You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Dekker E, Tanis PJ, Vleugels JLA, Kasi PM and Wallace MB: Colorectal cancer. Lancet. 394:1467–1480. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Leufkens AM, van den Bosch MAAJ, van Leeuwen MS and Siersema PD: Diagnostic accuracy of computed tomography for colon cancer staging: A systematic review. Scand J Gastroenterol. 46:887–894. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Biller LH and Schrag D: Diagnosis and treatment of metastatic colorectal cancer: A review. JAMA. 325:669–685. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Siegel RL, Wagle NS, Cercek A, Smith RA and Jemal A: Colorectal cancer statistics, 2023. CA Cancer J Clin. 73:233–254. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, Kramer J and Siegel RL: Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 72:409–436. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu YJ, Li X, Chen TT, Wang JX, Zhou YX, Mu XL, Du Y, Wang JL, Tang J and Liu JY: Personalised neoantigen-based therapy in colorectal cancer. Clin Transl Med. 13:e14612023. View Article : Google Scholar : PubMed/NCBI | |
|
Barker HE, Paget JTE, Khan AA and Harrington KJ: The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat Rev Cancer. 15:409–425. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Le DT, Hubbard-Lucey VM, Morse MA, Heery CR, Dwyer A, Marsilje TH, Brodsky AN, Chan E, Deming DA, Diaz LA Jr, et al: A blueprint to advance colorectal cancer immunotherapies. Cancer Immunol Res. 5:942–949. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Fletcher R, Wang YJ, Schoen RE, Finn OJ, Yu J and Zhang L: Colorectal cancer prevention: Immune modulation taking the stage. Biochim Biophys Acta Rev Cancer. 1869:138–148. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Milette S, Fiset PO, Walsh LA, Spicer JD and Quail DF: The innate immune architecture of lung tumors and its implication in disease progression. J Pathol. 247:589–605. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A, Ostrand-Rosenberg S, et al: Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 7:121502016. View Article : Google Scholar : PubMed/NCBI | |
|
Condamine T and Gabrilovich DI: Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 32:19–25. 2011. View Article : Google Scholar : | |
|
Condamine T, Mastio J and Gabrilovich DI: Transcriptional regulation of myeloid-derived suppressor cells. J Leukoc Biol. 98:913–922. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao F, Hoechst B, Duffy A, Gamrekelashvili J, Fioravanti S, Manns MP, Greten TF and Korangy F: S100A9 a new marker for monocytic human myeloid-derived suppressor cells. Immunology. 136:176–183. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Veglia F, Sanseviero E and Gabrilovich DI: Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol. 21:485–498. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Groth C, Hu X, Weber R, Fleming V, Altevogt P, Utikal J and Umansky V: Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br J Cancer. 120:16–25. 2019. View Article : Google Scholar : | |
|
Veglia F, Perego M and Gabrilovich D: Myeloid-derived suppressor cells coming of age. Nat Immunol. 19:108–119. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Marigo I, Bosio E, Solito S, Mesa C, Fernandez A, Dolcetti L, Ugel S, Sonda N, Bicciato S, Falisi E, et al: Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity. 32:790–802. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Consonni FM, Porta C, Marino A, Pandolfo C, Mola S, Bleve A and Sica A: Myeloid-derived suppressor cells: Ductile targets in disease. Front Immunol. 10:9492019. View Article : Google Scholar : PubMed/NCBI | |
|
Lim HX, Kim TS and Poh CL: Understanding the differentiation, expansion, recruitment and suppressive activities of myeloid-derived suppressor cells in cancers. Int J Mol Sci. 21:35992020. View Article : Google Scholar : PubMed/NCBI | |
|
Ma T, Renz BW, Ilmer M, Koch D, Yang Y, Werner J and Bazhin AV: Myeloid-derived suppressor cells in solid tumors. Cells. 11:3102022. View Article : Google Scholar : PubMed/NCBI | |
|
Talmadge JE and Gabrilovich DI: History of myeloid-derived suppressor cells. Nat Rev Cancer. 13:739–752. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Gabrilovich DI: Myeloid-derived suppressor cells. Cancer Immunol Res. 5:3–8. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Fleming V, Hu X, Weber R, Nagibin V, Groth C, Altevogt P, Utikal J and Umansky V: Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression. Front Immunol. 9:3982018. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Z, Guo J, Weng L, Tang W, Jin S and Ma W: Myeloid-derived suppressor cells-new and exciting players in lung cancer. J Hematol Oncol. 13:102020. View Article : Google Scholar : PubMed/NCBI | |
|
Cui C, Lan P and Fu L: The role of myeloid-derived suppressor cells in gastrointestinal cancer. Cancer Commun (Lond). 41:442–471. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hess NJ, Kink JA and Hematti P: Exosomes, MDSCs and tregs: A new frontier for GVHD prevention and treatment. Front Immunol. 14:11433812023. View Article : Google Scholar : PubMed/NCBI | |
|
Pan PY, Ma G, Weber KJ, Ozao-Choy J, Wang G, Yin B, Divino CM and Chen SH: Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Res. 70:99–108. 2010. View Article : Google Scholar : | |
|
Gaißler A, Bochem J, Spreuer J, Ottmann S, Martens A, Amaral T, Wagner NB, Claassen M, Meier F, Terheyden P, et al: Early decrease of blood myeloid-derived suppressor cells during checkpoint inhibition is a favorable biomarker in metastatic melanoma. J Immunother Cancer. 11:e0068022023. View Article : Google Scholar | |
|
Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, MacDonald DD, Jin DK, Shido K, Kerns SA, et al: VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 438:820–827. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Condamine T, Ramachandran I, Youn JI and Gabrilovich DI: Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu Rev Med. 66:97–110. 2015. View Article : Google Scholar : | |
|
Li K, Shi H, Zhang B, Ou X, Ma Q, Chen Y, Shu P, Li D and Wang Y: Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduct Target Ther. 6:3622021. View Article : Google Scholar : PubMed/NCBI | |
|
Fědorová L, Pilátová K, Selingerová I, Bencsiková B, Budinská E, Zwinsová B, Brychtová V, Langrová M, Šefr R, Valík D and Zdražilová Dubská L: Circulating myeloid-derived suppressor cell subsets in patients with colorectal cancer-exploratory analysis of their biomarker potential. Klin Onkol. 31(Suppl 2): S88–S92. 2018. View Article : Google Scholar | |
|
Zhang Y, Xu J, Zhang N, Chen M, Wang H and Zhu D: Targeting the tumour immune microenvironment for cancer therapy in human gastrointestinal malignancies. Cancer Lett. 458:123–135. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Gabrilovich DI, Bronte V, Chen SH, Colombo MP, Ochoa A, Ostrand-Rosenberg S and Schreiber H: The terminology issue for myeloid-derived suppressor cells. Cancer Res. 67:425–426. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Youn JI, Nagaraj S, Collazo M and Gabrilovich DI: Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol. 181:5791–5802. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Ueha S, Shand FHW and Matsushima K: Myeloid cell population dynamics in healthy and tumor-bearing mice. Int Immunopharmacol. 11:783–788. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Mandruzzato S, Brandau S, Britten CM, Bronte V, Damuzzo V, Gouttefangeas C, Maurer D, Ottensmeier C, van der Burg SH, Welters MJ and Walter S: Toward harmonized phenotyping of human myeloid-derived suppressor cells by flow cytometry: Results from an interim study. Cancer Immunol Immunother. 65:161–169. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Z, Yuan R, Hu S, Yuan W and Sun Z: Roles of the exosomes derived from myeloid-derived suppressor cells in tumor immunity and cancer progression. Front Immunol. 13:8179422022. View Article : Google Scholar : PubMed/NCBI | |
|
Cassetta L, Bruderek K, Skrzeczynska-Moncznik J, Osiecka O, Hu X, Rundgren IM, Lin A, Santegoets K, Horzum U, Godinho-Santos A, et al: Differential expansion of circulating human MDSC subsets in patients with cancer, infection and inflammation. J Immunother Cancer. 8:e0012232020. View Article : Google Scholar : PubMed/NCBI | |
|
Flores-Toro JA, Luo D, Gopinath A, Sarkisian MR, Campbell JJ, Charo IF, Singh R, Schall TJ, Datta M, Jain RK, et al: CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas. Proc Natl Acad Sci USA. 117:1129–1138. 2020. View Article : Google Scholar : | |
|
Takacs GP, Kreiger CJ, Luo D, Tian G, Garcia JS, Deleyrolle LP, Mitchell DA and Harrison JK: Glioma-derived CCL2 and CCL7 mediate migration of immune suppressive CCR2+/CX3CR1+ M-MDSCs into the tumor microenvironment in a redundant manner. Front Immunol. 13:9934442023. View Article : Google Scholar | |
|
Singh L, Muise ES, Bhattacharya A, Grein J, Javaid S, Stivers P, Zhang J, Qu Y, Joyce-Shaikh B, Loboda A, et al: ILT3 (LILRB4) promotes the immunosuppressive function of tumor-educated human monocytic myeloid-derived suppressor cells. Mol Cancer Res. 19:702–716. 2021. View Article : Google Scholar | |
|
Veglia F, Hashimoto A, Dweep H, Sanseviero E, De Leo A, Tcyganov E, Kossenkov A, Mulligan C, Nam B, Masters G, et al: Analysis of classical neutrophils and polymorphonuclear myeloid-derived suppressor cells in cancer patients and tumor-bearing mice. J Exp Med. 218:e202018032021. View Article : Google Scholar : PubMed/NCBI | |
|
Condamine T, Dominguez GA, Youn JI, Kossenkov AV, Mony S, Alicea-Torres K, Tcyganov E, Hashimoto A, Nefedova Y, Lin C, et al: Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol. 1:aaf89432016. View Article : Google Scholar | |
|
Joshi S and Sharabi A: Targeting myeloid-derived suppressor cells to enhance natural killer cell-based immunotherapy. Pharmacol Ther. 235:1081142022. View Article : Google Scholar : PubMed/NCBI | |
|
Tian X, Shen H, Li Z, Wang T and Wang S: Tumor-derived exosomes, myeloid-derived suppressor cells, and tumor microenvironment. J Hematol Oncol. 12:842019. View Article : Google Scholar : PubMed/NCBI | |
|
Dumitru CA, Moses K, Trellakis S, Lang S and Brandau S: Neutrophils and granulocytic myeloid-derived suppressor cells: Immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol Immunother. 61:1155–1167. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Gunaydin G, Kesikli SA and Guc D: Cancer associated fibroblasts have phenotypic and functional characteristics similar to the fibrocytes that represent a novel MDSC subset. Oncoimmunology. 4:e10349182015. View Article : Google Scholar : PubMed/NCBI | |
|
Mazza EM, Zoso A, Mandruzzato S, Bronte V, Serafini P, Inverardi L and Bicciato S: Gene expression profiling of human fibrocytic myeloid-derived suppressor cells (f-MDSCs). Genom Data. 2:389–392. 2014. View Article : Google Scholar | |
|
Bizymi N, Georgopoulou A, Mastrogamvraki N, Matheakakis A, Gontika I, Fragiadaki I, Mavroudi I and Papadaki HA: Myeloid-derived suppressor cells (MDSC) in the umbilical cord blood: Biological significance and possible therapeutic applications. J Clin Med. 11:7272022. View Article : Google Scholar : PubMed/NCBI | |
|
Haile LA, Gamrekelashvili J, Manns MP, Korangy F and Greten TF: CD49d is a new marker for distinct myeloid-derived suppressor cell subpopulations in mice. J Immunol. 185:203–210. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Alshetaiwi H, Pervolarakis N, McIntyre LL, Ma D, Nguyen Q, Rath JA, Nee K, Hernandez G, Evans K, Torosian L, et al: Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics. Sci Immunol. 5:eaay60172020. View Article : Google Scholar : PubMed/NCBI | |
|
Dienstmann R, Connor K and Byrne AT; COLOSSUS Consortium: Precision therapy in RAS mutant colorectal cancer. Gastroenterology. 158:806–811. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wood LD, Parsons DW, Jones S, Lin J, Sjöblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, et al: The genomic landscapes of human breast and colorectal cancers. Science. 318:1108–1113. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Vakiani E, Janakiraman M, Shen R, Sinha R, Zeng Z, Shia J, Cercek A, Kemeny N, D'Angelica M, Viale A, et al: Comparative genomic analysis of primary versus metastatic colorectal carcinomas. J Clin Oncol. 30:2956–2962. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Liao W, Overman MJ, Boutin AT, Shang X, Zhao D, Dey P, Li J, Wang G, Lan Z, Li J, et al: KRAS-IRF2 axis drives immune suppression and immune therapy resistance in colorectal cancer. Cancer Cell. 35:559–572.e7. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wong CC, Xu J, Bian X, Wu JL, Kang W, Qian Y, Li W, Chen H, Gou H, Liu D, et al: In colorectal cancer cells with mutant KRAS, SLC25A22-mediated glutaminolysis reduces DNA demethylation to increase WNT signaling, stemness, and drug resistance. Gastroenterology. 159:2163–2180.e6. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Q, Peng Y, Ji F, Chen H, Kang W, Chan LS, Gou H, Lin Y, Huang P, Chen D, et al: Targeting of SLC25A22 boosts the immunotherapeutic response in KRAS-mutant colorectal cancer. Nat Commun. 14:46772023. View Article : Google Scholar : PubMed/NCBI | |
|
Johnson B: Targeting myeloid-derived suppressor cell trafficking as a novel immunotherapeutic approach in microsatellite stable colorectal cancer. Cancers (Basel). 15:54842023. View Article : Google Scholar : PubMed/NCBI | |
|
Bao Y, Zhai J, Chen H, Wong CC, Liang C, Ding Y, Huang D, Gou H, Chen D, Pan Y, et al: Targeting m6A reader YTHDF1 augments antitumour immunity and boosts anti-PD-1 efficacy in colorectal cancer. Gut. 72:1497–1509. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, He X, Lu X, Gong Z, Li Q, Zhang L, Yang R, Wu C, Huang J, Ding J, et al: METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions. Nat Commun. 13:63502022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen H, Pan Y, Zhou Q, Liang C, Wong CC, Zhou Y, Huang D, Liu W, Zhai J, Gou H, et al: METTL3 inhibits antitumor immunity by targeting m6A-BHLHE41-CXCL1/CXCR2 axis to promote colorectal cancer. Gastroenterology. 163:891–907. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhai J, Chen H, Wong CC, Peng Y, Gou H, Zhang J, Pan Y, Chen D, Lin Y, Wang S, et al: ALKBH5 drives immune suppression via targeting AXIN2 to promote colorectal cancer and is a target for boosting immunotherapy. Gastroenterology. 165:445–462. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao D, Wu L, Hong M, Zheng S, Wu X, Ye H, Chen F, Zhang D, Liu X, Meng X, et al: DKK-1 and its influences on bone destruction: A comparative study in collagen-induced arthritis mice and rheumatoid arthritis patients. Inflammation. 47:129–144. 2024. View Article : Google Scholar | |
|
Fujimura T, Kambayashi Y and Aiba S: Crosstalk between regulatory T cells (Tregs) and myeloid derived suppressor cells (MDSCs) during melanoma growth. Oncoimmunology. 1:1433–1434. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Li N, Kang Y, Wang L, Huff S, Tang R, Hui H, Agrawal K, Gonzalez GM, Wang Y, Patel SP and Rana TM: ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci USA. 117:20159–20170. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Husain Z, Seth P and Sukhatme VP: Tumor-derived lactate and myeloid-derived suppressor cells: Linking metabolism to cancer immunology. Oncoimmunology. 2:e263832013. View Article : Google Scholar | |
|
Hayes C, Donohoe CL, Davern M and Donlon NE: The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment. Cancer Lett. 500:75–86. 2021. View Article : Google Scholar | |
|
Bejarano L, Jordāo MJC and Joyce JA: Therapeutic targeting of the tumor microenvironment. Cancer Discov. 11:933–959. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hegde S, Leader AM and Merad M: MDSC: Markers, development, states, and unaddressed complexity. Immunity. 54:875–884. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Walz A, Peveri P, Aschauer H and Baggiolini M: Purification and amino acid sequencing of NAF, a novel neutrophil-activating factor produced by monocytes. Biochem Biophys Res Commun. 149:755–761. 1987. View Article : Google Scholar : PubMed/NCBI | |
|
Schulz O, Hammerschmidt SI, Moschovakis GL and Förster R: Chemokines and chemokine receptors in lymphoid tissue dynamics. Annu Rev Immunol. 34:203–242. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Li BH, Garstka MA and Li ZF: Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor. Mol Immunol. 117:201–215. 2020. View Article : Google Scholar | |
|
McClellan JL, Davis JM, Steiner JL, Enos RT, Jung SH, Carson JA, Pena MM, Carnevale KA, Berger FG and Murphy EA: Linking tumor-associated macrophages, inflammation, and intestinal tumorigenesis: Role of MCP-1. Am J Physiol Gastrointest Liver Physiol. 303:G1087–1095. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA and Pollard JW: CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 475:222–225. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Chang YH, Huang YL, Tsai HC, Chang AC, Ko CY, Fong YC and Tang CH: Chemokine ligand 2 promotes migration in osteosarcoma by regulating the miR-3659/MMP-3 axis. Biomedicines. 11:27682023. View Article : Google Scholar : PubMed/NCBI | |
|
Behfar S, Hassanshahi G, Nazari A and Khorramdelazad H: A brief look at the role of monocyte chemoattractant protein-1 (CCL2) in the pathophysiology of psoriasis. Cytokine. 110:226–231. 2018. View Article : Google Scholar | |
|
Chun E, Lavoie S, Michaud M, Gallini CA, Kim J, Soucy G, Odze R, Glickman JN and Garrett WS: CCL2 promotes colorectal carcinogenesis by enhancing polymorphonuclear myeloid-derived suppressor cell population and function. Cell Rep. 12:244–257. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D, De Palma A, Mauri P, Monegal A, Rescigno M, et al: Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med. 208:1949–1962. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Katoh H, Wang D, Daikoku T, Sun H, Dey SK and Dubois RN: CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell. 24:631–644. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Ding Y, Deng Y, Zheng Y and Wang S: Role of myeloid-derived suppressor cells in the promotion and immunotherapy of colitis-associated cancer. J Immunother Cancer. 8:e0006092020. View Article : Google Scholar : PubMed/NCBI | |
|
Grauers Wiktorin H, Nilsson MS, Kiffin R, Sander FE, Lenox B, Rydström A, Hellstrand K and Martner A: Histamine targets myeloid-derived suppressor cells and improves the anti-tumor efficacy of PD-1/PD-L1 checkpoint blockade. Cancer Immunol Immunother. 68:163–174. 2019. View Article : Google Scholar : | |
|
Martin RK, Saleem SJ, Folgosa L, Zellner HB, Damle SR, Nguyen GK, Ryan JJ, Bear HD, Irani AM and Conrad DH: Mast cell histamine promotes the immunoregulatory activity of myeloid-derived suppressor cells. J Leukoc Biol. 96:151–159. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Sulsenti R and Jachetti E: Frenemies in the microenvironment: Harnessing mast cells for cancer immunotherapy. Pharmaceutics. 15:16922023. View Article : Google Scholar : PubMed/NCBI | |
|
Obermajer N, Muthuswamy R, Lesnock J, Edwards RP and Kalinski P: Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood. 118:5498–5505. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zelenay S, van der Veen AG, Böttcher JP, Snelgrove KJ, Rogers N, Acton SE, Chakravarty P, Girotti MR, Marais R, Quezada SA, et al: Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell. 162:1257–1270. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Lin Y, He Z, Ye J, Liu Z, She X, Gao X and Liang R: Progress in understanding the IL-6/STAT3 pathway in colorectal cancer. Onco Targets Ther. 13:13023–13032. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Su YL, Banerjee S, White SV and Kortylewski M: STAT3 in tumor-associated myeloid cells: Multitasking to disrupt immunity. Int J Mol Sci. 19:18032018. View Article : Google Scholar : PubMed/NCBI | |
|
Sinha P, Clements VK, Fulton AM and Ostrand-Rosenberg S: Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res. 67:4507–4513. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Tang C, Sun H, Kadoki M, Han W, Ye X, Makusheva Y, Deng J, Feng B, Qiu D, Tan Y, et al: Blocking Dectin-1 prevents colorectal tumorigenesis by suppressing prostaglandin E2 production in myeloid-derived suppressor cells and enhancing IL-22 binding protein expression. Nat Commun. 14:14932023. View Article : Google Scholar : PubMed/NCBI | |
|
Lu W, Yu W, He J, Liu W, Yang J, Lin X, Zhang Y, Wang X, Jiang W, Luo J, et al: Reprogramming immunosuppressive myeloid cells facilitates immunotherapy for colorectal cancer. EMBO Mol Med. 13:e127982021. View Article : Google Scholar : | |
|
Molfetta R and Paolini R: The controversial role of intestinal mast cells in colon cancer. Cells. 12:4592023. View Article : Google Scholar : PubMed/NCBI | |
|
Cheon EC, Khazaie K, Khan MW, Strouch MJ, Krantz SB, Phillips J, Blatner NR, Hix LM, Zhang M, Dennis KL, et al: Mast cell 5-lipoxygenase activity promotes intestinal polyposis in APCDelta468 mice. Cancer Res. 71:1627–1636. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Ostrand-Rosenberg S and Fenselau C: Myeloid-derived suppressor cells: Immune-suppressive cells that impair antitumor immunity and are sculpted by their environment. J Immunol. 200:422–431. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Rahma OE and Hodi FS: The Intersection between tumor angiogenesis and immune suppression. Clin Cancer Res. 25:5449–5457. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Xiang X, Poliakov A, Liu C, Liu Y, Deng ZB, Wang J, Cheng Z, Shah SV, Wang GJ, Zhang L, et al: Induction of myeloid-derived suppressor cells by tumor exosomes. Int J Cancer. 124:2621–2633. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Fenselau C and Ostrand-Rosenberg S: Molecular cargo in myeloid-derived suppressor cells and their exosomes. Cell Immunol. 359:1042582021. View Article : Google Scholar : | |
|
Gu J, Lv X, Li W, Li G, He X, Zhang Y, Shi L and Zhang X: Deciphering the mechanism of Peptostreptococcus anaerobius-induced chemoresistance in colorectal cancer: The important roles of MDSC recruitment and EMT activation. Front Immunol. 14:12306812023. View Article : Google Scholar : PubMed/NCBI | |
|
Abed J, Emgård JEM, Zamir G, Faroja M, Almogy G, Grenov A, Sol A, Naor R, Pikarsky E, Atlan KA, et al: Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed gal-GalNAc. Cell Host Microbe. 20:215–225. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Han J, Zhang B, Zhang Y, Yin T, Cui Y, Liu J, Yang Y, Song H and Shang D: Gut microbiome: Decision-makers in the microenvironment of colorectal cancer. Front Cell Infect Microbiol. 13:12999772023. View Article : Google Scholar : | |
|
Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, Clancy TE, Chung DC, Lochhead P, Hold GL, et al: Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 14:207–215. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Hashemi Goradel N, Heidarzadeh S, Jahangiri S, Farhood B, Mortezaee K, Khanlarkhani N and Negahdari B: Fusobacterium nucleatum and colorectal cancer: A mechanistic overview. J Cell Physiol. 234:2337–2344. 2019. View Article : Google Scholar | |
|
Cassetta L, Baekkevold ES, Brandau S, Bujko A, Cassatella MA, Dorhoi A, Krieg C, Lin A, Loré K, Marini O, et al: Deciphering myeloid-derived suppressor cells: Isolation and markers in humans, mice and non-human primates. Cancer Immunol Immunother. 68:687–697. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Yi M, Niu M, Mei Q and Wu K: Myeloid-derived suppressor cells: An emerging target for anticancer immunotherapy. Mol Cancer. 21:1842022. View Article : Google Scholar : PubMed/NCBI | |
|
Gabrilovich DI and Nagaraj S: Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 9:162–174. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, Basso G, Brombacher F, Borrello I, Zanovello P, et al: Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest. 116:2777–2790. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Bronte V and Zanovello P: Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol. 5:641–654. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Rodriguez PC, Quiceno DG and Ochoa AC: L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood. 109:1568–1573. 2007. View Article : Google Scholar | |
|
Zheng Y, Yao Y, Ge T, Ge S, Jia R, Song X and Zhuang A: Amino acid metabolism reprogramming: Shedding new light on T cell anti-tumor immunity. J Exp Clin Cancer Res. 42:2912023. View Article : Google Scholar : PubMed/NCBI | |
|
Fujimura T, Mahnke K and Enk AH: Myeloid derived suppressor cells and their role in tolerance induction in cancer. J Dermatol Sci. 59:1–6. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Steggerda SM, Bennett MK, Chen J, Emberley E, Huang T, Janes JR, Li W, MacKinnon AL, Makkouk A, Marguier G, et al: Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment. J Immunother Cancer. 5:1012017. View Article : Google Scholar : PubMed/NCBI | |
|
Portale F and Di Mitri D: NK cells in cancer: Mechanisms of dysfunction and therapeutic potential. Int J Mol Sci. 24:95212023. View Article : Google Scholar : PubMed/NCBI | |
|
Raber PL, Thevenot P, Sierra R, Wyczechowska D, Halle D, Ramirez ME, Ochoa AC, Fletcher M, Velasco C, Wilk A, et al: Subpopulations of myeloid-derived suppressor cells impair T cell responses through independent nitric oxide-related pathways. Int J Cancer. 134:2853–2864. 2014. View Article : Google Scholar | |
|
Li W, Zhang X, Chen Y, Xie Y, Liu J, Feng Q, Wang Y, Yuan W and Ma J: G-CSF is a key modulator of MDSC and could be a potential therapeutic target in colitis-associated colorectal cancers. Protein Cell. 7:130–140. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
OuYang LY, Wu XJ, Ye SB, Zhang RX, Li ZL, Liao W, Pan ZZ, Zheng LM, Zhang XS, Wang Z, et al: Tumor-induced myeloid-derived suppressor cells promote tumor progression through oxidative metabolism in human colorectal cancer. J Transl Med. 13:472015. View Article : Google Scholar : PubMed/NCBI | |
|
Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, Padhya T, McCaffrey TV, McCaffrey JC and Gabrilovich DI: Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol. 182:5693–5701. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J and Gabrilovich DI: Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med. 13:828–835. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Jachetti E, Sangaletti S, Chiodoni C, Ferrara R and Colombo MP: Modulation of PD-1/PD-L1 axis in myeloid-derived suppressor cells by anti-cancer treatments. Cell Immunol. 362:1043012021. View Article : Google Scholar : PubMed/NCBI | |
|
Noman MZ, Desantis G, Janji B, Hasmim M, Karray S, Dessen P, Bronte V and Chouaib S: PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. 211:781–790. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu J, Powis de Tenbossche CG, Cané S, Colau D, van Baren N, Lurquin C, Schmitt-Verhulst AM, Liljeström P, Uyttenhove C and Van den Eynde BJ: Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes. Nat Commun. 8:14042017. View Article : Google Scholar : PubMed/NCBI | |
|
Trovato R, Canè S, Petrova V, Sartoris S, Ugel S and De Sanctis F: The engagement between MDSCs and Metastases: Partners in crime. Front Oncol. 10:1652020. View Article : Google Scholar : PubMed/NCBI | |
|
Gabrilovich DI, Ostrand-Rosenberg S and Bronte V: Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 12:253–268. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Lasser SA, Ozbay Kurt FG, Arkhypov I, Utikal J and Umansky V: Myeloid-derived suppressor cells in cancer and cancer therapy. Nat Rev Clin Oncol. 21:147–164. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Lu C, Redd PS, Lee JR, Savage N and Liu K: The expression profiles and regulation of PD-L1 in tumor-induced myeloid-derived suppressor cells. Oncoimmunology. 5:e12471352016. View Article : Google Scholar | |
|
Chiu DK, Tse AP, Xu IM, Di Cui J, Lai RK, Li LL, Koh HY, Tsang FH, Wei LL, Wong CM, et al: Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nat Commun. 8:5172017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou J, Qu Z, Sun F, Han L, Li L, Yan S, Stabile LP, Chen LF, Siegfried JM and Xiao G: Myeloid STAT3 promotes lung tumorigenesis by transforming tumor immunosurveillance into tumor-promoting inflammation. Cancer Immunol Res. 5:257–268. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Halaby MJ and McGaha TL: Amino acid transport and metabolism in myeloid function. Front Immunol. 12:6952382021. View Article : Google Scholar : PubMed/NCBI | |
|
Prendergast GC, Malachowski WJ, Mondal A, Scherle P and Muller AJ: Indoleamine 2,3-dioxygenase and its therapeutic inhibition in cancer. Int Rev Cell Mol Biol. 336:175–203. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Arshad J, Rao A, Repp ML, Rao R, Wu C and Merchant JL: Myeloid-derived suppressor cells: Therapeutic target for gastrointestinal cancers. Int J Mol Sci. 25:29852024. View Article : Google Scholar : PubMed/NCBI | |
|
Neurath MF, Weigmann B, Finotto S, Glickman J, Nieuwenhuis E, Iijima H, Mizoguchi A, Mizoguchi E, Mudter J, Galle PR, et al: The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn's disease. J Exp Med. 195:1129–1143. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Lúdvíksson BR, Seegers D, Resnick AS and Strober W: The effect of TGF-beta1 on immune responses of naïve versus memory CD4+ Th1/Th2 T cells. Eur J Immunol. 30:2101–2111. 2000. View Article : Google Scholar | |
|
Singh S, Gouri V and Samant M: TGF-β in correlation with tumor progression, immunosuppression and targeted therapy in colorectal cancer. Med Oncol. 40:3352023. View Article : Google Scholar | |
|
Takaku S, Terabe M, Ambrosino E, Peng J, Lonning S, McPherson JM and Berzofsky JA: Blockade of TGF-beta enhances tumor vaccine efficacy mediated by CD8(+) T cells. Int J Cancer. 126:1666–1674. 2010. View Article : Google Scholar | |
|
Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM and Chen SH: Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 66:1123–1131. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Han J, Dong L, Wu M and Ma F: Dynamic polarization of tumor-associated macrophages and their interaction with intratumoral T cells in an inflamed tumor microenvironment: From mechanistic insights to therapeutic opportunities. Front Immunol. 14:11603402023. View Article : Google Scholar : PubMed/NCBI | |
|
Sinha P, Clements VK, Bunt SK, Albelda SM and Ostrand-Rosenberg S: Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol. 179:977–983. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Peng P, Lou Y, Wang S, Wang J, Zhang Z, Du P, Zheng J, Liu P and Xu LX: Activated NK cells reprogram MDSCs via NKG2D-NKG2DL and IFN-γ to modulate antitumor T-cell response after cryo-thermal therapy. J Immunother Cancer. 10:e0057692022. View Article : Google Scholar | |
|
Yue J, Li J, Ma J, Zhai Y, Shen L, Zhang W, Li L and Fu R: Myeloid-derived suppressor cells inhibit natural killer cells in myelodysplastic syndromes through the TIGIT/CD155 pathway. Hematology. 28:21663332023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu G, Bi Y, Shen B, Yang H, Zhang Y, Wang X, Liu H, Lu Y, Liao J, Chen X and Chu Y: SIRT1 limits the function and fate of myeloid-derived suppressor cells in tumors by orchestrating HIF-1α-dependent glycolysis. Cancer Res. 74:727–737. 2014. View Article : Google Scholar | |
|
O'Donnell C, Mahmoud A, Keane J, Murphy C, White D, Carey S, O'Riordain M, Bennett MW, Brint E and Houston A: An antitumorigenic role for the IL-33 receptor, ST2L, in colon cancer. Br J Cancer. 114:37–43. 2016. View Article : Google Scholar : | |
|
Wang D, Sun H, Wei J, Cen B and DuBois RN: CXCL1 is critical for premetastatic niche formation and metastasis in colorectal cancer. Cancer Res. 77:3655–3665. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Gao Y, Bado I, Wang H, Zhang W, Rosen JM and Zhang XHF: Metastasis organotropism: Redefining the congenial soil. Dev Cell. 49:375–391. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li B, Zhang S, Huang N, Chen H, Wang P, Yang J and Li Z: CCL9/CCR1 induces myeloid-derived suppressor cell recruitment to the spleen in a murine H22 orthotopic hepatoma model. Oncol Rep. 41:608–618. 2019. | |
|
Cui TX, Kryczek I, Zhao L, Zhao E, Kuick R, Roh MH, Vatan L, Szeliga W, Mao Y, Thomas DG, et al: Myeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity. 39:611–621. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Di Mitri D, Toso A, Chen JJ, Sarti M, Pinton S, Jost TR, D'Antuono R, Montani E, Garcia-Escudero R, Guccini I, et al: Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer. Nature. 515:134–137. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yan HH, Pickup M, Pang Y, Gorska AE, Li Z, Chytil A, Geng Y, Gray JW, Moses HL and Yang L: Gr-1+CD11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Res. 70:6139–6149. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Long L, Xiong W, Lin F, Hou J, Chen G, Peng T, He Y, Wang R, Xu Q and Huang Y: Regulating lactate-related immunometabolism and EMT reversal for colorectal cancer liver metastases using shikonin targeted delivery. J Exp Clin Cancer Res. 42:1172023. View Article : Google Scholar : PubMed/NCBI | |
|
Taki M, Abiko K, Ukita M, Murakami R, Yamanoi K, Yamaguchi K, Hamanishi J, Baba T, Matsumura N and Mandai M: Tumor immune microenvironment during epithelial-mesenchymal transition. Clin Cancer Res. 27:4669–4679. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Jia A, Bi Y, Wang Y, Yang Q, Cao Y, Li Y and Liu G: Targeting myeloid-derived suppressor cells in cancer immunotherapy. Cancers (Basel). 12:26262020. View Article : Google Scholar : PubMed/NCBI | |
|
Qu P, Wang LZ and Lin PC: Expansion and functions of myeloid-derived suppressor cells in the tumor microenvironment. Cancer Lett. 380:253–256. 2016. View Article : Google Scholar | |
|
De Cicco P, Ercolano G and Ianaro A: The new era of cancer immunotherapy: Targeting myeloid-derived suppressor cells to overcome immune evasion. Front Immunol. 11:16802020. View Article : Google Scholar : PubMed/NCBI | |
|
Law AMK, Valdes-Mora F and Gallego-Ortega D: Myeloid-derived suppressor cells as a therapeutic target for cancer. Cells. 9:5612020. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Wu K, Zhao E, Shi L, Li R, Zhang P, Yin Y, Shuai X, Wang G and Tao K: HMGB1 recruits myeloid derived suppressor cells to promote peritoneal dissemination of colon cancer after resection. Biochem Biophys Res Commun. 436:156–161. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Eriksson E, Wenthe J, Irenaeus S, Loskog A and Ullenhag G: Gemcitabine reduces MDSCs, tregs and TGFβ-1 while restoring the teff/treg ratio in patients with pancreatic cancer. J Transl Med. 14:2822016. View Article : Google Scholar | |
|
John David K, Amy VP, Natasha MS, Asha NK and Kebin L: 5-Fluorouracil regulation of myeloid-derived suppressor cell differentiation in vitro and in vivo. J Immunol. 198(Suppl 1): S205.52017. View Article : Google Scholar | |
|
Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A, Martin F, Apetoh L, Rébé C and Ghiringhelli F: 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 70:3052–3061. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Kanterman J, Sade-Feldman M, Biton M, Ish-Shalom E, Lasry A, Goldshtein A, Hubert A and Baniyash M: Adverse immunoregulatory effects of 5FU and CPT11 chemotherapy on myeloid-derived suppressor cells and colorectal cancer outcomes. Cancer Res. 74:6022–6035. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Talmadge JE, Hood KC, Zobel LC, Shafer LR, Coles M and Toth B: Chemoprevention by cyclooxygenase-2 inhibition reduces immature myeloid suppressor cell expansion. Int Immunopharmacol. 7:140–151. 2007. View Article : Google Scholar | |
|
Osada T, Chong G, Tansik R, Hong T, Spector N, Kumar R, Hurwitz HI, Dev I, Nixon AB, Lyerly HK, et al: The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol Immunother. 57:1115–1124. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Dominguez GA, Condamine T, Mony S, Hashimoto A, Wang F, Liu Q, Forero A, Bendell J, Witt R, Hockstein N, et al: selective targeting of myeloid-derived suppressor cells in cancer patients using DS-8273a, an agonistic TRAIL-R2 antibody. Clin Cancer Res. 23:2942–2950. 2017. View Article : Google Scholar : | |
|
Fultang L, Panetti S, Ng M, Collins P, Graef S, Rizkalla N, Booth S, Lenton R, Noyvert B, Shannon-Lowe C, et al: MDSC targeting with Gemtuzumab ozogamicin restores T cell immunity and immunotherapy against cancers. EBioMedicine. 47:235–246. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
De Sanctis F, Solito S, Ugel S, Molon B, Bronte V and Marigo I: MDSCs in cancer: Conceiving new prognostic and therapeutic targets. Biochim Biophys Acta. 1865:35–48. 2016. | |
|
Hinshaw DC and Shevde LA: The tumor microenvironment innately modulates cancer progression. Cancer Res. 79:4557–4566. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou J, Nefedova Y, Lei A and Gabrilovich D: Neutrophils and PMN-MDSC: Their biological role and interaction with stromal cells. Semin Immunol. 35:19–28. 2018. View Article : Google Scholar | |
|
Park SM and Youn JI: Role of myeloid-derived suppressor cells in immune checkpoint inhibitor therapy in cancer. Arch Pharm Res. 42:560–566. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng Y, Ma XL, Wei YQ and Wei XW: Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochim Biophys Acta Rev Cancer. 1871:289–312. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yan G, Zhao H, Zhang Q, Zhou Y, Wu L, Lei J, Wang X, Zhang J, Zhang X, Zheng L, et al: A RIPK3-PGE2 circuit mediates myeloid-derived suppressor cell-potentiated colorectal carcinogenesis. Cancer Res. 78:5586–5599. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Umansky V, Blattner C, Gebhardt C and Utikal J: CCR5 in recruitment and activation of myeloid-derived suppressor cells in melanoma. Cancer Immunol Immunother. 66:1015–1023. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tan MCB, Goedegebuure PS, Belt BA, Flaherty B, Sankpal N, Gillanders WE, Eberlein TJ, Hsieh CS and Linehan DC: Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J Immunol. 182:1746–1755. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Haney KM, Richardson AC, Wilson E, Gewirtz DA, Ware JL, Zehner ZE and Zhang Y: Anibamine, a natural product CCR5 antagonist, as a novel lead for the development of anti-prostate cancer agents. Bioorg Med Chem Lett. 20:4627–4630. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Velasco-Velázquez M, Jiao X, De La Fuente M, Pestell TG, Ertel A, Lisanti MP and Pestell RG: CCR5 antagonist blocks metastasis of basal breast cancer cells. Cancer Res. 72:3839–3850. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Deming DA: Advances in immunotherapeutic strategies for colorectal cancer commentary on: tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 therapy in cancer patients by Halama et al. J Immunother Cancer. 4:932016. View Article : Google Scholar : PubMed/NCBI | |
|
Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH and Rüttinger D: Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 5:532017. View Article : Google Scholar : PubMed/NCBI | |
|
Holmgaard RB, Zamarin D, Lesokhin A, Merghoub T and Wolchok JD: Targeting myeloid-derived suppressor cells with colony stimulating factor-1 receptor blockade can reverse immune resistance to immunotherapy in indoleamine 2,3-dioxygenase-expressing tumors. EBioMedicine. 6:50–58. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Mitchem JB, Brennan DJ, Knolhoff BL, Belt BA, Zhu Y, Sanford DE, Belaygorod L, Carpenter D, Collins L, Piwnica-Worms D, et al: Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 73:1128–1141. 2013. View Article : Google Scholar | |
|
Lonardi S, Licini S, Micheletti A, Finotti G, Vermi W and Cassatella MA: Potential contribution of tumor-associated slan+ cells as anti-CSF-1R targets in human carcinoma. J Leukoc Biol. 103:559–564. 2018. View Article : Google Scholar | |
|
Lin S, Wang J, Wang L, Wen J, Guo Y, Qiao W, Zhou J, Xu G and Zhi F: Phosphodiesterase-5 inhibition suppresses colonic inflammation-induced tumorigenesis via blocking the recruitment of MDSC. Am J Cancer Res. 7:41–52. 2017.PubMed/NCBI | |
|
Liang H, Deng L, Hou Y, Meng X, Huang X, Rao E, Zheng W, Mauceri H, Mack M, Xu M, et al: Host STING-dependent MDSC mobilization drives extrinsic radiation resistance. Nat Commun. 8:17362017. View Article : Google Scholar : PubMed/NCBI | |
|
De Santo C, Serafini P, Marigo I, Dolcetti L, Bolla M, Del Soldato P, Melani C, Guiducci C, Colombo MP, Iezzi M, et al: Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc Natl Acad Sci USA. 102:4185–4190. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Molon B, Viola A and Bronte V: Smoothing T cell roads to the tumor: Chemokine post-translational regulation. Oncoimmunology. 1:390–392. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Chen HM, Ma G, Gildener-Leapman N, Eisenstein S, Coakley BA, Ozao J, Mandeli J, Divino C, Schwartz M, Sung M, et al: Myeloid-derived suppressor cells as an immune parameter in patients with concurrent sunitinib and stereotactic body radiotherapy. Clin Cancer Res. 21:4073–4085. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Nagaraj S, Youn JI, Weber H, Iclozan C, Lu L, Cotter MJ, Meyer C, Becerra CR, Fishman M, Antonia S, et al: Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clin Cancer Res. 16:1812–1823. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP, Boireau W, Rouleau A, Simon B, Lanneau D, et al: Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest. 120:457–471. 2010.PubMed/NCBI | |
|
Bertocchi A, Carloni S, Ravenda PS, Bertalot G, Spadoni I, Lo Cascio A, Gandini S, Lizier M, Braga D, Asnicar F, et al: Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver. Cancer Cell. 39:708–724.e11. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Mei Y, Zhu Y, Yong KSM, Hanafi ZB, Gong H, Liu Y, Teo HY, Hussain M, Song Y, Chen Q and Liu H: IL-37 dampens immunosuppressive functions of MDSCs via metabolic reprogramming in the tumor microenvironment. Cell Rep. 43:1138352024. View Article : Google Scholar : PubMed/NCBI | |
|
Hengesbach LM and Hoag KA: Physiological concentrations of retinoic acid favor myeloid dendritic cell development over granulocyte development in cultures of bone marrow cells from mice. J Nutr. 134:2653–2659. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Nefedova Y, Fishman M, Sherman S, Wang X, Beg AA and Gabrilovich DI: Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res. 67:11021–11028. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ, Lush RM, Antonia S and Gabrilovich DI: All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 66:9299–9307. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Tu SP, Jin H, Shi JD, Zhu LM, Suo Y, Lu G, Liu A, Wang TC and Yang CS: Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth. Cancer Prev Res (Phila). 5:205–215. 2012. View Article : Google Scholar | |
|
Carroll RE, Benya RV, Turgeon DK, Vareed S, Neuman M, Rodriguez L, Kakarala M, Carpenter PM, McLaren C, Meyskens FL Jr and Brenner DE: Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev Res (Phila). 4:354–364. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Daurkin I, Eruslanov E, Vieweg J and Kusmartsev S: Generation of antigen-presenting cells from tumor-infiltrated CD11b myeloid cells with DNA demethylating agent 5-aza-2′-deoxycytidine. Cancer Immunol Immunother. 59:697–706. 2010. View Article : Google Scholar | |
|
Zoglmeier C, Bauer H, Noerenberg D, Wedekind G, Bittner P, Sandholzer N, Rapp M, Anz D, Endres S and Bourquin C: CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin Cancer Res. 17:1765–1775. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Meyer C, Cagnon L, Costa-Nunes CM, Baumgaertner P, Montandon N, Leyvraz L, Michielin O, Romano E and Speiser DE: Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunol Immunother. 63:247–257. 2014. View Article : Google Scholar | |
|
Di Giacomo AM, Schenker M, Medioni J, Mandziuk S, Majem M, Gravis G, Cornfeld M, Ranganathan S, Lou S and Csoszi T: A phase II study of retifanlimab, a humanized anti-PD-1 monoclonal antibody, in patients with solid tumors (POD1UM-203). ESMO Open. 9:1023872024. View Article : Google Scholar : PubMed/NCBI | |
|
Kim W, Chu TH, Nienhüser H, Jiang Z, Del Portillo A, Remotti HE, White RA, Hayakawa Y, Tomita H, Fox JG, et al: PD-1 signaling promotes tumor-infiltrating myeloid-derived suppressor cells and gastric tumorigenesis in mice. Gastroenterology. 160:781–796. 2021. View Article : Google Scholar | |
|
Kalyan A, Kircher S, Shah H, Mulcahy M and Benson A: Updates on immunotherapy for colorectal cancer. J Gastrointest Oncol. 9:160–169. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang C, Zheng X, Zhang J, Jiang X, Wang J, Li Y, Li X, Shen G, Peng J, Zheng P, et al: CD300ld on neutrophils is required for tumour-driven immune suppression. Nature. 621:830–839. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Kumar V, Cheng P, Condamine T, Mony S, Languino LR, McCaffrey JC, Hockstein N, Guarino M, Masters G, Penman E, et al: CD45 phosphatase inhibits STAT3 transcription factor activity in myeloid cells and promotes tumor-associated macrophage differentiation. Immunity. 44:303–315. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Su MT, Kumata S, Endo S, Okada Y and Takai T: LILRB4 promotes tumor metastasis by regulating MDSCs and inhibiting miR-1 family miRNAs. Oncoimmunology. 11:20609072022. View Article : Google Scholar : PubMed/NCBI | |
|
Ostrand-Rosenberg S, Beury DW, Parker KH and Horn LA: Survival of the fittest: How myeloid-derived suppressor cells survive in the inhospitable tumor microenvironment. Cancer Immunol Immunother. 69:215–221. 2020. View Article : Google Scholar : | |
|
Beury DW, Carter KA, Nelson C, Sinha P, Hanson E, Nyandjo M, Fitzgerald PJ, Majeed A, Wali N and Ostrand-Rosenberg S: Myeloid-derived suppressor cell survival and function are regulated by the transcription factor Nrf2. J Immunol. 196:3470–3478. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Condamine T, Kumar V, Ramachandran IR, Youn JI, Celis E, Finnberg N, El-Deiry WS, Winograd R, Vonderheide RH, English NR, et al: ER stress regulates myeloid-derived suppressor cell fate through TRAIL-R-mediated apoptosis. J Clin Invest. 124:2626–2639. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zheng L, Shang W, Yang Z, Li T, Liu F, Shao W, Lv L, Chai L, Qu L, et al: Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death Differ. 29:2190–2202. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Conche C, Finkelmeier F, Pešić M, Nicolas AM, Böttger TW, Kennel KB, Denk D, Ceteci F, Mohs K, Engel E, et al: Combining ferroptosis induction with MDSC blockade renders primary tumours and metastases in liver sensitive to immune checkpoint blockade. Gut. 72:1774–1782. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Bebelman MP, Smit MJ, Pegtel DM and Baglio SR: Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther. 188:1–11. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS, Yan YR, Song FY, Wang FF, Zhu XH, Liao WJ, et al: CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. 18:912019. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Z, Zeng S, Gong Z and Yan Y: Exosome-based immunotherapy: A promising approach for cancer treatment. Mol Cancer. 19:1602020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Yin K, Tian J, Xia X, Ma J, Tang X, Xu H and Wang S: Granulocytic myeloid-derived suppressor cells promote the stemness of colorectal cancer cells through exosomal S100A9. Adv Sci (Weinh). 6:19012782019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Liu H, Zhang Z, Bian D, Shao K, Wang S and Ding Y: G-MDSC-derived exosomes mediate the differentiation of M-MDSC into M2 macrophages promoting colitis-to-cancer transition. J Immunother Cancer. 11:e0061662023. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Z, Shi K, Yang S, Liu J, Zhou Q, Wang G, Song J, Li Z, Zhang Z and Yuan W: Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer. 17:1472018. View Article : Google Scholar : PubMed/NCBI | |
|
Matsumura T, Sugimachi K, Iinuma H, Takahashi Y, Kurashige J, Sawada G, Ueda M, Uchi R, Ueo H, Takano Y, et al: Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br J Cancer. 113:275–281. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Markowitz SD and Bertagnolli MM: Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med. 361:2449–2460. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Huang D, Sun W, Zhou Y, Li P, Chen F, Chen H, Xia D, Xu E, Lai M, Wu Y and Zhang H: Mutations of key driver genes in colorectal cancer progression and metastasis. Cancer Metastasis Rev. 37:173–187. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Jayaraman P, Parikh F, Newton JM, Hanoteau A, Rivas C, Krupar R, Rajapakshe K, Pathak R, Kanthaswamy K, MacLaren C, et al: TGF-β1 programmed myeloid-derived suppressor cells (MDSC) acquire immune-stimulating and tumor killing activity capable of rejecting established tumors in combination with radiotherapy. Oncoimmunology. 7:e14908532018. View Article : Google Scholar | |
|
Li X, Wen D, Li X, Yao C, Chong W and Chen H: Identification of an immune signature predicting prognosis risk and lymphocyte infiltration in colon cancer. Front Immunol. 11:16782020. View Article : Google Scholar : PubMed/NCBI | |
|
Javle MM, Bridgewater JA, Gbolahan OB, Jungels C, Cho MT, Papadopoulos KP, Thistlethwaite FC, Canon JLR, Cheng L, Ioannidis S, et al: A phase I/II study of safety and efficacy of the arginase inhibitor INCB001158 plus chemotherapy in patients (Pts) with advanced biliary tract cancers. J Clin Oncol. 39(Suppl 3): S3112021. View Article : Google Scholar | |
|
Lorentzen CL, Martinenaite E, Kjeldsen JW, Holmstroem RB, Mørk SK, Pedersen AW, Ehrnrooth E, Andersen MH and Svane IM: Arginase-1 targeting peptide vaccine in patients with metastatic solid tumors-A phase I trial. Front Immunol. 13:10230232022. View Article : Google Scholar | |
|
Zeng Z, Lan T, Wei Y and Wei X: CCL5/CCR5 axis in human diseases and related treatments. Genes Dis. 9:12–27. 2022. View Article : Google Scholar | |
|
Snajdauf M, Havlova K, Vachtenheim J Jr, Ozaniak A, Lischke R, Bartunkova J, Smrz D and Strizova Z: The TRAIL in the treatment of human cancer: An update on clinical trials. Front Mol Biosci. 8:6283322021. View Article : Google Scholar : PubMed/NCBI | |
|
Isambert N, Hervieu A, Rébé C, Hennequin A, Borg C, Zanetta S, Chevriaux A, Richard C, Derangère V, Limagne E, et al: Fluorouracil and bevacizumab plus anakinra for patients with metastatic colorectal cancer refractory to standard therapies (IRAFU): A single-arm phase 2 study. Oncoimmunology. 7:e14743192018. View Article : Google Scholar : PubMed/NCBI | |
|
Schmitz-Winnenthal FH, Hohmann N, Schmidt T, Podola L, Friedrich T, Lubenau H, Springer M, Wieckowski S, Breiner KM, Mikus G, et al: A phase 1 trial extension to assess immunologic efficacy and safety of prime-boost vaccination with VXM01, an oral T cell vaccine against VEGFR2, in patients with advanced pancreatic cancer. Oncoimmunology. 7:e13035842018. View Article : Google Scholar : PubMed/NCBI | |
|
Johnson B, Kopetz S, Hwang H, Yuan Y, DePinho RA, Zebala J and Overman MJ: STOPTRAFFIC-1: A phase I/II trial of SX-682 in combination with nivolumab for refractory RAS-mutated microsatellite stable (MSS) metastatic colorectal cancer (mCRC). J Clin Oncol. 40(Suppl 16): TPS36382022. View Article : Google Scholar | |
|
Hanna CR, O'Cathail SM, Graham J, Adams R and Roxburgh CSD: Immune checkpoint inhibition as a strategy in the neoadjuvant treatment of locally advanced rectal cancer. J Immunother Precis Oncol. 4:86–104. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lizardo DY, Kuang C, Hao S, Yu J, Huang Y and Zhang L: Immunotherapy efficacy on mismatch repair-deficient colorectal cancer: From bench to bedside. Biochim Biophys Acta Rev Cancer. 1874:1884472020. View Article : Google Scholar : PubMed/NCBI | |
|
Hull MA, Ow PL, Ruddock S, Brend T, Smith AF, Marshall H, Song M, Chan AT, Garrett WS, Yilmaz O, et al: Randomised, placebo-controlled, phase 3 trial of the effect of the omega-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA) on colorectal cancer recurrence and survival after surgery for resectable liver metastases: EPA for metastasis trial 2 (EMT2) study protocol. BMJ Open. 13:e0774272023. View Article : Google Scholar |