Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
July-2024 Volume 65 Issue 1

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2024 Volume 65 Issue 1

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Targeting the Hippo pathway to prevent radioresistance brain metastases from the lung (Review)

  • Authors:
    • Jasmine Taylor
    • Fatéméh Dubois
    • Emmanuel Bergot
    • Guénaëlle Levallet
  • View Affiliations / Copyright

    Affiliations: University of Caen Normandy, National Center for Scientific Research, Normandy University, Unit of Imaging and Therapeutic Strategies for Cancers and Cerebral Tissues (ISTCT)‑UMR6030, GIP CYCERON, F‑14074 Caen, France
    Copyright: © Taylor et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 68
    |
    Published online on: May 17, 2024
       https://doi.org/10.3892/ijo.2024.5656
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The prognosis for patients with non‑small cell lung cancer (NSCLC), a cancer type which represents 85% of all lung cancers, is poor with a 5‑year survival rate of 19%, mainly because NSCLC is diagnosed at an advanced and metastatic stage. Despite recent therapeutic advancements, ~50% of patients with NSCLC will develop brain metastases (BMs). Either surgical BM treatment alone for symptomatic patients and patients with single cerebral metastases, or in combination with stereotactic radiotherapy (RT) for patients who are not suitable for surgery or presenting with fewer than four cerebral lesions with a diameter range of 5‑30 mm, or whole‑brain RT for numerous or large BMs can be administered. However, radioresistance (RR) invariably prevents the action of RT. Several mechanisms of RR have been described including hypoxia, cellular stress, presence of cancer stem cells, dysregulation of apoptosis and/or autophagy, dysregulation of the cell cycle, changes in cellular metabolism, epithelial‑to‑mesenchymal transition, overexpression of programmed cell death‑ligand 1 and activation several signaling pathways; however, the role of the Hippo signaling pathway in RR is unclear. Dysregulation of the Hippo pathway in NSCLC confers metastatic properties, and inhibitors targeting this pathway are currently in development. It is therefore essential to evaluate the effect of inhibiting the Hippo pathway, particularly the effector yes‑associated protein‑1, on cerebral metastases originating from lung cancer.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Wood SL, Pernemalm M, Crosbie PA and Whetton AD: The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets. Cancer Treat Rev. 40:558–566. 2014. View Article : Google Scholar

2 

Dawe DE, Greenspoon JN and Ellis PM: Brain metastases in non-small-cell lung cancer. Clin Lung Cancer. 15:249–257. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Fenske DC, Price GL, Hess LM, John WJ and Kim ES: Systematic review of brain metastases in patients with non-small-cell lung cancer in the United States, European Union, and Japan. Clin Lung Cancer. 18:607–614. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Myall NJ, Yu H, Soltys SG, Wakelee HA and Pollom E: Management of brain metastases in lung cancer: Evolving roles for radiation and systemic treatment in the era of targeted and immune therapies. Neurooncol Adv. 3(Suppl 5): v52–v62. 2021.PubMed/NCBI

5 

Dempke WCM, Edvardsen K, Lu S, Reinmuth N, Reck M and Inoue A: Brain metastases in NSCLC-are TKIs changing the treatment strategy? Anticancer Res. 35:57972015.PubMed/NCBI

6 

Ernani V and Stinchcombe TE: Management of brain metastases in non-small-cell lung cancer. J Oncol Pract. 15:563–570. 2019. View Article : Google Scholar : PubMed/NCBI

7 

Jiang Y, Xie WJ, Chen RW, You WW, Ye WL, Chen H, Chen WX and Xu JP: The Hippo signaling core components YAP and TAZ as new prognostic factors in lung cancer. Front Surg. 9:8131232022. View Article : Google Scholar : PubMed/NCBI

8 

Dubois F, Keller M, Calvayrac O, Soncin F, Hoa L, Hergovich A, Parrini MC, Mazières J, Vaisse-Lesteven M, Camonis J, et al: RASSF1A suppresses the invasion and metastatic potential of human non-small cell lung cancer cells by inhibiting YAP activation through the GEF-H1/RhoB pathway. Cancer Res. 76:1627–1640. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Keller M, Dubois F, Teulier S, Martin APJ, Levallet J, Maille E, Brosseau S, Elie N, Hergovich A, Bergot E, et al: NDR2 kinase contributes to cell invasion and cytokinesis defects induced by the inactivation of RASSF1A tumor-suppressor gene in lung cancer cells. J Exp Clin Cancer Res. 38:1582019. View Article : Google Scholar : PubMed/NCBI

10 

Hsu PC, Jablons DM, Yang CT and You L: Epidermal growth factor receptor (EGFR) pathway, yes-associated protein (YAP) and the regulation of programmed death-ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC). Int J Mol Sci. 20:38212019. View Article : Google Scholar : PubMed/NCBI

11 

Dubois F, Bergot E and Levallet G: Cancer and RASSF1A/RASSF1C, the two faces of Janus. Trends Cancer. 5:662–665. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Zeng Y, Liu Q, Wang Y, Tian C, Yang Q, Zhao Y, Liu L, Wu G and Xu S: CDK5 activates hippo signaling to confer resistance to radiation therapy via upregulating TAZ in lung cancer. Int J Radiat Oncol Biol Phys. 108:758–769. 2020. View Article : Google Scholar : PubMed/NCBI

13 

Levallet J, Biojout T, Bazille C, Douyère M, Dubois F, Ferreira DL, Taylor J, Teulier S, Toutain J, Elie N, et al: Hypoxia-induced activation of NDR2 underlies brain metastases from non-small cell lung cancer. Cell Death Dis. 14:8232023. View Article : Google Scholar : PubMed/NCBI

14 

de Fraipont F, Levallet G, Creveuil C, Bergot E, Beau-Faller M, Mounawar M, Richard N, Antoine M, Rouquette I, Favrot MC, et al: An apoptosis methylation prognostic signature for early lung cancer in the IFCT-0002 trial. Clin Cancer Res. 18:2976–2986. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Minniti G, Goldsmith C and Brada M: Chapter 16-radiotherapy. Handb Clin Neurol. 104:215–228. 2012. View Article : Google Scholar

16 

Hall EJ and Giaccia AJ: Radiobiology for the radiologist. 8th. Philadelphia Baltimore New York London Buenos Aires: LWW; pp. 6242018

17 

Loh ZH, Doumy G, Arnold C, Kjellsson L, Southworth SH, Al Haddad A, Kumagai Y, Tu MF, Ho PJ, March AM, et al: Observation of the fastest chemical processes in the radiolysis of water. Science. 367:179–182. 2020. View Article : Google Scholar : PubMed/NCBI

18 

Huang T, Song X, Xu D, Tiek D, Goenka A, Wu B, Sastry N, Hu B and Cheng SY: Stem cell programs in cancer initiation, progression, and therapy resistance. Theranostics. 10:8721–8743. 2020. View Article : Google Scholar : PubMed/NCBI

19 

Chen Z, Han F, Du Y, Shi H and Zhou W: Hypoxic microenvironment in cancer: Molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 8:702023. View Article : Google Scholar : PubMed/NCBI

20 

Tang L, Wei F, Wu Y, He Y, Shi L, Xiong F, Gong Z, Guo C, Li X, Deng H, et al: Role of metabolism in cancer cell radioresistance and radiosensitization methods. J Exp Clin Cancer Res. 37:872018. View Article : Google Scholar : PubMed/NCBI

21 

Kelley K, Knisely J, Symons M and Ruggieri R: Radioresistance of brain tumors. Cancers (Basel). 8:422016. View Article : Google Scholar : PubMed/NCBI

22 

Yang Y, Gao Y, Mutter-Rottmayer L, Zlatanou A, Durando M, Ding W, Wyatt D, Ramsden D, Tanoue Y, Tateishi S and Vaziri C: DNA repair factor RAD18 and DNA polymerase Polκ confer tolerance of oncogenic DNA replication stress. J Cell Biol. 216:3097–3115. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Wang M, Kern AM, Hülskötter M, Greninger P, Singh A, Pan Y, Chowdhury D, Krause M, Baumann M, Benes CH, et al: EGFR-mediated chromatin condensation protects KRAS-mutant cancer cells against ionizing radiation. Cancer Res. 74:2825–2834. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Carlos-Reyes A, Muñiz-Lino MA, Romero-Garcia S, López-Camarillo C and Hernández-de la Cruz ON: Biological adaptations of tumor cells to radiation therapy. Front Oncol. 11:7186362021. View Article : Google Scholar : PubMed/NCBI

25 

Shi LZ and Bonner JA: Bridging radiotherapy to immunotherapy: The IFN-JAK-STAT axis. Int J Mol Sci. 22:122952021. View Article : Google Scholar : PubMed/NCBI

26 

Marampon F, Ciccarelli C and Zani BM: Biological rationale for targeting MEK/ERK pathways in anti-cancer therapy and to potentiate tumour responses to radiation. Int J Mol Sci. 20:25302019. View Article : Google Scholar : PubMed/NCBI

27 

Chang L, Graham PH, Hao J, Ni J, Bucci J, Cozzi PJ, Kearsley JH and Li Y: PI3K/Akt/mTOR pathway inhibitors enhance radiosensitivity in radioresistant prostate cancer cells through inducing apoptosis, reducing autophagy, suppressing NHEJ and HR repair pathways. Cell Death Dis. 5:e14372014. View Article : Google Scholar : PubMed/NCBI

28 

Chen K, Shang Z, Dai AL and Dai PL: Novel PI3K/Akt/mTOR pathway inhibitors plus radiotherapy: Strategy for non-small cell lung cancer with mutant RAS gene. Life Sci. 255:1178162020. View Article : Google Scholar : PubMed/NCBI

29 

Yang Y, Zhou H, Zhang G and Xue X: Targeting the canonical Wnt/β-catenin pathway in cancer radioresistance: Updates on the molecular mechanisms. J Cancer Res Ther. 15:272–277. 2019. View Article : Google Scholar

30 

Xie SY, Li G, Han C, Yu YY and Li N: RKIP reduction enhances radioresistance by activating the Shh signaling pathway in non-small-cell lung cancer. OncoTargets Ther. 10:5605–5619. 2017. View Article : Google Scholar

31 

Calses PC, Crawford JJ, Lill JR and Dey A: Hippo pathway in cancer: Aberrant regulation and therapeutic opportunities. Trends Cancer. 5:297–307. 2019. View Article : Google Scholar : PubMed/NCBI

32 

Thompson BJ: YAP/TAZ: Drivers of tumor growth, metastasis, and resistance to therapy. Bioessays. 42:e19001622020. View Article : Google Scholar : PubMed/NCBI

33 

Salem A, Asselin MC, Reymen B, Jackson A, Lambin P, West CML, O'Connor JPB and Faivre-Finn C: Targeting hypoxia to improve non-small cell lung cancer outcome. J Natl Cancer Inst. 110:14–30. 2018. View Article : Google Scholar

34 

Nguyen DX, Chiang AC, Zhang XHF, Kim JY, Kris MG, Ladanyi M, Gerald WL and Massagué J: WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell. 138:51–62. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Hsu PC, You B, Yang YL, Zhang WQ, Wang YC, Xu Z, Dai Y, Liu S, Yang CT, Li H, et al: YAP promotes erlotinib resistance in human non-small cell lung cancer cells. Oncotarget. 7:51922–51933. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Miao J, Hsu PC, Yang YL, Xu Z, Dai Y, Wang Y, Chan G, Huang Z, Hu B, Li H, et al: YAP regulates PD-L1 expression in human NSCLC cells. Oncotarget. 8:114576–114587. 2017. View Article : Google Scholar

37 

Xiao Y and Dong J: The Hippo signaling pathway in cancer: A cell cycle perspective. Cancers (Basel). 13:62142021. View Article : Google Scholar : PubMed/NCBI

38 

Zhou W, Zhang L, Chen P, Li S and Cheng Y: Thymine DNA glycosylase-regulated TAZ promotes radioresistance by targeting nonhomologous end joining and tumor progression in esophageal cancer. Cancer Sci. 111:3613–3625. 2020. View Article : Google Scholar : PubMed/NCBI

39 

Xin H, Liu Y, Chen P, Yin T, Wang M, Liu T, Wen Z and Cheng Y: CD155 promotes radioresistance and malignancy of esophageal cancer by regulating Hippo-YAP pathway. Discov Oncol. 13:532022. View Article : Google Scholar : PubMed/NCBI

40 

Moon JY, Ediriweera MK, Ryu JY, Kim HY and Cho SK: Catechol enhances chemo- and radio-sensitivity by targeting AMPK/Hippo signaling in pancreatic cancer cells. Oncol Rep. 45:1133–1141. 2021. View Article : Google Scholar : PubMed/NCBI

41 

Andrade D, Mehta M, Griffith J, Panneerselvam J, Srivastava A, Kim TD, Janknecht R, Herman T, Ramesh R and Munshi A: YAP1 inhibition radiosensitizes triple negative breast cancer cells by targeting the DNA damage response and cell survival pathways. Oncotarget. 8:98495–98508. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Liang Y, Zhou X, Xie Q, Sun H, Huang K, Chen H, Wang W, Zhou B, Wei X, Zeng D and Lin H: CD146 interaction with integrin β1 activates LATS1-YAP signaling and induces radiation-resistance in breast cancer cells. Cancer Lett. 546:2158562022. View Article : Google Scholar

43 

Yang K, Zhao Y, Du Y and Tang R: Evaluation of Hippo pathway and CD133 in radiation resistance in small-cell lung cancer. J Oncol. 2021:88425542021. View Article : Google Scholar : PubMed/NCBI

44 

Li J, Zhang X, Hou Z, Cai S, Guo Y, Sun L, Li A, Li Q, Wang E and Miao Y: P130cas-FAK interaction is essential for YAP-mediated radioresistance of non-small cell lung cancer. Cell Death Dis. 13:7832022. View Article : Google Scholar : PubMed/NCBI

45 

Bora-Singhal N, Nguyen J, Schaal C, Perumal D, Singh S, Coppola D and Chellappan S: YAP1 regulates Oct4 activity and Sox2 expression to facilitate self-renewal and vascular mimicry of stem-like cells. Stem Cells. 33:1705–1718. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Wang L, Zhang Z, Yu X, Huang X, Liu Z, Chai Y, Yang L, Wang Q, Li M, Zhao J, et al: Unbalanced YAP-SOX9 circuit drives stemness and malignant progression in esophageal squamous cell carcinoma. Oncogene. 38:2042–2055. 2019. View Article : Google Scholar

47 

Tang Y and Weiss SJ: Snail/Slug-YAP/TAZ complexes cooperatively regulate mesenchymal stem cell function and bone formation. Cell Cycle. 16:399–405. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Noce V, Battistelli C, Cozzolino AM, Consalvi V, Cicchini C, Strippoli R, Tripodi M, Marchetti A and Amicone L: YAP integrates the regulatory Snail/HNF4α circuitry controlling epithelial/hepatocyte differentiation. Cell Death Dis. 10:7682019. View Article : Google Scholar

49 

Pattschull G, Walz S, Gründl M, Schwab M, Rühl E, Baluapuri A, Cindric-Vranesic A, Kneitz S, Wolf E, Ade CP, et al: The Myb-MuvB complex is required for YAP-dependent transcription of mitotic genes. Cell Rep. 27:3533–3546.e7. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Jang W, Kim T, Koo JS, Kim S and Lim D: Mechanical cue-induced YAP instructs Skp2-dependent cell cycle exit and oncogenic signaling. EMBO J. 36:2510–2528. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Kim W, Cho YS, Wang X, Park O, Ma X, Kim H, Gan W, Jho EH, Cha B, Jeung YJ, et al: Hippo signaling is intrinsically regulated during cell cycle progression by APC/CCdh1. Proc Natl Acad Sci USA. 116:9423–9432. 2019. View Article : Google Scholar

52 

Oku Y, Nishiya N, Tazawa T, Kobayashi T, Umezawa N, Sugawara Y and Uehara Y: Augmentation of the therapeutic efficacy of WEE1 kinase inhibitor AZD1775 by inhibiting the YAP-E2F1-DNA damage response pathway axis. FEBS Open Bio. 8:1001–1012. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Hergovich A: The roles of NDR protein kinases in Hippo signalling. Genes (Basel). 7:212016. View Article : Google Scholar : PubMed/NCBI

54 

Zhu H, Wang DD, Yuan T, Yan FJ, Zeng CM, Dai XY, Chen ZB, Chen Y, Zhou T, Fan GH, et al: Multikinase inhibitor CT-707 targets liver cancer by interrupting the hypoxia-activated IGF-1R-YAP axis. Cancer Res. 78:3995–4006. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Cho Y, Park MJ, Kim K, Kim SW, Kim W, Oh S and Lee JH: Reactive oxygen species-induced activation of yes-associated protein-1 through the c-Myc pathway is a therapeutic target in hepatocellular carcinoma. World J Gastroenterol. 26:6599–6613. 2020. View Article : Google Scholar : PubMed/NCBI

56 

Shao D, Zhai P, Del Re DP, Sciarretta S, Yabuta N, Nojima H, Lim DS, Pan D and Sadoshima J: A functional interaction between Hippo-YAP signalling and FoxO1 mediates the oxidative stress response. Nat Commun. 5:33152014. View Article : Google Scholar : PubMed/NCBI

57 

Xiao W, Wang J, Ou C, Zhang Y, Ma L, Weng W, Pan Q and Sun F: Mutual interaction between YAP and c-Myc is critical for carcinogenesis in liver cancer. Biochem Biophys Res Commun. 439:167–172. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Yu FX, Zhao B and Guan KL: Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell. 163:811–828. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Xiang L, Gilkes DM, Hu H, Takano N, Luo W, Lu H, Bullen JW, Samanta D, Liang H and Semenza GL: Hypoxia-inducible factor 1 mediates TAZ expression and nuclear localization to induce the breast cancer stem cell phenotype. Oncotarget. 5:12509–12527. 2014. View Article : Google Scholar

60 

Azad T, Janse van Rensburg HJ, Lightbody ED, Neveu B, Champagne A, Ghaffari A, Kay VR, Hao Y, Shen H, Yeung B, et al: A LATS biosensor screen identifies VEGFR as a regulator of the Hippo pathway in angiogenesis. Nat Commun. 9:10612018. View Article : Google Scholar : PubMed/NCBI

61 

Lopez-Hernandez A, Sberna S and Campaner S: Emerging principles in the transcriptional control by YAP and TAZ. Cancers (Basel). 13:42422021. View Article : Google Scholar : PubMed/NCBI

62 

Wang W, Xiao ZD, Li X, Aziz KE, Gan B, Johnson RL and Chen J: AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat Cell Biol. 17:490–499. 2015. View Article : Google Scholar : PubMed/NCBI

63 

Basu-Roy U, Bayin NS, Rattanakorn K, Han E, Placantonakis DG, Mansukhani A and Basilico C: Sox2 antagonizes the Hippo pathway to maintain stemness in cancer cells. Nat Commun. 6:64112015. View Article : Google Scholar : PubMed/NCBI

64 

Frum T, Watts JL and Ralston A: TEAD4, YAP1 and WWTR1 prevent the premature onset of pluripotency prior to the 16-cell stage. Development. 146:dev1798612019. View Article : Google Scholar : PubMed/NCBI

65 

Zhang J, Ji JY, Yu M, Overholtzer M, Smolen GA, Wang R, Brugge JS, Dyson NJ and Haber DA: YAP-dependent induction of amphiregulin identifies a non-cell-autonomous component of the Hippo pathway. Nat Cell Biol. 11:1444–1450. 2009. View Article : Google Scholar : PubMed/NCBI

66 

Koo JH, Plouffe SW, Meng Z, Lee DH, Yang D, Lim DS, Wang CY and Guan KL: Induction of AP-1 by YAP/TAZ contributes to cell proliferation and organ growth. Genes Dev. 34:72–86. 2020. View Article : Google Scholar :

67 

Li H, Li Q, Dang K, Ma S, Cotton JL, Yang S, Zhu LJ, Deng AC, Ip YT, Johnson RL, et al: YAP/TAZ activation drives uveal melanoma initiation and progression. Cell Rep. 29:3200–3211.e4. 2019. View Article : Google Scholar : PubMed/NCBI

68 

Fang C, Li J, Qi S, Lei Y, Zeng Y, Yu P, Hu Z, Zhou Y, Wang Y, Dai R, et al: An alternatively transcribed TAZ variant negatively regulates JAK-STAT signaling. EMBO Rep. 20:e472272019. View Article : Google Scholar : PubMed/NCBI

69 

Gruber R, Panayiotou R, Nye E, Spencer-Dene B, Stamp G and Behrens A: YAP1 and TAZ control pancreatic cancer initiation in mice by direct up-regulation of JAK-STAT3 signaling. Gastroenterology. 151:526–539. 2016. View Article : Google Scholar : PubMed/NCBI

70 

Prabhu KS, Bhat AA, Siveen KS, Kuttikrishnan S, Raza SS, Raheed T, Jochebeth A, Khan AQ, Chawdhery MZ, Haris M, et al: Sanguinarine mediated apoptosis in non-small cell lung cancer via generation of reactive oxygen species and suppression of JAK/STAT pathway. Biomed Pharmacother. 144:1123582021. View Article : Google Scholar : PubMed/NCBI

71 

Meng J, Li Y, Wan C, Sun Y, Dai X, Huang J, Hu Y, Gao Y, Wu B, Zhang Z, et al: Targeting senescence-like fibroblasts radiosensitizes non-small cell lung cancer and reduces radiation-induced pulmonary fibrosis. JCI Insight. 6:e1463342021. View Article : Google Scholar : PubMed/NCBI

72 

Li L, Wang J, Zhang Y, Zhang Y, Ma L, Weng W, Qiao Y, Xiao W, Wang H, Yu W, et al: MEK1 promotes YAP and their interaction is critical for tumorigenesis in liver cancer. FEBS Lett. 587:3921–3927. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Santoro R, Zanotto M, Carbone C, Piro G, Tortora G and Melisi D: MEKK3 sustains EMT and stemness in pancreatic cancer by regulating YAP and TAZ transcriptional activity. Anticancer Res. 38:1937–1946. 2018.PubMed/NCBI

74 

You B, Yang YL, Xu Z, Dai Y, Liu S, Mao JH, Tetsu O, Li H, Jablons DM and You L: Inhibition of ERK1/2 down-regulates the Hippo/YAP signaling pathway in human NSCLC cells. Oncotarget. 6:4357–4368. 2015. View Article : Google Scholar : PubMed/NCBI

75 

Kim NG and Gumbiner BM: Adhesion to fibronectin regulates Hippo signaling via the FAK-Src-PI3K pathway. J Cell Biol. 210:503–515. 2015. View Article : Google Scholar : PubMed/NCBI

76 

Zhao Y, Montminy T, Azad T, Lightbody E, Hao Y, SenGupta S, Asselin E, Nicol C and Yang X: PI3K positively regulates YAP and TAZ in mammary tumorigenesis through multiple signaling pathways. Mol Cancer Res. 16:1046–1058. 2018. View Article : Google Scholar : PubMed/NCBI

77 

Gokey JJ, Sridharan A, Xu Y, Green J, Carraro G, Stripp BR, Perl AT and Whitsett JA: Active epithelial Hippo signaling in idiopathic pulmonary fibrosis. JCI Insight. 3:e987382018. View Article : Google Scholar : PubMed/NCBI

78 

Fernandez-L A, Squatrito M, Northcott P, Awan A, Holland EC, Taylor MD, Nahlé Z and Kenney AM: Oncogenic YAP promotes radioresistance and genomic instability in medulloblastoma through IGF2-mediated Akt activation. Oncogene. 31:1923–1937. 2012. View Article : Google Scholar

79 

Artinian N, Cloninger C, Holmes B, Benavides-Serrato A, Bashir T and Gera J: Phosphorylation of the Hippo pathway component AMOTL2 by the mTORC2 kinase promotes YAP signaling, resulting in enhanced glioblastoma growth and invasiveness. J Biol Chem. 290:19387–19401. 2015. View Article : Google Scholar : PubMed/NCBI

80 

Takeda T, Yamamoto Y, Tsubaki M, Matsuda T, Kimura A, Shimo N and Nishida S: PI3K/Akt/YAP signaling promotes migration and invasion of DLD-1 colorectal cancer cells. Oncol Lett. 23:1062022. View Article : Google Scholar : PubMed/NCBI

81 

Park HW, Kim YC, Yu B, Moroishi T, Mo JS, Plouffe SW, Meng Z, Lin KC, Yu FX, Alexander CM, et al: Alternative Wnt signaling activates YAP/TAZ. Cell. 162:780–794. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Wang J, Park JS, Wei Y, Rajurkar M, Cotton JL, Fan Q, Lewis BC, Ji H and Mao J: TRIB2 acts downstream of Wnt/TCF in liver cancer cells to regulate YAP and C/EBPα function. Mol Cell. 51:211–225. 2013. View Article : Google Scholar : PubMed/NCBI

83 

Simula L, Alifano M and Icard P: How phosphofructokinase-1 promotes PI3K and YAP/TAZ in cancer: Therapeutic perspectives. Cancers (Basel). 14:24782022. View Article : Google Scholar : PubMed/NCBI

84 

Konsavage WM Jr, Kyler SL, Rennoll SA, Jin G and Yochum GS: Wnt/β-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J Biol Chem. 287:11730–11739. 2012. View Article : Google Scholar : PubMed/NCBI

85 

Azzolin L, Zanconato F, Bresolin S, Forcato M, Basso G, Bicciato S, Cordenonsi M and Piccolo S: Role of TAZ as Mediator of Wnt signaling. Cell. 151:1443–1456. 2012. View Article : Google Scholar : PubMed/NCBI

86 

Deng F, Peng L, Li Z, Tan G, Liang E, Chen S, Zhao X and Zhi F: YAP triggers the Wnt/β-catenin signalling pathway and promotes enterocyte self-renewal, regeneration and tumorigenesis after DSS-induced injury. Cell Death Dis. 9:1532018. View Article : Google Scholar

87 

Jiang L, Li J, Zhang C, Shang Y and Lin J: YAP-mediated crosstalk between the Wnt and Hippo signaling pathways (review). Mol Med Rep. 22:4101–4106. 2020.PubMed/NCBI

88 

Chen Y, Jin Y, Ying H, Zhang P, Chen M and Hu X: Synergistic effect of PAF inhibition and X-ray irradiation in non-small cell lung cancer cells. Strahlenther Onkol. 197:343–352. 2021. View Article : Google Scholar

89 

Cotton JL, Li Q, Ma L, Park JS, Wang J, Ou J, Zhu LJ, Ip YT, Johnson RL and Mao J: YAP/TAZ and hedgehog coordinate growth and patterning in gastrointestinal mesenchyme. Dev Cell. 43:35–47.e4. 2017. View Article : Google Scholar : PubMed/NCBI

90 

Isago H, Mitani A, Mikami Y, Horie M, Urushiyama H, Hamamoto R, Terasaki Y and Nagase T: Epithelial expression of YAP and TAZ is sequentially required in lung development. Am J Respir Cell Mol Biol. 62:256–266. 2020. View Article : Google Scholar

91 

Fernandez-L A, Northcott PA, Dalton J, Fraga C, Ellison D, Angers S, Taylor MD and Kenney AM: YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev. 23:2729–2741. 2009. View Article : Google Scholar : PubMed/NCBI

92 

Tang C, Wang J, Yao M, Ji X, Shi W, Xu C, Zeng LH and Wu X: Hippo signaling activates hedgehog signaling by Taz-driven Gli3 processing. Cell Regen. 12:32023. View Article : Google Scholar : PubMed/NCBI

93 

Tariki M, Dhanyamraju PK, Fendrich V, Borggrefe T, Feldmann G and Lauth M: The yes-associated protein controls the cell density regulation of Hedgehog signaling. Oncogenesis. 3:e1122014. View Article : Google Scholar : PubMed/NCBI

94 

Lin YT, Ding JY, Li MY, Yeh TS, Wang TW and Yu JY: YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway. Exp Cell Res. 318:1877–1888. 2012. View Article : Google Scholar : PubMed/NCBI

95 

Swiderska-Syn M, Xie G, Michelotti GA, Jewell ML, Premont RT, Syn WK and Diehl AM: Hedgehog regulates yes-associated protein 1 in regenerating mouse liver. Hepatology. 64:232–244. 2016. View Article : Google Scholar : PubMed/NCBI

96 

Kim Y and Jho EH: Regulation of the Hippo signaling pathway by ubiquitin modification. BMB Rep. 51:143–150. 2018. View Article : Google Scholar : PubMed/NCBI

97 

Meng Z, Moroishi T and Guan KL: Mechanisms of Hippo pathway regulation. Genes Dev. 30:1–17. 2016. View Article : Google Scholar : PubMed/NCBI

98 

Tang Y, Geng Y, Luo J, Shen W, Zhu W, Meng C, Li M, Zhou X, Zhang S and Cao J: Downregulation of ubiquitin inhibits the proliferation and radioresistance of non-small cell lung cancer cells in vitro and in vivo. Sci Rep. 5:94762015. View Article : Google Scholar : PubMed/NCBI

99 

Deng L, Meng T, Chen L, Wei W and Wang P: The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 5:112020. View Article : Google Scholar : PubMed/NCBI

100 

Hintelmann K, Kriegs M, Rothkamm K and Rieckmann T: Improving the efficacy of tumor radiosensitization through combined molecular targeting. Front Oncol. 10:12602020. View Article : Google Scholar : PubMed/NCBI

101 

Zhao Y, Wang L, Huang Q, Jiang Y, Wang J, Zhang L, Tian Y and Yang H: Radiosensitization of non-small cell lung cancer cells by inhibition of TGF-β1 signaling with SB431542 is dependent on p53 status. Oncol Res. 24:1–7. 2016. View Article : Google Scholar

102 

Van den Bossche J, Domen A, Peeters M, Deben C, De Pauw I, Jacobs J, De Bruycker S, Specenier P, Pauwels P, Vermorken JB, et al: Radiosensitization of non-small cell lung cancer cells by the Plk1 inhibitor volasertib is dependent on the p53 status. Cancers (Basel). 11:18932019. View Article : Google Scholar : PubMed/NCBI

103 

Gill SJ, Wijnhoven PWG, Fok JHL, Lloyd RL, Cairns J, Armenia J, Nikkilä J, Lau A, Bakkenist CJ, Galbraith SM, et al: Radiopotentiation profiling of multiple inhibitors of the DNA damage response for early clinical development. Mol Cancer Ther. 20:1614–1626. 2021. View Article : Google Scholar : PubMed/NCBI

104 

Dukaew N, Konishi T, Chairatvit K, Autsavapromporn N, Soonthornchareonnon N and Wongnoppavich A: Enhancement of radiosensitivity by eurycomalactone in human NSCLC cells through G2/M Cell cycle arrest and delayed DNA double-strand break repair. Oncol Res. 28:161–175. 2020. View Article : Google Scholar

105 

Ryu H, Kim HJ, Song JY, Hwang SG, Kim JS, Kim J, Bui THN, Choi HK and Ahn J: A small compound KJ-28d enhances the sensitivity of non-small cell lung cancer to radio- and chemotherapy. Int J Mol Sci. 20:60262019. View Article : Google Scholar : PubMed/NCBI

106 

Majd NK, Yap TA, Koul D, Balasubramaniyan V, Li X, Khan S, Gandy KS, Yung WKA and de Groot JF: The promise of DNA damage response inhibitors for the treatment of glioblastoma. Neurooncol Adv. 3:vdab0152021.PubMed/NCBI

107 

La Verde G, Artiola V, Pugliese M, La Commara M, Arrichiello C, Muto P, Netti PA, Fusco S and Panzetta V: Radiation therapy affects YAP expression and intracellular localization by modulating lamin A/C levels in breast cancer. Front Bioeng Biotechnol. 10:9690042022. View Article : Google Scholar : PubMed/NCBI

108 

Zhang Y, Wang Y, Zhou D, Wang K, Wang X, Wang X, Jiang Y, Zhao M, Yu R and Zhou X: Radiation-induced YAP activation confers glioma radioresistance via promoting FGF2 transcription and DNA damage repair. Oncogene. 40:4580–4591. 2021. View Article : Google Scholar : PubMed/NCBI

109 

Barrette AM, Ronk H, Joshi T, Mussa Z, Mehrotra M, Bouras A, Nudelman G, Jesu Raj JG, Bozec D, Lam W, et al: Anti-invasive efficacy and survival benefit of the YAP-TEAD inhibitor verteporfin in preclinical glioblastoma models. Neuro Oncol. 24:694–707. 2022. View Article : Google Scholar :

110 

Amidon BS, Sanchez-Martin M, Bartolini W, Syed S, McGovern K, Xu L, Ecsedy J, Zhang XM, Constan A and Castro AC: Abstract 2156: IK-930 is a novel TEAD inhibitor for the treatment of cancers harboring mutations in the Hippo signal transduction pathway. Cancer Res. 82(12 Suppl): S21562022. View Article : Google Scholar

111 

Tang TT, Konradi AW, Feng Y, Peng X, Ma M, Li J, Yu FX, Guan KL and Post L: Small molecule inhibitors of TEAD auto-palmitoylation selectively inhibit proliferation and tumor growth of NF2-deficient mesothelioma. Mol Cancer Ther. 20:986–998. 2021. View Article : Google Scholar : PubMed/NCBI

112 

Sun Y, Hu L, Tao Z, Jarugumilli GK, Erb H, Singh A, Li Q, Cotton JL, Greninger P, Egan RK, et al: Pharmacological blockade of TEAD-YAP reveals its therapeutic limitation in cancer cells. Nat Commun. 13:67442022. View Article : Google Scholar : PubMed/NCBI

113 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI

114 

Levallet G, Creveuil C, Bekaert L, Péres E, Planchard G, Lecot-Cotigny S, Guillamo JS, Emery E, Zalcman G and Lechapt-Zalcman E: Promoter hypermethylation of genes encoding for RASSF/Hippo pathway members reveals specific alteration pattern in diffuse gliomas. J Mol Diagn. 21:695–704. 2019. View Article : Google Scholar : PubMed/NCBI

115 

Wei C, Wang Y and Li X: The role of Hippo signal pathway in breast cancer metastasis. Onco Targets Ther. 11:2185–2193. 2018. View Article : Google Scholar : PubMed/NCBI

116 

Maille E, Brosseau S, Hanoux V, Creveuil C, Danel C, Bergot E, Scherpereel A, Mazières J, Margery J, Greillier L, et al: MST1/Hippo promoter gene methylation predicts poor survival in patients with malignant pleural mesothelioma in the IFCT-GFPC-0701 MAPS phase 3 trial. Br J Cancer. 120:387–397. 2019. View Article : Google Scholar : PubMed/NCBI

117 

Spugnardi M, Tommasi S, Dammann R, Pfeifer GP and Hoon DSB: Epigenetic inactivation of RAS association domain family protein 1 (RASSF1A) in malignant cutaneous melanoma. Cancer Res. 63:1639–1643. 2003.PubMed/NCBI

118 

Riffet M, Eid Y, Faisant M, Fohlen A, Menahem B, Alves A, Dubois F, Levallet G and Bazille C: Deciphering promoter hypermethylation of genes encoding for RASSF/Hippo pathway reveals the poor prognostic factor of RASSF2 gene silencing in colon cancers. Cancers (Basel). 13:59572021. View Article : Google Scholar : PubMed/NCBI

119 

Thurneysen C, Opitz I, Kurtz S, Weder W, Stahel RA and Felley-Bosco E: Functional inactivation of NF2/merlin in human mesothelioma. Lung Cancer. 64:140–147. 2009. View Article : Google Scholar

120 

Noorbakhsh N, Hayatmoghadam B, Jamali M, Golmohammadi M and Kavianpour M: The Hippo signaling pathway in leukemia: function, interaction, and carcinogenesis. Cancer cell international. 21:7052021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Taylor J, Dubois F, Bergot E and Levallet G: Targeting the Hippo pathway to prevent radioresistance brain metastases from the lung (Review). Int J Oncol 65: 68, 2024.
APA
Taylor, J., Dubois, F., Bergot, E., & Levallet, G. (2024). Targeting the Hippo pathway to prevent radioresistance brain metastases from the lung (Review). International Journal of Oncology, 65, 68. https://doi.org/10.3892/ijo.2024.5656
MLA
Taylor, J., Dubois, F., Bergot, E., Levallet, G."Targeting the Hippo pathway to prevent radioresistance brain metastases from the lung (Review)". International Journal of Oncology 65.1 (2024): 68.
Chicago
Taylor, J., Dubois, F., Bergot, E., Levallet, G."Targeting the Hippo pathway to prevent radioresistance brain metastases from the lung (Review)". International Journal of Oncology 65, no. 1 (2024): 68. https://doi.org/10.3892/ijo.2024.5656
Copy and paste a formatted citation
x
Spandidos Publications style
Taylor J, Dubois F, Bergot E and Levallet G: Targeting the Hippo pathway to prevent radioresistance brain metastases from the lung (Review). Int J Oncol 65: 68, 2024.
APA
Taylor, J., Dubois, F., Bergot, E., & Levallet, G. (2024). Targeting the Hippo pathway to prevent radioresistance brain metastases from the lung (Review). International Journal of Oncology, 65, 68. https://doi.org/10.3892/ijo.2024.5656
MLA
Taylor, J., Dubois, F., Bergot, E., Levallet, G."Targeting the Hippo pathway to prevent radioresistance brain metastases from the lung (Review)". International Journal of Oncology 65.1 (2024): 68.
Chicago
Taylor, J., Dubois, F., Bergot, E., Levallet, G."Targeting the Hippo pathway to prevent radioresistance brain metastases from the lung (Review)". International Journal of Oncology 65, no. 1 (2024): 68. https://doi.org/10.3892/ijo.2024.5656
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team