Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
May-2024 Volume 64 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2024 Volume 64 Issue 5

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Heterogeneity of primary and metastatic CAFs: From differential treatment outcomes to treatment opportunities (Review)

  • Authors:
    • Zixing Kou
    • Cun Liu
    • Wenfeng Zhang
    • Changgang Sun
    • Lijuan Liu
    • Qiming Zhang
  • View Affiliations / Copyright

    Affiliations: College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China, College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China, State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa Island 999078, Macau SAR, Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong 621000, P.R. China
    Copyright: © Kou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 54
    |
    Published online on: April 4, 2024
       https://doi.org/10.3892/ijo.2024.5642
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Compared with primary tumor sites, metastatic sites appear more resistant to treatments and respond differently to the treatment regimen. It may be due to the heterogeneity in the microenvironment between metastatic sites and primary tumors. Cancer‑associated fibroblasts (CAFs) are widely present in the tumor stroma as key components of the tumor microenvironment. Primary tumor CAFs (pCAFs) and metastatic CAFs (mCAFs) are heterogeneous in terms of source, activation mode, markers and functional phenotypes. They can shape the tumor microenvironment according to organ, showing heterogeneity between primary tumors and metastases, which may affect the sensitivity of these sites to treatment. It was hypothesized that understanding the heterogeneity between pCAFs and mCAFs can provide a glimpse into the difference in treatment outcomes, providing new ideas for improving the rate of metastasis control in various cancers.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Garcia-Vicién G, Mezheyeuski A, Bañuls M, Ruiz-Roig N and Molleví DG: The Tumor microenvironment in liver metastases from colorectal carcinoma in the context of the histologic growth patterns. Int J Mol Sci. 22:15442021. View Article : Google Scholar : PubMed/NCBI

2 

Luo F, Li J, Wu S, Wu X, Chen M, Zhong X and Liu K: Comparative profiling between primary colorectal carcinomas and metastases identifies heterogeneity on drug resistance. Oncotarget. 7:63937–63949. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Hu Z, Li Z, Ma Z and Curtis C: Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases. Nat Genet. 52:701–708. 2020. View Article : Google Scholar : PubMed/NCBI

4 

Korentzelos D, Clark AM and Wells A: A perspective on therapeutic pan-resistance in metastatic cancer. Int J Mol Sci. 21:73042020. View Article : Google Scholar : PubMed/NCBI

5 

Hirata E and Sahai E: Tumor microenvironment and differential responses to therapy. Cold Spring Harb Perspect Med. 7:a0267812017. View Article : Google Scholar : PubMed/NCBI

6 

Jiménez-Sánchez A, Memon D, Pourpe S, Veeraraghavan H, Li Y, Vargas HA, Gill MB, Park KJ, Zivanovic O, Konner J, et al: Heterogeneous tumor-immune microenvironments among differentially growing metastases in an ovarian cancer patient. Cell. 170:927–938.e20. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X and Shi S: Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol Cancer. 20:1312021. View Article : Google Scholar : PubMed/NCBI

8 

Gui Y, Aguilar-Mahecha A, Krzemien U, Hosein A, Buchanan M, Lafleur J, Pollak M, Ferrario C and Basik M: Metastatic breast carcinoma-associated fibroblasts have enhanced protumorigenic properties related to increased IGF2 expression. Clin Cancer Res. 25:7229–7242. 2019. View Article : Google Scholar : PubMed/NCBI

9 

Kalluri R: The biology and function of fibroblasts in cancer. Nat Rev Cancer. 16:582–598. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Chen X and Song E: Turning foes to friends: Targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 18:99–115. 2019. View Article : Google Scholar

11 

Park D, Sahai E and Rullan A: SnapShot: Cancer-associated fibroblasts. Cell. 181:486–486.e1. 2020. View Article : Google Scholar : PubMed/NCBI

12 

Shen Y, Wang X, Lu J, Salfenmoser M, Wirsik NM, Schleussner N, Imle A, Freire Valls A, Radhakrishnan P, Liang J, et al: Reduction of liver metastasis stiffness improves response to bevacizumab in metastatic colorectal cancer. Cancer Cell. 37:800–817.e7. 2020. View Article : Google Scholar : PubMed/NCBI

13 

Ziemys A, Simic V, Milosevic M, Kojic M, Liu YT and Yokoi K: Attenuated microcirculation in small metastatic tumors in murine liver. Pharmaceutics. 13:7032021. View Article : Google Scholar : PubMed/NCBI

14 

Cox TR: The matrix in cancer. Nat Rev Cancer. 21:217–238. 2021. View Article : Google Scholar : PubMed/NCBI

15 

Gertych A, Walts AE, Cheng K, Liu M, John J, Lester J, Karlan BY and Orsulic S: Dynamic changes in the extracellular matrix in primary, metastatic, and recurrent ovarian cancers. Cells. 11:73692022. View Article : Google Scholar

16 

Fujimori D, Kinoshita J, Yamaguchi T, Nakamura Y, Gunjigake K, Ohama T, Sato K, Yamamoto M, Tsukamoto T, Nomura S, et al: Established fibrous peritoneal metastasis in an immunocompetent mouse model similar to clinical immune microenvironment of gastric cancer. BMC Cancer. 20:10142020. View Article : Google Scholar : PubMed/NCBI

17 

Wang Z, Liu J, Huang H, Ye M, Li X, Wu R, Liu H and Song Y: Metastasis-associated fibroblasts: an emerging target for metastatic cancer. Biomark Res. 9:472021. View Article : Google Scholar : PubMed/NCBI

18 

Biffi G and Tuveson DA: Diversity and biology of cancer-associated fibroblasts. Physiol Rev. 101:147–176. 2021. View Article : Google Scholar :

19 

Miyashita N and Saito A: Organ specificity and heterogeneity of cancer-associated fibroblasts in colorectal cancer. Int J Mol Sci. 22:109732021. View Article : Google Scholar : PubMed/NCBI

20 

Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, et al: A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 20:174–186. 2020. View Article : Google Scholar : PubMed/NCBI

21 

Ganguly D, Chandra R, Karalis J, Teke M, Aguilera T, Maddipati R, Wachsmann MB, Ghersi D, Siravegna G, Zeh HJ III, et al: Cancer-associated fibroblasts: versatile players in the tumor microenvironment. Cancers (Basel). 12:26522020. View Article : Google Scholar : PubMed/NCBI

22 

Bu L, Baba H, Yoshida N, Miyake K, Yasuda T, Uchihara T, Tan P and Ishimoto T: Biological heterogeneity and versatility of cancer-associated fibroblasts in the tumor microenvironment. Oncogene. 38:4887–4901. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Bartoschek M, Oskolkov N, Bocci M, Lövrot J, Larsson C, Sommarin M, Madsen CD, Lindgren D, Pekar G, Karlsson G, et al: Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat Commun. 9:51502018. View Article : Google Scholar : PubMed/NCBI

24 

Potenta S, Zeisberg E and Kalluri R: The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer. 99:1375–1379. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, Baik GH, Shibata W, Diprete B, Betz KS, et al: Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 19:257–272. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F, Reichert M, Beatty GL, Rustgi AK, Vonderheide RH, et al: EMT and dissemination precede pancreatic tumor formation. Cell. 148:349–361. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Dulauroy S, Di Carlo SE, Langa F, Eberl G and Peduto L: Lineage tracing and genetic ablation of ADAM12(+) perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat Med. 18:1262–1270. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Rinkevich Y, Mori T, Sahoo D, Xu PX, Bermingham JR Jr and Weissman IL: Identification and prospective isolation of a mesothelial precursor lineage giving rise to smooth muscle cells and fibroblasts for mammalian internal organs, and their vasculature. Nat Cell Biol. 14:1251–1260. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Liu T, Han C, Wang S, Fang P, Ma Z, Xu L and Yin R: Cancer-associated fibroblasts: An emerging target of anti-cancer immunotherapy. J Hematol Oncol. 12:862019. View Article : Google Scholar : PubMed/NCBI

30 

Bielczyk-Maczynska E: White adipocyte plasticity in physiology and disease. Cells. 8:15072019. View Article : Google Scholar : PubMed/NCBI

31 

Huang X, He C, Hua X, Kan A, Mao Y, Sun S, Duan F, Wang J, Huang P and Li S: Oxidative stress induces monocyte-to-myofibroblast transdifferentiation through p38 in pancreatic ductal adenocarcinoma. Clin Transl Med. 10:e412020. View Article : Google Scholar : PubMed/NCBI

32 

Yamamoto G, Taura K, Iwaisako K, Asagiri M, Ito S, Koyama Y, Tanabe K, Iguchi K, Satoh M, Nishio T, et al: Pancreatic stellate cells have distinct characteristics from hepatic stellate cells and are not the unique origin of collagen-producing cells in the pancreas. Pancreas. 46:1141–1151. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Bachem MG, Schünemann M, Ramadani M, Siech M, Beger H, Buck A, Zhou S, Schmid-Kotsas A and Adler G: Pancreatic carcinoma cells induce fibrosis by stimulating proliferation and matrix synthesis of stellate cells. Gastroenterology. 128:907–921. 2005. View Article : Google Scholar : PubMed/NCBI

34 

Erez N: Fibroblasts form a hospitable metastatic niche in the liver. Nat Cell Biol. 18:465–466. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Bhattacharjee S, Hamberger F, Ravichandra A, Miller M, Nair A, Affo S, Filliol A, Chin L, Savage TM, Yin D, et al: Tumor restriction by type I collagen opposes tumor-promoting effects of cancer-associated fibroblasts. J Clin Invest. 131:e1469872021. View Article : Google Scholar : PubMed/NCBI

36 

Omary MB, Lugea A, Lowe AW and Pandol SJ: The pancreatic stellate cell: A star on the rise in pancreatic diseases. J Clin Invest. 117:50–59. 2007. View Article : Google Scholar : PubMed/NCBI

37 

Kisseleva T: The origin of fibrogenic myofibroblasts in fibrotic liver. Hepatology. 65:1039–1043. 2017. View Article : Google Scholar

38 

Klopp AH, Spaeth EL, Dembinski JL, Woodward WA, Munshi A, Meyn RE, Cox JD, Andreeff M and Marini FC: Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res. 67:11687–11695. 2007. View Article : Google Scholar : PubMed/NCBI

39 

Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, Andreeff M and Marini F: Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One. 4:e49922009. View Article : Google Scholar : PubMed/NCBI

40 

Mi Z, Bhattacharya SD, Kim VM, Guo H, Talbot LJ and Kuo PC: Osteopontin promotes CCL5-mesenchymal stromal cell-mediated breast cancer metastasis. Carcinogenesis. 32:477–487. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Raz Y, Cohen N, Shani O, Bell RE, Novitskiy SV, Abramovitz L, Levy C, Milyavsky M, Leider-Trejo L, Moses HL, et al: Bone marrow-derived fibroblasts are a functionally distinct stromal cell population in breast cancer. J Exp Med. 215:3075–3093. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Liu Z, Wang H, He J, Yuan X and Sun W: Rictor ablation in BMSCs inhibits bone metastasis of TM40D cells by attenuating osteolytic destruction and CAF formation. Int J Biol Sci. 15:2448–2460. 2019. View Article : Google Scholar : PubMed/NCBI

43 

Jiang Z, Zhou J, Li L, Liao S, He J, Zhou S and Zhou Y: Pericytes in the tumor microenvironment. Cancer Lett. 556:2160742023. View Article : Google Scholar : PubMed/NCBI

44 

Hosaka K, Yang Y, Seki T, Fischer C, Dubey O, Fredlund E, Hartman J, Religa P, Morikawa H, Ishii Y, et al: Pericyte-fibroblast transition promotes tumor growth and metastasis. Proc Natl Acad Sci USA. 113:E5618–E5627. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Bakir B, Chiarella AM, Pitarresi JR and Rustgi AK: EMT, MET, plasticity, and tumor metastasis. Trends Cell Biol. 30:764–776. 2020. View Article : Google Scholar : PubMed/NCBI

46 

Erez N, Truitt M, Olson P, Arron ST and Hanahan D: Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell. 17:135–147. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Sharon Y, Raz Y, Cohen N, Ben-Shmuel A, Schwartz H, Geiger T and Erez N: Tumor-derived osteopontin reprograms normal mammary fibroblasts to promote inflammation and tumor growth in breast cancer. Cancer Res. 75:963–973. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Vu LT, Peng B, Zhang DX, Ma V, Mathey-Andrews CA, Lam CK, Kiomourtzis T, Jin J, McReynolds L, Huang L, et al: Tumor-secreted extracellular vesicles promote the activation of cancer-associated fibroblasts via the transfer of microRNA-125b. J Extracell Vesicles. 8:15996802019. View Article : Google Scholar : PubMed/NCBI

49 

Gong Z, Li Q, Shi J, Wei J, Li P, Chang CH, Shultz LD and Ren G: Lung fibroblasts facilitate pre-metastatic niche formation by remodeling the local immune microenvironment. Immunity. 55:1483–1500.e9. 2022. View Article : Google Scholar : PubMed/NCBI

50 

D'Arcangelo E, Wu NC, Cadavid JL and McGuigan AP: The life cycle of cancer-associated fibroblasts within the tumour stroma and its importance in disease outcome. Br J Cancer. 122:931–942. 2020. View Article : Google Scholar : PubMed/NCBI

51 

Koliaraki V, Pallangyo CK, Greten FR and Kollias G: Mesenchymal cells in colon cancer. Gastroenterology. 152:964–979. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Hawinkels LJAC, Paauwe M, Verspaget HW, Wiercinska E, van der Zon JM, van der Ploeg K, Koelink PJ, Lindeman JHN, Mesker W, ten Dijke P and Sier CFM: Interaction with colon cancer cells hyperactivates TGF-β signaling in cancer-associated fibroblasts. Oncogene. 33:97–107. 2014. View Article : Google Scholar

53 

Kobayashi H, Gieniec KA, Lannagan TRM, Wang T, Asai N, Mizutani Y, Iida T, Ando R, Thomas EM, Sakai A, et al: The origin and contribution of cancer-associated fibroblasts in colorectal carcinogenesis. Gastroenterology. 162:890–906. 2022. View Article : Google Scholar

54 

Shinagawa K, Kitadai Y, Tanaka M, Sumida T, Kodama M, Higashi Y, Tanaka S, Yasui W and Chayama K: Mesenchymal stem cells enhance growth and metastasis of colon cancer. Int J Cancer. 127:2323–2333. 2010. View Article : Google Scholar : PubMed/NCBI

55 

Flier SN, Tanjore H, Kokkotou EG, Sugimoto H, Zeisberg M and Kalluri R: Identification of epithelial to mesenchymal transition as a novel source of fibroblasts in intestinal fibrosis. J Biol Chem. 285:20202–20212. 2010. View Article : Google Scholar : PubMed/NCBI

56 

Apte MV, Park S, Phillips PA, Santucci N, Goldstein D, Kumar RK, Ramm GA, Buchler M, Friess H, McCarroll JA, et al: Desmoplastic reaction in pancreatic cancer: Role of pancreatic stellate cells. Pancreas. 29:179–187. 2004. View Article : Google Scholar : PubMed/NCBI

57 

Houg DS and Bijlsma MF: The hepatic pre-metastatic niche in pancreatic ductal adenocarcinoma. Mol Cancer. 17:952018. View Article : Google Scholar : PubMed/NCBI

58 

Öhlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, Corbo V, Oni TE, Hearn SA, Lee EJ, et al: Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 214:579–596. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS, et al: Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9:1102–1123. 2019. View Article : Google Scholar : PubMed/NCBI

60 

Tsoumakidou M: The advent of immune stimulating CAFs in cancer. Nat Rev Cancer. 23:258–269. 2023. View Article : Google Scholar : PubMed/NCBI

61 

Dominguez CX, Müller S, Keerthivasan S, Koeppen H, Hung J, Gierke S, Breart B, Foreman O, Bainbridge TW, Castiglioni A, et al: Single-cell RNA sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov. 10:232–253. 2020. View Article : Google Scholar

62 

Huang H, Wang Z, Zhang Y, Pradhan RN, Ganguly D, Chandra R, Murimwa G, Wright S, Gu X, Maddipati R, et al: Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell. 40:656–673.e7. 2022. View Article : Google Scholar :

63 

Iwaisako K, Jiang C, Zhang M, Cong M, Moore-Morris TJ, Park TJ, Liu X, Xu J, Wang P, Paik YH, et al: Origin of myofibroblasts in the fibrotic liver in mice. Proc Natl Acad Sci USA. 111:E3297–E3305. 2014. View Article : Google Scholar : PubMed/NCBI

64 

Lua I, Li Y, Zagory JA, Wang KS, French SW, Sévigny J and Asahina K: Characterization of hepatic stellate cells, portal fibroblasts, and mesothelial cells in normal and fibrotic livers. J Hepatol. 64:1137–1146. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Tsuchida T and Friedman SL: Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol. 14:397–411. 2017. View Article : Google Scholar : PubMed/NCBI

66 

O'Hara SP and LaRusso NF: Portal fibroblasts: A renewable source of liver myofibroblasts. Hepatology. 76:1240–1242. 2022. View Article : Google Scholar : PubMed/NCBI

67 

Xie Z, Gao Y, Ho C, Li L, Jin C, Wang X, Zou C, Mao Y, Wang X, Li Q, et al: Exosome-delivered CD44v6/C1QBP complex drives pancreatic cancer liver metastasis by promoting fibrotic liver microenvironment. Gut. 71:568–579. 2022. View Article : Google Scholar

68 

Giguelay A, Turtoi E, Khelaf L, Tosato G, Dadi I, Chastel T, Poul MA, Pratlong M, Nicolescu S, Severac D, et al: The landscape of cancer-associated fibroblasts in colorectal cancer liver metastases. Theranostics. 12:7624–7639. 2022. View Article : Google Scholar : PubMed/NCBI

69 

Tan HX, Gong WZ, Zhou K, Xiao ZG, Hou FT, Huang T, Zhang L, Dong HY, Zhang WL, Liu Y and Huang ZC: CXCR4/TGF-β1 mediated hepatic stellate cells differentiation into carcinoma-associated fibroblasts and promoted liver metastasis of colon cancer. Cancer Biol Ther. 21:258–268. 2020. View Article : Google Scholar

70 

Mukaida N, Zhang D and Sasaki SI: Emergence of cancer-associated fibroblasts as an indispensable cellular player in bone metastasis process. Cancers (Basel). 12:28962020. View Article : Google Scholar : PubMed/NCBI

71 

Houthuijzen JM and de Visser KE: The lung fibroblast as 'soil fertilizer' in breast cancer metastasis. Immunity. 55:1336–1339. 2022. View Article : Google Scholar : PubMed/NCBI

72 

Chang HY, Chi JT, Dudoit S, Bondre C, van de Rijn M, Botstein D and Brown PO: Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci USA. 99:12877–12882. 2002. View Article : Google Scholar : PubMed/NCBI

73 

Apte MV, Wilson JS, Lugea A and Pandol SJ: A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology. 144:1210–1219. 2013. View Article : Google Scholar : PubMed/NCBI

74 

Hessmann E, Patzak MS, Klein L, Chen N, Kari V, Ramu I, Bapiro TE, Frese KK, Gopinathan A, Richards FM, et al: Fibroblast drug scavenging increases intratumoural gemcitabine accumulation in murine pancreas cancer. Gut. 67:497–507. 2018. View Article : Google Scholar

75 

Helms EJ, Berry MW, Chaw RC, DuFort CC, Sun D, Onate MK, Oon C, Bhattacharyya S, Sanford-Crane H, Horton W, et al: Mesenchymal lineage heterogeneity underlies nonredundant functions of pancreatic cancer-associated fibroblasts. Cancer Discov. 12:484–501. 2022. View Article : Google Scholar

76 

Garcia PE, Adoumie M, Kim EC, Zhang Y, Scales MK, El-Tawil YS, Shaikh AZ, Wen HJ, Bednar F, Allen BL, et al: Differential contribution of pancreatic fibroblast subsets to the pancreatic cancer stroma. Cell Mol Gastroenterol Hepatol. 10:581–599. 2020. View Article : Google Scholar : PubMed/NCBI

77 

Zhang Y, Bian Y, Wang Y, Wang Y, Duan X, Han Y, Zhang L, Wang F, Gu Z and Qin Z: HIF-1α is necessary for activation and tumour-promotion effect of cancer-associated fibroblasts in lung cancer. J Cell Mol Med. 25:5457–5469. 2021. View Article : Google Scholar : PubMed/NCBI

78 

Shintani Y, Fujiwara A, Kimura T, Kawamura T, Funaki S, Minami M and Okumura M: IL-6 secreted from cancer-associated fibroblasts mediates chemoresistance in NSCLC by increasing epithelial-mesenchymal transition signaling. J Thorac Oncol. 11:1482–1492. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Gottschling S, Granzow M, Kuner R, Jauch A, Herpel E, Xu EC, Muley T, Schnabel PA, Herth FJ and Meister M: Mesenchymal stem cells in non-small cell lung cancer-different from others? Insights from comparative molecular and functional analyses. Lung Cancer. 80:19–29. 2013. View Article : Google Scholar : PubMed/NCBI

80 

Wang H, Shui L, Chen R and Chen Y, Guo J and Chen Y: Occurrence and prognosis of lung cancer metastasis to major organs: A population-based study. Eur J Cancer Prev. 32:246–253. 2023. View Article : Google Scholar : PubMed/NCBI

81 

Kong J, Tian H, Zhang F, Zhang Z, Li J, Liu X, Li X, Liu J, Li X, Jin D, et al: Extracellular vesicles of carcinoma-associated fibroblasts creates a pre-metastatic niche in the lung through activating fibroblasts. Mol Cancer. 18:1752019. View Article : Google Scholar : PubMed/NCBI

82 

Duda DG, Duyverman AM, Kohno M, Snuderl M, Steller EJ, Fukumura D and Jain RK: Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci USA. 107:21677–21682. 2010. View Article : Google Scholar : PubMed/NCBI

83 

Buchsbaum RJ and Oh SY: Breast cancer-associated fibroblasts: Where We Are And Where We Need To Go. Cancers (Basel). 8:192016. View Article : Google Scholar : PubMed/NCBI

84 

Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P, Zhuo W, Hu Y, Chen C, Chen L, et al: Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Commun (Lond). 42:401–434. 2022. View Article : Google Scholar : PubMed/NCBI

85 

Friedman G, Levi-Galibov O, David E, Bornstein C, Giladi A, Dadiani M, Mayo A, Halperin C, Pevsner-Fischer M, Lavon H, et al: Cancer-associated fibroblast compositions change with breast cancer progression linking the ratio of S100A4+ and PDPN+ CAFs to clinical outcome. Nat Cancer. 1:692–708. 2020. View Article : Google Scholar : PubMed/NCBI

86 

Zhang XHF, Jin X, Malladi S, Zou Y, Wen YH, Brogi E, Smid M, Foekens JA and Massagué J: Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell. 154:1060–1073. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Kuo MC, Kothari AN, Kuo PC and Mi Z: Cancer stemness in bone marrow micrometastases of human breast cancer. Surgery. 163:330–335. 2018. View Article : Google Scholar

88 

Ban J, Fock V, Aryee DNT and Kovar H: Mechanisms, diagnosis and treatment of bone metastases. Cells. 10:29442021. View Article : Google Scholar : PubMed/NCBI

89 

Haider MT, Smit DJ and Taipaleenmäki H: The endosteal niche in breast cancer bone metastasis. Front Oncol. 10:3352020. View Article : Google Scholar : PubMed/NCBI

90 

Croucher PI, McDonald MM and Martin TJ: Bone metastasis: The importance of the neighbourhood. Nat Rev Cancer. 16:373–386. 2016. View Article : Google Scholar : PubMed/NCBI

91 

Cassell K, Thomas-Lopez D, Kjelsø C and Uldum S: Provincial trends in Legionnaires' disease are not explained by population structure in Denmark, 2015 to 2018. Euro Surveill. 26:20000362021. View Article : Google Scholar : PubMed/NCBI

92 

Mundim FGL, Pasini FS, Nonogaki S, Rocha RM, Soares FA, Brentani MM and Logullo AF: Breast carcinoma-associated fibroblasts share similar biomarker profiles in matched lymph node metastasis. Appl Immunohistochem Mol Morphol. 24:712–720. 2016. View Article : Google Scholar : PubMed/NCBI

93 

Del Valle PR, Milani C, Brentani MM, Katayama ML, de Lyra EC, Carraro DM, Brentani H, Puga R, Lima LA, Rozenchan PB, et al: Transcriptional profile of fibroblasts obtained from the primary site, lymph node and bone marrow of breast cancer patients. Genet Mol Biol. 37:480–489. 2014. View Article : Google Scholar : PubMed/NCBI

94 

Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, Rodman C, Luo CL, Mroz EA, Emerick KS, et al: Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell. 171:1611–1624.e24. 2017. View Article : Google Scholar : PubMed/NCBI

95 

Han L, Wu Y, Fang K, Sweeney S, Roesner UK, Parrish M, Patel K, Walter T, Piermattei J, Trimboli A, et al: The splanchnic mesenchyme is the tissue of origin for pancreatic fibroblasts during homeostasis and tumorigenesis. Nat Commun. 14:12023. View Article : Google Scholar : PubMed/NCBI

96 

Nielsen SR, Quaranta V, Linford A, Emeagi P, Rainer C, Santos A, Ireland L, Sakai T, Sakai K, Kim YS, et al: Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis. Nat Cell Biol. 18:549–560. 2016. View Article : Google Scholar : PubMed/NCBI

97 

Zhang C, Wang XY, Zhang P, He TC, Han JH, Zhang R, Lin J, Fan J, Lu L, Zhu WW, et al: Cancer-derived exosomal HSPC111 promotes colorectal cancer liver metastasis by reprogramming lipid metabolism in cancer-associated fibroblasts. Cell Death Dis. 13:572022. View Article : Google Scholar : PubMed/NCBI

98 

Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Céspedes MV, Sevillano M, Nadal C, Jung P, Zhang XH, et al: Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell. 22:571–584. 2012. View Article : Google Scholar : PubMed/NCBI

99 

Shi M, Zhu J, Wang R, Chen X, Mi L, Walz T and Springer TA: Latent TGF-β structure and activation. Nature. 474:343–349. 2011. View Article : Google Scholar : PubMed/NCBI

100 

Massagué J: TGFbeta signalling in context. Nat Rev Mol Cell Biol. 13:616–630. 2012. View Article : Google Scholar

101 

Su J, Morgani SM, David CJ, Wang Q, Er EE, Huang YH, Basnet H, Zou Y, Shu W, Soni RK, et al: TGF-β orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1. Nature. 577:566–571. 2020. View Article : Google Scholar : PubMed/NCBI

102 

Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, Onder TT, Wang ZC, Richardson AL, Weinberg RA and Orimo A: Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci USA. 107:20009–20014. 2010. View Article : Google Scholar : PubMed/NCBI

103 

Chen IX, Chauhan VP, Posada J, Ng MR, Wu MW, Adstamongkonkul P, Huang P, Lindeman N, Langer R and Jain RK: Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer. Proc Natl Acad Sci USA. 116:4558–4566. 2019. View Article : Google Scholar : PubMed/NCBI

104 

Eckert MA, Coscia F, Chryplewicz A, Chang JW, Hernandez KM, Pan S, Tienda SM, Nahotko DA, Li G, Blaženović I, et al: Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature. 569:723–728. 2019. View Article : Google Scholar : PubMed/NCBI

105 

Biffi G, Oni TE, Spielman B, Hao Y, Elyada E, Park Y, Preall J and Tuveson DA: IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9:282–301. 2019. View Article : Google Scholar

106 

Chen Y, McAndrews KM and Kalluri R: Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol. 18:792–804. 2021. View Article : Google Scholar : PubMed/NCBI

107 

Maehira H, Miyake T, Iida H, Tokuda A, Mori H, Yasukawa D, Mukaisho KI, Shimizu T and Tani M: Vimentin expression in tumor microenvironment predicts survival in pancreatic ductal adenocarcinoma: Heterogeneity in fibroblast population. Ann Surg Oncol. 26:4791–4804. 2019. View Article : Google Scholar : PubMed/NCBI

108 

Paulsson J and Micke P: Prognostic relevance of cancer-associated fibroblasts in human cancer. Semin Cancer Biol. 25:61–68. 2014. View Article : Google Scholar : PubMed/NCBI

109 

Kim HM, Jung WH and Koo JS: Expression of cancer-associated fibroblast related proteins in metastatic breast cancer: An immunohistochemical analysis. J Transl Med. 13:2222015. View Article : Google Scholar : PubMed/NCBI

110 

Koerber SA, Staudinger F, Kratochwil C, Adeberg S, Haefner MF, Ungerechts G, Rathke H, Winter E, Lindner T, Syed M, et al: The role of 68Ga-FAPI PET/CT for patients with malignancies of the lower gastrointestinal tract: First clinical experience. J Nucl Med. 61:1331–1336. 2020. View Article : Google Scholar : PubMed/NCBI

111 

Altmann A, Haberkorn U and Siveke J: The latest developments in imaging of fibroblast activation protein. J Nucl Med. 62:160–167. 2021. View Article : Google Scholar

112 

Imlimthan S, Moon ES, Rathke H, Afshar-Oromieh A, Rösch F, Rominger A and Gourni E: New frontiers in cancer imaging and therapy based on radiolabeled fibroblast activation protein inhibitors: A rational review and current progress. Pharmaceuticals (Basel). 14:10232021. View Article : Google Scholar : PubMed/NCBI

113 

Zhao L, Chen J, Pang Y, Fu K, Shang Q, Wu H, Sun L, Lin Q and Chen H: Fibroblast activation protein-based theranostics in cancer research: A state-of-the-art review. Theranostics. 12:1557–1569. 2022. View Article : Google Scholar : PubMed/NCBI

114 

Zubaľ M, Výmolová B, Matrasová I, Výmola P, Vepřková J, Syrůček M, Tomáš R, Vaníčková Z, Křepela E, Konečná D, et al: Fibroblast activation protein as a potential theranostic target in brain metastases of diverse solid tumours. Pathology. 55:806–817. 2023. View Article : Google Scholar

115 

Peltier A, Seban RD, Buvat I, Bidard FC and Mechta-Grigoriou F: Fibroblast heterogeneity in solid tumors: From single cell analysis to whole-body imaging. Semin Cancer Biol. 86:262–272. 2022. View Article : Google Scholar : PubMed/NCBI

116 

Taralli S, Lorusso M, Perrone E, Perotti G, Zagaria L and Calcagni ML: PET/CT with fibroblast activation protein inhibitors in breast cancer: Diagnostic and theranostic application-A literature review. Cancers (Basel). 15:9082023. View Article : Google Scholar : PubMed/NCBI

117 

Dong Y, Zhou H, Alhaskawi A, Wang Z, Lai J, Yao C, Liu Z, Hasan Abdullah Ezzi S, Goutham Kota V, Hasan Abdulla Hasan Abdulla M and Lu H: The superiority of fibroblast activation protein inhibitor (FAPI) PET/CT versus FDG PET/CT in the diagnosis of various malignancies. Cancers (Basel). 15:11932023. View Article : Google Scholar : PubMed/NCBI

118 

Serfling S, Zhi Y, Schirbel A, Lindner T, Meyer T, Gerhard-Hartmann E, Lapa C, Hagen R, Hackenberg S, Buck AK and Scherzad A: Improved cancer detection in Waldeyer's tonsillar ring by 68Ga-FAPI PET/CT imaging. Eur J Nucl Med Mol Imaging. 48:1178–1187. 2021. View Article : Google Scholar

119 

Mona CE, Benz MR, Hikmat F, Grogan TR, Lueckerath K, Razmaria A, Riahi R, Slavik R, Girgis MD, Carlucci G, et al: Correlation of 68Ga-FAPi-46 PET biodistribution with FAP expression by immunohistochemistry in patients with solid cancers: Interim analysis of a prospective translational exploratory study. J Nucl Med. 63:1021–1026. 2022. View Article : Google Scholar :

120 

Sollini M, Kirienko M, Gelardi F, Fiz F, Gozzi N and Chiti A: State-of-the-art of FAPI-PET imaging: A systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 48:4396–4414. 2021. View Article : Google Scholar : PubMed/NCBI

121 

Yazdani S, Bansal R and Prakash J: Drug targeting to myofibroblasts: Implications for fibrosis and cancer. Adv Drug Deliv Rev. 121:101–116. 2017. View Article : Google Scholar : PubMed/NCBI

122 

Becker LM, O'Connell JT, Vo AP, Cain MP, Tampe D, Bizarro L, Sugimoto H, McGow AK, Asara JM, Lovisa S, et al: Epigenetic reprogramming of cancer-associated fibroblasts deregulates glucose metabolism and facilitates progression of breast cancer. Cell Rep. 31:1077012020. View Article : Google Scholar : PubMed/NCBI

123 

Muchlińska A, Nagel A, Popęda M, Szade J, Niemira M, Zieliński J, Skokowski J, Bednarz-Knoll N and Żaczek AJ: Alpha-smooth muscle actin-positive cancer-associated fibroblasts secreting osteopontin promote growth of luminal breast cancer. Cell Mol Biol Lett. 27:452022. View Article : Google Scholar

124 

Kwak Y, Lee HE, Kim WH, Kim DW, Kang SB and Lee HS: The clinical implication of cancer-associated microvasculature and fibroblast in advanced colorectal cancer patients with synchronous or metachronous metastases. PLoS One. 9:e918112014. View Article : Google Scholar : PubMed/NCBI

125 

Itou RA, Uyama N, Hirota S, Kawada N, Wu S, Miyashita S, Nakamura I, Suzumura K, Sueoka H, Okada T, et al: Immunohistochemical characterization of cancer-associated fibroblasts at the primary sites and in the metastatic lymph nodes of human intrahepatic cholangiocarcinoma. Hum Pathol. 83:77–89. 2019. View Article : Google Scholar

126 

Borriello L, Nakata R, Sheard MA, Fernandez GE, Sposto R, Malvar J, Blavier L, Shimada H, Asgharzadeh S, Seeger RC and DeClerck YA: Cancer-associated fibroblasts share characteristics and protumorigenic activity with mesenchymal stromal cells. Cancer Res. 77:5142–5157. 2017. View Article : Google Scholar : PubMed/NCBI

127 

Zhang J, Chen L, Liu X, Kammertoens T, Blankenstein T and Qin Z: Fibroblast-specific protein 1/S100A4-positive cells prevent carcinoma through collagen production and encapsulation of carcinogens. Cancer Res. 73:2770–2781. 2013. View Article : Google Scholar : PubMed/NCBI

128 

Shindo K, Aishima S, Ohuchida K, Fujiwara K, Fujino M, Mizuuchi Y, Hattori M, Mizumoto K, Tanaka M and Oda Y: Podoplanin expression in cancer-associated fibroblasts enhances tumor progression of invasive ductal carcinoma of the pancreas. Mol Cancer. 12:1682013. View Article : Google Scholar : PubMed/NCBI

129 

Kubouchi Y, Yurugi Y, Wakahara M, Sakabe T, Haruki T, Nosaka K, Miwa K, Araki K, Taniguchi Y, Shiomi T, et al: Podoplanin expression in cancer-associated fibroblasts predicts unfavourable prognosis in patients with pathological stage IA lung adenocarcinoma. Histopathology. 72:490–499. 2018. View Article : Google Scholar

130 

Zhou Q, Wang Z, Zeng H, Zhang H, Liu Z, Huang Q, Wang J, Chang Y, Bai Q, Liu L, et al: Identification and validation of poor prognosis immunoevasive subtype of muscle-invasive bladder cancer with tumor-infiltrating podoplanin+ cell abundance. Oncoimmunology. 9:17473332020. View Article : Google Scholar

131 

Wang P, Song L, Ge H, Jin P, Jiang Y, Hu W and Geng N: Crenolanib, a PDGFR inhibitor, suppresses lung cancer cell proliferation and inhibits tumor growth in vivo. Onco Targets Ther. 7:1761–1768. 2014. View Article : Google Scholar : PubMed/NCBI

132 

Matsuwaki R, Ishii G, Zenke Y, Neri S, Aokage K, Hishida T, Yoshida J, Fujii S, Kondo H, Goya T, et al: Immunophenotypic features of metastatic lymph node tumors to predict recurrence in N2 lung squamous cell carcinoma. Cancer Sci. 105:905–911. 2014. View Article : Google Scholar : PubMed/NCBI

133 

Lavie D, Ben-Shmuel A, Erez N and Scherz-Shouval R: Cancer-associated fibroblasts in the single-cell era. Nat Cancer. 3:793–807. 2022. View Article : Google Scholar : PubMed/NCBI

134 

Zhang X, Zhu R, Yu D, Wang J, Yan Y and Xu K: Single-cell RNA sequencing to explore cancer-associated fibroblasts heterogeneity: 'Single' vision for 'heterogeneous' environment. Cell Prolif. e135922023.Epub ahead of print. View Article : Google Scholar

135 

Li C, Wu H, Guo L, Liu D, Yang S, Li S and Hua K: Single-cell transcriptomics reveals cellular heterogeneity and molecular stratification of cervical cancer. Commun Biol. 5:12082022. View Article : Google Scholar : PubMed/NCBI

136 

Li X, Sun Z, Peng G, Xiao Y, Guo J, Wu B, Li X, Zhou W, Li J, Li Z, et al: Single-cell RNA sequencing reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor clinical outcomes in patients with gastric cancer. Theranostics. 12:620–638. 2022. View Article : Google Scholar : PubMed/NCBI

137 

Guo W, Zhou B, Yang Z, Liu X, Huai Q, Guo L, Xue X, Tan F, Li Y, Xue Q, et al: Integrating microarray-based spatial transcriptomics and single-cell RNA-sequencing reveals tissue architecture in esophageal squamous cell carcinoma. EBioMedicine. 84:1042812022. View Article : Google Scholar : PubMed/NCBI

138 

Buechler MB, Pradhan RN, Krishnamurty AT, Cox C, Calviello AK, Wang AW, Yang YA, Tam L, Caothien R, Roose-Girma M, et al: Cross-tissue organization of the fibroblast lineage. Nature. 593:575–579. 2021. View Article : Google Scholar : PubMed/NCBI

139 

Garcia-Recio S, Hinoue T, Wheeler GL, Kelly BJ, Garrido-Castro AC, Pascual T, De Cubas AA, Xia Y, Felsheim BM, McClure MB, et al: Multiomics in primary and metastatic breast tumors from the AURORA US network finds microenvironment and epigenetic drivers of metastasis. Nat Cancer. 4:128–147. 2023.

140 

Liu S, Suhail Y, Novin A, Perpetua L and Kshitiz: Metastatic transition of pancreatic ductal cell adenocarcinoma is accompanied by the emergence of pro-invasive cancer-associated fibroblasts. Cancers (Basel). 14:21972022. View Article : Google Scholar : PubMed/NCBI

141 

Hill M and Tran N: MicroRNAs regulating MicroRNAs in cancer. Trends Cancer. 4:465–468. 2018. View Article : Google Scholar : PubMed/NCBI

142 

Tkach M and Théry C: Communication by extracellular vesicles: Where we are and where we need to go. Cell. 164:1226–1232. 2016. View Article : Google Scholar : PubMed/NCBI

143 

Vivacqua A, Muoio MG, Miglietta AM and Maggiolini M: Differential MicroRNA landscape triggered by estrogens in cancer associated fibroblasts (CAFs) of primary and metastatic breast tumors. Cancers (Basel). 11:4122019. View Article : Google Scholar : PubMed/NCBI

144 

Lee KS, Nam SK, Koh J, Kim DW, Kang SB, Choe G, Kim WH and Lee HS: Stromal expression of MicroRNA-21 in advanced colorectal cancer patients with distant metastases. J Pathol Transl Med. 50:270–277. 2016. View Article : Google Scholar : PubMed/NCBI

145 

Han Q, Tan S, Gong L, Li G, Wu Q, Chen L, Du S, Li W, Liu X, Cai J and Wang Z: Omental cancer-associated fibroblast-derived exosomes with low microRNA-29c-3p promote ovarian cancer peritoneal metastasis. Cancer Sci. 114:1929–1942. 2023. View Article : Google Scholar : PubMed/NCBI

146 

Alsayed RKME, Khan AQ, Ahmad F, Ansari AW, Alam MA, Buddenkotte J, Steinhoff M, Uddin S and Ahmad A: Epigenetic regulation of CXCR4 signaling in cancer pathogenesis and progression. Semin Cancer Biol. 86:697–708. 2022. View Article : Google Scholar : PubMed/NCBI

147 

Petit I, Jin D and Rafii S: The SDF-1-CXCR4 signaling pathway: A molecular hub modulating neo-angiogenesis. Trends Immunol. 28:299–307. 2007. View Article : Google Scholar : PubMed/NCBI

148 

Shi Y, Riese DJ II and Shen J: The role of the CXCL12/CXCR4/CXCR7 chemokine axis in cancer. Front Pharmacol. 11:5746672020. View Article : Google Scholar : PubMed/NCBI

149 

Dai JM, Sun K, Li C, Cheng M, Guan JH, Yang LN and Zhang LW: Cancer-associated fibroblasts contribute to cancer metastasis and apoptosis resistance in human ovarian cancer via paracrine SDF-1α. Clin Transl Oncol. 25:1606–1616. 2023. View Article : Google Scholar : PubMed/NCBI

150 

Zhang Y, Yang P, Sun T, Li D, Xu X, Rui Y, Li C, Chong M, Ibrahim T, Mercatali L, et al: miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis. Nat Cell Biol. 15:284–294. 2013. View Article : Google Scholar : PubMed/NCBI

151 

Zhong B, Cheng B, Huang X, Xiao Q, Niu Z, Chen YF, Yu Q, Wang W and Wu XJ: Colorectal cancer-associated fibroblasts promote metastasis by up-regulating LRG1 through stromal IL-6/STAT3 signaling. Cell Death Dis. 13:162021. View Article : Google Scholar : PubMed/NCBI

152 

Xie H, Lei Y, Mao Y, Lan J, Yang J, Quan H and Zhang T: FK866 inhibits colorectal cancer metastasis by reducing NAD+ levels in cancer-associated fibroblasts. Genes Genomics. 44:1531–1541. 2022. View Article : Google Scholar : PubMed/NCBI

153 

Walterskirchen N, Müller C, Ramos C, Zeindl S, Stang S, Herzog D, Sachet M, Schimek V, Unger L, Gerakopoulos V, et al: Metastatic colorectal carcinoma-associated fibroblasts have immunosuppressive properties related to increased IGFBP2 expression. Cancer Lett. 540:2157372022. View Article : Google Scholar : PubMed/NCBI

154 

Mukherjee S, Sakpal A, Mehrotra M, Phadte P, Rekhi B and Ray P: Homo and heterotypic cellular cross-talk in epithelial ovarian cancer impart pro-tumorigenic properties through differential activation of the notch3 pathway. Cancers (Basel). 14:33652022. View Article : Google Scholar : PubMed/NCBI

155 

Pan X, Zhou J, Xiao Q, Fujiwara K, Zhang M, Mo G, Gong W and Zheng L: Cancer-associated fibroblast heterogeneity is associated with organ-specific metastasis in pancreatic ductal adenocarcinoma. J Hematol Oncol. 14:1842021. View Article : Google Scholar : PubMed/NCBI

156 

Muhl L, Genové G, Leptidis S, Liu J, He L, Mocci G, Sun Y, Gustafsson S, Buyandelger B, Chivukula IV, et al: Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination. Nat Commun. 11:39532020. View Article : Google Scholar : PubMed/NCBI

157 

Ewald CY: The matrisome during aging and longevity: A systems-level approach toward defining matreotypes promoting healthy aging. Gerontology. 66:266–274. 2020. View Article : Google Scholar

158 

Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, Dekleva EN, Saunders T, Becerra CP, Tattersall IW, et al: Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 25:735–747. 2014. View Article : Google Scholar : PubMed/NCBI

159 

Boyd LNC, Andini KD, Peters GJ, Kazemier G and Giovannetti E: Heterogeneity and plasticity of cancer-associated fibroblasts in the pancreatic tumor microenvironment. Semin Cancer Biol. 82:184–196. 2022. View Article : Google Scholar

160 

von Ahrens D, Bhagat TD, Nagrath D, Maitra A and Verma A: The role of stromal cancer-associated fibroblasts in pancreatic cancer. J Hematol Oncol. 10:762017. View Article : Google Scholar : PubMed/NCBI

161 

Deasy SK and Erez N: A glitch in the matrix: organ-specific matrisomes in metastatic niches. Trends Cell Biol. 32:110–123. 2022. View Article : Google Scholar

162 

Elia I, Rossi M, Stegen S, Broekaert D, Doglioni G, van Gorsel M, Boon R, Escalona-Noguero C, Torrekens S, Verfaillie C, et al: Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature. 568:117–121. 2019. View Article : Google Scholar : PubMed/NCBI

163 

Yuzhalin AE, Gordon-Weeks AN, Tognoli ML, Jones K, Markelc B, Konietzny R, Fischer R, Muth A, O'Neill E, Thompson PR, et al: Colorectal cancer liver metastatic growth depends on PAD4-driven citrullination of the extracellular matrix. Nat Commun. 9:47832018. View Article : Google Scholar : PubMed/NCBI

164 

Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, Fong SF, Csiszar K, Giaccia A, Weninger W, et al: Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 139:891–906. 2009. View Article : Google Scholar : PubMed/NCBI

165 

Er EE, Valiente M, Ganesh K, Zou Y, Agrawal S, Hu J, Griscom B, Rosenblum M, Boire A, Brogi E, et al: Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nat Cell Biol. 20:966–978. 2018. View Article : Google Scholar : PubMed/NCBI

166 

Che LH, Liu JW, Huo JP, Luo R, Xu RM, He C, Li YQ, Zhou AJ, Huang P, Chen YY, et al: A single-cell atlas of liver metastases of colorectal cancer reveals reprogramming of the tumor microenvironment in response to preoperative chemotherapy. Cell Discov. 7:802021. View Article : Google Scholar : PubMed/NCBI

167 

Whatcott CJ, Diep CH, Jiang P, Watanabe A, LoBello J, Sima C, Hostetter G, Shepard HM, Von Hoff DD and Han H: Desmoplasia in primary tumors and metastatic lesions of pancreatic cancer. Clin Cancer Res. 21:3561–3568. 2015. View Article : Google Scholar : PubMed/NCBI

168 

Placencio-Hickok VR, Lauzon M, Moshayedi N, Guan M, Kim S, Nissen N, Lo S, Pandol S, Larson BK, Gong J, et al: Hyaluronan heterogeneity in pancreatic ductal adenocarcinoma: Primary tumors compared to sites of metastasis. Pancreatology. 22:92–97. 2022. View Article : Google Scholar

169 

Ueno H, Sekine S, Oshiro T, Kanemitsu Y, Hamaguchi T, Shida D, Takashima A, Ishiguro M, Ito E, Hashiguchi Y, et al: Disentangling the prognostic heterogeneity of stage III colorectal cancer through histologic stromal categorization. Surgery. 163:777–783. 2018. View Article : Google Scholar

170 

Ao T, Kajiwara Y, Yonemura K, Shinto E, Mochizuki S, Okamoto K, Aosasa S and Ueno H: Prognostic significance of histological categorization of desmoplastic reaction in colorectal liver metastases. Virchows Arch. 475:341–348. 2019. View Article : Google Scholar : PubMed/NCBI

171 

Ao T, Kajiwara Y, Yonemura K, Shinto E, Mochizuki S, Okamoto K, Kishi Y and Ueno H: Morphological consistency of desmoplastic reactions between the primary colorectal cancer lesion and associated metastatic lesions. Virchows Arch. 477:47–55. 2020. View Article : Google Scholar : PubMed/NCBI

172 

Mayorca-Guiliani AE, Madsen CD, Cox TR, Horton ER, Venning FA and Erler JT: ISDoT: In situ decellularization of tissues for high-resolution imaging and proteomic analysis of native extracellular matrix. Nat Med. 23:890–898. 2017. View Article : Google Scholar : PubMed/NCBI

173 

Yang H, Sun B, Fan L, Ma W, Xu K, Hall SRR, Wang Z, Schmid RA, Peng RW, Marti TM, et al: Multi-scale integrative analyses identify THBS2+ cancer-associated fibroblasts as a key orchestrator promoting aggressiveness in early-stage lung adenocarcinoma. Theranostics. 12:3104–3130. 2022. View Article : Google Scholar :

174 

Irum B, Asif M, Mumtaz B and Aslam N: Effect of dental proximal restorations on periodontal health in patients. J Ayub Med Coll Abbottabad. 34(Suppl 1): S987–S990. 2022. View Article : Google Scholar

175 

Machado RB, Aguiar LMS and Silva JMC: Brazil: Plan for zero vegetation loss in the Cerrado. Nature. 615:2162023. View Article : Google Scholar : PubMed/NCBI

176 

Dean M, Fojo T and Bates S: Tumour stem cells and drug resistance. Nat Rev Cancer. 5:275–284. 2005. View Article : Google Scholar : PubMed/NCBI

177 

Brabletz T, Kalluri R, Nieto MA and Weinberg RA: EMT in cancer. Nat Rev Cancer. 18:128–134. 2018. View Article : Google Scholar : PubMed/NCBI

178 

Belfiore A, Rapicavoli RV, Le Moli R, Lappano R, Morrione A, De Francesco EM and Vella V: IGF2: A role in metastasis and tumor evasion from immune surveillance? Biomedicines. 11:2292023. View Article : Google Scholar : PubMed/NCBI

179 

Chhabra Y and Weeraratna AT: Fibroblasts in cancer: Unity in heterogeneity. Cell. 186:1580–1609. 2023. View Article : Google Scholar : PubMed/NCBI

180 

Minchinton AI and Tannock IF: Drug penetration in solid tumours. Nat Rev Cancer. 6:583–592. 2006. View Article : Google Scholar : PubMed/NCBI

181 

Wong L, Kumar A, Gabela-Zuniga B, Chua J, Singh G, Happe CL, Engler AJ, Fan Y and McCloskey KE: Substrate stiffness directs diverging vascular fates. Acta Biomater. 96:321–329. 2019. View Article : Google Scholar : PubMed/NCBI

182 

Engler AJ, Sen S, Sweeney HL and Discher DE: Matrix elasticity directs stem cell lineage specification. Cell. 126:677–689. 2006. View Article : Google Scholar : PubMed/NCBI

183 

Ruehle MA, Eastburn EA, LaBelle SA, Krishnan L, Weiss JA, Boerckel JD, Wood LB, Guldberg RE and Willett NJ: Extracellular matrix compression temporally regulates microvascular angiogenesis. Sci Adv. 6:eabb63512020. View Article : Google Scholar : PubMed/NCBI

184 

Jing X, Yang F, Shao C, Wei K, Xie M, Shen H and Shu Y: Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 18:1572019. View Article : Google Scholar : PubMed/NCBI

185 

Alvarez R, Musteanu M, Garcia-Garcia E, Lopez-Casas PP, Megias D, Guerra C, Muñoz M, Quijano Y, Cubillo A, Rodriguez-Pascual J, et al: Stromal disrupting effects of nab-paclitaxel in pancreatic cancer. Br J Cancer. 109:926–933. 2013. View Article : Google Scholar : PubMed/NCBI

186 

Kim H, Samuel S, Lopez-Casas P, Grizzle W, Hidalgo M, Kovar J, Oelschlager D, Zinn K, Warram J and Buchsbaum D: SPARC-independent delivery of nab-paclitaxel without depleting tumor stroma in patient-derived pancreatic cancer xenografts. Mol Cancer Ther. 15:680–688. 2016. View Article : Google Scholar : PubMed/NCBI

187 

Zhang X, Zeng Y, Zhao L, Xu Q, Miao D and Yu F: Targeting hepatic stellate cell death to reverse hepatic fibrosis. Curr Drug Targets. 24:568–583. 2023. View Article : Google Scholar : PubMed/NCBI

188 

Jin H, Lian N, Zhang F, Chen L, Chen Q, Lu C, Bian M, Shao J, Wu L and Zheng S: Activation of PPARγ/P53 signaling is required for curcumin to induce hepatic stellate cell senescence. Cell Death Dis. 7:e21892016. View Article : Google Scholar

189 

Xia S, Liu Z, Cai J, Ren H, Li Q, Zhang H, Yue J, Zhou Q, Zhou T, Wang L, et al: Liver fibrosis therapy based on biomimetic nanoparticles which deplete activated hepatic stellate cells. J Control Release. 355:54–67. 2023. View Article : Google Scholar : PubMed/NCBI

190 

Zi F, He J, He D, Li Y, Yang L and Cai Z: Fibroblast activation protein alpha in tumor microenvironment: Recent progression and implications (review). Mol Med Rep. 11:3203–3211. 2015. View Article : Google Scholar : PubMed/NCBI

191 

Bughda R, Dimou P, D'Souza RR and Klampatsa A: Fibroblast activation protein (FAP)-targeted CAR-T cells: Launching an attack on tumor stroma. Immunotargets Ther. 10:313–323. 2021. View Article : Google Scholar : PubMed/NCBI

192 

Claus C, Ferrara C, Xu W, Sam J, Lang S, Uhlenbrock F, Albrecht R, Herter S, Schlenker R, Hüsser T, et al: Tumor-targeted 4-1BB agonists for combination with T cell bispecific antibodies as off-the-shelf therapy. Sci Transl Med. 11:eaav59892019. View Article : Google Scholar : PubMed/NCBI

193 

Melero I, Tanos T, Bustamante M, Sanmamed MF, Calvo E, Moreno I, Moreno V, Hernandez T, Martinez Garcia M, Rodriguez-Vida A, et al: A first-in-human study of the fibroblast activation protein-targeted, 4-1BB agonist RO7122290 in patients with advanced solid tumors. Sci Transl Med. 15:eabp92292023. View Article : Google Scholar : PubMed/NCBI

194 

Ballal S, Yadav MP, Kramer V, Moon ES, Roesch F, Tripathi M, Mallick S, ArunRaj ST and Bal C: A theranostic approach of [68Ga]Ga-DOTA.SA.FAPi PET/CT-guided [177Lu]Lu-DOTA. SA.FAPi radionuclide therapy in an end-stage breast cancer patient: New frontier in targeted radionuclide therapy. Eur J Nucl Med Mol Imaging. 48:942–944. 2021. View Article : Google Scholar

195 

Assadi M, Rekabpour SJ, Jafari E, Divband G, Nikkholgh B, Amini H, Kamali H, Ebrahimi S, Shakibazad N, Jokar N, et al: Feasibility and therapeutic potential of 177Lu-fibroblast activation protein inhibitor-46 for patients with relapsed or refractory cancers: A preliminary study. Clin Nucl Med. 46:e523–e530. 2021. View Article : Google Scholar : PubMed/NCBI

196 

Baum RP, Schuchardt C, Singh A, Chantadisai M, Robiller FC, Zhang J, Mueller D, Eismant A, Almaguel F, Zboralski D, et al: Feasibility, biodistribution, and preliminary dosimetry in peptide-targeted radionuclide therapy of diverse adenocarcinomas using 177Lu-FAP-2286: First-in-humans results. J Nucl Med. 63:415–423. 2022. View Article : Google Scholar :

197 

Vallet SD and Ricard-Blum S: Lysyl oxidases: from enzyme activity to extracellular matrix cross-links. Essays Biochem. 63:349–364. 2019. View Article : Google Scholar : PubMed/NCBI

198 

Granzow M, Schierwagen R, Klein S, Kowallick B, Huss S, Linhart M, Mazar IG, Görtzen J, Vogt A, Schildberg FA, et al: Angiotensin-II type 1 receptor-mediated Janus kinase 2 activation induces liver fibrosis. Hepatology. 60:334–348. 2014. View Article : Google Scholar : PubMed/NCBI

199 

Takiguchi T, Takahashi-Yanaga F, Ishikane S, Tetsuo F, Hosoda H, Arioka M, Kitazono T and Sasaguri T: Angiotensin II promotes primary tumor growth and metastasis formation of murine TNBC 4T1 cells through the fibroblasts around cancer cells. Eur J Pharmacol. 909:1744152021. View Article : Google Scholar : PubMed/NCBI

200 

Murphy JE, Wo JY, Ryan DP, Clark JW, Jiang W, Yeap BY, Drapek LC, Ly L, Baglini CV, Blaszkowsky LS, et al: Total neoadjuvant therapy with FOLFIRINOX in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer: A phase 2 clinical trial. JAMA Oncol. 5:1020–1027. 2019. View Article : Google Scholar : PubMed/NCBI

201 

Wong KM, Horton KJ, Coveler AL, Hingorani SR and Harris WP: Targeting the tumor stroma: The biology and clinical development of pegylated recombinant human hyaluronidase (PEGPH20). Curr Oncol Rep. 19:472017. View Article : Google Scholar : PubMed/NCBI

202 

Kudo D, Suto A and Hakamada K: The development of a novel therapeutic strategy to target hyaluronan in the extracellular matrix of pancreatic ductal adenocarcinoma. Int J Mol Sci. 18:6002017. View Article : Google Scholar : PubMed/NCBI

203 

Ramanathan RK, McDonough SL, Philip PA, Hingorani SR, Lacy J, Kortmansky JS, Thumar J, Chiorean EG, Shields AF, Behl D, et al: Phase IB/II randomized study of FOLFIRINOX plus pegylated recombinant human hyaluronidase versus FOLFIRINOX alone in patients with metastatic pancreatic adenocarcinoma: SWOG S1313. J Clin Oncol. 37:1062–1069. 2019. View Article : Google Scholar : PubMed/NCBI

204 

Van Cutsem E, Tempero MA, Sigal D, Oh DY, Fazio N, Macarulla T, Hitre E, Hammel P, Hendifar AE, Bates SE, et al: Randomized phase III trial of pegvorhyaluronidase alfa with nab-paclitaxel plus gemcitabine for patients with hyaluronan-high metastatic pancreatic adenocarcinoma. J Clin Oncol. 38:3185–3194. 2020. View Article : Google Scholar : PubMed/NCBI

205 

Sakers A, De Siqueira MK, Seale P and Villanueva CJ: Adipose-tissue plasticity in health and disease. Cell. 185:419–446. 2022. View Article : Google Scholar : PubMed/NCBI

206 

Koudelka S and Turánek J: Liposomal paclitaxel formulations. J Control Release. 163:322–334. 2012. View Article : Google Scholar : PubMed/NCBI

207 

Shahriari K, Shen F, Worrede-Mahdi A, Liu Q, Gong Y, Garcia FU and Fatatis A: Cooperation among heterogeneous prostate cancer cells in the bone metastatic niche. Oncogene. 36:2846–2856. 2017. View Article : Google Scholar :

208 

Nakamura Y, Kinoshita J, Yamaguchi T, Aoki T, Saito H, Hamabe-Horiike T, Harada S, Nomura S, Inaki N and Fushida S: Crosstalk between cancer-associated fibroblasts and immune cells in peritoneal metastasis: Inhibition in the migration of M2 macrophages and mast cells by Tranilast. Gastric Cancer. 25:515–526. 2022. View Article : Google Scholar : PubMed/NCBI

209 

Suetsugu A, Osawa Y, Nagaki M, Saji S, Moriwaki H, Bouvet M and Hoffman RM: Imaging the recruitment of cancer-associated fibroblasts by liver-metastatic colon cancer. J Cell Biochem. 112:949–953. 2011. View Article : Google Scholar : PubMed/NCBI

210 

Jung Y, Kim JK, Shiozawa Y, Wang J, Mishra A, Joseph J, Berry JE, McGee S, Lee E, Sun H, et al: Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun. 4:17952013. View Article : Google Scholar : PubMed/NCBI

211 

Kidd S, Spaeth E, Watson K, Burks J, Lu H, Klopp A, Andreeff M and Marini FC: Origins of the tumor microenvironment: Quantitative assessment of adipose-derived and bone marrow-derived stroma. PLoS One. 7:e305632012. View Article : Google Scholar : PubMed/NCBI

212 

Tang H, Chu Y, Huang Z, Cai J and Wang Z: The metastatic phenotype shift toward myofibroblast of adipose-derived mesenchymal stem cells promotes ovarian cancer progression. Carcinogenesis. 41:182–193. 2020. View Article : Google Scholar

213 

Cho JA, Park H, Lim EH and Lee KW: Exosomes from breast cancer cells can convert adipose tissue-derived mesenchymal stem cells into myofibroblast-like cells. Int J Oncol. 40:130–138. 2012.

214 

Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R and Weinberg RA: Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 449:557–563. 2007. View Article : Google Scholar : PubMed/NCBI

215 

Zhang J, Sun D, Fu Q, Cao Q, Zhang H and Zhang K: Bone mesenchymal stem cells differentiate into myofibroblasts in the tumor microenvironment. Oncol Lett. 12:644–650. 2016. View Article : Google Scholar : PubMed/NCBI

216 

Bochet L, Lehuédé C, Dauvillier S, Wang YY, Dirat B, Laurent V, Dray C, Guiet R, Maridonneau-Parini I, Le Gonidec S, et al: Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res. 73:5657–5668. 2013. View Article : Google Scholar : PubMed/NCBI

217 

Jotzu C, Alt E, Welte G, Li J, Hennessy BT, Devarajan E, Krishnappa S, Pinilla S, Droll L and Song YH: Adipose tissue derived stem cells differentiate into carcinoma-associated fibroblast-like cells under the influence of tumor derived factors. Cell Oncol (Dordr). 34:55–67. 2011. View Article : Google Scholar : PubMed/NCBI

218 

Baroni S, Romero-Cordoba S, Plantamura I, Dugo M, D'Ippolito E, Cataldo A, Cosentino G, Angeloni V, Rossini A, Daidone MG and Iorio MV: Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts. Cell Death Dis. 7:e23122016. View Article : Google Scholar : PubMed/NCBI

219 

Arina A, Idel C, Hyjek EM, Alegre ML, Wang Y, Bindokas VP, Weichselbaum RR and Schreiber H: Tumor-associated fibroblasts predominantly come from local and not circulating precursors. Proc Natl Acad Sci USA. 113:7551–7556. 2016. View Article : Google Scholar : PubMed/NCBI

220 

Vicent S, Sayles LC, Vaka D, Khatri P, Gevaert O, Chen R, Zheng Y, Gillespie AK, Clarke N, Xu Y, et al: Cross-species functional analysis of cancer-associated fibroblasts identifies a critical role for CLCF1 and IL-6 in non-small cell lung cancer in vivo. Cancer Res. 72:5744–5756. 2012. View Article : Google Scholar : PubMed/NCBI

221 

Nair N, Calle AS, Zahra MH, Prieto-Vila M, Oo AKK, Hurley L, Vaidyanath A, Seno A, Masuda J, Iwasaki Y, et al: A cancer stem cell model as the point of origin of cancer-associated fibroblasts in tumor microenvironment. Sci Rep. 7:68382017. View Article : Google Scholar : PubMed/NCBI

222 

Sandoval P, Jiménez-Heffernan JA, Rynne-Vidal Á, Pérez-Lozano ML, Gilsanz Á, Ruiz-Carpio V, Reyes R, García-Bordas J, Stamatakis K, Dotor J, et al: Carcinoma-associated fibroblasts derive from mesothelial cells via mesothelial-to-mesenchymal transition in peritoneal metastasis. J Pathol. 231:517–531. 2013. View Article : Google Scholar : PubMed/NCBI

223 

Zeisberg EM, Potenta S, Xie L, Zeisberg M and Kalluri R: Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res. 67:10123–10128. 2007. View Article : Google Scholar : PubMed/NCBI

224 

Xin Y, Li K, Yang M and Tan Y: Fluid shear stress induces EMT of circulating tumor cells via JNK signaling in favor of their survival during hematogenous dissemination. Int J Mol Sci. 21:81152020. View Article : Google Scholar : PubMed/NCBI

225 

Kan T, Wang W, Ip PP, Zhou S, Wong AS, Wang X and Yang M: Single-cell EMT-related transcriptional analysis revealed intra-cluster heterogeneity of tumor cell clusters in epithelial ovarian cancer ascites. Oncogene. 39:4227–4240. 2020. View Article : Google Scholar : PubMed/NCBI

226 

Yoshimura Y, Suzuki D and Miyahara K: Measurement accuracy of fat and iron deposits in the liver using 1H-MRS (HISTO). Nihon Hoshasen Gijutsu Gakkai Zasshi. 74:148–153. 2018.In Japanese. View Article : Google Scholar

227 

Ringuette Goulet C, Bernard G, Tremblay S, Chabaud S, Bolduc S and Pouliot F: Exosomes induce fibroblast differentiation into cancer-associated fibroblasts through TGFbeta signaling. Mol Cancer Res. 16:1196–1204. 2018. View Article : Google Scholar : PubMed/NCBI

228 

Zhang J, Fu L, Yasuda-Yoshihara N, Yonemura A, Wei F, Bu L, Hu X, Akiyama T, Kitamura F, Yasuda T, et al: IL-1β derived from mixed-polarized macrophages activates fibroblasts and synergistically forms a cancer-promoting microenvironment. Gastric Cancer. 26:187–202. 2023. View Article : Google Scholar

229 

Wei LY, Lee JJ, Yeh CY, Yang CJ, Kok SH, Ko JY, Tsai FC and Chia JS: Reciprocal activation of cancer-associated fibroblasts and oral squamous carcinoma cells through CXCL1. Oral Oncol. 88:115–123. 2019. View Article : Google Scholar : PubMed/NCBI

230 

Goulet CR, Champagne A, Bernard G, Vandal D, Chabaud S, Pouliot F and Bolduc S: Cancer-associated fibroblasts induce epithelial-mesenchymal transition of bladder cancer cells through paracrine IL-6 signalling. BMC Cancer. 19:1372019. View Article : Google Scholar : PubMed/NCBI

231 

Scognamiglio I, Cocca L, Puoti I, Palma F, Ingenito F, Quintavalle C, Affinito A, Roscigno G, Nuzzo S, Chianese RV, et al: Exosomal microRNAs synergistically trigger stromal fibroblasts in breast cancer. Mol Ther Nucleic Acids. 28:17–31. 2022. View Article : Google Scholar : PubMed/NCBI

232 

Qin X, Lu M, Li G, Zhou Y and Liu Z: Downregulation of tumor-derived exosomal miR-34c induces cancer-associated fibroblast activation to promote cholangiocarcinoma progress. Cancer Cell Int. 21:3732021. View Article : Google Scholar : PubMed/NCBI

233 

Zhou X, Yan T, Huang C, Xu Z, Wang L, Jiang E, Wang H, Chen Y, Liu K, Shao Z and Shang Z: Melanoma cell-secreted exosomal miR-155-5p induce proangiogenic switch of cancer-associated fibroblasts via SOCS1/JAK2/STAT3 signaling pathway. J Exp Clin Cancer Res. 37:2422018. View Article : Google Scholar : PubMed/NCBI

234 

Ye B, Duan Y, Zhou M, Wang Y, Lai Q, Yue K, Cao J, Wu Y, Wang X and Jing C: Hypoxic tumor-derived exosomal miR-21 induces cancer-associated fibroblast activation to promote head and neck squamous cell carcinoma metastasis. Cell Signal. 108:1107252023. View Article : Google Scholar : PubMed/NCBI

235 

Xu Y, Kuai R, Chu YM, Zhou L, Zhang HQ and Li J: Hypoxia facilitates the proliferation of colorectal cancer cells by inducing cancer-associated fibroblast-derived IL6. Neoplasma. 68:1015–1022. 2021. View Article : Google Scholar : PubMed/NCBI

236 

Butti R, Nimma R, Kundu G, Bulbule A, Kumar TVS, Gunasekaran VP, Tomar D, Kumar D, Mane A, Gill SS, et al: Tumor-derived osteopontin drives the resident fibroblast to myofibroblast differentiation through Twist1 to promote breast cancer progression. Oncogene. 40:2002–2017. 2021. View Article : Google Scholar : PubMed/NCBI

237 

Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI, Harrington K, Williamson P, Moeendarbary E, Charras G and Sahai E: Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol. 15:637–646. 2013. View Article : Google Scholar : PubMed/NCBI

238 

Foster CT, Gualdrini F and Treisman R: Mutual dependence of the MRTF-SRF and YAP-TEAD pathways in cancer-associated fibroblasts is indirect and mediated by cytoskeletal dynamics. Genes Dev. 31:2361–2375. 2017. View Article : Google Scholar

239 

Cadamuro M, Nardo G, Indraccolo S, Dall'olmo L, Sambado L, Moserle L, Franceschet I, Colledan M, Massani M, Stecca T, et al: Platelet-derived growth factor-D and Rho GTPases regulate recruitment of cancer-associated fibroblasts in cholangiocarcinoma. Hepatology. 58:1042–1053. 2013. View Article : Google Scholar : PubMed/NCBI

240 

Pietras K, Pahler J, Bergers G and Hanahan D: Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting. PLoS Med. 5:e192008. View Article : Google Scholar : PubMed/NCBI

241 

Scherz-Shouval R, Santagata S, Mendillo ML, Sholl LM, Ben-Aharon I, Beck AH, Dias-Santagata D, Koeva M, Stemmer SM, Whitesell L and Lindquist S: The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy. Cell. 158:564–578. 2014. View Article : Google Scholar : PubMed/NCBI

242 

Ferrari N, Ranftl R, Chicherova I, Slaven ND, Moeendarbary E, Farrugia AJ, Lam M, Semiannikova M, Westergaard MCW, Tchou J, et al: Dickkopf-3 links HSF1 and YAP/TAZ signalling to control aggressive behaviours in cancer-associated fibroblasts. Nat Commun. 10:1302019. View Article : Google Scholar : PubMed/NCBI

243 

Guo Z, Zhang H, Fu Y, Kuang J, Zhao B, Zhang L, Lin J, Lin S, Wu D and Xie G: Cancer-associated fibroblasts induce growth and radioresistance of breast cancer cells through paracrine IL-6. Cell Death Discov. 9:62023. View Article : Google Scholar : PubMed/NCBI

244 

Çermik TF, Ergül N, Yılmaz B and Mercanoğlu G: Tumor imaging with 68Ga-DOTA-FAPI-04 PET/CT: Comparison with 18F-FDG PET/CT in 22 different cancer types. Clin Nucl Med. 47:e333–e339. 2022. View Article : Google Scholar : PubMed/NCBI

245 

Pang Y, Zhao L, Meng T, Xu W, Lin Q, Wu H, Zhang J, Chen X, Sun L and Chen H: PET imaging of fibroblast activation protein in various types of cancer using 68Ga-FAP-2286: comparison with 18F-FDG and 68Ga-FAPI-46 in a single-center, prospective study. J Nucl Med. 64:386–394. 2023. View Article : Google Scholar :

246 

Hosein AN, Huang H, Wang Z, Parmar K, Du W, Huang J, Maitra A, Olson E, Verma U and Brekken RA: Cellular heterogeneity during mouse pancreatic ductal adenocarcinoma progression at single-cell resolution. JCI Insight. 5:e1292122019. View Article : Google Scholar : PubMed/NCBI

247 

Neuzillet C, Tijeras-Raballand A, Ragulan C, Cros J, Patil Y, Martinet M, Erkan M, Kleeff J, Wilson J, Apte M, et al: Inter- and intra-tumoural heterogeneity in cancer-associated fibroblasts of human pancreatic ductal adenocarcinoma. J Pathol. 248:51–65. 2019. View Article : Google Scholar :

248 

Lin W, Noel P, Borazanci EH, Lee J, Amini A, Han IW, Heo JS, Jameson GS, Fraser C, Steinbach M, et al: Single-cell transcriptome analysis of tumor and stromal compartments of pancreatic ductal adenocarcinoma primary tumors and metastatic lesions. Genome Med. 12:802020. View Article : Google Scholar : PubMed/NCBI

249 

Sebastian A, Hum NR, Martin KA, Gilmore SF, Peran I, Byers SW, Wheeler EK, Coleman MA and Loots GG: Single-cell transcriptomic analysis of tumor-derived fibroblasts and normal tissue-resident fibroblasts reveals fibroblast heterogeneity in breast cancer. Cancers (Basel). 12:13072020. View Article : Google Scholar : PubMed/NCBI

250 

Li H, Courtois ET, Sengupta D, Tan Y, Chen KH, Goh JJL, Kong SL, Chua C, Hon LK, Tan WS, et al: Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat Genet. 49:708–718. 2017. View Article : Google Scholar : PubMed/NCBI

251 

Peng Z, Ye M, Ding H, Feng Z and Hu K: Spatial transcriptomics atlas reveals the crosstalk between cancer-associated fibroblasts and tumor microenvironment components in colorectal cancer. J Transl Med. 20:3022022. View Article : Google Scholar : PubMed/NCBI

252 

Lambrechts D, Wauters E, Boeckx B, Aibar S, Nittner D, Burton O, Bassez A, Decaluwé H, Pircher A, Van den Eynde K, et al: Phenotype molding of stromal cells in the lung tumor microenvironment. Nat Med. 24:1277–1289. 2018. View Article : Google Scholar : PubMed/NCBI

253 

Hornburg M, Desbois M, Lu S, Guan Y, Lo AA, Kaufman S, Elrod A, Lotstein A, DesRochers TM, Munoz-Rodriguez JL, et al: Single-cell dissection of cellular components and interactions shaping the tumor immune phenotypes in ovarian cancer. Cancer Cell. 39:928–944.e6. 2021. View Article : Google Scholar : PubMed/NCBI

254 

Izar B, Tirosh I, Stover EH, Wakiro I, Cuoco MS, Alter I, Rodman C, Leeson R, Su MJ, Shah P, et al: A single-cell landscape of high-grade serous ovarian cancer. Nat Med. 26:1271–1279. 2020. View Article : Google Scholar : PubMed/NCBI

255 

Zhang M, Yang H, Wan L, Wang Z, Wang H, Ge C, Liu Y, Hao Y, Zhang D, Shi G, et al: Single-cell transcriptomic architecture and intercellular crosstalk of human intrahepatic cholangiocarcinoma. J Hepatol. 73:1118–1130. 2020. View Article : Google Scholar : PubMed/NCBI

256 

Davidson S, Efremova M, Riedel A, Mahata B, Pramanik J, Huuhtanen J, Kar G, Vento-Tormo R, Hagai T, Chen X, et al: Single-cell RNA sequencing reveals a dynamic stromal niche that supports tumor growth. Cell Rep. 31:1076282020. View Article : Google Scholar : PubMed/NCBI

257 

Chen Z, Zhou L, Liu L, Hou Y, Xiong M, Yang Y, Hu J and Chen K: Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nat Commun. 11:50772020. View Article : Google Scholar : PubMed/NCBI

258 

Kürten CHL, Kulkarni A, Cillo AR, Santos PM, Roble AK, Onkar S, Reeder C, Lang S, Chen X, Duvvuri U, et al: Investigating immune and non-immune cell interactions in head and neck tumors by single-cell RNA sequencing. Nat Commun. 12:73382021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Kou Z, Liu C, Zhang W, Sun C, Liu L and Zhang Q: Heterogeneity of primary and metastatic CAFs: From differential treatment outcomes to treatment opportunities (Review). Int J Oncol 64: 54, 2024.
APA
Kou, Z., Liu, C., Zhang, W., Sun, C., Liu, L., & Zhang, Q. (2024). Heterogeneity of primary and metastatic CAFs: From differential treatment outcomes to treatment opportunities (Review). International Journal of Oncology, 64, 54. https://doi.org/10.3892/ijo.2024.5642
MLA
Kou, Z., Liu, C., Zhang, W., Sun, C., Liu, L., Zhang, Q."Heterogeneity of primary and metastatic CAFs: From differential treatment outcomes to treatment opportunities (Review)". International Journal of Oncology 64.5 (2024): 54.
Chicago
Kou, Z., Liu, C., Zhang, W., Sun, C., Liu, L., Zhang, Q."Heterogeneity of primary and metastatic CAFs: From differential treatment outcomes to treatment opportunities (Review)". International Journal of Oncology 64, no. 5 (2024): 54. https://doi.org/10.3892/ijo.2024.5642
Copy and paste a formatted citation
x
Spandidos Publications style
Kou Z, Liu C, Zhang W, Sun C, Liu L and Zhang Q: Heterogeneity of primary and metastatic CAFs: From differential treatment outcomes to treatment opportunities (Review). Int J Oncol 64: 54, 2024.
APA
Kou, Z., Liu, C., Zhang, W., Sun, C., Liu, L., & Zhang, Q. (2024). Heterogeneity of primary and metastatic CAFs: From differential treatment outcomes to treatment opportunities (Review). International Journal of Oncology, 64, 54. https://doi.org/10.3892/ijo.2024.5642
MLA
Kou, Z., Liu, C., Zhang, W., Sun, C., Liu, L., Zhang, Q."Heterogeneity of primary and metastatic CAFs: From differential treatment outcomes to treatment opportunities (Review)". International Journal of Oncology 64.5 (2024): 54.
Chicago
Kou, Z., Liu, C., Zhang, W., Sun, C., Liu, L., Zhang, Q."Heterogeneity of primary and metastatic CAFs: From differential treatment outcomes to treatment opportunities (Review)". International Journal of Oncology 64, no. 5 (2024): 54. https://doi.org/10.3892/ijo.2024.5642
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team