|
1
|
Baghban R, Roshangar L, Jahanban-Esfahlan
R, Seidi K, Ebrahimi-Kalan A, Jaymand M, Kolahian S, Javaheri T and
Zare P: Tumor microenvironment complexity and therapeutic
implications at a glance. Cell Commun Signal. 18:592020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Quail DF and Joyce JA: Microenvironmental
regulation of tumor progression and metastasis. Nat Med.
19:1423–1437. 2013. View
Article : Google Scholar : PubMed/NCBI
|
|
3
|
Hanahan D and Coussens LM: Accessories to
the crime: Functions of cells recruited to the tumor
microenvironment. Cancer Cell. 21:309–322. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kelly L, McGrath S, Rodgers L, McCall K,
Tulunay Virlan A, Dempsey F, Crichton S and Goodyear CS:
Annexin-A1: The culprit or the solution? Immunology. 166:2–16.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Foo SL, Yap G, Cui J and Lim LHK:
Annexin-A1-A Blessing or a curse in cancer? Trends Mol Med.
25:315–327. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Deng C, Liu X, Zhang C, Li L, Wen S, Gao X
and Liu L: ANXA1GSK3beta interaction and its involvement in NSCLC
metastasis. Acta Biochim Biophys Sin (Shanghai). 53:912–924. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zhu JF, Huang W, Yi HM, Xiao T, Li JY,
Feng J, Yi H, Lu SS, Li XH, Lu RH, et al: Annexin A1-suppressed
autophagy promotes nasopharyngeal carcinoma cell invasion and
metastasis by PI3K/AKT signaling activation. Cell Death Dis.
9:11542018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Novizio N, Belvedere R, Morretta E,
Tomasini R, Monti MC, Morello S and Petrella A: Role of
intracellular and extracellular annexin A1 in MIA PaCa-2 spheroids
formation and drug sensitivity. Cancers (Basel). 14:47642022.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Foo SL, Sachaphibulkij K, Lee CLY, Yap
GLR, Cui J, Arumugam T and Lim LHK: Breast cancer metastasis to
brain results in recruitment and activation of microglia through
annexin-A1/formyl peptide receptor signaling. Breast Cancer Res.
24:252022. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Khau T, Langenbach SY, Schuliga M, Harris
T, Johnstone CN, Anderson RL and Stewart AG: Annexin-1 signals
mitogen-stimulated breast tumor cell proliferation by activation of
the formyl peptide receptors (FPRs) 1 and 2. FASEB J. 25:483–496.
2011. View Article : Google Scholar
|
|
11
|
Novizio N, Belvedere R, Pessolano E,
Morello S, Tosco A, Campiglia P, Filippelli A and Petrella A: ANXA1
contained in EVs regulates macrophage polarization in tumor
microenvironment and promotes pancreatic cancer progression and
metastasis. Int J Mol Sci. 22:110182021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Vecchi L, Alves Pereira Zóia M, Goss
Santos T, de Oliveira Beserra A, Colaço Ramos CM, França Matias
Colombo B, Paiva Maia YC, Piana de Andrade V, Teixeira Soares Mota
S, Gonçalves de Araújo T, et al: Inhibition of the AnxA1/FPR1
autocrine axis reduces MDA-MB-231 breast cancer cell growth and
aggressiveness in vitro and in vivo. Biochim Biophys Acta Mol Cell
Res. 1865:1368–1382. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Geary LA, Nash KA, Adisetiyo H, Liang M,
Liao CP, Jeong JH, Zandi E and Roy-Burman P: CAF-Secreted Annexin
A1 induces prostate cancer cells to gain stem cell-like features.
Mol Cancer Res. 12:607–621. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Fu Z, Zhang S, Wang B, Huang W, Zheng L
and Cheng A: Annexin A1: A double-edged sword as novel cancer
biomarker. Clin Chim Acta. 504:36–42. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Mizuno H, Uemura K, Moriyama A, Wada Y,
Asai K, Kimura S and Kato T: Glucocorticoid induced the expression
of mRNA and the secretion of lipocortin 1 in rat astrocytoma cells.
Brain Res. 746:256–264. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Gimenes AD, Andrade TR, Mello CB, Ramos L,
Gil CD and Oliani SM: Beneficial effect of annexin A1 in a model of
experimental allergic conjunctivitis. Exp Eye Res. 134:24–32. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ricci E, Ronchetti S, Pericolini E,
Gabrielli E, Cari L, Gentili M, Roselletti E, Migliorati G,
Vecchiarelli A and Riccardi C: Role of the glucocorticoid-induced
leucine zipper gene in dexamethasone-induced inhibition of mouse
neutrophil migration via control of annexin A1 expression. FASEB J.
31:3054–3065. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Castro-Caldas M, Mendes AF, Duarte CB and
Lopes MC: Dexamethasone-induced and estradiol-induced CREB
activation and annexin 1 expression in CCRF-CEM lymphoblastic
cells: Evidence for the involvement of cAMP and p38 MAPK. Mediators
Inflamm. 12:329–337. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Solito E, de Coupade C, Parente L, Flower
RJ and Russo-Marie F: IL-6 stimulates annexin 1 expression and
translocation and suggests a new biological role as class II acute
phase protein. Cytokine. 10:514–521. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Vecchi L, Mota STS, Zoia MAP, Martins IC,
de Souza JB, Santos TG, Beserra AO, de Andrade VP, Goulart LR and
Araujo TG: Interleukin-6 signaling in triple negative breast cancer
cells elicits the annexin A1/Formyl peptide receptor 1 axis and
affects the tumor microenvironment. Cells. 11:17052022. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Soler MF, Abaurrea A, Azcoaga P, Araujo AM
and Caffarel MM: New perspectives in cancer immunotherapy:
Targeting IL-6 cytokine family. J Immunother Cancer.
11:e0075302023. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Rupaimoole R and Slack FJ: MicroRNA
therapeutics: Towards a new era for the management of cancer and
other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Yuan Y, Anbalagan D, Lee LH, Samy RP,
Shanmugam MK, Kumar AP, Sethi G, Lobie PE and Lim LH: ANXA1
inhibits miRNA-196a in a negative feedback loop through NF-kB and
c-Myc to reduce breast cancer proliferation. Oncotarget.
7:27007–27020. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Suh YE, Raulf N, Gäken J, Lawler K, Urbano
TG, Bullenkamp J, Gobeil S, Huot J, Odell E and Tavassoli M:
MicroRNA-196a promotes an oncogenic effect in head and neck cancer
cells by suppressing annexin A1 and enhancing radioresistance. Int
J Cancer. 137:1021–1034. 2015. View Article : Google Scholar
|
|
25
|
Hu C, Peng J, Lv L, Wang X, Zhou Y, Huo J
and Liu D: miR-196a regulates the proliferation, invasion and
migration of esophageal squamous carcinoma cells by targeting
ANXA1. Oncol Lett. 17:5201–5209. 2019.PubMed/NCBI
|
|
26
|
Boudhraa Z, Bouchon B, Viallard C, D'Incan
M and Degoul F: Annexin A1 localization and its relevance to
cancer. Clin Sci (Lond). 130:205–220. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Hoque M, Rentero C, Cairns R, Tebar F,
Enrich C and Grewal T: Annexins-Scaffolds modulating PKC
localization and signaling. Cell Signal. 26:1213–1225. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Solito E CH, Festa M, Mulla A, Tierney T,
Flower RJ and Buckingham JC: Post-translational modification plays
an essential role in the translocation of annexin A1 from the
cytoplasm to the cell surface. FASEB J. 20:1498–1500. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Chen W, Li L, Wang J, Zhang R, Zhang T, Wu
Y, Wang S and Xing D: The ABCA1-efferocytosis axis: A new strategy
to protect against atherosclerosis. Clin Chim Acta. 518:1–8. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Perretti M, Christian H, Wheller SK,
Aiello I, Mugridge KG, Morris JF, Flower RJ and Goulding NJ:
Annexin I is stored within gelatinase granules of human neutrophil
and mobilized on the cell surface upon adhesion but not
phagocytosis. Cell Biol Int. 24:163–174. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Leoni G, Neumann PA, Kamaly N, Quiros M,
Nishio H, Jones HR, Sumagin R, Hilgarth RS, Alam A, Fredman G, et
al: Annexin A1-containing extracellular vesicles and polymeric
nanoparticles promote epithelial wound repair. J Clin Invest.
125:1215–1227. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Li Q, Liu W, Wang Z, Wang C and Ai Z:
Exosomal ANXA1 derived from thyroid cancer cells is associated with
malignant transformation of human thyroid follicular epithelial
cells by promoting cell proliferation. Int J Oncol. 59:1042021.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Pessolano E, Belvedere R, Bizzarro V,
Franco P, Marco ID, Porta A, Tosco A, Parente L, Perretti M and
Petrella A: Annexin A1 may induce pancreatic cancer progression as
a key player of extracellular vesicles effects as evidenced in the
in vitro MIA PaCa-2 model system. Int J Mol Sci. 19:38782018.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Li Y, Cai L, Wang H, Wu P, Gu W, Chen Y,
Hao H, Tang K, Yi P, Liu M, et al: Pleiotropic regulation of
macrophage polarization and tumorigenesis by formyl peptide
receptor-2. Oncogene. 30:3887–3899. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Cooray SN, Gobbetti T, Montero-Melendez T,
McArthur S, Thompson D, Clark AJ, Flower RJ and Perretti M:
Ligand-specific conformational change of the G-protein-coupled
receptor ALX/FPR2 determines proresolving functional responses.
Proc Natl Acad Sci USA. 110:18232–18237. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Folkman J: Tumor angiogenesis: Therapeutic
implications. N Engl J Med. 285:1182–1186. 1971. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Jin KT, Yao JY, Fang XL, Di H and Ma YY:
Roles of lncRNAs in cancer: Focusing on angiogenesis. Life Sci.
252:1176472020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Al-Ostoot FH, Salah S, Khamees HA and
Khanum SA: Tumor angiogenesis: Current challenges and therapeutic
opportunities. Cancer Treat Res Commun. 28:1004222021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Yi M and Schnitzer JE: Impaired tumor
growth, metastasis, angiogenesis and wound healing in annexin
A1-null mice. Proc Natl Acad Sci USA. 106:17886–17891. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Delorme S, Privat M, Sonnier N, Rouanet J,
Witkowski T, Kossai M, Mishellany F, Radosevic-Robin N, Juban G,
Molnar I, et al: New insight into the role of ANXA1 in melanoma
progression: involvement of stromal expression in dissemination. Am
J Cancer Res. 11:1600–1615. 2021.PubMed/NCBI
|
|
41
|
Hatakeyama S, Sugihara K, Shibata TK,
Nakayama J, Akama TO, Tamura N, Wong SM, Bobkov AA, Takano Y,
Ohyama C, et al: Targeted drug delivery to tumor vasculature by a
carbohydrate mimetic peptide. Proc Natl Acad Sci USA.
108:19587–19592. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hebeda CB, Sandri S, Benis CM, Paula-Silva
M, Loiola RA, Reutelingsperger C, Perretti M and Farsky SHP:
Annexin A1/Formyl peptide receptor pathway controls uterine
receptivity to the blastocyst. Cells. 9:11812020. View Article : Google Scholar
|
|
43
|
Dianat-Moghadam H, Nedaeinia R, Keshavarz
M, Azizi M, Kazemi M and Salehi R: Immunotherapies targeting tumor
vasculature: Challenges and opportunities. Front Immunol.
14:12263602023. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Côté MC, Lavoie JR, Houle F, Poirier A,
Rousseau S and Huot J: Regulation of vascular endothelial growth
factor-induced endothelial cell migration by LIM kinase 1-mediated
phosphorylation of annexin 1. J Biol Chem. 285:8013–8021. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Anbalagan D, Yap G, Yuan Y, Pandey VK, Lau
WH, Arora S, Bist P, Wong JS, Sethi G, Nissom PM, et al: Annexin-A1
regulates microRNA-26b* and microRNA-562 to directly target
NF-kappaB and angiogenesis in breast cancer cells. PLoS One.
9:e1145072014. View Article : Google Scholar
|
|
46
|
Novizio N, Belvedere R, Pessolano E, Tosco
A, Porta A, Perretti M, Campiglia P, Filippelli A and Petrella A:
Annexin A1 released in extracellular vesicles by pancreatic cancer
cells activates components of the tumor microenvironment, through
interaction with the Formyl-Peptide receptors. Cells. 9:27192020.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
D'Acquisto F, Perretti M and Flower RJ:
Annexin-A1: A pivotal regulator of the innate and adaptive immune
systems. Br J Pharmacol. 155:152–169. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Perretti M and D'Acquisto F: Annexin A1
and glucocorticoids as effectors of the resolution of inflammation.
Nat Rev Immunol. 9:62–70. 2009. View Article : Google Scholar
|
|
49
|
Solito E, Kamal A, Russo-Marie F,
Buckingham JC, Marullo S and Perretti M: A novel calcium-dependent
proapoptotic effect of annexin 1 on human neutrophils. FASEB J.
17:1–27. 2003. View Article : Google Scholar
|
|
50
|
Gavins FNE and Hickey MJ: Annexin A1 and
the regulation of innate and adaptive immunity. Front Immunol.
3:3542012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Shaul ME and Fridlender ZG: Neutrophils as
active regulators of the immune system in the tumor
microenvironment. J Leukoc Biol. 102:343–349. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Sandri S, Hebeda CB, Broering MF, de Paula
Silva M, Moredo LF, de Barros E Silva MJ, Sapata Molina A, Lopes
Pinto CA, Duprat Neto JP, Reutelingsperger CP, et al: Role of
Annexin A1 secreted by neutrophils in melanoma metastasis. Cells.
12:4252023. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yang Y, Liu Y, Yao X, Ping Y, Jiang T, Liu
Q, Xu S, Huang J, Mou H, Gong W, et al: Annexin 1 released by
necrotic human glioblastoma cells stimulates tumor cell growth
through the formyl peptide receptor 1. Am J Pathol. 179:1504–1512.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Moraes LA, Ampomah PB and Lim LHK: Annexin
A1 in inflammation and breast cancer: A new axis in the tumor
microenvironment. Cell Adh Migr. 12:417–423. 2018.PubMed/NCBI
|
|
55
|
Hao NB, Lü MH, Fan YH, Cao YL, Zhang ZR
and Yang SM: Macrophages in tumor microenvironments and the
progression of tumors. Clin Dev Immunol. 2012:9480982012.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Moraes LA, Kar S, Foo SL, Gu T, Toh YQ,
Ampomah PB, Sachaphibulkij K, Yap G, Zharkova O, Lukman HM, et al:
Annexin-A1 enhances breast cancer growth and migration by promoting
alternative macrophage polarization in the tumour microenvironment.
Sci Rep. 7:179252017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Cioni B, Ratti S, Piva A, Tripodi I,
Milani M, Menichetti F, Langella T, Botti L, De Cecco L, Chiodoni
C, et al: JMJD6 shapes a pro-tumor microenvironment via
ANXA1-dependent macrophage polarization in breast cancer. Mol
Cancer Res. 21:614–627. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Song Z, Wang X, Liu X, Luo Y, Qiu J, Yin
A, Liu Y, Yi H, Xiao Z and Li A: Targeting of Annexin A1 in
Tumor-associated Macrophages as a therapeutic strategy for
hepatocellular carcinoma. Biochem Pharmacol. 213:1156122023.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Wu L, Wu W, Zhang J, Zhao Z, Li L, Zhu M,
Wu M, Wu F, Zhou F, Du Y, et al: Natural coevolution of tumor and
immunoenvironment in glioblastoma. Cancer Discov. 12:2820–2837.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Han CJ, Zheng JY, Sun L, Yang HC, Cao ZQ,
Zhang XH, Zheng LT and Zhen XC: The oncometabolite
2-hydroxyglutarate inhibits microglial activation via the
AMPK/mTOR/NF-κB pathway. Acta pharmacol Sin. 40:1292–1302. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Li W and Graeber MB: The molecular profile
of microglia under the influence of glioma. Neuro oncol.
14:958–978. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Domogalla MP, Rostan PV, Raker VK and
Steinbrink K: Tolerance through education: How tolerogenic
dendritic cells shape immunity. Front Immunol. 8:17642017.
View Article : Google Scholar
|
|
63
|
Linke B, Abeler-Dörner L, Jahndel V, Kurz
A, Mahr A, Pfrang S, Linke L, Krammer PH and Weyd H: The
tolerogenic function of annexins on apoptotic cells is mediated by
the annexin core domain. J Immunol. 194:5233–5242. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Bode K, Bujupi F, Link C, Hein T,
Zimmermann S, Peiris D, Jaquet V, Lepenies B, Weyd H and Krammer
PH: Dectin-1 Binding to annexins on apoptotic cells induces
peripheral immune tolerance via NADPH Oxidase-2. Cell Rep.
29:4435–4446.e9. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chen R, Chen C, Han N, Guo W, Deng H, Wang
Y, Ding Y and Zhang M: Annexin-1 is an oncogene in glioblastoma and
causes tumour immune escape through the indirect upregulation of
interleukin-8. J Cell Mol Med. 26:4343–4356. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Vacchelli E, Ma Y, Baracco EE, Sistigu A,
Enot DP, Pietrocola F, Yang H, Adjemian S, Chaba K, Semeraro M, et
al: Chemotherapy-induced antitumor immunity requires formyl peptide
receptor 1. Science. 350:972–978. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Baracco EE, Stoll G, Van Endert P,
Zitvogel L, Vacchelli E and Kroemer G: Contribution of annexin A1
to anticancer immunosurveillance. Oncoimmunology. 8:e16477602019.
View Article : Google Scholar
|
|
68
|
Waldman AD, Fritz JM and Lenardo MJ: A
guide to cancer immunotherapy: From T cell basic science to
clinical practice. Nat Rev Immunol. 20:651–668. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Shang Q, Yu X, Sun Q, Li H, Sun C and Liu
L: Polysaccharides regulate Th1/Th2 balance: A new strategy for
tumor immunotherapy. Biomed Pharmacother. 170:1159762024.
View Article : Google Scholar
|
|
70
|
Bretscher P: On Analyzing How the Th1/Th2
Phenotype of an immune response is determined: Classical
observations must not be ignored. Front Immunol. 10:12342019.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Cvetanovich GL and Hafler DA: Human
regulatory T cells in autoimmune diseases. Curr Opin Immunol.
22:753–760. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ohue Y and Nishikawa H: Regulatory T
(Treg) cells in cancer: Can Treg cells be a new therapeutic target?
Cancer Sci. 110:2080–2089. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
D'Acquisto F, Paschalidis N, Sampaio AL,
Merghani A, Flower RJ and Perretti M: Impaired T cell activation
and increased Th2 lineage commitment in Annexin-1-deficient T
cells. Eur J Immunol. 37:3131–3142. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Oshi M, Tokumaru Y, Mukhopadhyay S, Yan L,
Matsuyama R, Endo I and Takabe K: Annexin A1 expression is
associated with epithelial-mesenchymal transition (EMT), cell
proliferation, prognosis and drug response in pancreatic cancer.
Cells. 10:6532021. View Article : Google Scholar
|
|
75
|
Weyd H, Abeler-Dorner L, Linke B, Mahr A,
Jahndel V, Pfrang S, Schnolzer M, Falk CS and Krammer PH: Annexin
A1 on the surface of early apoptotic cells suppresses CD8+ T cell
immunity. PLoS One. 8:e624492013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Bai F, Zhang P, Fu Y, Chen H, Zhang M,
Huang Q, Li D, Li B and Wu K: Targeting ANXA1 abrogates
Tregmediated immune suppression in triplenegative breast cancer. J
Immunother Cancer. 8:e0001692020. View Article : Google Scholar
|
|
77
|
Ishii G, Ochiai A and Neri S: Phenotypic
and functional heterogeneity of cancer-associated fibroblast within
the tumor microenvironment. Adv Drug Deliv Rev. 99:186–196. 2016.
View Article : Google Scholar
|
|
78
|
Vaish U, Jain T, Are AC and Dudeja V:
Cancer-Associated fibroblasts in pancreatic ductal adenocarcinoma:
An update on heterogeneity and therapeutic targeting. Int J Mol
Sci. 22:134082021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Chen X and Song E: Turning foes to
friends: Targeting cancer-associated fibroblasts. Nat Rev Drug
Discov. 18:99–115. 2019. View Article : Google Scholar
|
|
80
|
Kalluri R: The biology and function of
fibroblasts in cancer. Nat Rev Cancer. 16:582–598. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Neymeyer H, Labes R, Reverte V, Saez F,
Stroh T, Dathe C, Hohberger S, Zeisberg M, Muller GA, Salazar J, et
al: Activation of annexin A1 signalling in renal fibroblasts exerts
antifibrotic effects. Acta Physiol (Oxf). 215:144–158. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Lee S, Hong JH, Kim JS, Yoon JS, Chun SH,
Hong SA, Kim EJ, Kang K, Lee Kang J, Ko YH, et al:
Cancer-associated fibroblasts activated by miR-196a promote the
migration and invasion of lung cancer cells. Cancer Lett.
508:92–103. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Chen Y, Zhu S, Liu T, Zhang S, Lu J, Fan
W, Lin L, Xiang T, Yang J, Zhao X, et al: Epithelial cells activate
fibroblasts to promote esophageal cancer development. Cancer Cell.
41:903–918. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Rong B, Zhao C, Liu H, Ming Z, Cai X, Gao
W and Yang S: Elevated serum annexin A1 as potential diagnostic
marker for lung cancer: A retrospective case-control study. Am J
Transl Res. 6:558–569. 2014.PubMed/NCBI
|
|
85
|
Faria PC, Sena AA, Nascimento R, Carvalho
WJ, Loyola AM, Silva SJ, Durighetto AF, Oliveira AD, Oliani SM and
Goulart LR: Expression of annexin A1 mRNA in peripheral blood from
oral squamous cell carcinoma patients. Oral oncol. 46:25–30. 2010.
View Article : Google Scholar
|
|
86
|
Han GH, Lu KJ, Huang JX, Zhang LX, Dai SB
and Dai CL: Association of serum annexin A1 with treatment response
and prognosis in patients with esophageal squamous cell carcinoma.
J Cancer Res Ther. 14(Suppl): S667–S674. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Liu Y, Liu YS, Wu PF, Li Q, Dai WM, Yuan
S, Xu ZH, Liu TT, Miao ZW, Fang WG, et al: Brain microvascular
endothelium induced-annexin A1 secretion contributes to small cell
lung cancer brain metastasis. Int J Biochem Cell Biol. 66:11–19.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Oh P, Li Y, Yu J, Durr E, Krasinska KM,
Carver LA, Testa JE and Schnitzer JE: Subtractive proteomic mapping
of the endothelial surface in lung and solid tumours for
tissue-specific therapy. Nature. 429:629–635. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Yoneyama T, Hatakeyama S, Sutoh Yoneyama
M, Yoshiya T, Uemura T, Ishizu T, Suzuki M, Hachinohe S, Ishiyama
S, Nonaka M, et al: Tumor vasculature-targeted 10B
delivery by an Annexin A1-binding peptide boosts effects of boron
neutron capture therapy. BMC cancer. 21:722021. View Article : Google Scholar
|
|
90
|
Hatakeyama S, Shibata TK, Tobisawa Y,
Ohyama C, Sugihara K and Fukuda MN: Tumor targeting by a
carbohydrate ligand-mimicking peptide. Methods Mol Biol.
1022:369–386. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Nonaka M, Suzuki-Anekoji M, Nakayama J,
Mabashi-Asazuma H, Jarvis DL, Yeh JC, Yamasaki K, Akama TO, Huang
CT, Campos AR, et al: Overcoming the blood-brain barrier by Annexin
A1-binding peptide to target brain tumours. Br J Cancer.
123:1633–1643. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Baracco EE, Petrazzuolo A and Kroemer G:
Assessment of annexin A1 release during immunogenic cell death.
Methods Enzymol. 629:71–79. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Arai H, Xiao Y, Loupakis F, Kawanishi N,
Wang J, Battaglin F, Soni S, Zhang W, Mancao C, Salhia B, et al:
Immunogenic cell death pathway polymorphisms for predicting
oxaliplatin efficacy in metastatic colorectal cancer. J Immunother
Cancer. 8:e0017142020. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Fucikova J, Kepp O, Kasikova L, Petroni G,
Yamazaki T, Liu P, Zhao L, Spisek R, Kroemer G and Galluzzi L:
Detection of immunogenic cell death and its relevance for cancer
therapy. Cell Death Dis. 11:10132020. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Xiong W, Zhang B, Yu H, Zhu L, Yi L and
Jin X: RRM2 Regulates sensitivity to sunitinib and PD-1 blockade in
renal cancer by Stabilizing ANXA1 and Activating the AKT pathway.
Adv Sci (Weinh). 8:21008812021. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Xiao D, Zeng T, Zhu W, Yu ZZ, Huang W, Yi
H, Lu SS, Feng J, Feng XP, Wu D, et al: ANXA1 promotes tumor immune
evasion by binding PARP1 and upregulating Stat3-induced expression
of PD-L1 in multiple cancers. Cancer Immunol Res. 11:1367–1383.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Jiang X, Wang J, Deng X, Xiong F, Ge J,
Xiang B, Wu X, Ma J, Zhou M, Li X, et al: Role of the tumor
microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol
Cancer. 18:102019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Yu ZZ, Liu YY, Zhu W, Xiao D, Huang W, Lu
SS, Yi H, Zeng T, Feng XP, Yuan L, et al: ANXA1-derived peptide for
targeting PD-L1 degradation inhibits tumor immune evasion in
multiple cancers. J Immunother Cancer. 11:e0063452023. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Stenfeldt AL, Karlsson J, Wennerås C,
Bylund J, Fu H and Dahlgren C: Cyclosporin H, Boc-MLF and Boc-FLFLF
are antagonists that preferentially inhibit activity triggered
through the formyl peptide receptor. Inflammation. 30:224–229.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Yang SC, Chang SH, Hsieh PW, Huang YT, Ho
CM, Tsai YF and Hwang TL: Dipeptide HCH6-1 inhibits neutrophil
activation and protects against acute lung injury by blocking FPR1.
Free Radic Biol Med. 106:254–269. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Li Z, Li Y, Han J, Zhu Z, Li M, Liu Q,
Wang Y and Shi FD: Formyl peptide receptor 1 signaling potentiates
inflammatory brain injury. Sci Transl Med. 13:eabe98902021.
View Article : Google Scholar : PubMed/NCBI
|