Fungi and tumors: The role of fungi in tumorigenesis (Review)
- Authors:
- Wenyue Cheng
- Fan Li
- Yunhuan Gao
- Rongcun Yang
-
Affiliations: Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, P.R. China - Published online on: March 27, 2024 https://doi.org/10.3892/ijo.2024.5640
- Article Number: 52
-
Copyright: © Cheng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Wheeler ML, Limon JJ and Underhill DM: Immunity to commensal fungi: Detente and disease. Annu Rev Pathol. 12:359–385. 2017. View Article : Google Scholar : PubMed/NCBI | |
Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP, Brown J, Becker CA, Fleshner PR, Dubinsky M, et al: Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science. 336:1314–1317. 2012. View Article : Google Scholar : PubMed/NCBI | |
Okuno K, Tokunaga M, Von Hoff D, Kinugasa Y and Goel A; PDAC Biomarker Working Group: Intratumoral malasseziaglobosa levels predict survival and therapeutic response to adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma. Gastroenterology. 165:502–504 e2. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Fan C, Yao A, Xu X, Zheng G, You Y, Jiang C, Zhao X, Hou Y, Hung MC and Lin X: The Adaptor Protein CARD9 protects against colon cancer by restricting mycobiota-mediated expansion of myeloid-derived suppressor cells. Immunity. 49:504–514 e4. 2018. View Article : Google Scholar : PubMed/NCBI | |
Alam A, Levanduski E, Denz P, Villavicencio HS, Bhatta M, Alhorebi L, Zhang Y, Gomez EC, Morreale B, Senchanthisai S, et al: Fungal mycobiome drives IL-33 secretion and type 2 immunity in pancreatic cancer. Cancer Cell. 40:153–167 e11. 2022. View Article : Google Scholar : PubMed/NCBI | |
Malik A, Sharma D, Malireddi RKS, Guy CS, Chang TC, Olsen SR, Neale G, Vogel P and Kanneganti TD: SYK-CARD9 Signaling axis promotes gut fungi-mediated inflammasome activation to restrict colitis and colon cancer. Immunity. 49:515–530 e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qu J, Chen Q, Bing Z, Shen S, Hou Y, Lv M and Wang T: C. tropicalis promotes CRC by down-regulating tumor cell-intrinsic PD-1 receptor via autophagy. J Cancer. 14:1794–1808. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Li A, Wang Y and Zhang Y: Intratumoral microbiota: Roles in cancer initiation, development and therapeutic efficacy. Signal Transduct Target Ther. 8:352023. View Article : Google Scholar : PubMed/NCBI | |
Azevedo MM, Pina-Vaz C and Baltazar F: Microbes and Cancer: Friends or Faux? Int J Mol Sci. 21:31152020. View Article : Google Scholar : PubMed/NCBI | |
Shkoporov AN and Hill C: Bacteriophages of the Human Gut: The 'Known Unknown' of the Microbiome. Cell Host Microbe. 25:195–209. 2019. View Article : Google Scholar : PubMed/NCBI | |
Poore GD, Kopylova E, Zhu Q, Carpenter C, Fraraccio S, Wandro S, Kosciolek T, Janssen S, Metcalf J, Song SJ, et al: Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature. 579:567–574. 2020. View Article : Google Scholar : PubMed/NCBI | |
Narunsky-Haziza L, Sepich-Poore GD, Livyatan I, Asraf O, Martino C, Nejman D, Gavert N, Stajich JE, Amit G, González A, et al: Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions. Cell. 185:3789–3806 e17. 2022. View Article : Google Scholar : PubMed/NCBI | |
Dohlman AB, Klug J, Mesko M, Gao IH, Lipkin SM, Shen X and Iliev ID: A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. Cell. 185:3807–3822 e12. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu NN, Jiao N, Tan JC, Wang Z, Wu D, Wang AJ, Chen J, Tao L, Zhou C, Fang W, et al: Multi-kingdom microbiota analyses identify bacterial-fungal interactions and biomarkers of colorectal cancer across cohorts. Nat Microbiol. 7:238–250. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Yu F and Li P: Intratumor microbiota in cancer pathogenesis and immunity: From mechanisms of action to therapeutic opportunities. Front Immunol. 14:12690542023. View Article : Google Scholar : PubMed/NCBI | |
Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, Geller LT, Rotter-Maskowitz A, Weiser R, Mallel G, Gigi E, et al: The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science. 368:973–980. 2020. View Article : Google Scholar : PubMed/NCBI | |
Galeano Nino JL, Wu H, LaCourse KD, Kempchinsky AG, Baryiames A, Barber B, Futran N and Houlton J: Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature. 611:810–817. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fu A, Yao B, Dong T and Cai S: Emerging roles of intratumor microbiota in cancer metastasis. Trends Cell Biol. 33:583–593. 2023. View Article : Google Scholar | |
Zong Z, Zhou F and Zhang L: The fungal mycobiome: a new hallmark of cancer revealed by pan-cancer analyses. Signal Transduct Target Ther. 8:502023. View Article : Google Scholar : PubMed/NCBI | |
Luan C, Xie L, Yang X, Miao H, Lv N, Zhang R, Xiao X, Hu Y, Liu Y, Wu N, et al: Dysbiosis of fungal microbiota in the intestinal mucosa of patients with colorectal adenomas. Sci Rep. 5:79802015. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Lau HC, Liu Y, Kang X, Wang Y, Ting NL, Kwong TN, Han J, Liu W, Liu C, et al: Altered mycobiota signatures and enriched pathogenic aspergillus rambellii are associated with colorectal cancer based on multicohort fecal metagenomic analyses. Gastroenterology. 163:908–921. 2022. View Article : Google Scholar : PubMed/NCBI | |
Coker OO, Nakatsu G, Dai RZ, Wu WKK, Wong SH, Ng SC, Chan FKL, Sung JJY and Yu J: Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut. 68:654–662. 2019. View Article : Google Scholar | |
Aykut B, Pushalkar S, Chen R, Li Q, Abengozar R, Kim JI, Shadaloey SA, Wu D, Preiss P, Verma N, et al: The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature. 574:264–267. 2019. View Article : Google Scholar : PubMed/NCBI | |
Banerjee S, Tian T, Wei Z, Shih N, Feldman MD, Peck KN, DeMichele AM, Alwine JC and Robertson ES: Distinct microbial signatures associated with different breast cancer types. Front Microbiol. 9:9512018. View Article : Google Scholar : PubMed/NCBI | |
Banerjee S, Alwine JC, Wei Z, Tian T, Shih N, Sperling C, Guzzo T, Feldman MD and Robertson ES: Microbiome signatures in prostate cancer. Carcinogenesis. 40:749–764. 2019. View Article : Google Scholar : PubMed/NCBI | |
Banerjee S, Tian T, Wei Z, Shih N, Feldman MD, Alwine JC, Coukos G and Robertson ES: The ovarian cancer oncobiome. Oncotarget. 8:36225–36245. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhu F, Willette-Brown J, Song NY, Lomada D, Song Y, Xue L, Gray Z, Zhao Z, Davis SR, Sun Z, et al: Autoreactive T cells and chronic fungal infection drive esophageal carcinogenesis. Cell Host Microbe. 21:478–493 e7. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gao R, Kong C, Li H, Huang L, Qu X, Qin N and Qin H: Dysbiosis signature of mycobiota in colon polyp and colorectal cancer. Eur J Clin Microbiol Infect Dis. 36:2457–2468. 2017. View Article : Google Scholar : PubMed/NCBI | |
Alnuaimi AD, Wiesenfeld D, O'Brien-Simpson NM, Reynolds EC, Peng B and McCullough MJ: The development and validation of a rapid genetic method for species identification and genotyping of medically important fungal pathogens using high-resolution melting curve analysis. Mol Oral Microbiol. 29:117–130. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li JQ, Li JL, Xie YH, Wang Y, Shen XN, Qian Y, Han JX, Chen YX and Fang JY: Saccharomyces cerevisiae may serve as a probiotic in colorectal cancer by promoting cancer cell apoptosis. J Dig Dis. 21:571–582. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Zheng Y, Chen Y, Yin Y, Chen Y, Chen Q, Hou Y, Shen S, Lv M and Wang T: Gut fungi enhances immunosuppressive function of myeloid-derived suppressor cells by activating PKM2-dependent glycolysis to promote colorectal tumorigenesis. Exp Hematol Oncol. 11:882022. View Article : Google Scholar : PubMed/NCBI | |
Machlowska J, Baj J, Sitarz M, Maciejewski R and Sitarz R: Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int J Mol Sci. 21:41022020. View Article : Google Scholar | |
Thrift AP and El-Serag HB: Burden of gastric cancer. Clin Gastroenterol Hepatol. 18:534–542. 2020. View Article : Google Scholar | |
Zhong M, Xiong Y, Zhao J, Gao Z, Ma J, Wu Z, Song Y and Hong X: Candida albicans disorder is associated with gastric carcinogenesis. Theranostics. 11:4945–4956. 2021. View Article : Google Scholar : PubMed/NCBI | |
Vallianou N, Kounatidis D, Christodoulatos GS, Panagopoulos F, Karampela I and Dalamaga M: Mycobiome and Cancer: What is the evidence? Cancers (Basel). 13:31492021. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Chen C, Chai D, Li C, Qiu Z, Kuang T, Liu L, Deng W and Wang W: Characterization of the intestinal fungal microbiome in patients with hepatocellular carcinoma. J Transl Med. 21:1262023. View Article : Google Scholar : PubMed/NCBI | |
Del Castillo E, Meier R, Chung M, Koestler DC, Chen T, Paster BJ, Charpentier KP, Kelsey KT, Izard J and Michaud DS: The microbiomes of pancreatic and duodenum tissue overlap and are highly subject specific but differ between pancreatic cancer and noncancer subjects. Cancer Epidemiol Biomarkers Prev. 28:370–383. 2019. View Article : Google Scholar | |
Vitiello GA, Cohen DJ and Miller G: Harnessing the microbiome for pancreatic cancer immunotherapy. Trends Cancer. 5:670–676. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Yi J, Xiang J, Jia W, Chen A, Chen L, Zheng L, Zhou W, Wu M, Yu Z and Tang J: Exploration of lung mycobiome in the patients with non-small-cell lung cancer. BMC Microbiol. 23:812023. View Article : Google Scholar : PubMed/NCBI | |
Perera M, Al-Hebshi NN, Perera I, Ipe D, Ulett GC, Speicher DJ, Chen T and Johnson NW: A dysbiotic mycobiome dominated by Candida albicans is identified within oral squamous-cell carcinomas. J Oral Microbiol. 9:13853692017. View Article : Google Scholar : PubMed/NCBI | |
Navarro-Arias MJ, Hernández-Chávez MJ, García-Carnero LC, Amezcua-Hernández DG, Lozoya-Pérez NE, Estrada-Mata E, Martínez-Duncker I, Franco B and Mora-Montes HM: Differential recognition of Candida tropicalis, Candida guilliermondii, Candida krusei, and Candida auris by human innate immune cells. Infect Drug Resist. 12:783–794. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chang F, Syrjänen S, Wang L and Syrjänen K: Infectious agents in the etiology of esophageal cancer. Gastroenterology. 103:1336–1348. 1992. View Article : Google Scholar : PubMed/NCBI | |
Yang CS: Research on esophageal cancer in China: A review. Cancer Res. 40(8 Pt 1): 2633–2644. 1980.PubMed/NCBI | |
Hashimoto K, Nishimura S, Shinyashiki Y, Ito T and Akagi M: Characterizing inflammatory markers in highly aggressive soft tissue sarcomas. Medicine (Baltimore). 101:e306882022. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Jiang B, Hao H and Liu Z: CARD9 Signaling, inflammation, and diseases. Front Immunol. 13:8808792022. View Article : Google Scholar : PubMed/NCBI | |
Bergmann H, Roth S, Pechloff K, Kiss EA, Kuhn S, Heikenwälder M, Diefenbach A, Greten FR and Ruland J: Card9-dependent IL-1β regulates IL-22 production from group 3 innate lymphoid cells and promotes colitis-associated cancer. Eur J Immunol. 47:1342–1353. 2017. View Article : Google Scholar : PubMed/NCBI | |
Glocker EO, Hennigs A, Nabavi M, Schäffer AA, Woellner C, Salzer U, Pfeifer D, Veelken H, Warnatz K, Tahami F, et al: A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med. 361:1727–1735. 2009. View Article : Google Scholar : PubMed/NCBI | |
Leone RD and Powell JD: Metabolism of immune cells in cancer. Nat Rev Cancer. 20:516–531. 2020. View Article : Google Scholar : PubMed/NCBI | |
Deng Y, Yang J, Luo F, Qian J, Liu R, Zhang D, Yu H and Chu Y: mTOR-mediated glycolysis contributes to the enhanced suppressive function of murine tumor-infiltrating monocytic myeloid-derived suppressor cells. Cancer Immunol Immunother. 67:1355–1364. 2018. View Article : Google Scholar : PubMed/NCBI | |
Reinfeld BI, Madden MZ, Wolf MM, Chytil A, Bader JE, Patterson AR, Sugiura A, Cohen AS, Ali A, Do BT, et al: Cell-programmed nutrient partitioning in the tumour microenvironment. Nature. 593:282–288. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Shi T, Lu X, Xu Z, Qu J, Zhang Z, Shi G, Shen S, Hou Y, Chen Y and Wang T: Fungal-induced glycolysis in macrophages promotes colon cancer by enhancing innate lymphoid cell secretion of IL-22. EMBO J. 40:e1053202021. View Article : Google Scholar : PubMed/NCBI | |
De Monte L, Reni M, Tassi E, Clavenna D, Papa I, Recalde H, Braga M, Di Carlo V, Doglioni C and Protti MP: Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J Exp Med. 208:469–478. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Wu S, Wu W, Zhang W, Li L, Liu Q and Yan Z: Candida albicans promotes oral cancer via IL-17A/IL-17RA-Macrophage axis. mBio. 14:e00447232023. View Article : Google Scholar : PubMed/NCBI | |
Xia J, Ding H, Liu S, An R, Shi X, Chen M and Ren H: C-Type lectin receptors-triggered antifungal immunity may synergize with and optimize the effects of immunotherapy in hepatocellular carcinoma. J Inflamm Res. 16:19–33. 2023. View Article : Google Scholar : PubMed/NCBI | |
Erendor F, Sahin EO, Sanlioglu AD, Balci MK, Griffith TS and Sanlioglu S: Lentiviral gene therapy vectors encoding VIP suppressed diabetes-related inflammation and augmented pancreatic beta-cell proliferation. Gene Ther. 28:130–141. 2021. View Article : Google Scholar | |
Gainza-Cirauqui ML, Nieminen MT, Novak Frazer L, Aguirre-Urizar JM, Moragues MD and Rautemaa R: Production of carcinogenic acetaldehyde by Candida albicans from patients with potentially malignant oral mucosal disorders. J Oral Pathol Med. 42:243–249. 2013. View Article : Google Scholar | |
Smith MT, Guyton KZ, Gibbons CF, Fritz JM, Portier CJ, Rusyn I, DeMarini DM, Caldwell JC, Kavlock RJ, Lambert PF, et al: Key characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. Environ Health Perspect. 124:713–721. 2016. View Article : Google Scholar : | |
Rushing BR and Selim MI: Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem Toxicol. 124:81–100. 2019. View Article : Google Scholar | |
Johnson CH, Dejea CM, Edler D, Hoang LT, Santidrian AF, Felding BH, Ivanisevic J, Cho K, Wick EC, Hechenbleikner EM, et al: Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab. 21:891–897. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hold GL and Allen-Vercoe E: Gut microbial biofilm composition and organisation holds the key to CRC. Nat Rev Gastroenterol Hepatol. 16:329–330. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tomkovich S, Dejea CM, Winglee K, Drewes JL, Chung L, Housseau F, Pope JL, Gauthier J, Sun X, Mühlbauer M, et al: Human colon mucosal biofilms from healthy or colon cancer hosts are carcinogenic. J Clin Invest. 129:1699–1712. 2019. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Ceron D, Bleackley MR and Anderson MA: Fungal extracellular vesicles in pathophysiology. Subcell Biochem. 97:151–177. 2021. View Article : Google Scholar : PubMed/NCBI | |
Freitas MS, Bonato VLD, Pessoni AM, Rodrigues ML, Casadevall A and Almeida F: Fungal extracellular vesicles as potential targets for immune interventions. mSphere. 4:e00747–19. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rodrigues ML and Casadevall A: A two-way road: Novel roles for fungal extracellular vesicles. Mol Microbiol. 110:11–15. 2018. View Article : Google Scholar : PubMed/NCBI | |
Freitas MS, Bitencourt TA, Rezende CP, Martins NS, Dourado TMH, Tirapelli CR and Almeida F: Aspergillus fumigatus extracellular vesicles display increased galleria mellonella survival but partial pro-inflammatory response by macrophages. J Fungi (Basel). 9:5412023. View Article : Google Scholar : PubMed/NCBI | |
Vargas G, Rocha JD, Oliveira DL, Albuquerque PC, Frases S, Santos SS, Nosanchuk JD, Gomes AM, Medeiros LC, Miranda K, et al: Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans. Cell Microbiol. 17:389–407. 2015. View Article : Google Scholar | |
Bielska E, Sisquella MA, Aldeieg M, Birch C, O'Donoghue EJ and May RC: Pathogen-derived extracellular vesicles mediate virulence in the fatal human pathogen Cryptococcus gattii. Nat Commun. 9:15562018. View Article : Google Scholar : PubMed/NCBI | |
Hamad I, Ranque S, Azhar EI, Yasir M, Jiman-Fatani AA, Tissot-Dupont H, Raoult D and Bittar F: Culturomics and amplicon-based metagenomic approaches for the study of fungal population in human gut microbiota. Sci Rep. 7:167882017. View Article : Google Scholar : PubMed/NCBI | |
Leong C, Schmid B, Toi MJ, Wang J, Irudayaswamy AS, Goh JPZ, Bosshard PP, Glatz M and Dawson TL Jr: Geographical and ethnic differences influence culturable commensal yeast diversity on healthy skin. Front Microbiol. 10:18912019. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Chen Z, Guo R, Chen N, Lu H, Huang S, Wang J and Li L: Correlation between gastrointestinal fungi and varying degrees of chronic hepatitis B virus infection. Diagn Microbiol Infect Dis. 70:492–498. 2011. View Article : Google Scholar | |
Proctor DM, Drummond RA, Lionakis MS and Segre JA: One population, multiple lifestyles: Commensalism and pathogenesis in the human mycobiome. Cell Host Microbe. 31:539–553. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tsui C, Kong EF and Jabra-Rizk MA: Pathogenesis of Candida albicans biofilm. Pathog Dis. 74:ftw0182016. View Article : Google Scholar : PubMed/NCBI | |
Li XV, Leonardi I, Putzel GG, Semon A, Fiers WD, Kusakabe T, Lin WY, Gao IH, Doron I, Gutierrez-Guerrero A, et al: Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature. 603:672–678. 2022. View Article : Google Scholar : PubMed/NCBI | |
Seelbinder B, Lohinai Z, Vazquez-Uribe R, Brunke S, Chen X, Mirhakkak M, Lopez-Escalera S, Dome B, Megyesfalvi Z, Berta J, et al: Candida expansion in the gut of lung cancer patients associates with an ecological signature that supports growth under dysbiotic conditions. Nat Commun. 14:26732023. View Article : Google Scholar : PubMed/NCBI | |
Zeise KD, Woods RJ and Huffnagle GB: Interplay between Candida albicans and lactic acid bacteria in the gastrointestinal tract: Impact on colonization resistance, microbial carriage, opportunistic infection, and host immunity. Clin Microbiol Rev. 34:e00323202021. View Article : Google Scholar : PubMed/NCBI | |
MacAlpine J, Daniel-Ivad M, Liu Z, Yano J, Revie NM, Todd RT, Stogios PJ, Sanchez H, O'Meara TR, Tompkins TA, et al: A small molecule produced by Lactobacillus species blocks Candida albicans filamentation by inhibiting a DYRK1-family kinase. Nat Commun. 12:61512021. View Article : Google Scholar : PubMed/NCBI | |
Fan D, Coughlin LA, Neubauer MM, Kim J, Kim MS, Zhan X, Simms-Waldrip TR, Xie Y, Hoope LV and Koh AY: Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat Med. 21:808–814. 2015. View Article : Google Scholar : PubMed/NCBI | |
Boutin RC, Petersen C, Woodward SE, Serapio-Palacios A, Bozorgmehr T, Loo R, Chalanuchpong A, Cirstea M, Lo B, Huus KE, et al: Bacterial-fungal interactions in the neonatal gut influence asthma outcomes later in life. Elife. 10:e677402021. View Article : Google Scholar : PubMed/NCBI | |
Nash AK, Auchtung TA, Wong MC, Smith DP, Gesell JR, Ross MC, Stewart CJ, Metcalf GA, Muzny DM, Gibbs RA, et al: The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome. 5:1532017. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez-Orozco BD, Kosmerl E, Jiménez-Flores R and Alvarez VB: Enhanced probiotic potential of Lactobacillus kefiranofaciens OSU-BDGOA1 through co-culture with Kluyveromyces marxianus bdgo-ym6. Front Microbiol. 14:12366342023. View Article : Google Scholar : PubMed/NCBI | |
Zeng X, Jia H, Shi Y, Chen K, Wang Z, Gao Z, Yuan Y and Yue T: Lactobacillus kefiranofaciens JKSP109 and Saccharomyces cerevisiae JKSP39 isolated from Tibetan kefir grain co-alleviated AOM/DSS induced inflammation and colorectal carcinogenesis. Food Funct. 13:6947–6961. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rao C, Coyte KZ, Bainter W, Geha RS, Martin CR and Rakoff-Nahoum S: Multi-kingdom ecological drivers of microbiota assembly in preterm infants. Nature. 591:633–638. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D: Hallmarks of cancer: New dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hoft MA, Hoving JC and Brown GD: Signaling C-Type lectin receptors in antifungal immunity. Curr Top Microbiol Immunol. 429:63–101. 2020.PubMed/NCBI | |
Hatinguais R, Willment JA and Brown GD: PAMPs of the fungal cell wall and mammalian PRRs. Curr Top Microbiol Immunol. 425:187–223. 2020.PubMed/NCBI | |
Witchley JN, Penumetcha P, Abon NV, Woolford CA, Mitchell AP and Noble SM: Candida albicans Morphogenesis Programs Control the Balance between Gut Commensalism and Invasive Infection. Cell Host Microbe. 25:432–443 e6. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pande K, Chen C and Noble SM: Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism. Nat Genet. 45:1088–1091. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Pande K, French SD, Tuch BB and Noble SM: An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis. Cell Host Microbe. 10:118–135. 2011. View Article : Google Scholar : PubMed/NCBI | |
Day AM, McNiff MM, da Silva Dantas A, Gow NAR and Quinn J: Hog1 regulates stress tolerance and virulence in the emerging fungal pathogen Candida auris. mSphere. 3:e00506–18. 2018. View Article : Google Scholar : PubMed/NCBI | |
Deorukhkar SC, Saini S and Mathew S: Non-albicans Candida Infection: An emerging threat. Interdiscip Perspect Infect Dis. 2014:6159582014. View Article : Google Scholar : PubMed/NCBI | |
Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX, Wernecke J, Höfs S, Gratacap RL, Robbins J, Runglall M, et al: Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature. 532:64–68. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Chow EWL, Wang H, Xu X, Cai C, Song Y, Wang J and Wang Y: LncRNA DINOR is a virulence factor and global regulator of stress responses in Candida auris. Nat Microbiol. 6:842–851. 2021. View Article : Google Scholar : PubMed/NCBI | |
Boutin RCT, Sbihi H, McLaughlin RJ, Hahn AS, Konwar KM, Loo RS, Dai D, Petersen C, Brinkman FSL, Winsor GL, et al: Composition and associations of the infant gut fungal microbiota with environmental factors and childhood allergic outcomes. mBio. 12:e03396202021. View Article : Google Scholar : PubMed/NCBI | |
Yamaguchi N, Sonoyama K, Kikuchi H, Nagura T, Aritsuka T and Kawabata J: Gastric colonization of Candida albicans differs in mice fed commercial and purified diets. J Nutr. 135:109–115. 2005. View Article : Google Scholar | |
Robbins J, Passmore GM, Abogadie FC, Reilly JM and Brown DA: Effects of KCNQ2 gene truncation on M-type Kv7 potassium currents. PLoS One. 8:e718092013. View Article : Google Scholar : PubMed/NCBI | |
Goncalves B, Ferreira C, Alves CT, Henriques M, Azeredo J and Silva S: Vulvovaginal candidiasis: Epidemiology, microbiology and risk factors. Crit Rev Microbiol. 42:905–927. 2016. View Article : Google Scholar | |
Seelbinder B, Chen J, Brunke S, Vazquez-Uribe R, Santhaman R, Meyer AC, de Oliveira Lino FS, Chan KF, Loos D, Imamovic L, et al: Antibiotics create a shift from mutualism to competition in human gut communities with a longer-lasting impact on fungi than bacteria. Microbiome. 8:1332020. View Article : Google Scholar : PubMed/NCBI | |
Zhai B, Ola M, Rolling T, Tosini NL, Joshowitz S, Littmann ER, Amoretti LA, Fontana E, Wright RJ, Miranda E, et al: High-resolution mycobiota analysis reveals dynamic intestinal translocation preceding invasive candidiasis. Nat Med. 26:59–64. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chandra D, Selvanesan BC, Yuan Z, Libutti SK, Koba W, Beck A, Zhu K, Casadevall A, Dadachova E and Gravekamp C: 32-Phosphorus selectively delivered by listeria to pancreatic cancer demonstrates a strong therapeutic effect. Oncotarget. 8:20729–20740. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA and Knight R: The microbiome and human cancer. Science. 371:eabc45522021. View Article : Google Scholar : PubMed/NCBI | |
Dhankhar R, Gupta V, Kumar S, Kapoor RK and Gulati P: Microbial enzymes for deprivation of amino acid metabolism in malignant cells: Biological strategy for cancer treatment. Appl Microbiol Biotechnol. 104:2857–2869. 2020. View Article : Google Scholar : PubMed/NCBI | |
Halley A, Leonetti A, Gregori A, Tiseo M, Deng DM, Giovannetti E and Peters GJ: The role of the microbiome in cancer and therapy efficacy: Focus on lung cancer. Anticancer Res. 40:4807–4818. 2020. View Article : Google Scholar : PubMed/NCBI | |
Brandi G, Turroni S, McAllister F and Frega G: The human microbiomes in pancreatic cancer: Towards evidence-based manipulation strategies? Int J Mol Sci. 22:99142021. View Article : Google Scholar : PubMed/NCBI | |
Fazzino L, Anisman J, Chacón JM and Harcombe WR: Phage cocktail strategies for the suppression of a pathogen in a cross-feeding coculture. Microb Biotechnol. 13:1997–2007. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wong CC and Yu J: Gut microbiota in colorectal cancer development and therapy. Nat Rev Clin Oncol. 20:429–452. 2023. View Article : Google Scholar : PubMed/NCBI | |
Elkrief A, Derosa L, Kroemer G, Zitvogel L and Routy B: The negative impact of antibiotics on outcomes in cancer patients treated with immunotherapy: A new independent prognostic factor? Ann Oncol. 30:1572–1579. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mayne ST, Playdon MC and Rock CL: Diet nutrition, and cancer: Past present and future. Nat Rev Clin Oncol. 13:504–515. 2016. View Article : Google Scholar : PubMed/NCBI | |
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, et al: Diet rapidly and reproducibly alters the human gut microbiome. Nature. 505:559–563. 2014. View Article : Google Scholar : | |
Roy S and Dhaneshwar S: Role of prebiotics, probiotics, and synbiotics in management of inflammatory bowel disease: Current perspectives. World J Gastroenterol. 29:2078–2100. 2023. View Article : Google Scholar : PubMed/NCBI | |
Clark MJ, Robien K and Slavin JL: Effect of prebiotics on biomarkers of colorectal cancer in humans: A systematic review. Nutr Rev. 70:436–443. 2012. View Article : Google Scholar : PubMed/NCBI | |
Canale FP, Basso C, Antonini G, Perotti M, Li N, Sokolovska A, Neumann J, James MJ, Geiger S, Jin W, et al: Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature. 598:662–666. 2021. View Article : Google Scholar : PubMed/NCBI | |
Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, Fuhrer T, Kogadeeva M, Picotti P, Meissner F, Mann M, et al: L-Arginine Modulates T cell metabolism and enhances survival and anti-tumor activity. Cell. 167:829–842 e13. 2016. View Article : Google Scholar : PubMed/NCBI |