You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
|
Xiao Y and Yu DH: Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 221:1077532021. View Article : Google Scholar : | |
|
Kumari S, Advani D, Sharma S, Ambasta RK and Kumar P: Combinatorial therapy in tumor microenvironment: Where do we stand? Biochim Biophys Acta Rev Cancer. 1876:1885852021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang HG, Yung MMH, Ngan HY, Chan KKL and Chan DW: The impact of the tumor microenvironment on macrophage polarization in cancer metastatic progression. Int J Mol Sci. 22:65602021. View Article : Google Scholar : PubMed/NCBI | |
|
Locati M, Curtale G and Mantovani A: Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 15:123–147. 2020. View Article : Google Scholar | |
|
Bian Z, Gong Y, Huang T, Lee CZW, Bian L, Bai Z, Shi H, Zeng Y, Liu C, He J, et al: Deciphering human macrophage development at single-cell resolution. Nature. 582:571–576. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Mantovani A, Marchesi F, Malesci A, Laghi L and Allavena P: Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 14:399–416. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Cassetta L and Pollard JW: Targeting macrophages: Therapeutic approaches in cancer. Nat Rev Drug Discov. 17:887–904. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Guo S, Chen X, Guo C and Wang W: Tumor-associated macrophages heterogeneity drives resistance to clinical therapy. Expert Rev Mol Med. 24:e172022. View Article : Google Scholar | |
|
Han S, Wang W, Wang S, Yang T, Zhang G, Wang D, Ju R, Lu Y, Wang H and Wang L: Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes. Theranostics. 11:2892–2916. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kumari N and Choi SH: Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies. J Exp Clin Cancer Res. 41:682022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Song Y, Du W, Gong L, Chang H and Zhou Z: Tumor-associated macrophages: An accomplice in solid tumor progression. J Biomed Sci. 26:782019. View Article : Google Scholar : PubMed/NCBI | |
|
Sreejit G, Fleetwood AJ, Murphy AJ and Nagareddy PR: Origins and diversity of macrophages in health and disease. Clin Transl Immunology. 9:e12222020. View Article : Google Scholar : PubMed/NCBI | |
|
Hourani T, Holden JA, Li W, Lenzo JC, Hadjigol S and O'Brien-Simpson NM: Tumor associated macrophages: Origin, recruitment, phenotypic diversity, and targeting. Front Oncol. 11:7883652021. View Article : Google Scholar | |
|
Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, Jung S and Amit I: Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell. 159:1312–1326. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lazarov T, Juarez-Carre ño S, Cox N and Geissmann F: Physiology and diseases of tissue-resident macrophages. Nature. 618:698–707. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Casanova-Acebes M, Dalla E, Leader AM, LeBerichel J, Nikolic J, Morales BM, Brown M, Chang C, Troncoso L, Chen ST, et al: Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. Nature. 595:578–584. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Mu X, Li Y and Fan GC: Tissue-resident macrophages in the control of infection and resolution of inflammation. Shock. 55:14–23. 2021. View Article : Google Scholar | |
|
Chen Y and Zhang X: Pivotal regulators of tissue homeostasis and cancer: Macrophages. Exp Hematol Oncol. 6:232017. View Article : Google Scholar : PubMed/NCBI | |
|
Filiberti S, Russo M, Lonardi S, Bugatti M, Vermi W, Tournier C and Giurisato E: Self-renewal of acrophages: Tumor-released factors and signaling pathways. Biomedicines. 10:27092022. View Article : Google Scholar | |
|
Giurisato E, Lonardi S, Telfer B, Lussoso S, Risa-Ebrí B, Zhang J, Russo I, Wang J, Santucci A, Finegan KG, et al: Extracellular-regulated protein kinase 5-mediated control of p21 expression promotes macrophage proliferation associated with tumor growth and metastasis. Cancer Res. 80:3319–3330. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Collins EJ, Cervantes-Silva MP, Timmons GA, O'Siorain JR, Curtis AM and Hurley JM: Post-transcriptional circadian regulation in macrophages organizes temporally distinct immunometabolic states. Genome Res. 31:171–185. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan R, Li S, Geng H, Wang X, Guan Q, Li X, Ren C and Yuan X: Reversing the polarization of tumor-associated macrophages inhibits tumor metastasis. Int Immunopharmacol. 49:30–37. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Mantuano NR, Oliveira-Nunes MC, Alisson-Silva F, Dias WB and Todeschini AR: Emerging role of glycosylation in the polarization of tumor-associated macrophages. Pharmacol Res. 146:1042852019. View Article : Google Scholar : PubMed/NCBI | |
|
Gao J, Liang YZ and Wang L: Shaping polarization of tumor-associated macrophages in cancer immunotherapy. Front Immunol. 13:8887132022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang YL, Yang F, Huang ZQ, Li YY, Shi HY, Sun Q, Ma Y, Wang Y, Zhang Y, Yang S, et al: T cells, NK cells, and tumor-associated macrophages in cancer immunotherapy and the current state of the art of drug delivery systems. Front Immunol. 14:11991732023. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Sun J, Zeng Z, Liu Z, Ma M, Zheng Z, He Y and Kang W: Tumor-associated macrophages in gastric cancer: From function and mechanism to application. Clin Transl Med. 13:e13862023. View Article : Google Scholar | |
|
Larionova I, Cherdyntseva N, Liu T, Patysheva M, Rakina M and Kzhyshkowska J: Interaction of tumor-associated macrophages and cancer chemotherapy. Oncoimmunology. 8:15960042019. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Xu X, Wei S, Jiang P, Xue L and Wang J: Senior Correspondence. Tumor-associated macrophages: Potential therapeutic strategies and future prospects in cancer. J Immunother Cancer. 9:e0013412021. View Article : Google Scholar : PubMed/NCBI | |
|
Shao R, Liu C, Xue R, Deng X, Liu L, Song C, Xie J, Tang H and Liu W: Tumor-derived exosomal ENO2 modulates polarization of tumor-associated macrophages through reprogramming glycolysis to promote progression of diffuse large B-cell lymphoma. Int J Biol Sci. 20:848–863. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Gordon S and Martinez FO: Alternative activation of macrophages: Mechanism and functions. Immunity. 32:593–604. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Gharib SA, McMahan RS, Eddy WE, Long ME, Parks WC, Aitken ML and Manicone AM: Transcriptional and functional diversity of human macrophage repolarization. J Allergy Clin Immunol. 143:1536–1548. 2019. View Article : Google Scholar : | |
|
Viola A, Munari F, Sanchez-Rodriguez R, Scolaro T and Castegna A: The metabolic signature of macrophage responses. Front Immunol. 10:14622019. View Article : Google Scholar : PubMed/NCBI | |
|
Kang S and Kumanogoh A: The spectrum of macrophage activation by immunometabolism. Int Immunol. 32:467–473. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gharavi AT, Hanjani NA, Movahed E and Doroudian M: The role of macrophage subtypes and exosomes in immunomodulation. Cell Mol Biol Lett. 27:832022. View Article : Google Scholar : PubMed/NCBI | |
|
Henze AT and Mazzone M: The impact of hypoxia on tumor-associated macrophages. J Clin Invest. 126:3672–3679. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Mantovani A, Sozzani S, Locati M, Allavena P and Sica A: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23:549–555. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Lin Y, Xu J and Lan H: Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J Hematol Oncol. 12:762019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Liu R, Yu Q, Dong L, Bi Y and Liu G: Metabolic reprogramming of macrophages during infections and cancer. Cancer Lett. 452:14–22. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kwak T, Wang F, Deng H, Condamine T, Kumar V, Perego M, Kossenkov A, Montaner LJ, Xu X, Xu W, et al: Distinct populations of immune-suppressive macrophages differentiate from monocytic myeloid-derived suppressor cells in cancer. Cell Rep. 33:1085712020. View Article : Google Scholar : PubMed/NCBI | |
|
Sun J, Park C, Guenthner N, Gurley S, Zhang L, Lubben B, Adebayo O, Bash H, Chen Y, Maksimos M, et al: Tumorassociated macrophages in multiple myeloma: Advances in biology and therapy. J Immunother Cancer. 10:e0039752022. View Article : Google Scholar | |
|
Shi F, Sun MH, Zhou Z, Wu L, Zhu Z, Xia SJ, Han BM, Zhao YY, Jing YF and Cui D: Tumor-associated macrophages in direct contact with prostate cancer cells promote malignant proliferation and metastasis through NOTCH1 pathway. Int J Biol Sci. 18:5994–6007. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Liao Q, Zeng Z, Guo X, Li X, Wei F, Zhang W, Li X, Chen P, Liang F, Xiang B, et al: LPLUNC1 suppresses IL-6-induced nasopharyngeal carcinoma cell proliferation via inhibiting the stat3 activation. Oncogene. 33:2098–2109. 2014. View Article : Google Scholar | |
|
Zhong Q, Fang Y, Lai Q, Wang S, He C, Li A, Liu S and Yan Q: CPEB3 inhibits epithelial-mesenchymal transition by disrupting the crosstalk between colorectal cancer cells and tumor-associated macrophages via IL-6R/STAT3 signaling. J Exp Clin Cancer Res. 39:1322020. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan H, Lin Z, Liu Y, Jiang Y, Liu K, Tu M, Yao N, Qu C and Hong J: Intrahepatic cholangiocarcinoma induced M2-polarized tumor-associated macrophages facilitate tumor growth and invasiveness. Cancer Cell Int. 20:5862020. View Article : Google Scholar : PubMed/NCBI | |
|
Azambuja JH, Ludwig N, Yerneni SS, Braganhol E and Whiteside TL: Arginase-1+ exosomes from reprogrammed macrophages promote glioblastoma progression. Int J Mol Sci. 21:39902020. View Article : Google Scholar : PubMed/NCBI | |
|
Piao H, Fu L, Wang Y, Liu Y, Wang Y, Meng X, Yang D, Xiao X and Zhang J: A positive feedback loop between gastric cancer cells and tumor-associated macrophage induces malignancy progression. J Exp Clin Cancer Res. 41:1742022. View Article : Google Scholar : PubMed/NCBI | |
|
Hwang MA, Won M, Im JY, Kang MJ, Kweon DH and Kim BK: TNF-α secreted from macrophages increases the expression of prometastatic integrin αV in gastric cancer. Int J Mol Sci. 24:3762022. View Article : Google Scholar | |
|
Luo Q, Wang J, Zhao W, Peng Z, Liu X, Li B, Zhang H, Shan B, Zhang C and Duan C: Vasculogenic mimicry in carcinogenesis and clinical applications. J Hematol Oncol. 13:192020. View Article : Google Scholar : PubMed/NCBI | |
|
Wenes M, Shang M, Di Matteo M, Goveia J, Martín-Pérez R, Serneels J, Prenen H, Ghesquière B, Carmeliet P and Mazzone M: Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell Metab. 24:701–715. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Cowman SJ, Fuja DG, Liu XD, Tidwell RSS, Kandula N, Sirohi D, Agarwal AM, Emerson LL, Tripp SR, Mohlman JS, et al: Macrophage HIF-1alpha is an independent prognostic indicator in kidney cancer. Clin Cancer Res. 26:4970–4982. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Do MH, Shi W, Ji L, Ladewig E, Zhang X, Srivastava RM, Capistrano KJ, Edwards C, Malik I, Nixon BG, et al: Reprogramming tumor-associated macrophages to outcompete endovascular endothelial progenitor cells and suppress tumor neoangiogenesis. Immunity. 56:2555–2569. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Godet I, Shin YJ, Ju JA, Ye IC, Wang G and Gilkes DM: Fate-mapping post-hypoxic tumor cells reveals a ROS-resistant phenotype that promotes metastasis. Nat Commun. 10:48622019. View Article : Google Scholar : PubMed/NCBI | |
|
Stockmann C, Doedens A, Weidemann A, Zhang N, Takeda N, Greenberg JI, Cheresh DA and Johnson RS: Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature. 456:814–818. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Liu M, Liu L, Song Y, Li W and Xu L: Targeting macrophages: A novel treatment strategy in solid tumors. J Transl Mel. 20:5862022. View Article : Google Scholar | |
|
Xu T, Yu S, Zhang J and Wu S: Dysregulated tumor-associated macrophages in carcinogenesis, progression and targeted therapy of gynecological and breast cancers. J Hematol Oncol. 14:1812021. View Article : Google Scholar : PubMed/NCBI | |
|
Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegué E, Song H, Vandenberg S, Johnson RS, Werb Z and Bergers G: HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell. 13:206–220. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Yang L and Zhang Y: Tumor-associated macrophages: From basic research to clinical application. J Hematol Oncol. 10:582017. View Article : Google Scholar : PubMed/NCBI | |
|
Owen JL and Mohamadzadeh M: Macrophages and chemokines as mediators of angiogenesis. Front Physiol. 4:1592013. View Article : Google Scholar : PubMed/NCBI | |
|
Riabov V, Gudima A, Wang N, Mickley A, Orekhov A and Kzhyshkowska J: Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol. 5:752014. View Article : Google Scholar : PubMed/NCBI | |
|
Fu LQ, Du WL, Cai MH, Yao JY, Zhao YY and Mou XZ: The roles of tumor-associated macrophages in tumor angiogenesis and metastasis. Cell Immunol. 353:1041192020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Guo Z, Chen W, Wang X, Cao M, Han X, Zhang K, Teng BW, Wu W, Cao P, et al: M2 macrophage-derived exosomes promote angiogenesis and growth of pancreatic ductal adenocarcinoma by targeting E2F2. Mol Ther. 29:1226–1238. 2021. View Article : Google Scholar : | |
|
Yin Z, Ma T, Huang B, Lin L, Zhou Y, Yan J, Zou Y and Chen S: Macrophage-derived exosomal microRNA-501-3p promotes progression of pancreatic ductal adenocarcinoma through the TGFBR3-mediated TGF-β signaling pathway. J Exp Clin Cancer Res. 38:3102019. View Article : Google Scholar | |
|
Christie EL and Bowtell DDL: Acquired chemotherapy resistance in ovarian cancer. Ann Oncol. 28(suppl_8): viii13–viii15. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Paulus P, Stanley ER, Schäfer R, Abraham D and Aharinejad S: Colony-stimulating factor-1 antibody reverses chemoresistance in human MCF-7 breast cancer xenografts. Cancer Res. 66:4349–4356. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, et al: Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1:54–67. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Guan W, Li F, Zhao Z, Zhang Z, Hu J and Zhang Y: Tumor-associated macrophage promotes the survival of cancer cells upon docetaxel chemotherapy via the CSF1/CSF1R-CXCL12/CXCR4 axis in castration-resistant prostate cancer. Genes (Basel). 12:7732021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Chen Y, Hao L, Hou A, Chen X, Li Y, Wang R, Luo P, Ruan Z, Ou J, et al: Macrophages induce resistance to 5-fuorouracil chemotherapy in colorectal cancer through the release of putrescine. Cancer Lett. 381:305–313. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Su P, Jiang L, Zhang Y, Yu T, Kang W, Liu Y and Yu J: Crosstalk between tumor-associated macrophages and tumor cells promotes chemoresistance via CXCL5/PI3K/AKT/mTOR pathway in gastric cancer. Cancer Cell Int. 22:2902022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu X, Shen H, Yin X, Yang M, Wei H, Chen Q, Feng F, Liu Y, Xu W and Li Y: Macrophages derived exosomes deliver miR-223 to epithelial ovarian cancer cells to elicit a chemoresistant phenotype. J Exp Clin Cancer Res. 38:812019. View Article : Google Scholar : PubMed/NCBI | |
|
Binenbaum Y, Fridman E, Yaari Z, Milman N, Schroeder A, Ben David G, Shlomi T and Gil Z: Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma. Cancer Res. 78:5287–5299. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Akkari L, Bowman RL, Tessier J, Klemm F, Handgraaf SM, de Groot M, Quail DF, Tillard L, Gadiot J, Huse JT, et al: Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Sci Transl Med. 12:eaaw78432020. View Article : Google Scholar : PubMed/NCBI | |
|
Rahal OM, Wolfe AR, Mandal PK, Larson R, Tin S, Jimenez C, Zhang D, Horton J, Reuben JM, McMurray JS and Woodward WA: Blocking interleukin (IL)4and IL13-mediated phosphorylation of STAT6 (Tyr641) decreases M2 polarization of macrophages and protects against macrophage-mediated radioresistance of inflammatory breast cancer. Int J Radiat Oncol Biol Phys. 100:1034–1043. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lee HL, Tsai YC, Pikatan NW, Yeh CT, Yadav VK, Chen MY and Tsai JT: Tumor-associated macrophages affect the tumor microenvironment and radioresistance via the Upregulation of CXCL6/CXCR2 in hepatocellular carcinoma. Biomedicines. 11:20812023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Feng Z and Liu J, Li H, Su Q, Zhang J, Huang P, Wang W and Liu J: Polarization of tumor-associated macrophages by TLR7/8 conjugated radiosensitive peptide hydrogel for overcoming tumor radioresistance. Bioact Mater. 16:359–371. 2022.PubMed/NCBI | |
|
Zhao F, Tian H, Wang Y, Zhang J, Liu F and Fu L: LINC01004-SPI1 axis-activated SIGLEC9 in tumor-associated macrophages induces radioresistance and the formation of immunosuppressive tumor microenvironment in esophageal squamous cell carcinoma. Cancer Immunol Immunother. 72:1835–1851. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Gu X, Shi Y, Dong M, Jiang L, Yang J and Liu Z: Exosomal transfer of tumor-associated macrophage-derived hsa_circ_0001610 reduces radiosensitivity in endometrial cancer. Cell Death Dis. 12:8182021. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang YS, Chen M, Nie H and Yuan YY: PD-1 and PD-L1 in cancer immunotherapy: Clinical implications and future considerations. Hum Vaccin Immunother. 15:1111–1122. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ren D, Hua Y, Yu B, Ye X, He Z, Li C, Wang J, Mo Y, Wei X, Chen Y, et al: Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy. Mol Cancer. 19:192020. View Article : Google Scholar : PubMed/NCBI | |
|
Quaranta V, Rainer C, Nielsen SR, Raymant ML, Ahmed MS, Engle DD, Taylor A, Murray T, Campbell F, Palmer DH, et al: Macrophage-derived granulin drives resistance to immune checkpoint inhibition in metastatic pancreatic cancer. Cancer Res. 78:4253–4269. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Molgora M, Esaulova E, Vermi W, Hou J, Chen Y, Luo J, Brioschi S, Bugatti M, Omodei AS, Ricci B, et al: TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell. 182:886–900.e17. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Wu F, Zhao S, Shi P, Wang S and Cui D: Correlation between PD-1/PD-L1 expression and polarization in tumor-associated macrophages: A key player in tumor immunotherapy. Cytokine Growth Factor Rev. 67:49–57. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Pich-Bavastro C, Yerly L, Di Domizio J, Tissot-Renaud S, Gilliet M and Kuonen F: Activin A-mediated polarization of cancer-associated fibroblasts and macrophages confers resistance to checkpoint immunotherapy in skin cancer. Clin Cancer Res. 29:3498–3513. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu KX and Joshi S: 'Re-educating' tumor associated macrophages as a novel immunotherapy strategy for neuroblastoma. Front Immunol. 11:19472020. View Article : Google Scholar | |
|
Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, Fuhrer T, Kogadeeva M, Picotti P, Meissner F, Mann M, et al: L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell. 167:829–842.e13. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bronte V and Zanovello P: Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol. 5:641–654. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Movahedi K, Laoui D, Gysemans C, Baeten M, Stangé G, Van den Bossche J, Mack M, Pipeleers D, In't Veld P, De Baesselier P and Van Ginderachter JA: Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C (high) monocytes. Cancer Res. 70:5728–5739. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D, De Palma A, Mauri P, Monegal A, Rescigno M, et al: Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med. 208:1949–1962. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
De Palma M and Lewis CE: Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell. 23:277–286. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ruffell B, Chang-Strachan D, Chan V, Rosenbusch A, Ho CM, Pryer N, Daniel D, Hwang ES, Rugo HS and Coussens LM: Macrophage IL-10 blocks CD8+ T cell dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell. 26:623–637. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Komohara Y, Fujiwara Y, Ohnishi K and Takeya M: Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy. Adv Drug Delivery Rev. 99(Pt B): 180–185. 2016. View Article : Google Scholar | |
|
Smith LK, Boukhaled GM, Condotta SA, Mazouz S, Guthmiller JJ, Vijay R, Butler NS, Bruneau J, Shoukry NH, Krawczyk CM and Richer MJ: Interleukin-10 directly inhibits CD8(+) T cell function by enhancing N-glycan branching to decrease antigen sensitivity. Immunity. 48:299–312.e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang D, Yang L, Yue D, Cao L, Li L, Wang D, Ping Y, Shen Z, Zheng Y, Wang L and Zhang Y: Macrophage-derived CCL22 promotes an immunosuppressive tumor microenvironment via IL-8 in malignant pleural effusion. Cancer Lett. 452:244–253. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Noy R and Pollard JW: Tumor-associated macrophages: From mechanisms to therapy. Immunity. 41:49–61. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Morandi F and Pistoia V: Interactions between HLA-G and HLA-E in physiological and pathological conditions. Front Immunol. 5:3942014. View Article : Google Scholar : PubMed/NCBI | |
|
DeNardo DG and Ruffell B: Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol. 19:369–382. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Shao C, Shi Y and Han W: Lessons learned from the blockade of immune checkpoints in cancer immunotherapy. J Hematol Oncol. 11:312018. View Article : Google Scholar : PubMed/NCBI | |
|
Ganesh K and Massagué J: Targeting metastatic cancer. Nat Med. 27:34–44. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Pastushenko L and Blanpain C: EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29:212–226. 2019. View Article : Google Scholar | |
|
Wei C, Yang C, Wang S, Shi D, Zhang C, Lin X, Liu Q, Dou R and Xiong B: Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol Cancer. 18:642019. View Article : Google Scholar : PubMed/NCBI | |
|
Lim GJ, Kang S and Lee JY: Novel invasion indices quantify the feed forward facilitation of tumor invasion by macrophages. Sci Rep. 10:718–727. 2020. View Article : Google Scholar | |
|
Li X, Chen L, Peng X and Zhan X: Progress of tumor-associated macrophages in the epithelial-mesenchymal transition of tumor. Front Oncol. 12:9114102022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu F, Li X, Chen S, Zeng Q, Zhao Y and Luo F: Tumorassociated macrophage or chemokine ligand CCL17 positively regulates the tumorigenesis of hepatocellular carcinoma. Med Oncol. 33:172016. View Article : Google Scholar | |
|
Sun D, Luo T, Dong P, Zhang N, Chen J and Zhang S, Dong L, Janssen HLA and Zhang S: M2-polarized tumor-associated macrophages promote epithelial-mesenchymal transition via activation of the AKT3/PRAS40 signaling pathway in intrahepatic cholangiocarcinoma. J Cell Biochem. 121:2828–2838. 2020. View Article : Google Scholar | |
|
Lee S, Lee E, Ko E, Ham M, Lee HM, Kim ES, Koh M, Lim HK, Jung J, Park SY and Moon A: Tumor-associated macrophages secrete CCL2 and induce the invasive phenotype of human breast epithelial cells through upregulation of ERO1-alpha and MMP-9. Cancer Lett. 437:25–34. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Paolillo M and Schinelli S: Extracellular matrix alterations in metastatic processes. Int J Mol Sci. 20:49472019. View Article : Google Scholar : PubMed/NCBI | |
|
Kessenbrock K, Plaks V and Werb Z: Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell. 141:52–67. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Zhang S, Wang Q and Zhang X: Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein. J Hematol Oncol. 10:362017. View Article : Google Scholar : PubMed/NCBI | |
|
Tan Y, Wang M, Zhang Y, Ge S, Zhong F, Xia G and Sun C: Tumor-associated macrophages: A potential target for cancer therapy. Front Oncol. 11:6935172021. View Article : Google Scholar : PubMed/NCBI | |
|
Kitamura T, Qian BZ, Soong D, Cassetta L, Noy R, Sugano G, Kato Y, Li JF and Pollard JW: CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J Exp Med. 212:1043–1059. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kitamura T, Doughty-Shenton D, Cassetta L, Fragkogianni S, Brownlie D, Kato Y, Carragher N and Pollard JW: Monocytes differentiate to immune suppressive precursors of metastasis associated macrophages in mouse models of metastatic breast cancer. Front Immunol. 8:20042018. View Article : Google Scholar | |
|
Lin EY, Li JF, Gnatovskiy L, Deng Y, Zhu L, Grzesik DA, Qian H, Xue XN and Pollard JW: Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 66:11238–11246. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Lin EY and Pollard JW: Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res. 67:5064–5066. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Cao R, Ji H, Yang Y and Cao Y: Collaborative effects between the TNFα-TNFR1-macrophage axis and the VEGF-C-VEGFR3 signaling in lymphangiogenesis and metastasis. Oncoimmunology. 4:e9897772015. View Article : Google Scholar | |
|
Alishekevitz D, Gingis-Velitski S, Kaidar-Person O, Gutter-Kapon L, Scherer SD, Raviv Z, Merquiol E, Ben-Nun Y, Miller V, Rachman-Tzemah C, et al: Macrophage-induced lymphangiogenesis and metastasis following paclitaxel chemotherapy is regulated by VEGFR3. Cell Rep. 17:1344–1356. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sun L, Zhang H and Gao P: Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell. 13:877–919. 2022. View Article : Google Scholar : | |
|
Muri J and Kopf M: Redox regulation of immunometabolism. Nat Rev Immunol. 21:363–381. 2021. View Article : Google Scholar | |
|
Ringel AE, Drijvers JM, Baker GJ, Catozzi A, Garcia-Canaveras JC, Gassaway BM, Miller BC, Juneja VR, Nguyen TH, Joshi S, et al: Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell. 183:1848–1866. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen D, Zhang X, Li Z and Zhu B: Metabolic regulatory crosstalk between tumor microenvironment and tumor-associated macrophages. Theranostics. 11:1016–1030. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Netea-Maier RT, Smit JWA and Netea MG: Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship. Cancer Lett. 413:102–109. 2018. View Article : Google Scholar | |
|
Chen F, Chen J, Yang L, Liu J, Zhang X, Zhang Y, Tu Q, Yin D, Lin D, Wong PP, et al: Extracellular vesicle-packaged HIF-1α-tabilizing lncRNA from tumor-associated macrophages regulates aerobic glycolysis of breast cancer cells. Nat Cell Biol. 21:498–510. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Brown JM and Wilson WR: Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. 4:437–447. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Kroemer G and Pouyssegur J: Tumor cell metabolism: Cancer's Achilles' heel. Cancer Cell. 13:472–482. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Jeong H, Kim S, Hong BJ, Lee CJ, Kim YE, Bok S, Oh JM, Gwak SH, Yoo MY, Lee MS, et al: Tumor-associated macrophages enhance tumor hypoxia and aerobic glycolysis. Cancer Res. 79:795–806. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Yu G, Chu H, Wang X, Xiong L, Cai G, Liu R, Gao H, Tao B, Li W, et al: Macrophage-associated PGK1 phosphorylation promotes aerobic glycolysis and tumorigenesis. Mol Cell. 71:201–215.e7. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lin S, Sun L, Lyu X, Ai X, Du D, Su N, Li H, Zhang L, Yu J and Yuan S: Lactate-activated macrophages induced aerobic glycolysis and epithelial-mesenchymal transition in breast cancer by regulation of CCL5-CCR5 axis: A positive metabolic feedback loop. Oncotarget. 8:110426–110443. 2017. View Article : Google Scholar | |
|
Ye H, Zhou Q, Zheng S, Li G, Lin Q, Wei L, Fu Z, Zhang B, Liu Y, Li Z and Chen R: Tumor-associated macrophages promote progression and the Warburg effect via CCL18/NF-kB/VCAM-1 pathway in pancreatic ductal adenocarcinoma. Cell Death Dis. 9:4532018. View Article : Google Scholar : PubMed/NCBI | |
|
Ishida Y, Kuninaka Y, Yamamoto Y, Nosaka M, Kimura A, Furukawa F, Mukaida N and Kondo T: Pivotal involvement of the CX3CL1-CX3CR1 axis for the recruitment of M2 tumor-associated macrophages in skin carcinogenesis. J Invest Dermatol. 140:1951–1961. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH and Ruttinger D: Colony stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 5:532017. View Article : Google Scholar | |
|
Pathria P, Louis TL and Varner JA: Targeting tumor-associated macrophages in cancer. Trends Immunol. 40:310–327. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kielbassa K, Vegna S, Ramirez C and Akkari L: Understanding the origin and diversity of macrophages to tailor their targeting in solid cancers. Front Immunol. 10:22152019. View Article : Google Scholar : PubMed/NCBI | |
|
Fujiwara T, Yakoub MA, Chandler A, Christ AB, Yang G, Ouerfelli O, Rajasekhar VK, Yoshida A, Kondo H, Hata T, et al: CSF1/CSF1R signaling inhibitor pexidartinib (PLX3397) reprograms tumor-associated macrophages and stimulates T-cell infltration in the sarcoma microenvironment. Mol Cancer Ther. 20:1388–1399. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wesolowski R, Sharma N, Reebel L, Rodal MB, Peck A, West BL, Marimuthu A, Severson P, Karlin DA, Dowlati A, et al: Phase Ib study of the combination of pexidartinib (PLX3397), a CSF-1R inhibitor, and paclitaxel in patients with advanced solid tumors. Ther Adv Med Oncol. 11:17588359198542382019. View Article : Google Scholar : PubMed/NCBI | |
|
Tap WD, Gelderblom H, Palmerini E, Desai J, Bauer S, Blay JY, Alcindor T, Ganjoo K, Martín-Broto J, Ryan CW, et al: Pexidartinib versus placebo for advanced tenosynovial giant cell tumour (ENLIVEN): A randomised phase 3 trial. Lancet. 394:478–487. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Khotskaya YB, Holla VR, Farago AF, Mills Shaw KR, Meric-Bernstam F and Hong DS: Targeting TRK family proteins in cancer. Pharmacol Ther. 173:58–66. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Thongchot S, Duangkaew S, Yotchai W, Maungsomboon S, Phimolsarnti R, Asavamongkolkul A, Thuwajit P, Thuwajit C and Chandhanayingyong C: Novel CSF1R-positive tenosynovial giant cell tumor cell lines and their pexidartinib (PLX3397) and sotuletinib (BLZ945)-induced apoptosis. Hum Cell. 36:456–467. 2023. View Article : Google Scholar : | |
|
Johnson M, Dudek AZ, Sukari A, Call J, Kunk PR, Lewis K, Gainor JF, Sarantopoulos J, Lee P, Golden A, et al: ARRY-382 in combination with pembrolizumab in patients with advanced solid tumors: Results from a phase 1b/2 study. Clin Cancer Res. 28:2517–2526. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Kuemmel S, Campone M, Loirat D, Lopez RL, Beck JT, De Laurentiis M, Im SA, Kim SB, Kwong A, Steger GG, et al: A randomized phase II study of anti-CSF1 monoclonal antibody lacnotuzumab (MCS110) combined with gemcitabine and carboplatin in advanced triple-negative breast cancer. Clin Cancer Res. 28:106–115. 2022. View Article : Google Scholar | |
|
Autio KA, Klebanoff CA, Schaer D, Kauh JSW, Slovin SF, Adamow M, Blinder VS, Brahmachary M, Carlsen M, Comen E, et al: Immunomodulatory activity of a colony-stimulating factor-1 receptor inhibitor in patients with advanced refractory breast or prostate cancer: A phase I study. Clin Cancer Res. 26:5609–5620. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Uddin MN and Wang XS: Identifcation of key tumor stroma associated transcriptional. signatures correlated with survival prognosis and tumor progression in breast cancer. Breast Cancer. 29:541–561. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Kadomoto S, Izumi K and Mizokami A: Roles of CCL2-CCR2 axis in the tumor microenvironment. Int J Mol Sci. 22:85302021. View Article : Google Scholar : PubMed/NCBI | |
|
Hao Q, Vadgama JV and Wang P: CCL2/CCR2 signaling in cancer pathogenesis. Cell Commun Signal. 18:822020. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Yao W, Yuan Y, Chen P, Li B, Li J, Chu R, Song H, Xie D, Jiang X and Wang H: Targeting of tumour-infltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut. 66:157–167. 2017. View Article : Google Scholar | |
|
Sandhu SK, Papadopoulos K, Fong PC, Patnaik A, Messiou C, Olmos D, Wang G, Tromp BJ, Puchalski TA, Balkwill F, et al: A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemother Pharmacol. 71:1041–1050. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Pienta KJ, Machiels JP, Schrijvers D, Alekseev B, Shkolnik M, Crabb SJ, Li S, Seetharam S, Puchalsko TA, Takimoto C, et al: Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Invest New Drugs. 31:760–768. 2013. View Article : Google Scholar | |
|
Flores-Toro JA, Luo D, Gopinath A, Sarkisian MR, Campbell JJ, Charo IF, Singh R, Schall TJ, Datta M, Jain RK, et al: CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas. Proc Natl Acad Sci USA. 117:1129–1138. 2020. View Article : Google Scholar : | |
|
Sleightholm RL, Neilsen BK, Li J, Steele MM, Singh RK, Hollingsworth MA and Oupicky D: Emerging roles of the CXCL12/CXCR4 axis in pancreatic cancer progression and therapy. Pharmacol Ther. 179:158–170. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tang C, Lei X, Xiong L, Hu Z and Tang B: HMGA1B/2 transcriptionally activated-POU1F1 facilitates gastric carcinoma metastasis via CXCL12/CXCR4 axis-mediated macrophage polarization. Cell Death Dis. 12:4222021. View Article : Google Scholar : PubMed/NCBI | |
|
Shi T, Li X, Zheng J, Duan Z, Ooi YY, Gao Y, Wang Q, Yang J, Wang L and Yao L: Increased SPRY1 expression activates NF-κB signaling and promotes pancreatic cancer progression by recruiting neutrophils and macrophages through CXCL12-CXCR4 axis. Cell Oncol (Dordr). 46:969–985. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Choueiri TK, Atkins MB, Rose TL, Alter RS, Ju Y, Niland K, Wang Y, Arbeit R, Parasuraman S, Gan L and McDermott DF: A phase 1b trial of the CXCR4 inhibitor mavorixafor and nivolumab in advanced renal cell carcinoma patients with no prior response to nivolumab monotherapy. Invest New Drugs. 39:1019–1027. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Bockorny B, Semenisty V, Macarulla T, Borazanci E, Wolpin BM, Stemmer SM, Golan T, Geva R, Borad MJ, Pedersen KS, et al: BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: the COMBAT trial. Nat Med. 26:878–885. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang Y, Liang Y, Li L, Zhou L, Cheng W, Yang X, Yang X, Qi H, Yu J, Jeong LS, et al: Targeting neddylation inhibits intravascular survival and extravasation of cancer cells to prevent lung-cancer metastasis. Cell Biol Toxicol. 35:233–245. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou L, Jiang Y, Liu X, Li L, Yang X, Dong C, Liu X, Lin Y, Li Y, Yu J, et al: Promotion of tumor-associated macrophages infltration by elevated neddylation pathway via NF-κB-CCL2 signaling in lung cancer. Oncogene. 38:5792–5804. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng JH, Nguyen VH, Jiang SN, Park SH, Tan W, Hong SH, Shin MG, Chung IJ, Hong Y, Bom HS, et al: Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Sci Transl Med. 9:eaak95372017. View Article : Google Scholar : PubMed/NCBI | |
|
Wu X, Schulte BC, Zhou Y, Haribhai D, Mackinnon AC, Plaza JA, Williams CB and Hwang ST: Depletion of M2-like tumor-associated macrophages delays cutaneous T-cell lymphoma development in vivo. J Invest Dermatol. 134:2814–2822. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Piaggio F, Kondylis V, Pastorino F, Di Paolo D, Perri P, Cossu I, Schorn F, Marinaccio C, Murgia D, Daga A, et al: A novel liposomal Clodronate depletes tumor-associated macrophages in primary and metastatic melanoma: anti-angiogenic and anti-tumor effects. J Control Release. 223:165–177. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zang X, Zhang X, Hu H, Qiao M, Zhao X, Deng Y and Chen D: Targeted delivery of zoledronate to tumor-associated macrophages for cancer immunotherapy. Mol Pharm. 16:2249–2258. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Cao Y, Qiao B, Chen Q, Xie Z, Dou X, Xu L, Ran H, Zhang L and Wang Z: Tumor microenvironment remodeling via targeted depletion of M2-like tumor-associated macrophages for cancer immunotherapy. Acta Biomater. 160:239–251. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Huang M, Chen M, Sun Z, Jiao Y, Ye G, Pan J, Ye W, Zhao J and Zhang D: Zoledronic acid and thymosin α1 elicit antitumor immunity against prostate cancer by enhancing tumor inflammation and cytotoxic T cells. J Immunother Cancer. 11:e0063812023. View Article : Google Scholar | |
|
Grignani G, D'Ambrosio L, Pignochino Y, Palmerini E, Zucchetti M, Boccone P, Aliberti S, Stacchiotti S, Bertulli R, Piana R, et al: Trabectedin and olaparib in patients with advanced and non-resectable bone and soft-tissue sarcomas (TOMAS): An open-label, phase 1b study from the Italian Sarcoma Group. Lancet Oncol. 19:1360–1371. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Povo-Retana A, Fariñas M, Landauro-Vera R, Mojena M, Alvarez-Lucena C, Fernández-Moreno MA, Castrillo A, de la Rosa Medina JV, Sánchez-García S, Foguet C, et al: Immunometabolic actions of trabectedin and lurbinectedin on human macrophages: Relevance for their anti-tumor activity. Front Immunol. 14:12110682023. View Article : Google Scholar : PubMed/NCBI | |
|
Germano G, Frapolli R, Belgiovine C, Anselmo A, Pesce S, Liguori M, Erba E, Uboldi S, Zucchetti M, Pasqualini F, et al: Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell. 23:249–262. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
D'Incalci M and Zambelli A: Trabectedin for the treatment of breast cancer. Expert Opin Investig Drugs. 25:105–115. 2016. View Article : Google Scholar | |
|
Carminati L, Pinessi D, Borsotti P, Minoli L, Giavazzi R, D'Incalci M, Belotti D and Taraboletti G: Antimetastatic and antiangiogenic activity of trabectedin in cutaneous melanoma. Carcinogenesis. 40:303–312. 2019. View Article : Google Scholar | |
|
Lee C, Jeong H, Bae Y, Shin K, Kang S, Kim H, Oh J and Bae H: Targeting of M2-like tumor-associated macrophages with a melittin-based pro-apoptotic peptide. J Immunother Cancer. 7:1472019. View Article : Google Scholar : PubMed/NCBI | |
|
Sánchez-Paulete AR, Mateus-Tique J, Mollaoglu G, Nielsen SR, Marks A, Lakshmi A, Khan JA, Wilk CM, Pia L, Baccarini A, et al: Targeting macrophages with CAR T cells delays solid tumor progression and enhances antitumor immunity. Cancer Immunol Res. 10:1354–1369. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yanai H, Hangai S and Taniguchi T: Damage-associated molecular patterns and Toll-like receptors in the tumor immune microenvironment. Int Immunol. 33:841–846. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Rameshbabu S, Labadie BW, Argulian A and Patnaik A: Targeting innate immunity in cancer therapy. Vaccines (Basel). 9:1382021. View Article : Google Scholar : PubMed/NCBI | |
|
Urban-Wojciuk Z, Khan MM, Oyler BL, Fahraeus R, Marek-Trzonkowska N, Nita-Lazar A, Hupp TR and Goodlett DR: The role of TLRs in anti-cancer immunity and tumor rejection. Front Immunol. 10:23882019. View Article : Google Scholar : PubMed/NCBI | |
|
Vidyarthi A, Khan N, Agnihotri T, Negi S, Das DK, Aqdas M, Chatterjee D, Colegio OR, Tewari MK and Agrewala JN: TLR-3 stimulation skews M2 macrophages to M1 through IFN-αβ signaling and restricts tumor progression. Front Immunol. 9:16502018. View Article : Google Scholar | |
|
McGowan DC: Latest advances in small molecule TLR7/8 agonist drug research. Curr Top Med Chem. 19:2228–2238. 2019. View Article : Google Scholar | |
|
Wang Z, Gao Y, He L, Sun S, Xia T, Hu L, Yao L, Wang L, Li D, Shi H and Liao X: Structure-based design of highly potent toll-like receptor 7/8 dual agonists for cancer immunotherapy. J Med Chem. 64:7507–7532. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Z, Xie Y, Xiong Y, Liu S, Qiu C, Zhu Z, Mao H, Yu M and Wang X: TLR 7/8 agonist reverses oxaliplatin resistance in colorectal cancer via directing the myeloid-derived suppressor cells to tumoricidal M1-macrophages. Cancer Lett. 469:173–185. 2020. View Article : Google Scholar | |
|
Figueiredo P, Lepland A, Scodeller P, Fontana F, Torrieri G, Tiboni M, Shahbazi MA, Casettari L, Kostiainen MA, Hirvonen J, et al: Peptide-guided resiquimod-loaded lignin nanoparticles convert tumor-associated macrophages from M2 to M1 phenotype for enhanced chemotherapy. Acta Biomater. 133:231–243. 2021. View Article : Google Scholar | |
|
Mullins SR, Vasilakos JP, Deschler K, Grigsby I, Gillis P, John J, Elder MJ, Swales J, Timosenko E, Cooper Z, et al: Intratumoral immunotherapy with TLR7/8 agonist MEDI9197 modulates the tumor microenvironment leading to enhanced activity when combined with other immunotherapies. J Immunother Cancer. 7:2442019. View Article : Google Scholar : PubMed/NCBI | |
|
Smith DA, Conkling P, Richards DA, Nemunaitis JJ, Boyd TE, Mita AC, de La Bourdonnaye G, Wages D and Bexon AS: Antitumor activity and safety of combination therapy with the Toll-like receptor 9 agonist IMO-2055, erlotinib, and bevacizumab in advanced or metastatic non-small cell lung cancer patients who have progressed following chemotherapy. Cancer Immunol Immunother. 63:787–796. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ji N, Mukherjee N, Morales EE, Tomasini ME, Hurez V, Curiel TJ, Abate G, Hoft DF, Zhao XR, Gelfond J, et al: Percutaneous BCG enhances innate effector antitumor cytotoxicity during treatment of bladder cancer: A translational clinical trial. Oncoimmunology. 8:16148572019. View Article : Google Scholar : PubMed/NCBI | |
|
Ji N, Mukherjee N, Reyes RM, Gelfond J, Javors M, Meeks JJ, McConey DJ, Shu ZJ, Ramamurthy C, Dennett R, et al: Rapamycin enhances BCG-specifc γδ T cells during intravesical BCG therapy for non-muscle invasive bladder cancer: A randomized, double-blind study. J Immunother Cancer. 9:e0019412021. View Article : Google Scholar | |
|
Takada YK, Yu J, Shimoda M and Takada Y: Integrin binding to the trimeric interface of CD40L plays a critical role in CD40/CD40L signaling. J Immunol. 203:1383–1391. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Vonderheide RH: CD40 agonist antibodies in cancer immunotherapy. Annu Rev Med. 71:47–58. 2020. View Article : Google Scholar | |
|
Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, Huhn RD, Song W, Li D, Sharp LL, et al: CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 331:1612–1616. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Nanda S: Cancer: CD40 agonists-a promising new treatment for pancreatic cancer? Nat Rev Gastroenterol Hepatol. 8:3002011. View Article : Google Scholar | |
|
Hoves S, Ooi CH, Wolter C, Sade H, Bissinger S, Schmittnaegel M, Ast O, Giusti AM, Wartha K, Runza V, et al: Rapid activation of tumor-associated macrophages boosts preexisting tumor immunity. J Exp Med. 215:859–876. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wiehagen KR, Girgis NM, Yamada DH, Smith AA, Chan SR, Grewal IS, Quigley M and Verona RI: Combination of CD40 agonism and CSF-1R blockade reconditions tumor-associated macrophages and drives potent antitumor immunity. Cancer Immunol Res. 5:1109–1121. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Baumann D, Hägele T, Mochayedi J, Drebant J, Vent C, Blobner S, Noll JH, Nickel I, Schumacher C, Boos SL, et al: Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy. Nat Commun. 11:21762020. View Article : Google Scholar : PubMed/NCBI | |
|
Leblond MM, Tillé L, Nassiri S, Gilfillan CB, Imbratta C, Schmittnaegel M, Ries CH, Speiser DE and Verdeil G: CD40 agonist restores the antitumor efficacy of anti-PD1 therapy in muscle-invasive bladder cancer in an IFN I/II-mediated manner. Cancer Immunol Res. 8:1180–1192. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Djureinovic D, Wang M and Kluger HM: Agonistic CD40 antibodies in cancer treatment. Cancers (Basel). 13:13022021. View Article : Google Scholar : PubMed/NCBI | |
|
Georgoudaki AM, Prokopec KE, Boura VF, Hellqvist E, Sohn S, Ostling J, Dahan R, Harris RA, Rantalainen M, Klevebring D, et al: Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis. Cell Rep. 15:2000–2011. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ding L, Qian J, Yu X, Wu Q, Mao J, Liu X, Wang Y, Guo D, Su R, Xie H, et al: Blocking MARCO+ tumor-associated macrophages improves anti-PD-L1 therapy of hepatocellular carcinoma by promoting the activation of STING-IFN type I pathway. Cancer Lett. 582:2165682024. View Article : Google Scholar | |
|
Dong Q, Zhang S, Zhang H, Sun J, Lu J, Wang G and Wang X: MARCO is a potential prognostic and immunotherapy biomarker. Int Immunopharmacol. 116:1097832023. View Article : Google Scholar : PubMed/NCBI | |
|
Eisinger S, Sarhan D, Boura VF, Ibarlucea-Benitez I, Tyystjärvi S, Oliynyk G, Arsenian-Henriksson M, Lane D, Wikström SL, Kiessling R, et al: Targeting a scavenger receptor on tumor-associated macrophages activates tumor cell killing by natural killer cells. Proc Natl Acad Sci USA. 117:32005–32016. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Masetti M, Carriero R, Portale F, Marelli G, Morina N, Pandini M, Iovino M, Partini B, Erreni M, Ponzetta A, et al: Lipid-loaded tumor-associated macrophages sustain tumor growth and invasiveness in prostate cancer. J Exp Med. 219:e202105642022. View Article : Google Scholar : | |
|
Toma VA, Tigu AB, Farcaș AD, Sevastre B, Taulescu M, Gherman AMR, Roman I, Fischer-Fodor E and Pârvu M: New aspects towards a molecular understanding of the allicin immunostimulatory mechanism via Colec12, MARCO, and SCARB1 receptors. Int J Mol Sci. 20:36272019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu B, Li L, Xiu B, Zhang Y, Zhou Y, Yang Q, Qi W, Wu W, Wang L, Gu J and Xie J: C-terminus of heat shock protein 60 can activate macrophages by lectin-like oxidized low-density lipoprotein receptor 1. Biochem Biophys Res Commun. 508:1113–1119. 2019. View Article : Google Scholar | |
|
Kaneda MM, Cappello P, Nguyen AV, Ralainirina N, Hardamon CR, Foubert P, Schmid MC, Sun P, Mose E, Bouvet M, et al: Macrophage PI3Kγ drives pancreatic ductal adenocarcinoma progression. Cancer Discov. 6:870–885. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kaneda MM, Messer KS, Ralainirina N, Li H, Leem CJ, Gorjestani S, Woo G, Nguyen AV, Figueiredo CC, Foubert P, et al: PI3Kγ is a molecular switch that controls immune suppression. Nature. 539:437–442. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Hong DS, Postow M, Chmielowski B, Sullivan R, Patnaik A, Cohen EEW, Shapiro G, Steuer C, Gutierrez M, Yeckes-Rodin H, et al: Eganelisib, a first-in-class PI3Kγ inhibitor, in patients with advanced solid tumors: results of the phase 1/1b MARIO-1 trial. Clin Cancer Res. 29:2210–2219. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Giurisato E, Xu Q, Lonardi S, Telfer B, Russo I, Pearson A, Finegan KG, Wang W, Wang J, Gray NS, et al: Myeloid ERK5 deficiency suppresses tumor growth by blocking protumor macrophage polarization via STAT3 inhibition. Proc Natl Acad Sci USA. 115:E2801–E2810. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Baer C, Squadrito ML, Laoui D, Thompson D, Hansen SK, Kiialainen A, Hoves S, Ries CH, Ooi CH and De Palma M: Suppression of microRNA activity amplifies IFN-γ-induced macrophage activation and promotes anti-tumour immunity. Nat Cell Biol. 18:790–802. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chao MP, Weissman IL and Majeti R: The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications. Curr Opin Immunol. 24:225–232. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zhao C, Liu Y, Wang C, Jiang H, Hu Y and Wu J: Recent advances of tumor therapy based on the CD47-SIRPα axis. Mol Pharm. 19:1273–1293. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Grottoli M, Carrega P, Zullo L, Dellepiane C, Rossi G, Parisi F, Barletta G, Zinoli L, Coco S, Alama A, et al: Immune checkpoint blockade: A strategy to unleash the potential of natural killer cells in the anti-cancer therapy. Cancers (Basel). 14:50462022. View Article : Google Scholar : PubMed/NCBI | |
|
Hayat SMG, Bianconi V, Pirro M, Jaafari MR, Hatamipour M and Sahebkar A: CD47: Role in the immune system and application to cancer therapy. Cell Oncol (Dordr). 43:19–30. 2020. View Article : Google Scholar | |
|
Eladl E, Tremblay-LeMay R, Rastgoo N, Musani R, Chen W, Liu A and Chang H: Role of CD47 in hematological malignancies. J Hematol Oncol. 13:962020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Chen W, Fan J, Wang S, Xian Z, Luan J, Li Y, Wang Y, Nan Y, Luo M, et al: Disrupting CD47-SIRPα axis alone or combined with autophagy depletion for the therapy of glioblastoma. Carcinogenesis. 39:689–699. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao Z, Chung H, Banan B, Manning PT, Ott KC, Lin S, Capoccia BJ, Subramanian V, Hiebsch RR, Upadhya GA, et al: Antibody mediated therapy targeting CD47 inhibits tumor progression of hepatocellular carcinoma. Cancer Lett. 360:302–309. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Sikic BI, Lakhani N, Patnaik A, Shah SA, Chandana SR, Rasco D, Colevas AD, O'Rourke T, Narayanan S, Papadopoulos K, et al: First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J Clin Oncol. 37:946–953. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Su S, Zhao J, Xing Y, Zhang X, Liu J, Ouyang Q, Chen J, Su F, Liu Q and Song E: Immune checkpoint inhibition overcomes ADCP-induced immunosuppression by macrophages. Cell. 175:442–457.e23. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Xavy S, Mihardja S, Chen S, Sompalli K, Feng D, Choi T, Agoram B, Majeti R, Weissman IL and Volkmer JP: Targeting macrophage checkpoint inhibitor SIRPα for anticancer therapy. JCI Insight. 5:e1347282020. View Article : Google Scholar | |
|
Lakhani NJ, Chow LQM, Gainor JF, LoRusso P, Lee KW, Chung HC, Lee J, Bang YJ, Hodi FS, Kim WS, et al: Evorpacept alone and in combination with pembrolizumab or trastuzumab in patients with advanced solid tumours (ASPEN-01): A first-in-human, open-label, multicentre, phase 1 dose-escalation and dose-expansion study. Lancet Oncol. 22:1740–1751. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Oronsky B, Carter C, Reid T, Brinkhaus F and Knox SJ: Just eat it: A review of CD47 and SIRP-α antagonism. Semin Oncol. 47:117–124. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Feng M, Jiang W, Kim BYS, Zhang CC, Fu YX and Weissman IL: Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer. 19:568–586. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Barkal AA, Weiskopf K, Kao KS, Gordon SR, Rosental B, Yiu YY, George BM, Markovic M, Ring NG, Tsai JM, et al: Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat Immunol. 19:76–84. 2018. View Article : Google Scholar : | |
|
Chen HM, van der Touw W, Wang YS, Kang K, Mai S, Zhang J, Alsina-Beauchamp D, Duty JA, Mungamuri SK, Zhang B, et al: Blocking immunoinhibitory receptor LILRB2 reprograms tumor associated myeloid cells and promotes antitumor immunity. J Clin Invest. 128:5647–5662. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Siu LL, Wang D, Hilton J, Geva R, Rasco D, Perets R, Abraham AK, Wilson DC, Markensohn JF, Lunceford J, et al: First-in-class anti-immunoglobulin-like transcript 4 myeloid-specific antibody MK-4830 abrogates a PD-1 resistance mechanism in patients with advanced solid tumors. Clin Cancer Res. 28:57–70. 2022. View Article : Google Scholar | |
|
Xia Y, Rao L, Yao H, Wang Z, Ning P and Chen X: Engineering macrophages for cancer immunotherapy and drug delivery. Adv Mater. 32:e20020542020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang N, Wang S, Wang X, Zheng Y, Yang B, Zhang J, Pan B, Gao J and Wang Z: Research trends in pharmacological modulation of tumor-associated macrophages. Clin Transl Med. 11:e2882021. View Article : Google Scholar : PubMed/NCBI | |
|
Rao L, Zhao SK, Wen C, Tian R, Lin L, Cai B, Sun Y, Kang F, Yang Z, He L, et al: Activating macrophage-mediated cancer immunotherapy by genetically edited nanoparticles. Adv Mater. 32:e20048532020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Cai K, Li C, Guo Q, Chen Q, He X, Liu L, Zhang Y, Lu Y, Chen X, et al: Macrophage-membrane-coated nanoparticles for tumor-targeted chemotherapy. Nano Lett. 18:1908–1915. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu S, Li S, Yi M, Li N and Wu K: Roles of microvesicles in tumor progression and clinical applications. Int J Nanomedicine. 16:7071–7090. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Moradi-Chaleshtori M, Bandehpour M, Heidari N, Mohammadi-Yeganeh S and Mahmoud Hashemi S: Exosome-mediated miR-33 transfer induces M1 polarization in mouse macrophages and exerts antitumor effect in 4T1 breast cancer cell line. Int Immunopharmacol. 90:1071982021. View Article : Google Scholar | |
|
Rayamajhi S, Nguyen TDT, Marasini R and Aryal S: Macrophage derived exosome-mimetic hybrid vesicles for tumor targeted drug delivery. Acta Biomater. 94:482–494. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Salvagno C, Ciampricotti M, Tuit S, Hau CS, van Weverwijk A, Coffelt SB, Kersten K, Vrijland K, Kos K, Ulas T, et al: Therapeutic targeting of macrophages enhances chemotherapy efficacy by unleashing type I interferon response. Nat Cell Biol. 21:511–521. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lapenna A, De Palma M and Lewis CE: Perivascular macrophages in health and disease. Nat Rev Immunol. 18:689–702. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
De Palma M and Lewis CE: Macrophages limit chemotherapy. Cancer Discov. 1:54–67. 2011. | |
|
Duhamel M, Rose M, Rodet F, Murgoci AN, Zografidou L, Régnier-Vigouroux A, Vanden Abeele F, Kobeissy F, Nataf S, Pays L, et al: Paclitaxel treatment and PC1/3 knockdown in macrophages is a promising anti-glioma strategy as revealed by proteomics and cytotoxicity studies. Mol Cell Proteomics. 17:1126–1143. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
P ra kash H, K lug F, Nadella V, Ma zumda r V, Schmitz-Winnenthal H and Umansky L: Low doses of gamma irradiation potentially modifies immunosuppressive tumor microenvironment by retuning tumor-associated macrophages: Lesson from insulinoma. Carcinogenesis. 37:301–313. 2016. View Article : Google Scholar | |
|
Choi SH, Kim AR, Nam JK, Kim JM, Kim JY, Seo HR, Lee HJ, Cho J and Lee YJ: Tumor-vasculature development via endothelial-to-mesenchymal transition after radiotherapy controls CD44v6+ cancer cell and macrophage polarization. Nat Commun. 9:51082018. View Article : Google Scholar | |
|
Genard G, Lucas S and Michiels C: Reprogramming of tumor-associated macrophages with anticancer therapies: Radiotherapy versus chemoand immunotherapies. Front Immunol. 8:8282017. View Article : Google Scholar | |
|
Brown JM, Thomas R, Nagpal S and Recht L: Macrophage exclusion after radiation therapy (MERT): A new and efective way to increase the therapeutic ratio of radiotherapy. Radiother Oncol. 144:159–164. 2019. View Article : Google Scholar | |
|
Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L, et al: Low dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 24:589–602. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Stary V, Wolf B, Unterleuthner D, List J, Talic M, Laengle J, Beer A, Strobl J, Stary G, Dolznig H and Bergmann M: Short-course radiotherapy promotes pro-inflammatory macrophages via extracellular vesicles in human rectal cancer. J Immunother Cancer. 8:e0006672020. View Article : Google Scholar : PubMed/NCBI | |
|
Golden EB, Frances D, Pellicciotta I, Demaria S, Helen Barcellos-Hoff M and Formenti SC: Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology. 3:e285182014. View Article : Google Scholar : PubMed/NCBI | |
|
Lv M, Zhuang X, Shao S, Li X, Cheng Y, Wu D, Wang X and Qiao T: Myeloid-derived suppressor cells and CD68+CD163+ M2-like macrophages as therapeutic response biomarkers are associated with plasma inflammatory cytokines: A preliminary study for non-small cell lung cancer patients in radiotherapy. J Immunol Res. 2022:36214962022. | |
|
Wei SC, Duffy CR and Allison JP: Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 8:1069–1086. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Beaver JA, Hazarika M, Mulkey F, Mushti S, Chen H, He K, Sridhara R, Goldberg KB, Chuk MK, Chi DC, et al: Patients with melanoma treated with an anti-PD-1 antibody beyond RECIST progression: A US Food and Drug Administration pooled analysis. Lancet Oncol. 19:229–239. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Xiang X, Wang J, Lu D and Xu X: Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduct Target Ther. 6:752021. View Article : Google Scholar : PubMed/NCBI | |
|
Wu X, Singh R, Hsu DK, Zhou Y, Yu S, Han D, Shi ZR, Huynh M, Campbell JJ and Hwang ST: A small molecule CCR2 antagonist depletes tumor macrophages and synergizes with anti-PD1 in a murine model of cutaneous T cell lymphoma (CTCL). J Invest Dermatol. 140:1390–1400.e4. 2020. View Article : Google Scholar | |
|
Teng KY, Han J, Zhang X, Hsu SH, He S, Wani NA, Barajas JM, Snyder LA, Frankel WL, Caligiuri MA, et al: Blocking the CCL2-CCR2 axis using CCL2-neutralizing antibody is an effective therapy for hepatocellular cancer in a mouse model. Mol Cancer Ther. 16:312–322. 2017. View Article : Google Scholar | |
|
Yao W, Ba Q, Li X, Li H, Zhang S, Yuan Y, Wang F, Duan X, Li J, Zhang W and Wang H: A natural CCR2 antagonist relieves tumor-associated macrophage-mediated immunosuppression to produce a therapeutic effect for liver cancer. EBioMedicine. 22:58–67. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Y, Yang J, Xu D, Gao XM, Zhang Z, Hsu JL, Li CW, Lim SO, Sheng YY, Zhang Y, et al: Disruption of tumor-associated macrophage trafficking by the osteopontin-induced colony-stimulating factor-1 signaling sensitises hepatocellular carcinoma to anti-PD-L1 blockade. Gut. 68:1653–1666. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Ding Y, Liu J, Wang J, Mo F, Wang Y, Chen-Mayfield TJ, Sondel PM, Hong S and Hu Q: Depletion of tumor associated macrophages enhances local and systemic platelet-mediated anti-PD-1 delivery for post-surgery tumor recurrence treatment. Nat Commun. 13:18452022. View Article : Google Scholar : PubMed/NCBI | |
|
Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K, Arce F, Roddie C, Henry JY, Yagita H, Wolchok JD, et al: Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med. 210:1695–1710. 2013. View Article : Google Scholar : PubMed/NCBI |