|
1
|
Wood SL, Pernemalm M, Crosbie PA and
Whetton AD: The role of the tumor-microenvironment in lung
cancer-metastasis and its relationship to potential therapeutic
targets. Cancer Treat Rev. 40:558–566. 2014. View Article : Google Scholar
|
|
2
|
Dawe DE, Greenspoon JN and Ellis PM: Brain
metastases in non-small-cell lung cancer. Clin Lung Cancer.
15:249–257. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Fenske DC, Price GL, Hess LM, John WJ and
Kim ES: Systematic review of brain metastases in patients with
non-small-cell lung cancer in the United States, European Union,
and Japan. Clin Lung Cancer. 18:607–614. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Myall NJ, Yu H, Soltys SG, Wakelee HA and
Pollom E: Management of brain metastases in lung cancer: Evolving
roles for radiation and systemic treatment in the era of targeted
and immune therapies. Neurooncol Adv. 3(Suppl 5): v52–v62.
2021.PubMed/NCBI
|
|
5
|
Dempke WCM, Edvardsen K, Lu S, Reinmuth N,
Reck M and Inoue A: Brain metastases in NSCLC-are TKIs changing the
treatment strategy? Anticancer Res. 35:57972015.PubMed/NCBI
|
|
6
|
Ernani V and Stinchcombe TE: Management of
brain metastases in non-small-cell lung cancer. J Oncol Pract.
15:563–570. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Jiang Y, Xie WJ, Chen RW, You WW, Ye WL,
Chen H, Chen WX and Xu JP: The Hippo signaling core components YAP
and TAZ as new prognostic factors in lung cancer. Front Surg.
9:8131232022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Dubois F, Keller M, Calvayrac O, Soncin F,
Hoa L, Hergovich A, Parrini MC, Mazières J, Vaisse-Lesteven M,
Camonis J, et al: RASSF1A suppresses the invasion and metastatic
potential of human non-small cell lung cancer cells by inhibiting
YAP activation through the GEF-H1/RhoB pathway. Cancer Res.
76:1627–1640. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Keller M, Dubois F, Teulier S, Martin APJ,
Levallet J, Maille E, Brosseau S, Elie N, Hergovich A, Bergot E, et
al: NDR2 kinase contributes to cell invasion and cytokinesis
defects induced by the inactivation of RASSF1A tumor-suppressor
gene in lung cancer cells. J Exp Clin Cancer Res. 38:1582019.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Hsu PC, Jablons DM, Yang CT and You L:
Epidermal growth factor receptor (EGFR) pathway, yes-associated
protein (YAP) and the regulation of programmed death-ligand 1
(PD-L1) in non-small cell lung cancer (NSCLC). Int J Mol Sci.
20:38212019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Dubois F, Bergot E and Levallet G: Cancer
and RASSF1A/RASSF1C, the two faces of Janus. Trends Cancer.
5:662–665. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zeng Y, Liu Q, Wang Y, Tian C, Yang Q,
Zhao Y, Liu L, Wu G and Xu S: CDK5 activates hippo signaling to
confer resistance to radiation therapy via upregulating TAZ in lung
cancer. Int J Radiat Oncol Biol Phys. 108:758–769. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Levallet J, Biojout T, Bazille C, Douyère
M, Dubois F, Ferreira DL, Taylor J, Teulier S, Toutain J, Elie N,
et al: Hypoxia-induced activation of NDR2 underlies brain
metastases from non-small cell lung cancer. Cell Death Dis.
14:8232023. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
de Fraipont F, Levallet G, Creveuil C,
Bergot E, Beau-Faller M, Mounawar M, Richard N, Antoine M,
Rouquette I, Favrot MC, et al: An apoptosis methylation prognostic
signature for early lung cancer in the IFCT-0002 trial. Clin Cancer
Res. 18:2976–2986. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Minniti G, Goldsmith C and Brada M:
Chapter 16-radiotherapy. Handb Clin Neurol. 104:215–228. 2012.
View Article : Google Scholar
|
|
16
|
Hall EJ and Giaccia AJ: Radiobiology for
the radiologist. 8th. Philadelphia Baltimore New York London Buenos
Aires: LWW; pp. 6242018
|
|
17
|
Loh ZH, Doumy G, Arnold C, Kjellsson L,
Southworth SH, Al Haddad A, Kumagai Y, Tu MF, Ho PJ, March AM, et
al: Observation of the fastest chemical processes in the radiolysis
of water. Science. 367:179–182. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Huang T, Song X, Xu D, Tiek D, Goenka A,
Wu B, Sastry N, Hu B and Cheng SY: Stem cell programs in cancer
initiation, progression, and therapy resistance. Theranostics.
10:8721–8743. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Chen Z, Han F, Du Y, Shi H and Zhou W:
Hypoxic microenvironment in cancer: Molecular mechanisms and
therapeutic interventions. Signal Transduct Target Ther. 8:702023.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Tang L, Wei F, Wu Y, He Y, Shi L, Xiong F,
Gong Z, Guo C, Li X, Deng H, et al: Role of metabolism in cancer
cell radioresistance and radiosensitization methods. J Exp Clin
Cancer Res. 37:872018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Kelley K, Knisely J, Symons M and Ruggieri
R: Radioresistance of brain tumors. Cancers (Basel). 8:422016.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yang Y, Gao Y, Mutter-Rottmayer L,
Zlatanou A, Durando M, Ding W, Wyatt D, Ramsden D, Tanoue Y,
Tateishi S and Vaziri C: DNA repair factor RAD18 and DNA polymerase
Polκ confer tolerance of oncogenic DNA replication stress. J Cell
Biol. 216:3097–3115. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wang M, Kern AM, Hülskötter M, Greninger
P, Singh A, Pan Y, Chowdhury D, Krause M, Baumann M, Benes CH, et
al: EGFR-mediated chromatin condensation protects KRAS-mutant
cancer cells against ionizing radiation. Cancer Res. 74:2825–2834.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Carlos-Reyes A, Muñiz-Lino MA,
Romero-Garcia S, López-Camarillo C and Hernández-de la Cruz ON:
Biological adaptations of tumor cells to radiation therapy. Front
Oncol. 11:7186362021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Shi LZ and Bonner JA: Bridging
radiotherapy to immunotherapy: The IFN-JAK-STAT axis. Int J Mol
Sci. 22:122952021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Marampon F, Ciccarelli C and Zani BM:
Biological rationale for targeting MEK/ERK pathways in anti-cancer
therapy and to potentiate tumour responses to radiation. Int J Mol
Sci. 20:25302019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Chang L, Graham PH, Hao J, Ni J, Bucci J,
Cozzi PJ, Kearsley JH and Li Y: PI3K/Akt/mTOR pathway inhibitors
enhance radiosensitivity in radioresistant prostate cancer cells
through inducing apoptosis, reducing autophagy, suppressing NHEJ
and HR repair pathways. Cell Death Dis. 5:e14372014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Chen K, Shang Z, Dai AL and Dai PL: Novel
PI3K/Akt/mTOR pathway inhibitors plus radiotherapy: Strategy for
non-small cell lung cancer with mutant RAS gene. Life Sci.
255:1178162020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Yang Y, Zhou H, Zhang G and Xue X:
Targeting the canonical Wnt/β-catenin pathway in cancer
radioresistance: Updates on the molecular mechanisms. J Cancer Res
Ther. 15:272–277. 2019. View Article : Google Scholar
|
|
30
|
Xie SY, Li G, Han C, Yu YY and Li N: RKIP
reduction enhances radioresistance by activating the Shh signaling
pathway in non-small-cell lung cancer. OncoTargets Ther.
10:5605–5619. 2017. View Article : Google Scholar
|
|
31
|
Calses PC, Crawford JJ, Lill JR and Dey A:
Hippo pathway in cancer: Aberrant regulation and therapeutic
opportunities. Trends Cancer. 5:297–307. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Thompson BJ: YAP/TAZ: Drivers of tumor
growth, metastasis, and resistance to therapy. Bioessays.
42:e19001622020. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Salem A, Asselin MC, Reymen B, Jackson A,
Lambin P, West CML, O'Connor JPB and Faivre-Finn C: Targeting
hypoxia to improve non-small cell lung cancer outcome. J Natl
Cancer Inst. 110:14–30. 2018. View Article : Google Scholar
|
|
34
|
Nguyen DX, Chiang AC, Zhang XHF, Kim JY,
Kris MG, Ladanyi M, Gerald WL and Massagué J: WNT/TCF signaling
through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis.
Cell. 138:51–62. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Hsu PC, You B, Yang YL, Zhang WQ, Wang YC,
Xu Z, Dai Y, Liu S, Yang CT, Li H, et al: YAP promotes erlotinib
resistance in human non-small cell lung cancer cells. Oncotarget.
7:51922–51933. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Miao J, Hsu PC, Yang YL, Xu Z, Dai Y, Wang
Y, Chan G, Huang Z, Hu B, Li H, et al: YAP regulates PD-L1
expression in human NSCLC cells. Oncotarget. 8:114576–114587. 2017.
View Article : Google Scholar
|
|
37
|
Xiao Y and Dong J: The Hippo signaling
pathway in cancer: A cell cycle perspective. Cancers (Basel).
13:62142021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhou W, Zhang L, Chen P, Li S and Cheng Y:
Thymine DNA glycosylase-regulated TAZ promotes radioresistance by
targeting nonhomologous end joining and tumor progression in
esophageal cancer. Cancer Sci. 111:3613–3625. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Xin H, Liu Y, Chen P, Yin T, Wang M, Liu
T, Wen Z and Cheng Y: CD155 promotes radioresistance and malignancy
of esophageal cancer by regulating Hippo-YAP pathway. Discov Oncol.
13:532022. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Moon JY, Ediriweera MK, Ryu JY, Kim HY and
Cho SK: Catechol enhances chemo- and radio-sensitivity by targeting
AMPK/Hippo signaling in pancreatic cancer cells. Oncol Rep.
45:1133–1141. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Andrade D, Mehta M, Griffith J,
Panneerselvam J, Srivastava A, Kim TD, Janknecht R, Herman T,
Ramesh R and Munshi A: YAP1 inhibition radiosensitizes triple
negative breast cancer cells by targeting the DNA damage response
and cell survival pathways. Oncotarget. 8:98495–98508. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Liang Y, Zhou X, Xie Q, Sun H, Huang K,
Chen H, Wang W, Zhou B, Wei X, Zeng D and Lin H: CD146 interaction
with integrin β1 activates LATS1-YAP signaling and induces
radiation-resistance in breast cancer cells. Cancer Lett.
546:2158562022. View Article : Google Scholar
|
|
43
|
Yang K, Zhao Y, Du Y and Tang R:
Evaluation of Hippo pathway and CD133 in radiation resistance in
small-cell lung cancer. J Oncol. 2021:88425542021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Li J, Zhang X, Hou Z, Cai S, Guo Y, Sun L,
Li A, Li Q, Wang E and Miao Y: P130cas-FAK interaction is essential
for YAP-mediated radioresistance of non-small cell lung cancer.
Cell Death Dis. 13:7832022. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Bora-Singhal N, Nguyen J, Schaal C,
Perumal D, Singh S, Coppola D and Chellappan S: YAP1 regulates Oct4
activity and Sox2 expression to facilitate self-renewal and
vascular mimicry of stem-like cells. Stem Cells. 33:1705–1718.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wang L, Zhang Z, Yu X, Huang X, Liu Z,
Chai Y, Yang L, Wang Q, Li M, Zhao J, et al: Unbalanced YAP-SOX9
circuit drives stemness and malignant progression in esophageal
squamous cell carcinoma. Oncogene. 38:2042–2055. 2019. View Article : Google Scholar
|
|
47
|
Tang Y and Weiss SJ: Snail/Slug-YAP/TAZ
complexes cooperatively regulate mesenchymal stem cell function and
bone formation. Cell Cycle. 16:399–405. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Noce V, Battistelli C, Cozzolino AM,
Consalvi V, Cicchini C, Strippoli R, Tripodi M, Marchetti A and
Amicone L: YAP integrates the regulatory Snail/HNF4α circuitry
controlling epithelial/hepatocyte differentiation. Cell Death Dis.
10:7682019. View Article : Google Scholar
|
|
49
|
Pattschull G, Walz S, Gründl M, Schwab M,
Rühl E, Baluapuri A, Cindric-Vranesic A, Kneitz S, Wolf E, Ade CP,
et al: The Myb-MuvB complex is required for YAP-dependent
transcription of mitotic genes. Cell Rep. 27:3533–3546.e7. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Jang W, Kim T, Koo JS, Kim S and Lim D:
Mechanical cue-induced YAP instructs Skp2-dependent cell cycle exit
and oncogenic signaling. EMBO J. 36:2510–2528. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kim W, Cho YS, Wang X, Park O, Ma X, Kim
H, Gan W, Jho EH, Cha B, Jeung YJ, et al: Hippo signaling is
intrinsically regulated during cell cycle progression by
APC/CCdh1. Proc Natl Acad Sci USA. 116:9423–9432. 2019.
View Article : Google Scholar
|
|
52
|
Oku Y, Nishiya N, Tazawa T, Kobayashi T,
Umezawa N, Sugawara Y and Uehara Y: Augmentation of the therapeutic
efficacy of WEE1 kinase inhibitor AZD1775 by inhibiting the
YAP-E2F1-DNA damage response pathway axis. FEBS Open Bio.
8:1001–1012. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Hergovich A: The roles of NDR protein
kinases in Hippo signalling. Genes (Basel). 7:212016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhu H, Wang DD, Yuan T, Yan FJ, Zeng CM,
Dai XY, Chen ZB, Chen Y, Zhou T, Fan GH, et al: Multikinase
inhibitor CT-707 targets liver cancer by interrupting the
hypoxia-activated IGF-1R-YAP axis. Cancer Res. 78:3995–4006. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Cho Y, Park MJ, Kim K, Kim SW, Kim W, Oh S
and Lee JH: Reactive oxygen species-induced activation of
yes-associated protein-1 through the c-Myc pathway is a therapeutic
target in hepatocellular carcinoma. World J Gastroenterol.
26:6599–6613. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Shao D, Zhai P, Del Re DP, Sciarretta S,
Yabuta N, Nojima H, Lim DS, Pan D and Sadoshima J: A functional
interaction between Hippo-YAP signalling and FoxO1 mediates the
oxidative stress response. Nat Commun. 5:33152014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Xiao W, Wang J, Ou C, Zhang Y, Ma L, Weng
W, Pan Q and Sun F: Mutual interaction between YAP and c-Myc is
critical for carcinogenesis in liver cancer. Biochem Biophys Res
Commun. 439:167–172. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Yu FX, Zhao B and Guan KL: Hippo pathway
in organ size control, tissue homeostasis, and cancer. Cell.
163:811–828. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Xiang L, Gilkes DM, Hu H, Takano N, Luo W,
Lu H, Bullen JW, Samanta D, Liang H and Semenza GL:
Hypoxia-inducible factor 1 mediates TAZ expression and nuclear
localization to induce the breast cancer stem cell phenotype.
Oncotarget. 5:12509–12527. 2014. View Article : Google Scholar
|
|
60
|
Azad T, Janse van Rensburg HJ, Lightbody
ED, Neveu B, Champagne A, Ghaffari A, Kay VR, Hao Y, Shen H, Yeung
B, et al: A LATS biosensor screen identifies VEGFR as a regulator
of the Hippo pathway in angiogenesis. Nat Commun. 9:10612018.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Lopez-Hernandez A, Sberna S and Campaner
S: Emerging principles in the transcriptional control by YAP and
TAZ. Cancers (Basel). 13:42422021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wang W, Xiao ZD, Li X, Aziz KE, Gan B,
Johnson RL and Chen J: AMPK modulates Hippo pathway activity to
regulate energy homeostasis. Nat Cell Biol. 17:490–499. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Basu-Roy U, Bayin NS, Rattanakorn K, Han
E, Placantonakis DG, Mansukhani A and Basilico C: Sox2 antagonizes
the Hippo pathway to maintain stemness in cancer cells. Nat Commun.
6:64112015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Frum T, Watts JL and Ralston A: TEAD4,
YAP1 and WWTR1 prevent the premature onset of pluripotency prior to
the 16-cell stage. Development. 146:dev1798612019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhang J, Ji JY, Yu M, Overholtzer M,
Smolen GA, Wang R, Brugge JS, Dyson NJ and Haber DA: YAP-dependent
induction of amphiregulin identifies a non-cell-autonomous
component of the Hippo pathway. Nat Cell Biol. 11:1444–1450. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Koo JH, Plouffe SW, Meng Z, Lee DH, Yang
D, Lim DS, Wang CY and Guan KL: Induction of AP-1 by YAP/TAZ
contributes to cell proliferation and organ growth. Genes Dev.
34:72–86. 2020. View Article : Google Scholar :
|
|
67
|
Li H, Li Q, Dang K, Ma S, Cotton JL, Yang
S, Zhu LJ, Deng AC, Ip YT, Johnson RL, et al: YAP/TAZ activation
drives uveal melanoma initiation and progression. Cell Rep.
29:3200–3211.e4. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Fang C, Li J, Qi S, Lei Y, Zeng Y, Yu P,
Hu Z, Zhou Y, Wang Y, Dai R, et al: An alternatively transcribed
TAZ variant negatively regulates JAK-STAT signaling. EMBO Rep.
20:e472272019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Gruber R, Panayiotou R, Nye E,
Spencer-Dene B, Stamp G and Behrens A: YAP1 and TAZ control
pancreatic cancer initiation in mice by direct up-regulation of
JAK-STAT3 signaling. Gastroenterology. 151:526–539. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Prabhu KS, Bhat AA, Siveen KS,
Kuttikrishnan S, Raza SS, Raheed T, Jochebeth A, Khan AQ, Chawdhery
MZ, Haris M, et al: Sanguinarine mediated apoptosis in non-small
cell lung cancer via generation of reactive oxygen species and
suppression of JAK/STAT pathway. Biomed Pharmacother.
144:1123582021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Meng J, Li Y, Wan C, Sun Y, Dai X, Huang
J, Hu Y, Gao Y, Wu B, Zhang Z, et al: Targeting senescence-like
fibroblasts radiosensitizes non-small cell lung cancer and reduces
radiation-induced pulmonary fibrosis. JCI Insight. 6:e1463342021.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Li L, Wang J, Zhang Y, Zhang Y, Ma L, Weng
W, Qiao Y, Xiao W, Wang H, Yu W, et al: MEK1 promotes YAP and their
interaction is critical for tumorigenesis in liver cancer. FEBS
Lett. 587:3921–3927. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Santoro R, Zanotto M, Carbone C, Piro G,
Tortora G and Melisi D: MEKK3 sustains EMT and stemness in
pancreatic cancer by regulating YAP and TAZ transcriptional
activity. Anticancer Res. 38:1937–1946. 2018.PubMed/NCBI
|
|
74
|
You B, Yang YL, Xu Z, Dai Y, Liu S, Mao
JH, Tetsu O, Li H, Jablons DM and You L: Inhibition of ERK1/2
down-regulates the Hippo/YAP signaling pathway in human NSCLC
cells. Oncotarget. 6:4357–4368. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kim NG and Gumbiner BM: Adhesion to
fibronectin regulates Hippo signaling via the FAK-Src-PI3K pathway.
J Cell Biol. 210:503–515. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhao Y, Montminy T, Azad T, Lightbody E,
Hao Y, SenGupta S, Asselin E, Nicol C and Yang X: PI3K positively
regulates YAP and TAZ in mammary tumorigenesis through multiple
signaling pathways. Mol Cancer Res. 16:1046–1058. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Gokey JJ, Sridharan A, Xu Y, Green J,
Carraro G, Stripp BR, Perl AT and Whitsett JA: Active epithelial
Hippo signaling in idiopathic pulmonary fibrosis. JCI Insight.
3:e987382018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Fernandez-L A, Squatrito M, Northcott P,
Awan A, Holland EC, Taylor MD, Nahlé Z and Kenney AM: Oncogenic YAP
promotes radioresistance and genomic instability in medulloblastoma
through IGF2-mediated Akt activation. Oncogene. 31:1923–1937. 2012.
View Article : Google Scholar
|
|
79
|
Artinian N, Cloninger C, Holmes B,
Benavides-Serrato A, Bashir T and Gera J: Phosphorylation of the
Hippo pathway component AMOTL2 by the mTORC2 kinase promotes YAP
signaling, resulting in enhanced glioblastoma growth and
invasiveness. J Biol Chem. 290:19387–19401. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Takeda T, Yamamoto Y, Tsubaki M, Matsuda
T, Kimura A, Shimo N and Nishida S: PI3K/Akt/YAP signaling promotes
migration and invasion of DLD-1 colorectal cancer cells. Oncol
Lett. 23:1062022. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Park HW, Kim YC, Yu B, Moroishi T, Mo JS,
Plouffe SW, Meng Z, Lin KC, Yu FX, Alexander CM, et al: Alternative
Wnt signaling activates YAP/TAZ. Cell. 162:780–794. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wang J, Park JS, Wei Y, Rajurkar M, Cotton
JL, Fan Q, Lewis BC, Ji H and Mao J: TRIB2 acts downstream of
Wnt/TCF in liver cancer cells to regulate YAP and C/EBPα function.
Mol Cell. 51:211–225. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Simula L, Alifano M and Icard P: How
phosphofructokinase-1 promotes PI3K and YAP/TAZ in cancer:
Therapeutic perspectives. Cancers (Basel). 14:24782022. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Konsavage WM Jr, Kyler SL, Rennoll SA, Jin
G and Yochum GS: Wnt/β-catenin signaling regulates Yes-associated
protein (YAP) gene expression in colorectal carcinoma cells. J Biol
Chem. 287:11730–11739. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Azzolin L, Zanconato F, Bresolin S,
Forcato M, Basso G, Bicciato S, Cordenonsi M and Piccolo S: Role of
TAZ as Mediator of Wnt signaling. Cell. 151:1443–1456. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Deng F, Peng L, Li Z, Tan G, Liang E, Chen
S, Zhao X and Zhi F: YAP triggers the Wnt/β-catenin signalling
pathway and promotes enterocyte self-renewal, regeneration and
tumorigenesis after DSS-induced injury. Cell Death Dis. 9:1532018.
View Article : Google Scholar
|
|
87
|
Jiang L, Li J, Zhang C, Shang Y and Lin J:
YAP-mediated crosstalk between the Wnt and Hippo signaling pathways
(review). Mol Med Rep. 22:4101–4106. 2020.PubMed/NCBI
|
|
88
|
Chen Y, Jin Y, Ying H, Zhang P, Chen M and
Hu X: Synergistic effect of PAF inhibition and X-ray irradiation in
non-small cell lung cancer cells. Strahlenther Onkol. 197:343–352.
2021. View Article : Google Scholar
|
|
89
|
Cotton JL, Li Q, Ma L, Park JS, Wang J, Ou
J, Zhu LJ, Ip YT, Johnson RL and Mao J: YAP/TAZ and hedgehog
coordinate growth and patterning in gastrointestinal mesenchyme.
Dev Cell. 43:35–47.e4. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Isago H, Mitani A, Mikami Y, Horie M,
Urushiyama H, Hamamoto R, Terasaki Y and Nagase T: Epithelial
expression of YAP and TAZ is sequentially required in lung
development. Am J Respir Cell Mol Biol. 62:256–266. 2020.
View Article : Google Scholar
|
|
91
|
Fernandez-L A, Northcott PA, Dalton J,
Fraga C, Ellison D, Angers S, Taylor MD and Kenney AM: YAP1 is
amplified and up-regulated in hedgehog-associated medulloblastomas
and mediates Sonic hedgehog-driven neural precursor proliferation.
Genes Dev. 23:2729–2741. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Tang C, Wang J, Yao M, Ji X, Shi W, Xu C,
Zeng LH and Wu X: Hippo signaling activates hedgehog signaling by
Taz-driven Gli3 processing. Cell Regen. 12:32023. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Tariki M, Dhanyamraju PK, Fendrich V,
Borggrefe T, Feldmann G and Lauth M: The yes-associated protein
controls the cell density regulation of Hedgehog signaling.
Oncogenesis. 3:e1122014. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Lin YT, Ding JY, Li MY, Yeh TS, Wang TW
and Yu JY: YAP regulates neuronal differentiation through Sonic
hedgehog signaling pathway. Exp Cell Res. 318:1877–1888. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Swiderska-Syn M, Xie G, Michelotti GA,
Jewell ML, Premont RT, Syn WK and Diehl AM: Hedgehog regulates
yes-associated protein 1 in regenerating mouse liver. Hepatology.
64:232–244. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Kim Y and Jho EH: Regulation of the Hippo
signaling pathway by ubiquitin modification. BMB Rep. 51:143–150.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Meng Z, Moroishi T and Guan KL: Mechanisms
of Hippo pathway regulation. Genes Dev. 30:1–17. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Tang Y, Geng Y, Luo J, Shen W, Zhu W, Meng
C, Li M, Zhou X, Zhang S and Cao J: Downregulation of ubiquitin
inhibits the proliferation and radioresistance of non-small cell
lung cancer cells in vitro and in vivo. Sci Rep. 5:94762015.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Deng L, Meng T, Chen L, Wei W and Wang P:
The role of ubiquitination in tumorigenesis and targeted drug
discovery. Signal Transduct Target Ther. 5:112020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Hintelmann K, Kriegs M, Rothkamm K and
Rieckmann T: Improving the efficacy of tumor radiosensitization
through combined molecular targeting. Front Oncol. 10:12602020.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zhao Y, Wang L, Huang Q, Jiang Y, Wang J,
Zhang L, Tian Y and Yang H: Radiosensitization of non-small cell
lung cancer cells by inhibition of TGF-β1 signaling with SB431542
is dependent on p53 status. Oncol Res. 24:1–7. 2016. View Article : Google Scholar
|
|
102
|
Van den Bossche J, Domen A, Peeters M,
Deben C, De Pauw I, Jacobs J, De Bruycker S, Specenier P, Pauwels
P, Vermorken JB, et al: Radiosensitization of non-small cell lung
cancer cells by the Plk1 inhibitor volasertib is dependent on the
p53 status. Cancers (Basel). 11:18932019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Gill SJ, Wijnhoven PWG, Fok JHL, Lloyd RL,
Cairns J, Armenia J, Nikkilä J, Lau A, Bakkenist CJ, Galbraith SM,
et al: Radiopotentiation profiling of multiple inhibitors of the
DNA damage response for early clinical development. Mol Cancer
Ther. 20:1614–1626. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Dukaew N, Konishi T, Chairatvit K,
Autsavapromporn N, Soonthornchareonnon N and Wongnoppavich A:
Enhancement of radiosensitivity by eurycomalactone in human NSCLC
cells through G2/M Cell cycle arrest and delayed DNA
double-strand break repair. Oncol Res. 28:161–175. 2020. View Article : Google Scholar
|
|
105
|
Ryu H, Kim HJ, Song JY, Hwang SG, Kim JS,
Kim J, Bui THN, Choi HK and Ahn J: A small compound KJ-28d enhances
the sensitivity of non-small cell lung cancer to radio- and
chemotherapy. Int J Mol Sci. 20:60262019. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Majd NK, Yap TA, Koul D, Balasubramaniyan
V, Li X, Khan S, Gandy KS, Yung WKA and de Groot JF: The promise of
DNA damage response inhibitors for the treatment of glioblastoma.
Neurooncol Adv. 3:vdab0152021.PubMed/NCBI
|
|
107
|
La Verde G, Artiola V, Pugliese M, La
Commara M, Arrichiello C, Muto P, Netti PA, Fusco S and Panzetta V:
Radiation therapy affects YAP expression and intracellular
localization by modulating lamin A/C levels in breast cancer. Front
Bioeng Biotechnol. 10:9690042022. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Zhang Y, Wang Y, Zhou D, Wang K, Wang X,
Wang X, Jiang Y, Zhao M, Yu R and Zhou X: Radiation-induced YAP
activation confers glioma radioresistance via promoting FGF2
transcription and DNA damage repair. Oncogene. 40:4580–4591. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Barrette AM, Ronk H, Joshi T, Mussa Z,
Mehrotra M, Bouras A, Nudelman G, Jesu Raj JG, Bozec D, Lam W, et
al: Anti-invasive efficacy and survival benefit of the YAP-TEAD
inhibitor verteporfin in preclinical glioblastoma models. Neuro
Oncol. 24:694–707. 2022. View Article : Google Scholar :
|
|
110
|
Amidon BS, Sanchez-Martin M, Bartolini W,
Syed S, McGovern K, Xu L, Ecsedy J, Zhang XM, Constan A and Castro
AC: Abstract 2156: IK-930 is a novel TEAD inhibitor for the
treatment of cancers harboring mutations in the Hippo signal
transduction pathway. Cancer Res. 82(12 Suppl): S21562022.
View Article : Google Scholar
|
|
111
|
Tang TT, Konradi AW, Feng Y, Peng X, Ma M,
Li J, Yu FX, Guan KL and Post L: Small molecule inhibitors of TEAD
auto-palmitoylation selectively inhibit proliferation and tumor
growth of NF2-deficient mesothelioma. Mol Cancer Ther. 20:986–998.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Sun Y, Hu L, Tao Z, Jarugumilli GK, Erb H,
Singh A, Li Q, Cotton JL, Greninger P, Egan RK, et al:
Pharmacological blockade of TEAD-YAP reveals its therapeutic
limitation in cancer cells. Nat Commun. 13:67442022. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Levallet G, Creveuil C, Bekaert L, Péres
E, Planchard G, Lecot-Cotigny S, Guillamo JS, Emery E, Zalcman G
and Lechapt-Zalcman E: Promoter hypermethylation of genes encoding
for RASSF/Hippo pathway members reveals specific alteration pattern
in diffuse gliomas. J Mol Diagn. 21:695–704. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Wei C, Wang Y and Li X: The role of Hippo
signal pathway in breast cancer metastasis. Onco Targets Ther.
11:2185–2193. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Maille E, Brosseau S, Hanoux V, Creveuil
C, Danel C, Bergot E, Scherpereel A, Mazières J, Margery J,
Greillier L, et al: MST1/Hippo promoter gene methylation predicts
poor survival in patients with malignant pleural mesothelioma in
the IFCT-GFPC-0701 MAPS phase 3 trial. Br J Cancer. 120:387–397.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Spugnardi M, Tommasi S, Dammann R, Pfeifer
GP and Hoon DSB: Epigenetic inactivation of RAS association domain
family protein 1 (RASSF1A) in malignant cutaneous melanoma. Cancer
Res. 63:1639–1643. 2003.PubMed/NCBI
|
|
118
|
Riffet M, Eid Y, Faisant M, Fohlen A,
Menahem B, Alves A, Dubois F, Levallet G and Bazille C: Deciphering
promoter hypermethylation of genes encoding for RASSF/Hippo pathway
reveals the poor prognostic factor of RASSF2 gene silencing in
colon cancers. Cancers (Basel). 13:59572021. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Thurneysen C, Opitz I, Kurtz S, Weder W,
Stahel RA and Felley-Bosco E: Functional inactivation of NF2/merlin
in human mesothelioma. Lung Cancer. 64:140–147. 2009. View Article : Google Scholar
|
|
120
|
Noorbakhsh N, Hayatmoghadam B, Jamali M,
Golmohammadi M and Kavianpour M: The Hippo signaling pathway in
leukemia: function, interaction, and carcinogenesis. Cancer cell
international. 21:7052021. View Article : Google Scholar : PubMed/NCBI
|