-5p/4EBP-1 mediated cap-independent HIF-1α translation. Mol Cancer. 19:1642020. View Article : Google Scholar | |
|
Xu H, Liu Y, Cheng P, Wang C, Liu Y, Zhou W, Xu Y and Ji G: CircRNA_0000392 promotes colorectal cancer progression through the miR-193a-5p/PIK3R3/AKT axis. J Exp Clin Cancer Res. 39:2832020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen C, Yuan W, Zhou Q, Shao B, Guo Y, Wang W, Yang S, Guo Y, Zhao L, Dang Q, et al: N6-methyladenosine-induced circ1662 promotes metastasis of colorectal cancer by accelerating YAP1 nuclear localization. Theranostics. 11:4298–4315. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Zhang Y, Song H, Yin H, Jiang T, Xu Y, Liu L, Wang H, Gao H, Wang R and Song J: The circular RNA circSPARC enhances the migration and proliferation of colorectal cancer by regulating the JAK/STAT pathway. Mol Cancer. 20:812021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Z, Zheng N, Li J, Li C, Zheng D, Jiang X, Ge X, Liu M, Liu L, Song Z, et al: N6-methyladenosine-modified circular RNA QSOX1 promotes colorectal cancer resistance to anti-CTLA-4 therapy through induction of intratumoral regulatory T cells. Drug Resist Updat. 65:1008862022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Z, He L, Zhao L, Zhang G, Wang Z, Zhu P and Liu B: circREEP3 drives colorectal cancer progression via activation of FKBP10 transcription and restriction of antitumor immunity. Adv Sci (Weinh). 9:e21051602022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Luo D, Shao Y, Shan Z, Liu Q, Weng J, He W, Zhang R, Li Q, Wang Z and Li X: circCAPRIN1 interacts with STAT2 to promote tumor progression and lipid synthesis via upregulating ACC1 expression in colorectal cancer. Cancer Commun (Lond). 43:100–122. 2023. View Article : Google Scholar | |
|
Chen C, Liu Y, Liu L, Si C, Xu Y, Wu X, Wang C, Sun Z and Kang Q: Exosomal circTUBGCP4 promotes vascular endothelial cell tipping and colorectal cancer metastasis by activating Akt signaling pathway. J Exp Clin Cancer Res. 42:462023. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Yao H, Wang S, Li G and Gu X: CircTADA2A suppresses the progression of colorectal cancer via miR-374a-3p/KLF14 axis. J Exp Clin Cancer Res. 39:1602020. View Article : Google Scholar : PubMed/NCBI | |
|
Peng C, Tan Y, Yang P, Jin K, Zhang C, Peng W, Wang L, Zhou J, Chen R, Wang T, et al: Circ-GALNT16 restrains colorectal cancer progression by enhancing the SUMOylation of hnRNPK. J Exp Clin Cancer Res. 40:2722021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Wu Y, Luo X, Jin D, Zhou W, Ju Z, Wang D, Meng Q, Wang H, Fu X, et al: Circular RNA circRHOBTB3 represses metastasis by regulating the HuR-mediated mRNA stability of PTBP1 in colorectal cancer. Theranostics. 11:7507–7526. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liang ZX, Liu HS, Xiong L, Yang X, Wang FW, Zeng ZW, He XW, Wu XR and Lan P: A novel NF-κB regulator encoded by circPLCE1 inhibits colorectal carcinoma progression by promoting RPS3 ubiquitin-dependent degradation. Mol Cancer. 20:1032021. View Article : Google Scholar | |
|
Zheng R, Zhang K, Tan S, Gao F, Zhang Y, Xu W, Wang H, Gu D, Zhu L, Li S, et al: Exosomal circLPAR1 functions in colorectal cancer diagnosis and tumorigenesis through suppressing BRD4 via METTL3-eIF3h interaction. Mol Cancer. 21:492022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang F, Su T and Xiao M: RUNX3-regulated circRNA METTL3 inhibits colorectal cancer proliferation and metastasis via miR-107/PER3 axis. Cell Death Dis. 13:5502022. View Article : Google Scholar : PubMed/NCBI | |
|
Ding N, You AB, Yang H, Hu GS, Lai CP, Liu W and Ye F: A Tumor-suppressive molecular axis EP300/circRERE/miR-6837-3p/MAVS activates type I IFN pathway and antitumor immunity to suppress colorectal cancer. Clin Cancer Res. 29:2095–2109. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Xia S, Feng J, Chen K, Ma Y, Gong J, Cai F, Jin Y, Gao Y, Xia L, Chang H, et al: CSCD: A database for cancer-specific circular RNAs. Nucleic Acids Res. 46(D1): D925–D929. 2018. View Article : Google Scholar : | |
|
Tan LP, Seinen E, Duns G, de Jong D, Sibon OC, Poppema S, Kroesen BJ, Kok K and van den Berg A: A high throughput experimental approach to identify miRNA targets in human cells. Nucleic Acids Res. 37:e1372009. View Article : Google Scholar : PubMed/NCBI | |
|
Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW, Huang WC, Sun TH, Tu SJ, Lee WH, et al: miRTarBase update 2018: A resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 46(D1): D296–D302. 2018. View Article : Google Scholar : | |
|
Wong N and Wang X: miRDB: An online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 43(Database Issue): D146–D152. 2015. View Article : Google Scholar : | |
|
Cai S, Zhang Y, Zhang X, Wang L, Wu Z, Fang W and Chen X: A microarray expression profile and bioinformatic analysis of circular RNA in human esophageal carcinoma. J Gastrointest Oncol. 13:510–526. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Li J, Yu J, Liu H, Shen Z, Ye G, Mou T, Qi X and Li G: Circular RNAs signature predicts the early recurrence of stage III gastric cancer after radical surgery. Oncotarget. 8:22936–22943. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Han J, Thurnherr T, Chung AYF, Goh BKP, Chow PKH, Chan CY, Cheow PC, Lee SY, Lim TKH, Chong SS, et al: Clinicopathological-associated regulatory network of deregulated circRNAs in hepatocellular carcinoma. Cancers (Basel). 13:27722021. View Article : Google Scholar : PubMed/NCBI | |
|
Han D, Li J, Wang H, Su X, Hou J, Gu Y, Qian C, Lin Y, Liu X, Huang M, et al: Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology. 66:1151–1164. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Hao X, Wang H, Liu Z, He Y, Pu M, Zhang H, Yu H, Duan J and Qu S: Circular RNA expression profile of pancreatic ductal adenocarcinoma revealed by microarray. Cell Physiol Biochem. 40:1334–1344. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Qu S, Song W, Yang X, Wang J, Zhang R, Zhang Z, Zhang H and Li H: Microarray expression profile of circular RNAs in human pancreatic ductal adenocarcinoma. Genom Data. 5:385–387. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Guo S, Xu X, Ouyang Y, Wang Y, Yang J, Yin L, Ge J and Wang H: Microarray expression profile analysis of circular RNAs in pancreatic cancer. Mol Med Rep. 17:7661–7671. 2018.PubMed/NCBI | |
|
Yang H, Li X, Meng Q, Sun H, Wu S, Hu W, Liu G, Li X, Yang Y and Chen R: CircPTK2 (hsa_circ_0005273) as a novel therapeutic target for metastatic colorectal cancer. Mol Cancer. 19:132020. View Article : Google Scholar : PubMed/NCBI |