|
1
|
Omuro A and DeAngelis LM: Glioblastoma and
other malignant gliomas: A clinical review. JAMA. 310:1842–1850.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Hale JS, Sinyuk M, Rich JN and Lathia JD:
Decoding the cancer stem cell hypothesis in glioblastoma. CNS
Oncol. 2:319–330. 2013. View Article : Google Scholar :
|
|
3
|
Thakkar JP, Dolecek TA, Horbinski C,
Ostrom QT, Lightner DD, Barnholtz-Sloan JS and Villano JL:
Epidemiologic and molecular prognostic review of glioblastoma.
Cancer Epidemiol Biomark Amp Prev. 23:1985–1996. 2014. View Article : Google Scholar
|
|
4
|
Hanif F, Muzaffar K, Perveen K, Malhi SM
and Simjee ShU: Glioblastoma Multiforme: A review of its
epidemiology and pathogenesis through clinical presentation and
treatment. Asian Pac J Cancer Prev. 18:3–9. 2017.PubMed/NCBI
|
|
5
|
Alexander BM and Cloughesy TF: Adult
Glioblastoma. J Clin Oncol. 35:2402–2409. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
De Vleeschouwer S: Glioblastoma. Codon
Publications; Brisbane, QLD: 2017, View Article : Google Scholar
|
|
7
|
Young RM, Jamshidi A, Davis G and Sherman
JH: Current trends in the surgical management and treatment of
adult glioblastoma. Ann Transl Med. 3:1212015.PubMed/NCBI
|
|
8
|
Louis DN, Perry A, Wesseling P, Brat DJ,
Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM,
Reifenberger G, et al: The 2021 WHO classification of tumors of the
central nervous system: A summary. Neuro Oncol. 23:1231–1251. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ohgaki H and Kleihues P: Genetic pathways
to primary and secondary glioblastoma. Am J Pathol. 170:1445–1453.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Ohgaki H and Kleihues P: The Definition of
primary and secondary glioblastoma. Clin Cancer Res. 19:764–772.
2013. View Article : Google Scholar
|
|
11
|
Valentinis L, Tuniz F, Valent F, Mucchiut
M, Little D, Skrap M, Bergonzi P and Zanchin G: Headache attributed
to intracranial tumours: A prospective cohort study. Cephalalgia.
30:389–398. 2010. View Article : Google Scholar
|
|
12
|
Chaichana KL, Parker SL, Olivi A and
Quiñones-Hinojosa A: Long-term seizure outcomes in adult patients
undergoing primary resection of malignant brain astrocytomas:
Clinical article. J Neurosurg. 111:282–292. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Davis ME: Glioblastoma: Overview of
disease and treatment. Clin J Oncol Nurs. 20(5 Suppl): S2–S8. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wen PY, Weller M, Lee EQ, Alexander BM,
Barnholtz-Sloan JS, Barthel FP, Batchelor TT, Bindra RS, Chang SM,
Chiocca EA, et al: Glioblastoma in adults: A Society for
Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO)
consensus review on current management and future directions.
Neuro-Oncol. 22:1073–1113. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wen PY, Macdonald DR, Reardon DA,
Cloughesy TF, Sorensen AG, Galanis E, Degroot J, Wick W, Gilbert
MR, Lassman AB, et al: Updated response assessment criteria for
high-grade gliomas: Response assessment in neuro-oncology working
group. J Clin Oncol. 28:1963–1972. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hu LS, Eschbacher JM, Dueck AC, Heiserman
JE, Liu S, Karis JP, Smith KA, Shapiro WR, Pinnaduwage DS, Coons
SW, et al: Correlations between perfusion MR imaging cerebral blood
volume, microvessel quantification, and clinical outcome using
stereotactic analysis in recurrent high-grade glioma. Am J
Neuroradiol. 33:692012. View Article : Google Scholar
|
|
17
|
Zhang J, Stevens MF and Bradshaw TD:
Temozolomide: Mechanisms of action, repair and resistance. Curr Mol
Pharmacol. 5:102–114. 2012. View Article : Google Scholar
|
|
18
|
Stupp R, Hegi ME, Mason WP, van den Bent
MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B,
Belanger K, et al: Effects of radiotherapy with concomitant and
adjuvant temozolomide versus radiotherapy alone on survival in
glioblastoma in a randomised phase III study: 5-year analysis of
the EORTC-NCIC trial. Lancet Oncol. 10:459–466. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Stupp R, Mason WP, van den Bent MJ, Weller
M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn
U, et al: Radiotherapy plus concomitant and adjuvant temozolomide
for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Stupp R, Taillibert S, Kanner A, Read W,
Steinberg D, Lhermitte B, Toms S, Idbaih A, Ahluwalia MS, Fink K,
et al: Effect of tumor-treating fields plus maintenance
temozolomide vs maintenance temozolomide alone on survival in
patients with glioblastoma: A randomized clinical trial. JAMA.
318:2306–2316. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Perry JR, Rizek P, Cashman R, Morrison M
and Morrison T: Temozolomide rechallenge in recurrent malignant
glioma by using a continuous temozolomide schedule. Cancer.
113:2152–2157. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Brandes AA, Tosoni A, Amistà P, Nicolardi
L, Grosso D, Berti F and Ermani M: How effective is BCNU in
recurrent glioblastoma in the modern era? Neurology. 63:12812004.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Reithmeier T, Graf E, Piroth T, Trippel M,
Pinsker MO and Nikkhah G: BCNU for recurrent glioblastoma
multiforme: Efficacy, toxicity and prognostic factors. BMC Cancer.
10:302010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wick W, Puduvalli VK, Chamberlain MC, van
den Bent MJ, Carpentier AF, Cher LM, Mason W, Weller M, Hong S,
Musib L, et al: Phase III study of enzastaurin compared with
lomustine in the treatment of recurrent intracranial glioblastoma.
J Clin Oncol. 28:1168–1174. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Taal W, Oosterkamp HM, Walenkamp AM,
Dubbink HJ, Beerepoot LV, Hanse MC, Buter J, Honkoop AH, Boerman D,
de Vos FY, et al: Single-agent bevacizumab or lomustine versus a
combination of bevacizumab plus lomustine in patients with
recurrent glioblastoma (BELOB trial): A randomised controlled phase
2 trial. Lancet Oncol. 15:943–953. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Glas M, Happold C, Rieger J, Wiewrodt D,
Bähr O, Steinbach JP, Wick W, Kortmann RD, Reifenberger G, Weller M
and Herrlinger U: Long-term survival of patients with glioblastoma
treated with radiotherapy and lomustine plus temozolomide. J Clin
Oncol. 27:1257–1261. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Herrlinger U, Rieger J, Koch D, Loeser S,
Blaschke B, Kortmann RD, Steinbach JP, Hundsberger T, Wick W,
Meyermann R, et al: Phase II trial of lomustine plus temozolomide
chemotherapy in addition to radiotherapy in newly diagnosed
glioblastoma: UKT-03. J Clin Oncol. 24:4412–4417. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Brem H, Piantadosi S, Burger PC, Walker M,
Selker R, Vick NA, Black K, Sisti M, Brem S, Mohr G, et al:
Placebo-controlled trial of safety and efficacy of intraoperative
controlled delivery by biodegradable polymers of chemotherapy for
recurrent gliomas. Lancet. 345:1008–1012. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
McGirt MJ and Brem H: Carmustine wafers
(Gliadel) plus concomitant temozolomide therapy after resection of
malignant astrocytoma: Growing evidence for safety and efficacy.
Ann Surg Oncol. 17:1729–1731. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Lombardi G, De Salvo GL, Brandes AA, Eoli
M, Rudà R, Faedi M, Lolli I, Pace A, Daniele B, Pasqualetti F, et
al: Regorafenib compared with lomustine in patients with relapsed
glioblastoma (REGOMA): A multicentre, open-label, randomised,
controlled, phase 2 trial. Lancet Oncol. 20:110–119. 2019.
View Article : Google Scholar
|
|
31
|
Friedman HS, Prados MD, Wen PY, Mikkelsen
T, Schiff D, Abrey LE, Yung WKA, Paleologos N, Nicholas MK, Jensen
R, et al: Bevacizumab alone and in combination with irinotecan in
recurrent glioblastoma. J Clin Oncol. 27:4733–4740. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wick W, Gorlia T, Bendszus M, Taphoorn M,
Sahm F, Harting I, Brandes AA, Taal W, Domont J, Idbaih A, et al:
Lomustine and bevacizumab in progressive glioblastoma. N Engl J
Med. 377:1954–1963. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ameratunga M, Pavlakis N, Wheeler H, Grant
R, Simes J and Khasraw M: Anti-angiogenic therapy for high-grade
glioma. Cochrane Database Syst Rev. 11:CD0082182018.PubMed/NCBI
|
|
34
|
Kaley T, Nolan C, Carver A and Omuro A:
Bevacizumab for acute neurologic deterioration in patients with
glioblastoma. CNS Oncol. 2:413–418. 2013. View Article : Google Scholar
|
|
35
|
Wick W, Weller M, van den Bent M and Stupp
R: Bevacizumab and recurrent malignant gliomas: A european
perspective. J Clin Oncol. 28:e188–e189. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kazmi F, Soon YY, Leong YH, Koh WY and
Vellayappan B: Re-irradiation for recurrent glioblastoma (GBM): A
systematic review and meta-analysis. J Neurooncol. 142:79–90. 2019.
View Article : Google Scholar
|
|
37
|
Stupp R, Wong ET, Kanner AA, Steinberg D,
Engelhard H, Heidecke V, Kirson ED, Taillibert S, Liebermann F,
Dbalý V, et al: NovoTTF-100A versus physician's choice chemotherapy
in recurrent glioblastoma: A randomised phase III trial of a novel
treatment modality. Eur J Cancer. 48:2192–2202. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Lee SX, Tunkyi A, Wong E and Swanson KD:
Mitosis interference of cancer cells during anaphase by electric
field from NovoTTF-100A: An update. J Clin Oncol. 30(15_Suppl):
e21078. 2012. View Article : Google Scholar
|
|
39
|
Lee E, Yong RL, Paddison P and Zhu J:
Comparison of glioblastoma (GBM) molecular classification methods.
Semin Cancer Biol. 53:201–211. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Snuderl M, Fazlollahi L, Le LP, Nitta M,
Zhelyazkova BH, Davidson CJ, Akhavanfard S, Cahill DP, Aldape KD,
Betensky RA, et al: Mosaic amplification of multiple receptor
tyrosine kinase genes in glioblastoma. Cancer Cell. 20:810–817.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Sottoriva A, Spiteri I, Piccirillo SG,
Touloumis A, Collins VP, Marioni JC, Curtis C, Watts C and Tavaré
S: Intratumor heterogeneity in human glioblastoma reflects cancer
evolutionary dynamics. Proc Natl Acad Sci. 110:4009–4014. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Aldape K, Zadeh G, Mansouri S,
Reifenberger G and von Deimling A: Glioblastoma: Pathology,
molecular mechanisms and markers. Acta Neuropathol (Berl).
129:829–848. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
An Z, Aksoy O, Zheng T, Fan QW and Weiss
WA: Epidermal growth factor receptor and EGFRvIII in glioblastoma:
Signaling pathways and targeted therapies. Oncogene. 37:1561–1575.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Arteaga CL and Engelman JA: ERBB
receptors: From oncogene discovery to basic science to
mechanism-based cancer therapeutics. Cancer Cell. 25:282–303. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Narita Y, Nagane M, Mishima K, Huang HJS,
Furnari FB and Cavenee WK: Mutant Epidermal growth factor receptor
signaling Down-Regulates p27 through activation of the
phosphatidylinositol 3-Kinase/Akt pathway in glioblastomas. Cancer
Res. 62:6764–6769. 2002.PubMed/NCBI
|
|
46
|
Huang HJS, Nagane M, Klingbeil CK, Lin H,
Nishikawa R, Ji XD, Huang CM, Gill GN, Wiley HS and Cavenee WK: The
enhanced tumorigenic activity of a mutant epidermal growth factor
receptor common in human cancers is mediated by threshold levels of
constitutive tyrosine phosphorylation and unattenuated signaling. J
Biol Chem. 272:2927–2935. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Nagane M, Levitzki A, Gazit A, Cavenee WK
and Huang HJS: Drug resistance of human glioblastoma cells
conferred by a tumor-specific mutant epidermal growth factor
receptor through modulation of Bcl-XL and caspase-3-like proteases.
Proc Natl Acad Sci. 95:5724–5729. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Inda M del M, Bonavia R, Mukasa A, Narita
Y, Sah DW, Vandenberg S, Brennan C, Johns TG, Bachoo R, Hadwiger P,
et al: Tumor heterogeneity is an active process maintained by a
mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev.
24:1731–1745. 2010. View Article : Google Scholar
|
|
49
|
Giacinti C and Giordano A: RB and cell
cycle progression. Oncogene. 25:5220–5227. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Nakamura M, Yonekawa Y, Kleihues P and
Ohgaki H: Promoter Hypermethylation of the RB1 gene in
Glioblastomas. Lab Invest. 81:77–82. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Cerami E, Demir E, Schultz N, Taylor BS
and Sander C: Automated network analysis identifies core pathways
in glioblastoma. PLoS One. 5:e89182010. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Muñoz-Hidalgo L, San-Miguel T, Megías J,
Monleón D, Navarro L, Roldán P, Cerdá-Nicolás M and López-Ginés C:
Somatic copy number alterations are associated with EGFR
amplification and shortened survival in patients with primary
glioblastoma. Neoplasia. 22:10–21. 2020. View Article : Google Scholar
|
|
53
|
Aubrey BJ, Strasser A and Kelly GL:
Tumor-suppressor functions of the TP53 pathway. Cold Spring Harb
Perspect Med. 6:a0260622016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Verhaak RGW, Hoadley KA, Purdom E, Wang V,
Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, et al:
Integrated genomic analysis identifies clinically relevant subtypes
of glioblastoma characterized by abnormalities in PDGFRA, IDH1,
EGFR, and NF1. Cancer Cell. 17:98–110. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhang Y, Dube C, Gibert M Jr, Cruickshanks
N, Wang B, Coughlan M, Yang Y, Setiady I, Deveau C, Saoud K, et al:
The p53 pathway in glioblastoma. Cancers (Basel). 10:2972018.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ham SW, Jeon HY, Jin X, Kim EJ, Kim JK,
Shin YJ, Lee Y, Kim SH, Lee SY, Seo S, et al: TP53 gain-of-function
mutation promotes inflammation in glioblastoma. Cell Death Differ.
26:409–425. 2019. View Article : Google Scholar :
|
|
57
|
Forte IM, Indovina P, Iannuzzi CA, Cirillo
D, Di Marzo D, Barone D, Capone F, Pentimalli F and Giordano A:
Targeted therapy based on p53 reactivation reduces both
glioblastoma cell growth and resistance to temozolomide. Int J
Oncol. 54:2189–2199. 2019.PubMed/NCBI
|
|
58
|
Verreault M, Schmitt C, Goldwirt L, Pelton
K, Haidar S, Levasseur C, Guehennec J, Knoff D, Labussière M, Marie
Y, et al: Preclinical efficacy of the MDM2 inhibitor RG7112 in
MDM2-smplified and TP53 Wild-type glioblastomas. Clin Cancer Res.
22:1185–1196. 2016. View Article : Google Scholar
|
|
59
|
Mizoguchi M, Nutt CL, Mohapatra G and
Louis DN: Genetic alterations of phosphoinositide 3-kinase subunit
genes in human glioblastomas. Brain Pathol. 14:372–377. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Papa A and Pandolfi PP: The PTEN-PI3K axis
in cancer. Biomolecules. 9:1532019. View Article : Google Scholar
|
|
61
|
Lino MM and Merlo A: PI3Kinase signaling
in glioblastoma. J Neurooncol. 103:417–427. 2011. View Article : Google Scholar :
|
|
62
|
Koul D: PTEN signaling pathways in
glioblastoma. Cancer Biol Ther. 7:1321–1325. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Parsons DW, Jones S, Zhang X, Lin JC,
Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, et
al: An integrated genomic analysis of human glioblastoma
multiforme. Science. 26:3212008.
|
|
64
|
Rao SK, Edwards J, Joshi AD, Siu IM and
Riggins GJ: A survey of glioblastoma genomic amplifications and
deletions. J Neurooncol. 96:169–179. 2010. View Article : Google Scholar
|
|
65
|
von Achenbach C, Weller M, Kaulich K,
Gramatzki D, Zacher A, Fabbro D, Reifenberger G and Szabó E:
Synergistic growth inhibition mediated by dual PI3K/mTOR pathway
targeting and genetic or direct pharmacological AKT inhibition in
human glioblastoma models. J Neurochem. 153:510–524. 2020.
View Article : Google Scholar
|
|
66
|
Lin F, de Gooijer MC, Hanekamp D,
Chandrasekaran G, Buil LC, Thota N, Sparidans RW, Beijnen JH,
Würdinger T and van Tellingen O: PI3K-mTOR Pathway Inhibition
exhibits efficacy against high-grade glioma in clinically relevant
mouse models. Clin Cancer Res. 23:12862017. View Article : Google Scholar
|
|
67
|
Wen PY, Lee EQ, Reardon DA, Ligon KL and
Alfred Yung WK: Current clinical development of PI3K pathway
inhibitors in glioblastoma. Neuro Oncol. 14:819–829. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Cohen MH, Johnson JR and Pazdur R: Food
and drug administration drug approval summary: Temozolomide plus
radiation therapy for the treatment of newly diagnosed glioblastoma
multiforme. Clin Cancer Res. 11:67672005. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Hegi ME, Diserens AC, Gorlia T, Hamou MF,
de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani
L, et al: MGMT gene silencing and benefit from temozolomide in
glioblastoma. N Engl J Med. 352:997–1003. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kitange GJ, Carlson BL, Schroeder MA,
Grogan PT, Lamont JD, Decker PA, Wu W, James CD and Sarkaria JN:
Induction of MGMT expression is associated with temozolomide
resistance in glioblastoma xenografts. Neuro Oncol. 11:281–291.
2009. View Article : Google Scholar :
|
|
71
|
Alnahhas I, Alsawas M, Rayi A, Palmer JD,
Raval R, Ong S, Giglio P, Murad MH and Puduvalli V: Characterizing
benefit from temozolomide in MGMT promoter unmethylated and
methylated glioblastoma: A systematic review and meta-analysis.
Neuro Oncol Adv. 2:vdaa0822020. View Article : Google Scholar
|
|
72
|
Luo W, Yan D, Song Z, Zhu X, Liu X, Li X
and Zhao S: miR-126-3p sensitizes glioblastoma cells to
temozolomide by inactivating Wnt/β-catenin signaling via targeting
SOX2. Life Sci. 226:98–106. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Garg M: Epithelial-mesenchymal
transition-activating transcription factors-multifunctional
regulators in cancer. World J Stem Cells. 5:188–195. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Diaz RJ, Ali S, Qadir MG, De La Fuente MI,
Ivan ME and Komotar RJ: The role of bevacizumab in the treatment of
glioblastoma. J Neurooncol. 133:455–467. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Gilbert MR, Dignam JJ, Armstrong TS, Wefel
JS, Blumenthal DT, Vogelbaum MA, Colman H, Chakravarti A, Pugh S,
Won M, et al: A randomized trial of bevacizumab for newly diagnosed
glioblastoma. N Engl J Med. 370:699–708. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kreisl TN, Kim L, Moore K, Duic P, Royce
C, Stroud I, Garren N, Mackey M, Butman JA, Camphausen K, et al:
Phase II Trial of Single-Agent Bevacizumab Followed by Bevacizumab
Plus Irinotecan at Tumor Progression in Recurrent Glioblastoma. J
Clin Oncol. 5:740–745. 2009. View Article : Google Scholar
|
|
77
|
Bergers G and Hanahan D: Modes of
resistance to anti-angiogenic therapy. Nat Rev Cancer. 8:592–603.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Haibe Y, Kreidieh M, El Hajj H, Khalifeh
I, Mukherji D, Temraz S and Shamseddine A: Resistance mechanisms to
Anti-angiogenic therapies in cancer. Front Oncol. 10:2212020.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Forsythe JA, Jiang BH, Iyer NV, Agani F,
Leung SW, Koos RD and Semenza GL: Activation of vascular
endothelial growth factor gene transcription by hypoxia-inducible
factor 1. Mol Cell Biol. 16:4604–4613. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Trusolino L, Bertotti A and Comoglio PM:
MET signalling: Principles and functions in development, organ
regeneration and cancer. Nat Rev Mol Cell Biol. 11:834–848. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Birchmeier C, Birchmeier W, Gherardi E and
Vande Woude GF: Met, metastasis, motility and more. Nat Rev Mol
Cell Biol. 4:915–925. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Lu KV, Chang JP, Parachoniak CA, Pandika
MM, Aghi MK, Meyronet D, Isachenko N, Fouse SD, Phillips JJ,
Cheresh DA, et al: VEGF inhibits tumor cell invasion and
mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell.
22:21–35. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Hande KR: Etoposide: Four decades of
development of a topoisomerase II inhibitor. Eur J Cancer.
34:1514–1521. 1998. View Article : Google Scholar
|
|
84
|
Montecucco A, Zanetta F and Biamonti G:
Molecular mechanisms of etoposide. EXCLI J. 14:95–108.
2015.PubMed/NCBI
|
|
85
|
Biasoli D, Kahn SA, Cornélio TA, Furtado
M, Campanati L, Chneiweiss H, Moura-Neto V and Borges HL:
Retinoblastoma protein regulates the crosstalk between autophagy
and apoptosis, and favors glioblastoma resistance to etoposide.
Cell Death Dis. 4:e767. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
McLendon R, Friedman A, Bigner D, Van Meir
EG, Brat DJ, Marie Mastrogianakis G, Olson JJ, Mikkelsen T, Lehman
N, Aldape A, et al: Comprehensive genomic characterization defines
human glioblastoma genes and core pathways. Nature. 455:1061–1068.
2008. View Article : Google Scholar
|
|
87
|
Senturk JC, Bohlman S and Manfredi JJ:
Mdm2 selectively suppresses DNA damage arising from inhibition of
topoisomerase II independent of p53. Oncogene. 36:6085–6096. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Conradt L, Henrich A, Wirth M, Reichert M,
Lesina M, Algül H, Schmid RM, Krämer OH, Saur D and Schneider G:
Mdm2 inhibitors synergize with topoisomerase II inhibitors to
induce p53-independent pancreatic cancer cell death. Int J Cancer.
132:2248–2257. 2013. View Article : Google Scholar
|
|
89
|
Kondo S, Kondo Y, Hara H, Kaakaji R,
Peterson JW, Morimura T, Takeuchi J and Barnett GH: mdm2 gene
mediates the expression of mdr1 gene and P-glycoprotein in a human
glioblastoma cell line. Br J Cancer. 74:1263–1268. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Galluzzi L, Senovilla L, Vitale I, Michels
J, Martins I, Kepp O, Castedo M and Kroemer G: Molecular mechanisms
of cisplatin resistance. Oncogene. 31:1869–1883. 2012. View Article : Google Scholar
|
|
91
|
Pénzváltó Z, Lánczky A, Lénárt J,
Meggyesházi N, Krenács T, Szoboszlai N, Denkert C, Pete I and
Győrffy B: MEK1 is associated with carboplatin resistance and is a
prognostic biomarker in epithelial ovarian cancer. BMC Cancer.
14:8372014. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Ahmad A, Robinson AR, Duensing A, van
Drunen E, Beverloo HB, Weisberg DB, Hasty P, Hoeijmakers JH and
Niedernhofer LJ: ERCC1-XPF endonuclease facilitates DNA
double-strand break repair. Mol Cell Biol. 28:5082–5092. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Walker MD, Alexander E Jr, Hunt WE,
MacCarty CS, Mahaley MS Jr, Mealey J Jr, Norrell HA, Owens G,
Ransohoff J, Wilson CB, et al: Evaluation of BCNU and/or
radiotherapy in the treatment of anaplastic gliomas: A cooperative
clinical trial. J Neurosurg. 49:333–343. 1978. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Walker MD, Strike TA and Sheline GE: An
analysis of dose-effect relationship in the radiotherapy of
malignant gliomas. Int J Radiat Oncol. 5:1725–1731. 1979.
View Article : Google Scholar
|
|
95
|
van Rijn J, Heimans JJ, van den Berg J,
van der Valk P and Slotman BJ: Survival of human glioma cells
treated with various combination of temozolomide and X-rays. Int J
Radiat Oncol. 47:779–784. 2000. View Article : Google Scholar
|
|
96
|
Blumenthal DT, Gorlia T, Gilbert MR, Kim
MM, Burt Nabors L, Mason WP, Hegi ME, Zhang P, Golfinopoulos V,
Perry JR, et al: Is More better? The impact of extended adjuvant
temozolomide in newly diagnosed glioblastoma: A secondary analysis
of EORTC and NRG Oncology/RTOG. Neuro Oncol. 19:1119–1126. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
van Linde ME, Brahm CG, de Witt Hamer PC,
Reijneveld JC, Bruynzeel AME, Vandertop WP, van de Ven PM,
Wagemakers M, van der Weide HL, Enting RH, et al: Treatment outcome
of patients with recurrent glioblastoma multiforme: A retrospective
multicenter analysis. J Neurooncol. 135:183–192. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Monteiro AR, Hill R, Pilkington GJ and
Madureira PA: The role of hypoxia in glioblastoma invasion. Cells.
6:452017. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Gray LH, Conger AD, Ebert M, Hornsey S and
Scott OCA: The concentration of oxygen dissolved in tissues at the
time of irradiation as a factor in radiotherapy. Br J Radiol.
26:638–648. 1953. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Horsman MR, Mortensen LS, Petersen JB,
Busk M and Overgaard J: Imaging hypoxia to improve radiotherapy
outcome. Nat Rev Clin Oncol. 9:674–687. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Ikeda E, Achen MG, Breier G and Risau W:
Hypoxia-induced transcriptional activation and increased mRNA
stability of vascular endothelial growth factor in C6 glioma cells.
J Biol Chem. 270:19761–19766. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Chinot OL, Wick W, Mason W, Henriksson R,
Saran F, Nishikawa R, Carpentier AF, Hoang-Xuan K, Kavan P, Cernea
D, et al: Bevacizumab plus Radiotherapy-Temozolomide for newly
diagnosed glioblastoma. N Engl J Med. 370:709–722. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Colman H, Zhang L, Sulman EP, McDonald JM,
Shooshtari NL, Rivera A, Popoff S, Nutt CL, Louis DN, Cairncross
JG, et al: A multigene predictor of outcome in glioblastoma. Neuro
Oncol. 12:49–57. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Li Z, Bao S, Wu Q, Wang H, Eyler C,
Sathornsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE, et al:
Hypoxia-Inducible factors regulate tumorigenic capacity of glioma
stem cells. Cancer Cell. 15:501–513. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Visvader JE and Lindeman GJ: Cancer stem
cells in solid tumours: Accumulating evidence and unresolved
questions. Nat Rev Cancer. 8:755–768. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Prieto-Vila M, Takahashi RU, Usuba W,
Kohama I and Ochiya T: Drug resistance driven by cancer stem cells
and their niche. Int J Mol Sci. 18:25742017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Batlle E and Clevers H: Cancer stem cells
revisited. Nat Med. 23:1124–1134. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Roninson IB, Broude EV and Chang BD: If
not apoptosis, then what? Treatment-induced senescence and mitotic
catastrophe in tumor cells. Drug Resist Updat. 4:303–313. 2001.
View Article : Google Scholar
|
|
109
|
Chen J, Li Y, Yu TS, McKay RM, Burns DK,
Kernie SG and Parada LF: A restricted cell population propagates
glioblastoma growth after chemotherapy. Nature. 488:522–526. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Peh GSL, Lang RJ, Pera MF and Hawes SM:
CD133 expression by neural progenitors derived from human embryonic
stem cells and its use for their prospective isolation. Stem Cells
Dev. 18:269–282. 2009. View Article : Google Scholar
|
|
111
|
Kim YS, Kaidina AM, Chiang JH, Yarygin KN
and Lupatov AY: Cancer stem cell molecular markers verified in
vivo. Biochem Mosc Suppl Ser B Biomed Chem. 11:43–54. 2017.
View Article : Google Scholar
|
|
112
|
Bao S, Wu Q, McLendon RE, Hao Y, Shi Q,
Hjelmeland AB, Dewhirst MW, Bigner DD and Rich JN: Glioma stem
cells promote radioresistance by preferential activation of the DNA
damage response. Nature. 444:756–760. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Kim H, Zheng S, Amini SS, Virk SM,
Mikkelsen T, Brat DJ, Grimsby J, Sougnez C, Muller F, Hu J, et al:
Whole-genome and multisector exome sequencing of primary and
post-treatment glioblastoma reveals patterns of tumor evolution.
Genome Res. 25:316–327. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Singh SK, Clarke ID, Terasaki M, Bonn VE,
Hawkins C, Squire J and Dirks PB: Identification of a cancer stem
cell in human brain tumors. Cancer Res. 63:58212003.PubMed/NCBI
|
|
115
|
Brennan CW, Verhaak RGW, McKenna A, Campos
B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ,
Berman SH, et al: The somatic genomic landscape of glioblastoma.
Cell. 155:462–477. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Wong AJ, Ruppert JM, Bigner SH, Grzeschik
CH, Humphrey PA, Bigner DS and Vogelstein B: Structural alterations
of the epidermal growth factor receptor gene in human gliomas. Proc
Natl Acad Sci. 89:29651992. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Lammering G, Hewit TH, Valerie K, Contessa
JN, Amorino GP, Dent P and Schmidt-Ullrich RK: EGFRvIII-mediated
radioresistance through a strong cytoprotective response. Oncogene.
22:5545–5553. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Mukherjee B, McEllin B, Camacho CV,
Tomimatsu N, Sirasanagandala S, Nannepaga S, Hatanpaa KJ, Mickey B,
Madden C, Maher E, et al: EGFRvIII and DNA double-strand break
repair: A molecular mechanism for radioresistance in glioblastoma.
Cancer Res. 69:42522009. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Chakravarti A, Wang M, Robins HI,
Lautenschlaeger T, Curran WJ, Brachman DG, Schultz CJ, Choucair A,
Dolled-Filhart M, Christiansen J, et al: RTOG 0211: A Phase 1/2
study of radiation therapy with concurrent gefitinib for newly
diagnosed glioblastoma patients. Int J Radiat Oncol. 85:1206–1211.
2013. View Article : Google Scholar
|
|
120
|
Kao GD, Jiang Z, Fernandes AM, Gupta AK
and Maity A: Inhibition of phosphatidylinositol-3-OH Kinase/Akt
signaling impairs DNA repair in glioblastoma cells following
ionizing radiation. J Biol Chem. 282:21206–21212. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Charles NA, Holland EC, Gilbertson R,
Glass R and Kettenmann H: The brain tumor microenvironment. Glia.
60:502–514. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Wahl DR, Kim MM, Aryal MP, Hartman H,
Lawrence TS, Schipper MJ, Parmar HA and Cao Y: Combining perfusion
and High B-value diffusion MRI to inform prognosis and predict
failure patterns in glioblastoma. Int J Radiat Oncol Biol Phys.
102:757–764. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Gérard M, Corroyer-Dulmont A, Lesueur P,
Collet S, Chérel M, Bourgeois M, Stefan D, Limkin EJ, Perrio C,
Guillamo JS, et al: Hypoxia imaging and adaptive radiotherapy: A
State-of-the-Art approach in the management of glioma. Front Med.
6:1172019. View Article : Google Scholar
|
|
124
|
Drake LR, Hillmer AT and Cai Z: Approaches
to PET imaging of glioblastoma. Molecules. 25:5682020. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Wallner KE, Galicich JH, Krol G, Arbit E
and Malkin MG: Patterns of failure following treatment for
glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat
Oncol. 16:1405–1409. 1989. View Article : Google Scholar
|
|
126
|
Niranjan A, Monaco EAI, Kano H, Flickinger
JC and Lunsford LD: Stereotactic radiosurgery in the multimodality
management of residual or recurrent glioblastoma multiforme. Prog
Neurol Surg. 31:48–61. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Shaw E, Scott C, Souhami L, Dinapoli R,
Kline R, Loeffler J and Farnan N: Single dose radiosurgical
treatment of recurrent previously irradiated primary brain tumors
and brain metastases: Final report of RTOG protocol 90-05. Int J
Radiat Oncol. 47:291–298. 2000. View Article : Google Scholar
|
|
128
|
Kim Y, Varn FS, Park SH, Yoon BW, Park HR,
Lee C, Verhaak RGW and Paek SH: Perspective of mesenchymal
transformation in glioblastoma. Acta Neuropathol Commun. 9:502021.
View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Wang Z, Hu P, Tang F, Lian H, Chen X,
Zhang Y, He X, Liu W and Xie C: HDAC6 promotes cell proliferation
and confers resistance to temozolomide in glioblastoma. Cancer
Lett. 379:134–142. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Yang WB, Hsu CC, Hsu TI, Liou JP, Chang
KY, Chen PY, Liu JJ, Yang ST, Wang JY, Yeh SH, et al: Increased
activation of HDAC1/2/6 and Sp1 underlies therapeutic resistance
and tumor growth in glioblastoma. Neuro Oncol. 22:1439–1451. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Liu S, Wang Z, Wang Y, Fan X, Zhang C, Ma
W, Qiu X and Jiang T: PD-1 related transcriptome profile and
clinical outcome in diffuse gliomas. OncoImmunology.
7:e13827922018. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Wang Z, Zhang C, Liu X, Wang Z, Sun L, Li
G, Liang J, Hu H, Liu Y, Zhang W and Jiang T: Molecular and
clinical characterization of PD-L1 expression at transcriptional
level via 976 samples of brain glioma. OncoImmunology.
5:e11963102016. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Li G, Wang Z, Zhang C, Liu X, Cai J, Wang
Z, Hu H, Wu F, Bao Z, Liu Y, et al: Molecular and clinical
characterization of TIM-3 in glioma through 1,024 samples.
OncoImmunology. 6:e13283392017. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
McGranahan T, Therkelsen KE, Ahmad S and
Nagpal S: Current state of immunotherapy for treatment of
glioblastoma. Curr Treat Options Oncol. 20:242019. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Tong L, Li J, Li Q, Wang X, Medikonda R,
Zhao T, Li T, Ma H, Yi L, Liu P, et al: ACT001 reduces the
expression of PD-L1 by inhibiting the phosphorylation of STAT3 in
glioblastoma. Theranostics. 10:5943–5956. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Scholz A, Harter PN, Cremer S, Yalcin BH,
Gurnik S, Yamaji M, Di Tacchio M, Sommer K, Baumgarten P, Bähr O,
et al: Endothelial cell-derived angiopoietin-2 is a therapeutic
target in treatment-naive and bevacizumab-resistant glioblastoma.
EMBO Mol Med. 8:39–57. 2016. View Article : Google Scholar
|
|
137
|
Piao Y, Liang J, Holmes L, Henry V, Sulman
E and Groot JF: Acquired resistance to Anti-VEGF therapy in
glioblastoma is associated with a mesenchymal transition. Clin
Cancer Res. 19:4392–4403. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Carbonell WS, DeLay M, Jahangiri A, Park
CC and Aghi MK: β1 Integrin targeting potentiates antiangiogenic
therapy and inhibits the growth of bevacizumab-resistant
glioblastoma. Cancer Res. 73:3145–3154. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Zanca C, Villa GR, Benitez JA, Thorne AH,
Koga T, D'Antonio M, Ikegami S, Ma J, Boyer AD, Banisadr A, et al:
Glioblastoma cellular cross-talk converges on NF-κB to attenuate
EGFR inhibitor sensitivity. Genes Dev. 31:1212–1227. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Liu X, Chen X, Shi L, Shan Q, Cao Q, Yue
C, Li H, Li S, Wang J, Gao S, et al: The third-generation EGFR
inhibitor AZD9291 overcomes primary resistance by continuously
blocking ERK signaling in glioblastoma. J Exp Clin Cancer Res.
38:2192019. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Sigova AA, Mullen AC, Molinie B, Gupta S,
Orlando DA, Guenther MG, Almada AE, Lin C, Sharp PA, Giallourakis
CC and Young RA: Divergent transcription of long noncoding RNA/mRNA
gene pairs in embryonic stem cells. Proc Natl Acad Sci.
110:2876–2881. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Lu C, Wei Y, Wang X, Zhang Z, Yin J, Li W,
Chen L, Lyu X, Shi Z, Yan W and You Y: DNA-methylation-mediated
activating of lncRNA SNHG12 promotes temozolomide resistance in
glioblastoma. Mol Cancer. 19:282020. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Mazor G, Levin L, Picard D, Ahmadov U,
Carén H, Borkhardt A, Reifenberger G, Leprivier G, Remke M and
Rotblat B: The lncRNA TP73-AS1 is linked to aggressiveness in
glioblastoma and promotes temozolomide resistance in glioblastoma
cancer stem cells. Cell Death Dis. 10:2462019. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Li Y, Liu Y, Ren J, Deng S, Yi G, Guo M,
Shu S, Zhao L, Peng Y and Qi S: miR-1268a regulates ABCC1
expression to mediate temozolomide resistance in glioblastoma. J
Neurooncol. 138:499–508. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Biamonte F, Sica G, Filippini A and
D'Alessio A: Evidence of reelin signaling in GBM and its derived
cancer stem cells. Brain Sci. 11:7452021. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Tulip IJ, Kim SO, Kim EJ, Kim J, Lee JY,
Kim H and Kim SC: Combined inhibition of STAT and Notch signalling
effectively suppresses tumourigenesis by inducing apoptosis and
inhibiting proliferation, migration and invasion in glioblastoma
cells. Anim Cells Syst (Seoul). 25:161–170. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Lavanya C, Venkataswamy MM, Sibin MK,
Srinivas Bharath MM and Chetan GK: Down regulation of human
telomerase reverse transcriptase (hTERT) expression by BIBR1532 in
human glioblastoma LN18 cells. Cytotechnology. 70:1143–1154. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Sibin MK, Bhat DI, Narasingarao KV,
Lavanya CH and Chetan GK: CDKN2A (p16) mRNA decreased expression is
a marker of poor prognosis in malignant high-grade glioma. Tumour
Biol. 36:7607–7614. 2015. View Article : Google Scholar : PubMed/NCBI
|